Shimura-Kurven, Endomorphismen und q-Parameter
Dissertation
Faculties
Fakultät für Mathematik und WirtschaftswissenschaftenAbstract
In this thesis we study arithmetic properties of special Shimura curves. We give a p-adic local description at CM points of a Shimura curve as locus in the deformation space of the reduced Abelian variety. We give explicit equations for this locus in the considered cases. As a space this locus is a torus and the torsion points correspond to CM lifts of the Abelian variety.
We also give an explicit construction of special Abelian surfaces, namely those which are of type QM and are isogenous to the product of elliptic curves.
Date created
2010
Subject headings
[GND]: Abelsche Mannigfaltigkeit | Deformationstheorie | Endomorphismus | Shimura-Kurve[LCSH]: Abelian varieties | Endomorphisms: Group theory
[Free subject headings]: Abelsche Varietät
[DDC subject group]: DDC 510 / Mathematics
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-1792
Ufer, Dominik (2010): Shimura-Kurven, Endomorphismen und q-Parameter. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-1792
Citation formatter >