Show simple item record

AuthorHolzäpfel, Milandc.contributor.author
Date of accession2019-10-17T09:58:34Zdc.date.accessioned
Available in OPARU since2019-10-17T09:58:34Zdc.date.available
Year of creation2019dc.date.created
Date of first publication2019-10-17dc.date.issued
AbstractQuantum systems and tensors share the property that the complexity of their description grows exponentially with the number of physical subsystems or tensor indices. This thesis discusses efficient methods for tensor reconstruction, quantum state estimation and verification, as well as quantum state and process tomography. The methods proposed here can be efficient in the sense that the resource requirements scale only polynomially instead of exponentially with the number of physical subsystems or tensor indices. In numerical and analytical calculations, matrix product state (MPS)/tensor train (TT), projected entangled pair state (PEPS), and hierarchical Tucker representations are used. The reconstruction and estimation methods are discussed in principle, their performance is evaluated with numerical simulations, and the quantum state in an ion trap quantum simulator experiment is estimated and verified.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandard (ohne Print-on-Demand)dc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_opod_v1dc.rights.uri
KeywordQuantum state estimationdc.subject
KeywordQuantum state tomographydc.subject
KeywordQuantum process tomographydc.subject
KeywordAncilla-assisted process tomographydc.subject
KeywordQuantum time evolutiondc.subject
KeywordMatrix product statedc.subject
KeywordMatrix product operatordc.subject
KeywordTensor traindc.subject
KeywordProjected entangled pair statedc.subject
KeywordTucker representationdc.subject
KeywordTensor reconstructiondc.subject
KeywordLieb-Robinson bounddc.subject
KeywordMaximum likelihood estimationdc.subject
KeywordSingular value thresholdingdc.subject
Dewey Decimal GroupDDC 500 / Natural sciences & mathematicsdc.subject.ddc
Dewey Decimal GroupDDC 530 / Physicsdc.subject.ddc
LCSHTensor fieldsdc.subject.lcsh
LCSHQuantum theory-Mathematicsdc.subject.lcsh
LCSHMathematical physicsdc.subject.lcsh
TitleEfficient estimation and verification of quantum many-body systemsdc.title
Resource typeDissertationdc.type
Date of acceptance2019-07-29dcterms.dateAccepted
RefereePlenio, Martin B.dc.contributor.referee
RefereeAnkerhold, Joachimdc.contributor.referee
DOIhttp://dx.doi.org/10.18725/OPARU-20627dc.identifier.doi
PPN1681146665dc.identifier.ppn
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-20683-6dc.identifier.urn
GNDQuantenzustanddc.subject.gnd
GNDSpannungstensordc.subject.gnd
GNDMaximum-Likelihood-Schätzungdc.subject.gnd
GNDSchwellenwertdc.subject.gnd
FacultyFakultät für Naturwissenschaftenuulm.affiliationGeneral
InstitutionInstitut für Theoretische Physikuulm.affiliationSpecific
InstitutionInstitut für Komplexe Quantensystemeuulm.affiliationSpecific
Grantor of degreeFakultät für Naturwissenschaftenuulm.thesisGrantor
DCMI TypeTextuulm.typeDCMI
CategoryPublikationenuulm.category
EU project uulmBIOQ / Diamond Quantum Devices and Biology / EC / FP7 / 319130uulm.projectEU
EU project uulmEQUAM / Emulators of Quantum Frustrated Magnetism / EC / FP7 / 323714uulm.projectEU
EU project uulmQUCHIP / Quantum Simulation on a Photonic Chip / EC / H2020 / 641039uulm.projectEU
EU project uulmSIQS / Simulators and Interfaces with Quantum Systems / EC / FP7 / 600645uulm.projectEU
Bibliographyuulmuulm.bibliographie
DFG project uulmJUSTUS / HPC-Cluster Theoretische Chemie / DFG / 236232410uulm.projectDFG


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record