Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains
Dissertation
Faculties
Fakultät für Mathematik und WirtschaftswissenschaftenAbstract
It is shown that for a wide class of quasi-linear elliptic equations in divergence form, including the p-Laplace equation, on Lipschitz domains the solution is Hölder continuous up to the boundary provided the right hand side is sufficiently regular.
From this it is deduced that the associated parabolic problem is well-posed in the space of continuous functions. More precisely, the part of the operator in the space of continuous functions generates a strongly continuous non-linear contraction semigroup.
Date created
2010
Subject headings
[GND]: Elliptische Differentialgleichung | Hölder-Stetigkeit | Parabolische Differentialgleichung | Robin-Randwertproblem[LCSH]: Semigroups
[Free subject headings]: Elliptic equation | Hölder continuity | Lipschitz domain | Parabolic equation | Robin boundary conditions
[DDC subject group]: DDC 510 / Mathematics
Metadata
Show full item recordDOI & citation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-1790
Nittka, Robin (2010): Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. Dissertation. http://dx.doi.org/10.18725/OPARU-1790
Citation formatter >