A New Modular Design for Test and Application PCBs of SAW RF Filters to Ensure Precisely Predictable Filter Characteristics

Horst Bilzer, Member, IEEE, Patrick Schuh, Member, IEEE, F. Maximilian Pitschi, Member, IEEE, and Wolfgang Menzel, Fellow, IEEE

Abstract—This paper presents the design of an optimized test and application setup for surface acoustic wave (SAW) RF filters. These structures have been investigated, including the test devices, by simulation techniques based on full-wave methods and common SAW simulation methods. In this paper, the simulation technique will be explained in detail, focusing on the interfaces of the simulation models. Parasitic electromagnetic effects in the test and application setup will be analyzed by simulation and measurement. This paper demonstrates the possibility of accurate performance prediction of SAW RF filters using specially designed test setups in the measurement and an optimized application environment, e.g., in mobile phones. Modular parts for such test setups and the application environment are discussed.

Index Terms—Measurement setup, printed circuit board (PCB), simulation methods, surface acoustic wave (SAW).

I. INTRODUCTION

In the RF sections of mobile communication equipment, surface acoustic wave (SAW) RF filters are key components. Within the past years, the size of the packages has been reduced from a typical form factor of 5.8 mm × 5.8 mm to 1.4 mm × 2.0 mm. Center frequencies have shifted from 1 GHz to above 2 GHz. At the same time, further functionality has been added to the pure filtering function [1]. Two examples of such additional functions are impedance transformation or balun functionality. Permanent quality enhancements in the field of wireless communication have forced manifold improvements of the filter performance regarding matching, close-in and far-off selectivity, and passband attenuation.

Furthermore, the design of SAW RF filters is an extremely time-critical task because the life cycle of mobile communication devices is relatively short. The design in a single iteration step is an important issue. Thus, the accurate prediction of the electrical characteristics of a SAW RF filter by simulation and the verification of these by measurements has become a prerequisite for their efficient design [2]. Taking into account all relevant effects related to the package and measurement environment in the simulation models is tedious. Up to now, it is still a problem that the measurement environment, in particular, the printed circuit board (PCB) on which the component is soldered for operation, can significantly influence the measured electrical characteristics [3]. All its relevant effects and influences have to be implemented or sufficiently taken into account in the simulation for the filter design.

In [4], the differences in the electrical properties of test and application environment for SAW RF filters have been discussed, leading to a new design for the application environment. Thus, the performance of the filter in the application environment is precisely predictable by measurement results obtained with the test PCB. This paper will give more detailed information concerning the simulation techniques used to optimize the described geometries. Furthermore, a description of problems that appeared during the establishment of the simulation techniques is given. Appropriate solutions are described. Thus, parasitic effects inside a PCB, and the influence of these on the device-under-test (DUT) will be explained. Additionally, all optimized geometries of test and application PCBs for SAW RF filters are shown in detail focusing on the discrepancy between the measurement and application environment. The design of the geometries has been optimized toward minimal reflections, minimal feed-through or crosstalk, and minimal losses. Thus, the influence by the electrical characteristics of this PCB on the measured data of a SAW filter is drastically reduced. This is an important advancement in the design of test PCBs, which are used to check the agreement of the performance of a SAW RF filter with its specifications.

Section II starts with an example comprising a couple of SAW filter setups that emphasizes the potential impact of PCBs on the electrical filter characteristics. Section III explains the developed simulation techniques in two examples. Section IV shows strategies to avoid the parasitic effects in PCBs. These focus on the proposal of optimized modular parts for test PCBs. Additionally, Section IV explains a new application PCB with results being given in Section V. Section VI summarizes and concludes this paper.

II. POTENTIAL PARASITIC EFFECTS IN THE PACKAGE AND THE PCB

Fig. 1 shows the measurements of a SAW RF filter mounted on different test setups. These test setups comprise the PCB and...
Fig. 1. Comparison of measured insertion loss of the same packaged filter assembled on two different PCBs.

Fig. 2. Signal paths inside a setup of PCB, package, and chip.

Fig. 3. Full-wave simulation results of two different test PCBs. One shows significant resonance phenomena (solid line) at 6.5 and 9 GHz. The other is an improved version with suppressed PCB resonances (dashed line).

Fig. 4. Measured (dotted line), full-wave simulated (dashed line) and quasi-static simulated (solid line) insertion loss of a packaged SAW RF filter in the test environment.

As shown here, the attenuation in the lower and upper stop-band is significantly affected by the test setup. According to these results, it can be assumed that there exists more than one signal path. These parasitic paths can be located in the PCB or in the package, and interaction between these paths is possible (Fig. 2).

An accurate prediction of the whole setup is only possible with detailed information about the electromagnetic (EM) characteristics of its separate parts. For the test setup, for example, information about the transition from connectors to the soldering pad and about crosstalk is necessary. This topic is a serious task for application near PCBs, as these are often based on very specific multilayer substrates. Fig. 3 shows the crosstalk inside such a multilayer PCB. The strong peaks in the crosstalk characteristic occur due to a resonance phenomenon.

This effect can be suppressed using vias for shielding purposes [5]. The second graph in the diagram shows the results for a very similar PCB including such vias.

Numerous circuits in mobile phones seem to be small compared to the wavelength (roughly 300 or 150 mm). Thus, it may be assumed that a quasi-static method can be used sufficiently for a simulation [6]. Fig. 4 exemplarily shows that this is not always true, giving the quasi-static and full-wave simulation results for the insertion loss of a packaged SAW filter in the measurement setup. While the performance in the passband is simulated sufficiently well with both methods, a significant discrepancy occurs in the stopbands below and above the passband.

Apparently, effects like a high dielectric constant, increased internal line lengths, or more complex coupling due to the complicated structures, which cannot be simulated sufficiently with quasi-static methods, play an increasing role in such circuits. This approach has been proven by another modified simulation of the PCB and package, where the EM coupling between the feed-throughs of the package has been neglected. A comparison of the achieved results to the overall simulation is given in Fig. 5.

This clearly demonstrates the necessity for improved simulation tools in order to predict the overall circuit performance accurately in the critical rejection bands, to reduce the number of experimental optimization iterations, and to allow shorter overall design cycles.

The excellent agreement between full-wave simulation and measurement results proves that all electrical properties of the simulated component have been sufficiently taken into account.

III. SIMULATION TECHNIQUES

A. Simulation Tools

For the configuration considered in this paper, two-and-a-half-dimensional solvers basing on the method of moments can only be used with constraints, as this method loses its main advantage and gets computationally very expensive for structures containing vertical interconnects, vias, or bond interconnects.
For the simulation of the discussed complex three-dimensional (3-D) structures, 3-D EM field simulators based on finite-element (FE), finite-difference (FD), or finite-integration (FI) methods have provided flexible tools, often as time-domain (TD) simulators.

Although such methods require a lot of memory and computation time, various improvements have made these tools more practical and indispensable for the design of complex 3-D circuits [7], [8].

For SAW chip simulation, techniques according to methods, explained in [9] and [10], are used.

B. Segmentation of Circuits

For simulation methods using space discretization, the computational effort increases over-proportionally with the number of mesh cells, into which the circuit has to be discretized for computation. Thus, the circuits are divided into the smallest subcircuits, which can be computed separately. The results for the subcircuits are then combined using network methods. Such a segmentation procedure, however, requires defined interfaces between the different functional parts, typically reference planes on a transmission line with discrete modes (more general: waveguide-type cross sections). This technique cannot be used, if there exist complex EM field interactions in the separation area.

The setup, which is simulated here, consists of a multilayer PCB and a package with an integrated circuit in the package. Combining two parts may change the EM environment of one or both parts. For example, a metal package influences the EM field distribution on top of a carrier substrate, leading to wrong results for the combination of the separate calculations.

This phenomenon leads to even worse results when the interface to a monolithic microwave integrated circuit (MMIC) or a SAW circuit has to be defined and, consequently, no full-wave simulation of the overall combination of substrate, package, and chip is possible. Fortunately, the integrated circuit often has a metallized backside, connected to the ground structures of the package. Thus, port definition and segmentation seems to be possible. A number of full-wave simulations were done proving that this approach is acceptable.

As a test example, a planar microstrip inductor is used as a test circuit. The measurement of the packaged inductor in a test setup is compared to the simulation results achieved by two different segmentations of the same model (Fig. 6). It is shown that the simulation result received from the segmentation, where package and test setup are included in one section, agree very well with the overall measurement. Large deviations appear if an inappropriate model is selected.

The following example has been chosen in order to verify this segmentation approach by measurements. At first, a single SAW resonator was measured separately placed on a special metal carrier and using on-wafer probing. This device has been chosen as its input reflection coefficient covers a very wide range of values over frequency. Parallel to the resonator, the combination of substrate and package was then measured as a four-port (once again, in a special arrangement). Finally, the overall circuit with the resonator placed into the package was also measured. The overall measurements were then compared with the combined S-parameters from the measurements of the separate parts (using lumped-element bond-wire models for their combination).

Fig. 7 shows the input reflexion coefficient of the resonator in a Smith chart. Excellent agreement is shown over the complete frequency range. In the considered frequency range, the input reflexion coefficient passes nearly the complete chart area.

C. Port Selection/Implementation of “Lumped” Circuits

As segmentation between the carrier PCB and package leads to problems, the PCB and package are simulated as a single unit, requiring considerable computational effort. Outer ports can be easily defined as standard planar transmission line ports or coaxial ports at the connectors are included in the simulation model. Inside a package, however, port definition is more complicated.

In reality, there usually exist bond pads to which the chip (MMIC or SAW filter) is connected using bond wires or ribbons. In special cases, a flip-chip bonding technique is used in order to avoid the spare area needed for the classical bonding technique and so increasing the size of the packaged device. Thus, no well-defined transmission line for a port definition exist.
Fortunately, most simulation tools include so-called discrete ports based on voltages and currents. In space-discretized TD simulators (e.g., FDTD), bond contacts and ground pads, forming the physical nodes of an internal port in a package, are separated by a number of discretization cells.

The discrete port itself is defined as a gap along the edge of a single mesh cell. The connection from the physical node—the bond pad or ground pad in the simulation—to the port along the edges of the mesh is realized by an ideal infinitely thin conductor (Fig. 8).

This conductor is formed in the simulation by setting the electrical field along the wire to zero. The conductor generates a parasitic inductance in the simulation, which does not exist in reality.

A second parasitic effect in the simulation, connected electrically in parallel to the discrete port, is generated by the parasitic capacitance between the two parallel cell walls at the gap port.

To overcome these parasitic effects, there generally exist two different methods. The first approach is based on the suppression of the appearance of the effect. This can be achieved by the usage of a distributed interface [11]. The method described here uses the calculation and compensation of the parasitic effects in a post-processing step. To this end, an effective radius of the mesh edges is computed. From this, an equivalent inductance can be derived, which is finally used (with a negative sign) to compensate its influence at the respective interconnect [12].

IV. DESIGN AND OPTIMIZATION OF NEW PCBs

In order to achieve an optimal design of test and application PCBs, the EM properties of all PCB parts have been precisely investigated. Furthermore, the electrical properties have been optimized toward neutral electrical characteristic of the PCB like: 1) minimal reflections; 2) minimal feed-through or crosstalk; and 3) minimal losses.

Although geometric parameters have been carefully designed, fabrication tolerances result in large spreads and the need for prior verification. The optimized PCB parts described below can be combined in a modular approach.

The transition from the SMA connector to the microstrip line has been optimized to cause minimal reflections. Regarding Fig. 9, an improvement of around 20 dB has been obtained in the most relevant frequency range from 1 to 2 GHz.

A variety of different landing areas for the SAW RF filter has to be handled since the landing areas are designed according to the footprints of the packages, as well as to the component’s operation mode. In general, a good connection to ground for ground pads and a good shielding between signal pads implies the use of many vias between the top layer and upper ground-plane metallizations. The upper ground metallization is strictly kept solid. Details of such a landing area are shown in Fig. 10.

In another approach, the results gathered in the test PCB optimization have been transferred to a quasi-application PCB, i.e., the PCB in a mobile phone.
Due to the modified layer stack, the landing area had to be redesigned, as described below. It should be noted that the height of the top dielectric layer of 60 μm is very similar to that of the phone PCBs and, thus, to the application environment.

The reduction of the layer height requires several changes in the landing area layout. Firstly, in order to achieve a characteristic impedance of the microstrip lines of 50 Ω, the linewidth has to be reduced from 340 to 100 μm. Secondly, a strong field discontinuity in the signal path is generated by the step in width from the microstrip line to the soldering pad. As a size reduction of the soldering pad is not possible due to the predetermined solder pad size of the SAW component and the positioning tolerances of the pick-and-place machines, an attempt has been made to reduce the effect of the discontinuity at the soldering pads by cutting out the areas in the ground layer immediately below the soldering pads. Thus, the second inner metal layer is used as the actual ground plane below the soldering pad.

Landing area designs for an optimized test PCB and an optimized quasi-application PCB are shown in Fig. 11(a) and (b). As an example, a commonly used ceramic package of 3 mm × 3 mm size has been chosen.

The design aims at a uniform field distribution between the microstrip line and package within the optimized landing area. In order to avoid field fringing and to guarantee optimal properties of the PCB, both size and position of the cut-out area have to be chosen carefully, as indicated below.

The size of the cut-out area has to be realized in a way that ensures that the main part of the EM field lines below the soldering pad go to the second ground layer. Thus, field components toward the edges of the cut-out in the upper ground layer have to be avoided. An undersized cut-out area will lead to almost unchanged field fringing, such as without cut-out.

Special focus has to be put on the front edge of the cut-out toward the microstrip. Its position must be chosen close to the soldering pad. Otherwise, an additional microstrip line with high characteristic impedance will be formed unintentionally by cutting away the original ground plane of the microstrip line, altering the properties of the SAW component. The result is a microstrip line of short length with very high characteristic impedance in the signal path, showing inductive behavior.

Another important point during optimization is the provision for an undisturbed current path. Hereto, a sufficient number of vias has to be positioned in the ground structures on top of the PCB in the vicinity of the microstrip lines, as shown in [3].

