Author | Holzäpfel, Milan | dc.contributor.author |
Date of accession | 2019-10-17T09:58:34Z | dc.date.accessioned |
Available in OPARU since | 2019-10-17T09:58:34Z | dc.date.available |
Year of creation | 2019 | dc.date.created |
Date of first publication | 2019-10-17 | dc.date.issued |
Abstract | Quantum systems and tensors share the property that the complexity of their description grows exponentially with the number of physical subsystems or tensor indices. This thesis discusses efficient methods for tensor reconstruction, quantum state estimation and verification, as well as quantum state and process tomography. The methods proposed here can be efficient in the sense that the resource requirements scale only polynomially instead of exponentially with the number of physical subsystems or tensor indices. In numerical and analytical calculations, matrix product state (MPS)/tensor train (TT), projected entangled pair state (PEPS), and hierarchical Tucker representations are used. The reconstruction and estimation methods are discussed in principle, their performance is evaluated with numerical simulations, and the quantum state in an ion trap quantum simulator experiment is estimated and verified. | dc.description.abstract |
Language | en | dc.language.iso |
Publisher | Universität Ulm | dc.publisher |
License | Standard (ohne Print-on-Demand) | dc.rights |
Link to license text | https://oparu.uni-ulm.de/xmlui/license_opod_v1 | dc.rights.uri |
Keyword | Quantum state estimation | dc.subject |
Keyword | Quantum state tomography | dc.subject |
Keyword | Quantum process tomography | dc.subject |
Keyword | Ancilla-assisted process tomography | dc.subject |
Keyword | Quantum time evolution | dc.subject |
Keyword | Matrix product state | dc.subject |
Keyword | Matrix product operator | dc.subject |
Keyword | Tensor train | dc.subject |
Keyword | Projected entangled pair state | dc.subject |
Keyword | Tucker representation | dc.subject |
Keyword | Tensor reconstruction | dc.subject |
Keyword | Lieb-Robinson bound | dc.subject |
Keyword | Maximum likelihood estimation | dc.subject |
Keyword | Singular value thresholding | dc.subject |
Dewey Decimal Group | DDC 500 / Natural sciences & mathematics | dc.subject.ddc |
Dewey Decimal Group | DDC 530 / Physics | dc.subject.ddc |
LCSH | Tensor fields | dc.subject.lcsh |
LCSH | Quantum theory-Mathematics | dc.subject.lcsh |
LCSH | Mathematical physics | dc.subject.lcsh |
Title | Efficient estimation and verification of quantum many-body systems | dc.title |
Resource type | Dissertation | dc.type |
Date of acceptance | 2019-07-29 | dcterms.dateAccepted |
Referee | Plenio, Martin B. | dc.contributor.referee |
Referee | Ankerhold, Joachim | dc.contributor.referee |
DOI | http://dx.doi.org/10.18725/OPARU-20627 | dc.identifier.doi |
PPN | 1681146665 | dc.identifier.ppn |
URN | http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-20683-6 | dc.identifier.urn |
GND | Quantenzustand | dc.subject.gnd |
GND | Spannungstensor | dc.subject.gnd |
GND | Maximum-Likelihood-Schätzung | dc.subject.gnd |
GND | Schwellenwert | dc.subject.gnd |
Faculty | Fakultät für Naturwissenschaften | uulm.affiliationGeneral |
Institution | Institut für Theoretische Physik | uulm.affiliationSpecific |
Institution | Institut für Komplexe Quantensysteme | uulm.affiliationSpecific |
Grantor of degree | Fakultät für Naturwissenschaften | uulm.thesisGrantor |
DCMI Type | Text | uulm.typeDCMI |
Category | Publikationen | uulm.category |
EU project uulm | BIOQ / Diamond Quantum Devices and Biology / EC / FP7 / 319130 | uulm.projectEU |
EU project uulm | EQUAM / Emulators of Quantum Frustrated Magnetism / EC / FP7 / 323714 | uulm.projectEU |
EU project uulm | QUCHIP / Quantum Simulation on a Photonic Chip / EC / H2020 / 641039 | uulm.projectEU |
EU project uulm | SIQS / Simulators and Interfaces with Quantum Systems / EC / FP7 / 600645 | uulm.projectEU |
Bibliography | uulm | uulm.bibliographie |
DFG project uulm | JUSTUS / HPC-Cluster Theoretische Chemie / DFG / 236232410 | uulm.projectDFG |