Show simple item record

AuthorCardanobile, Stefanodc.contributor.author
Date of accession2016-03-14T15:20:05Zdc.date.accessioned
Available in OPARU since2016-03-14T15:20:05Zdc.date.available
Year of creation2008dc.date.created
AbstractA theoretical framework for sesquilinear forms defined on the direct sum of Hilbert spaces is developed in the first part. Conditions for the boundedness, ellipticity and coercivity of the sesquilinear form are proved. A criterion of E.M.-Ouhabaz is used in order to prove qualitative properties of the abstract Cauchy problem having as generator the operator associated with the sesquilinear form. In the second part we analyze quantum graphs as a special case of forms on subspaces of the direct sum of Hilbert spaces. First, we set up a framework for handling quantum graphs in the case of inifinite networks. Then, the operator associated with non-diagonal system is identified and investigated. Finally, we turn our attention to symmetry properties of the associated parabolic problem and we investigate the connection with the physical concept of a gauge symmetry.dc.description.abstract
Languageendc.language.iso
PublisherUniversität Ulmdc.publisher
LicenseStandard (Fassung vom 03.05.2003)dc.rights
Link to license texthttps://oparu.uni-ulm.de/xmlui/license_v1dc.rights.uri
KeywordEvolution equations on networksdc.subject
KeywordSesquilinear formsdc.subject
KeywordSystems of partial differential equationsdc.subject
Dewey Decimal GroupDDC 510 / Mathematicsdc.subject.ddc
LCSHHeat equationdc.subject.lcsh
LCSHQuantum graphsdc.subject.lcsh
TitleDiffusion systems and heat equations on networksdc.title
Resource typeDissertationdc.type
DOIhttp://dx.doi.org/10.18725/OPARU-1076dc.identifier.doi
URNhttp://nbn-resolving.de/urn:nbn:de:bsz:289-vts-64278dc.identifier.urn
GNDDiffusionsprozessdc.subject.gnd
GNDSystem von partiellen Differentialgleichungendc.subject.gnd
FacultyFakultät für Mathematik und Wirtschaftswissenschaftenuulm.affiliationGeneral
Date of activation2008-06-25T12:04:11Zuulm.freischaltungVTS
Peer reviewneinuulm.peerReview
Shelfmark print versionZ: J-H 11.885; N: J-H 5.186uulm.shelfmark
DCMI TypeTextuulm.typeDCMI
VTS ID6427uulm.vtsID
CategoryPublikationenuulm.category
Bibliographyuulmuulm.bibliographie


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record