Efficient estimation and verification of quantum many-body systems

Erstveröffentlichung
2019-10-17Autoren
Holzäpfel, Milan
Gutachter
Plenio, Martin B.Ankerhold, Joachim
Dissertation
Fakultäten
Fakultät für NaturwissenschaftenInstitutionen
Institut für Theoretische PhysikInstitut für Komplexe Quantensysteme
Zusammenfassung
Quantum systems and tensors share the property that the complexity of their description grows exponentially with the number of physical subsystems or tensor indices. This thesis discusses efficient methods for tensor reconstruction, quantum state estimation and verification, as well as quantum state and process tomography. The methods proposed here can be efficient in the sense that the resource requirements scale only polynomially instead of exponentially with the number of physical subsystems or tensor indices. In numerical and analytical calculations, matrix product state (MPS)/tensor train (TT), projected entangled pair state (PEPS), and hierarchical Tucker representations are used. The reconstruction and estimation methods are discussed in principle, their performance is evaluated with numerical simulations, and the quantum state in an ion trap quantum simulator experiment is estimated and verified.
Erstellung / Fertigstellung
2019
EU-Projekt uulm
BIOQ / Diamond Quantum Devices and Biology / EC / FP7 / 319130
EQUAM / Emulators of Quantum Frustrated Magnetism / EC / FP7 / 323714
QUCHIP / Quantum Simulation on a Photonic Chip / EC / H2020 / 641039
SIQS / Simulators and Interfaces with Quantum Systems / EC / FP7 / 600645
EQUAM / Emulators of Quantum Frustrated Magnetism / EC / FP7 / 323714
QUCHIP / Quantum Simulation on a Photonic Chip / EC / H2020 / 641039
SIQS / Simulators and Interfaces with Quantum Systems / EC / FP7 / 600645
DFG-Projekt uulm
JUSTUS / HPC-Cluster Theoretische Chemie / DFG / 236232410
Schlagwörter
[GND]: Quantenzustand | Spannungstensor | Maximum-Likelihood-Schätzung | Schwellenwert[LCSH]: Tensor fields | Quantum theory-Mathematics | Mathematical physics
[Freie Schlagwörter]: Quantum state estimation | Quantum state tomography | Quantum process tomography | Ancilla-assisted process tomography | Quantum time evolution | Matrix product state | Matrix product operator | Tensor train | Projected entangled pair state | Tucker representation | Tensor reconstruction | Lieb-Robinson bound | Maximum likelihood estimation | Singular value thresholding
[DDC Sachgruppe]: DDC 500 / Natural sciences & mathematics | DDC 530 / Physics
Metadata
Zur LanganzeigeDOI & Zitiervorlage
Nutzen Sie bitte diesen Identifier für Zitate & Links: http://dx.doi.org/10.18725/OPARU-20627
Holzäpfel, Milan (2019): Efficient estimation and verification of quantum many-body systems. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-20627
Verschiedene Zitierstile >
Das könnte Sie auch interessieren:
-
-
Efficient and robust signal sensing by sequences of adiabatic chirped pulses
Genov, Genko T. et al. (2020)Wissenschaftlicher Artikel
-
Coherent and incoherent charge transport in linear triple quantum dots
Contreras-Pulido, L. Debora; Bruderer, Martin (2017)Wissenschaftlicher Artikel