• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wild quotient singularities of arithmetic surfaces and their regular models

Thumbnail
vts_7426_10554.pdf (942.9Kb)
101 Seiten
Veröffentlichung
2010-11-16
Authors
Király, Franz
Dissertation


Faculties
Fakultät für Mathematik und Wirtschaftswissenschaften
Abstract
This thesis adresses the problem of tame and wild cyclic quotient singularities of local Noetherian rings and arithmetic surfaces. In chapter 2, we study the ring of invariants of a local Noetherian ring by a tame cyclic action. We collect and generalize classic results on tame cyclic quotient singularities in the context of toric geometry. In chapter 3, we prove algebraic results on the invariant ring of a local Noetherian ring by a possibly wild cyclic action of prime order. The central result is a characterization of monogenous extensions which can be read as a regularity criterion for the invariant ring generalizing a criterion of Serre. In chapter 4, we relate the structure of a quotient singularity of a regular arithmetic surface to the action of the group on its models. In particular, we prove results relating the minimal normal crossings desingularization of the quotient to certain models of the original surface.
Date created
2010
Subject headings
[GND]: Arithmetische Geometrie | Invariantentheorie | Singularität <Mathematik>
[LCSH]: Arithmetical algebraic geometry | Invariants | Singularities: Mathematics
[DDC subject group]: DDC 510 / Mathematics
License
Standard (Fassung vom 01.10.2008)
https://oparu.uni-ulm.de/xmlui/license_v2

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-1793

Király, Franz (2010): Wild quotient singularities of arithmetic surfaces and their regular models. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-1793
Citation formatter >



Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement