On the Design of Novel Compact Broad-Band Planar Filters

Wolfgang Menzel, Fellow, IEEE, Lei Zhu, Senior Member, IEEE, Ke Wu, Fellow, IEEE, and Frank Bögelsack

Abstract—On the basis of impedance steps and coupled-line sections as inverter circuits, novel wide-band and very compact filters are presented. The application of alternately high- and low-impedance lines presented to the connected transmission-line resonators partly reduces their lengths to a quarter-wavelength only. In addition, effective techniques are demonstrated to reduce spurious stopband resonance resulting from a remaining half-wavelength resonator. Both suspended stripline (SSL) and microstrip filters were designed, fabricated, and tested, proving this concept in an excellent way. For the prototype filters, center frequencies around 6 GHz were selected. Bandwidths are between 2.5–3.25 GHz, and insertion-loss amounts to around 0.25 dB for the microstrip filters and 0.5 dB (including the transitions to coaxial line) for the SSL filters, respectively. For the selected center frequency and on a substrate with a dielectric constant of 10.8, the smallest microstrip filter is only 15 mm × 5 mm in size.

Index Terms—Broad-band planar bandpass filter, impedance inverter circuits, multipole resonator.

I. INTRODUCTION

TODAY, broad-band and multiband applications are renewing the interest in the design of planar broad-band filters with low-loss and improved stopband performance. Recently, a coupling structure as shown in Fig. 1 has been proposed and investigated as an inverter element for bandpass filters [1]. With strong coupling and small size, this structure is a good candidate for very compact and broad-band filter design. It already provides one or two return-loss zeros, but its strong frequency dependence prevents the application of state-of-the-art filter design procedures, and an extensive optimization procedure is necessary. Furthermore, as will be shown later, the symmetry of this structure, i.e., having the same widths of an input and output line, is not very advantageous for an advanced filter design.

In this paper, a modified approach for understanding the behavior of such a structure is presented, leading to an improved filter synthesis and new concepts for the design of very compact broad-band filters. According to the two-pole bandpass response, the structure of Fig. 1 can equally be decomposed into three different discontinuities (two impedance steps and a coupling section) and two transmission-line sections. Regarding the discontinuities as elementary impedance inverters, and the transmission-line sections as quarter-wave resonators, the whole structure, as described above, can alternatively be interpreted as a two-resonator filter. In this case, the two resonant frequencies may be overlapped or split depending on the geometrical conditions of the structure, as shown in Fig. 1. With these ideas in mind, more complex and high-performance filter structures can be conceived [2].

In Section II, a first straightforward application of the involved inverter principles is presented, resulting in both microstrip and suspended stripline (SSL) filters. The results of these filters demonstrate the feasibility of this concept; they suffer, however, from performance limitations in stopband behavior. Therefore, three different approaches are developed, investigated, and tested successfully in Section III to achieve a broad-band rejection above the passband.

II. NOVEL DESIGN OF BROAD-BAND FILTERS

Based on the considerations given above, a five-pole resonator filter, as shown in Fig. 2, can be designed. Four impedance steps—now with different geometries—and two coupling sections form six inverters, thus, this resonator filter consists of four quarter-wavelength sections and one low-impedance half-wavelength transmission line. The
If the coupling length is close to a quarter wavelength, the quarter-wave resonators are part of the coupled-line sections; if the coupling length is close to a quarter wavelength, the remaining lengths get very small, and the filter becomes very compact.

Assuming 50-Ω external feeding lines and a minimum linewidth of 0.1 mm on a soft substrate of 0.635-mm thickness and a dielectric constant of 10.8, as used here (yielding a characteristic impedance of around 100 Ω), a minimum coupling coefficient S_{21} of approximately -0.5 dB is possible for the impedance step forming the first inverter; therefore, only broad-band-featured filters are expected.

Preliminary designs of both microstrip and SSL filters were done on the basis of standard filter design [3] using transmission-line resonators coupled by series capacitances or shunt inductances as inverters. The discontinuities of the filter structure under investigation—impedance steps and coupling sections now acting as inverters—then are selected such that they exhibit the same S_{21} as the respective original inverter circuits. Finally, the resonator lengths are adjusted to compensate for phase deviations of the new inverters compared to the original ones. For filters of very wide bandwidths and frequency-dependent inverter properties, this procedure provides a limited design accuracy only; therefore, it is followed by a number of optimization steps using either an in-house method of moments [4], [5] and/or a commercial simulator.

The layout of a first microstrip filter fabricated on a 0.635-mm-thick substrate with a dielectric constant of 10.8 is given at the top of Fig. 3. The narrow coupled lines have a width of 0.125 mm, separated by a gap of 0.125 mm, while the center resonator has a length of 8.17 mm and a width of 4.56 mm (equivalent to a line impedance of 12.6 Ω). Consequently, the coupled-line sections are critical areas for fabrication. At the bottom of Fig. 3, theoretical and experimental scattering parameters of the filter are plotted versus frequency, and a detailed view on experimental passband insertion loss and group delay is presented in Fig. 4. Center frequency is approximately 6.0 GHz, bandwidth is approximately 3.0 GHz (50%). The theoretical return-loss curves clearly demonstrate the five-pole resonator performance of the filter. Measurements were done using a thru-reflect line (TRL) calibration with reference planes on the microstrip level. The experimental insertion loss agrees very well with theoretical prediction.

Measured insertion-loss amounts to 0.25 ± 0.1 dB over the passband between 4.5–7 GHz. Some discrepancies between theory and experiment can be stated for the return loss. Metalization thickness (important in the coupling sections) is not included in the computation, and the small size of the filter structures and the extremely low return loss are very sensitive with respect to computation accuracy (discretization of the structure) and fabrication tolerances. For such broad-band filters, group-delay variations are also of great importance. Within the passband, maximum variation of group delay is below 0.2 ns (Fig. 4). With a length of only approximately 20 mm and a width of 5 mm, this five-resonator microstrip filter is extremely compact compared to a free-space wavelength of 50 mm at center frequency.

As an alternative, a similar filter was realized using an SSL. SSL is well suited for filter design due to its low loss and a possibility of including broadside coupling [6]. As substrate material, a Duroid substrate of 0.254-mm thickness and a dielectric constant of 2.2 was chosen, mounted in a channel of 5 mm × 5 mm. For the coupled-line sections, a strip width of as wide as 0.75 mm yields a line impedance of as high as 150 Ω, thus lower coupling coefficients compared to the former example can be realized. Together with broadside coupling with its wide range of coupling coefficients, this leads to much more relaxed requirements for computation accuracy and fabrication tolerances. Filter layout and theoretical, as well as experimental, results for this filter are given in Fig. 5. Center frequency is again 6 GHz, bandwidth is approximately 2.5 GHz. The insertion loss over the passband is better than 0.5 dB; in contrast to the microstrip filter, however, this includes the transitions to the coaxial line test equipment. With this filter, an excellent agreement between theory and experiment for both insertion and return loss can be observed.

III. IMPROVED FILTER DESIGN

One major disadvantage of these two filters is the spurious response at the first harmonic frequency of the passband caused by a full-wavelength resonance of the central resonator. This spurious response, however, can be removed in two ways, as will be shown in the following. The first method reduces the excitation of the full-wavelength resonance by connecting the center resonator at points where the voltage of this resonance is at a minimum. This structure will be demonstrated by two examples of microstrip filters. In the second approach, the filter is extended to six resonators with a quarter-wavelength so that no half-wavelength resonance can occur.

If a transmission-line resonator is fed at a quarter of its length away from the ends, the fundamental half-wavelength resonance is still excited, but for the full-wavelength resonance, the feed point is at a voltage zero so that the resonator is not coupled at this frequency. This is equivalent to the fact that, at twice the center frequency of the filter, the open ends of the resonator are transformed into short circuits at the feeding points, resulting in transmission zeros at the respective frequency. Therefore, this technique can be applied to suppress the first spurious passband of the microstrip filter (Fig. 6). This technique, however, has no major influence on the next spurious passband at three times the center frequency (part of this can be seen at the upper frequency limit of Fig. 7).

