Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains
Dissertation
Fakultäten
Fakultät für Mathematik und WirtschaftswissenschaftenZusammenfassung
It is shown that for a wide class of quasi-linear elliptic equations in divergence form, including the p-Laplace equation, on Lipschitz domains the solution is Hölder continuous up to the boundary provided the right hand side is sufficiently regular.
From this it is deduced that the associated parabolic problem is well-posed in the space of continuous functions. More precisely, the part of the operator in the space of continuous functions generates a strongly continuous non-linear contraction semigroup.
Erstellung / Fertigstellung
2010
Schlagwörter
[GND]: Elliptische Differentialgleichung | Hölder-Stetigkeit | Parabolische Differentialgleichung | Robin-Randwertproblem[LCSH]: Semigroups
[Freie Schlagwörter]: Elliptic equation | Hölder continuity | Lipschitz domain | Parabolic equation | Robin boundary conditions
[DDC Sachgruppe]: DDC 510 / Mathematics
Metadata
Zur LanganzeigeDOI & Zitiervorlage
Nutzen Sie bitte diesen Identifier für Zitate & Links: http://dx.doi.org/10.18725/OPARU-1790
Nittka, Robin (2010): Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-1790
Verschiedene Zitierstile >