• English
    • Deutsch
View Item 
  •   OPARU Home
  • Fakultät für Naturwissenschaften
  • Publikationen
  • View Item
  •   OPARU Home
  • Fakultät für Naturwissenschaften
  • Publikationen
  • View Item
  • English 
    • English
    • Deutsch
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the nature of active oxygen on supported Au catalysts - formation, stability and CO oxidation activity

Thumbnail
Download
vts_7900_11445.pdf (2.071Mb)
158 S.
 
Veröffentlichung
2012-03-29
DOI
10.18725/OPARU-1952
Dissertation


Authors
Widmann, Daniel
Faculties
Fakultät für Naturwissenschaften
License
Standard
https://oparu.uni-ulm.de/xmlui/license_v3
Abstract
The objective of the present work was to resolve mechanistic details, on a molecular scale, as well as the physical origin of the high activity for the CO oxidation reaction over oxide supported Au catalysts. Special attention was given to the most controversially discussed problem in oxidation reactions over oxide supported Au catalysts, the activation of molecular oxygen and the nature of the resulting active oxygen species present under working conditions. For this reason, quantitative Temporal Analysis of Products (TAP) reactor measurements were performed, which allow a precise determination of the amount of active oxygen species present on the catalyst surface and, moreover, the determination of the overall oxygen storage capacity (OSC). Applying a combination of i) quantitative TAP measurements and ii) conventional measurements of the catalytic activity for the CO oxidation under atmospheric pressure, it is shown that the active oxygen species for CO oxidation over Au catalysts supported on reducible metal oxides is surface lattice oxygen located at the perimeter of the interface between Au nanoparticles (NPs) and support. This leads directly to the conclusion, that the CO oxidation reaction proceeds via a Au-assisted Mars-van Krevelen reaction mechanism. Different activities of differently supported Au catalysts (support effects) are originating from differences in energy levels and barriers during the reaction of CO adsorbed on the Au NP with surface lattice oxygen from the support. Moreover, for Au/titania it is also demonstrated that the oxygen content in the reaction atmosphere, the oxidation state of the catalysts surface under reaction conditions and the activity for CO oxidation are strictly correlated, and that the catalyst surface quickly adapts to the gas phase composition. These results further corroborate the Au-assisted Mars-van Krevelen mechanism proposed above, including stable, atomic lattice oxygen at perimeter sites as active oxygen species.
Date created
2012
Subject Headings
Katalytische Oxidation [GND]
Kohlenmonoxid [GND]
Active oxygen [LCSH]
Heterogeneous catalysis [LCSH]
Keywords
Au catalysts; CO oxidation; Oxygen storage capacity (OSC); Support effects; Temporal analysis of products (TAP)
Dewey Decimal Group
DDC 540 / Chemistry & allied sciences

Metadata
Show full item record

Citation example

Widmann, Daniel (2012): On the nature of active oxygen on supported Au catalysts - formation, stability and CO oxidation activity. Open Access Repositorium der Universität Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-1952

Other citation formats



About OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsFacultiesInstitutionsPersonsResource typesUlm SerialsDewey Decimal ClassesFundingThis CollectionFacultiesInstitutionsPersonsResource typesUlm SerialsDewey Decimal ClassesFunding

My Account

LoginRegister

Statistics

View Usage Statistics

About OPARU | Contact Us
Impressum | Privacy statement