• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
  •   Home
  • Universität Ulm
  • Publikationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustering of closely adjacent extended objects in radar images using velocity profile analysis

Thumbnail
2019_VPA_Clustering. ... (889.0Kb)

peer-reviewed

Erstveröffentlichung
2019-06-03
Authors
Schlichenmaier, Johannes
Roos, Fabian
Hügler, Philipp
Waldschmidt, Christian
Beitrag zu einer Konferenz


Published in
2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM) ; 2019 (2019). - S. 62-65. - ISBN 978-1-7281-0775-2, ISBN 978-1-7281-0776-9
Link to original publication
https://dx.doi.org/10.1109/ICMIM.2019.8726765
Faculties
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
Institutions
Institut für Mikrowellentechnik
Document version
accepted version
Conference
2019 International Conference on Microwaves for Intelligent Mobility (ICMIM), 2019-04-15 - 2019-04-16, Detroit
Abstract
As high resolution automotive radars become more common, so does their usage for next-generation functionalities like advanced driver assistant systems and autonomous driving. This creates the need for robust clustering techniques to distinguish among multiple extended objects like vehicles in the same scenario. One especially challenging scenario is that of separating two extended targets close to each other, each following its own trajectory. This paper proposes a clustering algorithm based on the analysis of the velocity profile to divide target points of multiple vehicles into sub-clusters. The theoretical background is explained and shown on simulation data. The algorithm is verified using radar measurements of two extended vehicular targets.
Subject headings
[GND]: Bordradar | Cluster-Analyse | Radar | Signalverarbeitung | Geschwindigkeitsverteilung | Autonomes Fahrzeug | Reifen | Sensor
[LCSH]: Radar in navigation | Cluster analysis | Radar | Signal processing | Wheels | Autonomous vehicles | Clustering; Algorithms | Driver assistance systems
[Free subject headings]: Automotive Radar, Radar Signal Processing, Clustering
[DDC subject group]: DDC 620 / Engineering & allied operations
License
Standard
https://oparu.uni-ulm.de/xmlui/license_v3

Metadata
Show full item record

DOI & citation

Please use this identifier to cite or link to this item: http://dx.doi.org/10.18725/OPARU-16383

Schlichenmaier, Johannes et al. (2019): Clustering of closely adjacent extended objects in radar images using velocity profile analysis. Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. http://dx.doi.org/10.18725/OPARU-16383
Citation formatter >


This could also interest you:

  • Multimode W-Band and D-Band MIMO Scalable Radar Platform 

    Ahmad, Wael Abdullah et al. (2021)
    Wissenschaftlicher Artikel

  • High-resolution 160 GHz imaging MIMO radar using MMICs with on-chip frequency synthesizers 

    Dürr, André et al. (2019)
    Wissenschaftlicher Artikel

  • Active switched antenna array for 77 GHz digital beamforming radar 

    Feil, Peter; Chaloun, Tobias (2011)
    Beitrag zu einer Konferenz


Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement
 

 

Advanced Search

Browse

All of OPARUCommunities & CollectionsPersonsInstitutionsPublication typesUlm SerialsDewey Decimal ClassesEU projects UlmDFG projects UlmOther projects Ulm

My Account

LoginRegister

Statistics

View Usage Statistics

Policy | kiz service OPARU | Contact Us
Impressum | Privacy statement