V. RESULTS

For the purpose of validation, a SAW RF filter has been simulated and measured on both PCB structures, as shown in Fig. 11. In Fig. 12, simulation results of this filter on the previous test PCB and on the new quasi-application PCB are given and compared to the corresponding measurements. The plotted curves indicate excellent agreement of the electrical characteristics with respect to stopband and passband attenuation. Differences between simulation and measurement result from production tolerances of the PCBs.

Thus, the concept of a landing area design for application PCBs having the same optimized electrical characteristics as on an optimized test PCB has been proven.

VI. CONCLUSION

This paper has demonstrated a new concept of test PCBs showing that optimized PCBs for testing SAW RF components and optimized application PCBs for operating SAW RF components provide the same performance of the components. It has been proven that this is possible despite the fact that the two environments exhibit considerable physical differences regarding, for instance, their layer stacks. The most important prerequisites have been the electrical properties of the PCBs, i.e., that the test PCBs show minimal reflections, minimal crosstalk, and minimal losses. In order to prove the concept, a quasi-application PCB representing the final phone PCB has been designed and evaluated. Therefore, a proposal for the landing area of an application PCB and, thus, for a phone PCB, has been given and discussed in detail.
REFERENCES


Horst Bilzer (M’03) received the Dipl.-Ing. degree in electrical engineering from the Technical University of Munich, Munich, Germany, in 2000, and is currently working toward the Ph.D. degree in electrical engineering at the University of Ulm, Ulm, Germany. He is currently with the Department of Microwave Techniques, University of Ulm. His research interests focus on packaging, application of full-wave simulation, optimization, and measurement techniques mainly for SAW and passive components.

Patrick Schuh (M’01) received the Dipl.-Ing. and Dr.-Ing. degrees in electrical engineering from the University of Ulm, Ulm, Germany, in 1998 and 2003, respectively, and the Masters degree in business administration from the University of Applied Sciences Neu-Ulm, Neu-Ulm, Germany, in 2004. From 1998 to 2002, he was a Research Assistant with the Microwave Techniques Department, University of Ulm, where he was involved with the analysis and the design of packages for microwave applications, utilizing EM simulations. Since 2002, he has been with the Microwave Factory/Research and Development (R&D), European Aeronautic Defence and Space (EADS) Company Deutschland GmbH, Ulm, Germany. His current areas of interest are MMIC and modul design, especially high-power amplifiers.

F. Maximilian Pitschi (M’01) received the Dipl.-Ing. and Dr.-Ing. degrees in electrical and computer engineering from the Munich University of Technology, Munich, Germany, in 1993 and 1997, respectively. In 1993, he joined the Product Development of the Surface Acoustic Wave (SAW) Components Division, Siemens Matsushita Components GmbH & Co. KG (now EPCOS AG), Munich, Germany, as a doctorate student, and became a Design Engineer in 1994, during which time he participated and led several projects that focused on modeling, simulation, and design of SAW reactance filters. During that time, his responsibilities included the development of software tools for the simulation and optimization of SAW reactance filters. In 1998, he became a Manager of a group involved with research and development, EPCOS AG. Since 1999, he has been the Director of a department in research and development, EPCOS AG, where he is responsible for the electronic design automation (EDA) of SAW and bulk acoustic wave (BAW) components. He has placed special focus on modeling, simulation, and optimization of the EM effects appearing in SAW and BAW components, as well as the accurate measurement of these components. His research interests are software engineering and EDA.

Wolfgang Menzel (M’89–SM’90–F’01) received the Dipl.-Ing. degree in electrical engineering from the Technical University of Aachen, Aachen, Germany, in 1974, and the Dr.-Ing. degree from the University of Duisburg, Duisburg, Germany, in 1977.

From 1979 to 1989, he was with the Millimeter-Wave Department, AEG, Ulm, Germany (now the European Aerospace, Defense, and Space Systems (EADS)). From 1980 to 1985, he was Head of the Laboratory for Integrated Millimeter-Wave Circuits. From 1985 to 1989, he was Head of the entire Millimeter-Wave Department. During that time, his areas of interest included planar integrated circuits (mainly on the basis of fine-line techniques), planar antennas, and systems in the millimeter-wave frequency range. In 1989, he became a Full Professor with the Department of Microwave Techniques, University of Ulm, Ulm, Germany. His current areas of interest are multilayer planar circuits, waveguide filters and components, antennas, millimeter-wave and microwave interconnects and packaging, and millimeter-wave application and system aspects.

Dr. Menzel is currently an associate editor for the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. From 1997 to 1999, he was a Distinguished Microwave Lecturer for Microwave/Millimeter-Wave Packaging. From 1997 to 2001, he chaired the German IEEE Microwave Theory and Techniques (MTT)/Antennas and Propagation (AP) Chapter. He was the recipient of the 2002 European Microwave Prize.