Functional limit theorems for certain intrinsic volumes of excursion sets of random fields
Dissertation
Faculties
Fakultät für Mathematik und WirtschaftswissenschaftenAbstract
In the first part of this thesis we develop a method to compute all d+1 intrinsic volumes multigrid convergently for the class of unions of compact sets with positive reach given a digitization. In the second part we prove two functional limit theorems for the volume of excursion sets and for the (d-1)-dimensional Hausdorff measure of level sets of random fields, respectively. As a corollary, we prove large deviation results and propose an asymptotical significance test.
Date created
2011
Subject headings
[GND]: Große Abweichung[LCSH]: Large deviations
[Free subject headings]: Funktionaler Grenzwertsatz | Innere Volumina | Mengen positiver Reichweite | Multiskalen-Konvergenz
[DDC subject group]: DDC 510 / Mathematics
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-1799
Meschenmoser, Daniel (2011): Functional limit theorems for certain intrinsic volumes of excursion sets of random fields. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-1799
Citation formatter >