Is distributed database evaluation cloud-ready?

peer-reviewed
Erstveröffentlichung
2017-09-09Autoren
Seybold, Daniel
Domaschka, Jörg
Beitrag zu einer Konferenz
Erschienen in
New Trends in Databases and Information Systems ; 767 (2017). - S. 100-108. - ISBN 978-3-319-67162-8, ISBN 978-3-319-67161-1. - ISSN 1865-0929. - eISSN 1865-0937
Link zur Originalveröffentlichung
https://dx.doi.org/10.1007/978-3-319-67162-8_12Fakultäten
Fakultät für Ingenieurwissenschaften, Informatik und PsychologieInstitutionen
Institut für Organisation und Management von InformationssystemenDokumentversion
Akzeptierte VersionKonferenz
European Conference on Advances in Databases and Information Systems, 2017-09-24 - 2017-09-27, Nicosia, Cyprus
Zusammenfassung
The database landscape has significantly evolved over the
last decade as cloud computing enables to run distributed databases on
virtually unlimited cloud resources. Hence, the already non-trivial task
of selecting and deploying a distributed database system becomes more
challenging. Database evaluation frameworks aim at easing this task by
guiding the database selection and deployment decision. The evaluation
of databases has evolved as well by moving the evaluation focus from performance
to distribution aspects such as scalability and elasticity. This
paper presents a cloud-centric analysis of distributed database evaluation
frameworks based on evaluation tiers and framework requirements.
It analysis eight well adopted evaluation frameworks. The results point
out that the evaluation tiers performance, scalability, elasticity and consistency
are well supported, in contrast to resource selection and availability.
Further, the analysed frameworks do not support cloud-centric
requirements but support classic evaluation requirements.
EU-Projekt uulm
CloudSocket / Business and IT-Cloud Alignment using a Smart Socket / EC / H2020 / 644690
MELODIC / Multi-cloud Execution-ware for Large-scale Optimized Data-Intensive Computing / EC / H2020 / 731664
MELODIC / Multi-cloud Execution-ware for Large-scale Optimized Data-Intensive Computing / EC / H2020 / 731664
Frühere Version(en)
10.18725/OPARU-4382Schlagwörter
[GND]: Cloud Computing | NoSQL-Datenbanksystem | Verteiltes Datenbanksystem | Formative Evaluation[LCSH]: Distributed databases | Database management; Evaluation | Cloud computing | Non-relational databases
[Freie Schlagwörter]: database evaluation
[DDC Sachgruppe]: DDC 004 / Data processing & computer science
Metadata
Zur LanganzeigeDOI & Zitiervorlage
Nutzen Sie bitte diesen Identifier für Zitate & Links: http://dx.doi.org/10.18725/OPARU-22041
Seybold, Daniel; Domaschka, Jörg (2019): Is distributed database evaluation cloud-ready? Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-22041
Verschiedene Zitierstile >
Das könnte Sie auch interessieren:
-
A model driven engineering approach for flexible and distributed monitoring of cross-cloud applications
Baur, Daniel et al. (2019)Beitrag zu einer Konferenz
-
A DMN-Based Approach for Dynamic Deployment Modelling of Cloud Applications
Griesinger, Frank et al. (2018)Beitrag zu einer Konferenz
-
A provider-agnostic approach to multi-cloud orchestration using a constraint language
Baur, Daniel et al. (2018)Beitrag zu einer Konferenz