Show simple item record

AuthorMunz, Michaeldc.contributor.author
Date of accession2016-03-15T06:22:59Zdc.date.accessioned
Available in OPARU since2016-03-15T06:22:59Zdc.date.available
Year of creation2011dc.date.created
AbstractThe presented work provides a contribution in the field of automotive environment perception based on sensor fusion systems. In contrast to other existing fusion systems, a generic framework is realized, which allows for exchanging any sensor module without the need to adapt the fusion algorithm. This is achieved by modeling sensor specific properties like detection performance or reliability in a probabilistic way, which allows the definition of abstract interfaces between sensor and fusion module. The fusion process is carried out by simultaneously estimating state and existence of objects based on probabilistic information by the sensors. In addition, the resulting environment model can be processed by different driver assistance applications at the same time, which may have unequal needs for reliability of object existence. The requirements for a generic fusion system are analyzed and the need for novel sensor fusion algorithms is described. Existing data fusion algorithms are extended for the claims of the generic fusion system and novel data fusion methods are introduced. Approximations for handling the computationally expensive calculations in real-time are developed which allow ensuring a maximum computing time of the fusion process. Moreover, methods for modeling sensor specific properties, object birth, and object classification are presented. The proposed sensor fusion system is implemented for a specific sensor combination consisting of a laser scanner and a video camera for detecting and tracking vehicles in dense environments like inner city areas. Practical considerations concerning cross-calibration of sensors and timing aspects are provided. The probabilistic sensor models are described in detail. Finally, an exhaustive evaluation of the system based on real-world data is presented and several algorithms are compared. Relevant system parameters like detection performance, tracking time, estimation consistency and state precision are examined.dc.description.abstract
Languagededc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandard (Fassung vom 01.10.2008)dc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v2dc.rights.uri
KeywordEnvironment perceptiondc.subject
KeywordExistenzschätzungdc.subject
KeywordFahrzeugumfelderfassungdc.subject
KeywordInformation fusiondc.subject
KeywordInformationsfusiondc.subject
KeywordJIPDAdc.subject
KeywordJoint Integrated Probabilistic Data Associationdc.subject
KeywordMulti target trackingdc.subject
Dewey Decimal GroupDDC 620 / Engineering & allied operationsdc.subject.ddc
LCSHDriver assistance systemsdc.subject.lcsh
LCSHSensor fusiondc.subject.lcsh
TitleGenerisches Sensorfusionsframework zur gleichzeitigen Zustands- und Existenzschätzung für die Fahrzeugumfelderkennungdc.title
Resource typeDissertationdc.type
DOIhttp://dx.doi.org/10.18725/OPARU-1763dc.identifier.doi
PPN666465207dc.identifier.ppn
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-vts-77002dc.identifier.urn
GNDFahrerassistenzsystemdc.subject.gnd
FacultyFakultät für Ingenieurwissenschaften und Informatikuulm.affiliationGeneral
Date of activation2011-07-15T10:20:39Zuulm.freischaltungVTS
Peer reviewneinuulm.peerReview
Shelfmark print versionZ: J-H 14.127; W: W-H 12.590uulm.shelfmark
DCMI TypeTextuulm.typeDCMI
VTS-ID7700uulm.vtsID
CategoryPublikationenuulm.category
Ulm seriesSchriftenreihe des Instituts für Mess-, Regel- und Mikrotechnikuulm.seriesUlmName


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record