A slightly improved upper bound on the size of weights sufficient to represent any linearly separable Boolean function
Bericht
Faculties
Fakultät für Ingenieurwissenschaften und InformatikSeries
Ulmer Informatik-Berichte
Abstract
The maximum absolute value of integral weights sufficient to represent any linearly separable Boolean function is investigated. It is shown that upper bounds exhibited by Muraga (1971) for rational weights satisfying the normalized system of inequalities also hold for integral weights. Therewith, the previous best known upper bound for integers is improved by approximately a factor of 1/2.
Date created
1992
Subject headings
[GND]: Schwellenwertlogik[LCSH]: Threshold logic
[DDC subject group]: DDC 004 / Data processing & computer science
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-2432
Schmitt, Michael (2012): A slightly improved upper bound on the size of weights sufficient to represent any linearly separable Boolean function. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-2432
Citation formatter >