To allow an effective design of this filter, some quasi-lumped elements were added to the first (and last) impedance steps. In this way, very slight adjustments were possible without refining the grid in the field solver. (Similar techniques were applied to the six-resonator SSL filter presented later on.) No optimization effort, however, was made to again demonstrate the five-pole filter behavior. Theoretical and experimental results are plotted in Fig. 7. Center frequency is 6 GHz, bandwidth is 2.6 GHz. A good agreement can be seen, except for the stopband attenuation given by the dashed–dotted line. A detailed analysis revealed that the coax-to-microstrip transition launched some surface waves coupling input and output ports directly. Placing some absorbing material to the edges of the substrate, these surface waves could be suppressed, and the solid line for the insertion loss in Fig. 7 is obtained. Passband insertion loss is slightly higher than that of the first filter because the tapped coupling
of the center resonator results in an increased radiation of the center half-wavelength resonator, as compared to the filter shown in Fig. 3. In addition, the filter now requires more substrate surface.

To achieve a compact size of the filter, the central resonator is folded. In addition, the electric-field lines at the ends of the resonator have opposite directions leading to a reduced radiation in this way. Once again, during the optimization of this filter, no effort was taken to reproduce the five-pole bandpass behavior. A photograph of this filter is shown in Fig. 8. With a length of approximately 15 mm only, this filter is even smaller than that first presented. A very good agreement is found between theory and experiment (Fig. 9). In the stopband region, again, some surface waves launched by the transitions to the coaxial measurement system created some problems; these, however, were reduced by absorbing material placed at the substrate edges (approximately 3–4 mm away from the filter). Center frequency is close to 6 GHz with a bandwidth of 2.8 GHz. Passband insertion loss amounts to 0.2 dB only, and a measured stopband attenuation of more than 30 dB can be found in the frequency range from 9.5 to 14.5 GHz.

To reveal the nature of the insertion loss peak around 13 GHz, current density was calculated at this frequency and compared to that at center frequency of the filter. At the outer edge of the two-dimensional center resonator structure, an increased current density with 1.5 wavelength behavior is observed at 13.1 GHz, while at 6 GHz, the current density concentrates around the slot area of the resonator. In addition, resonance frequencies of this resonator were calculated separately using a weak gap coupling, resulting in resonances at 6.1, 9.7, 13.1, 18.25, and 19.5 GHz (Fig. 10). The first resonance frequency is that intended for the filter passband, the second one is suppressed due to the specific selection of the feeding point, and the remaining ones contribute to the peak at 13.1 GHz and the next higher order passband above 16 GHz.

For an alternative approach, a shunt inductance as an additional inverter is placed in the center of the former half-wavelength resonator of the filter. This inductance is realized by a (very short) short-circuited shunt stub providing a rather low impedance, compared to the quite high impedance of the next inverters (impedance steps from low to high transmission-line impedances). Thus, the resulting two new central resonators become quarter-wavelength resonators, and the next spurious response occurs at three times the passband frequency. This design is shown at the example of the SSL filter. A generalized block diagram and the layout of such a filter based on an SSL is shown in Fig. 11. Basically, this type of filter can be regarded as a half-wavelength impedance step filter [3] where series capacitances are introduced in the center of the high-impedance lines and shunt inductances in the low-impedance lines. In this way, the order of the filters is doubled, half-wavelength resonators are turned into twice the number of quarter-wavelength resonators within the same or even reduced space (when the capacitances are realized by side coupling) and, what is very important, the spurious response at twice the passband frequency is removed.

The SSL design of such a filter has been done including optimization based on SONNET. The shunt inductance in the center simply was realized by (symmetrical) shorting sections toward the edges of the mounting channel. First experimental results (plotted as the solid line in Fig. 12) were disappointing; but the problem was recognized and finally fixed. To reduce the computational effort and optimization time, the filter was designed with a substrate in an ideal quadratic waveguide channel,
Fig. 11. Equivalent circuit and basic layout of a modified six-resonator SSL filter (width of input lines: 4 mm, width of first resonator: 1 mm, length of first resonator: 10 mm, width of second resonator: 0.75 mm, length of second resonator: 9.25 mm, coupling length: 0.75 mm, width of central resonator: 4.5 mm, length of central resonator: 15.5 mm, width of shorting strips 0.5 mm).

Fig. 12. Return and insertion loss of the six-resonator SSL filter including the effect of the clamping grooves (solid lines: experiment, dashed line: theory approximating the clamping grooves by longitudinal via metallization).

Fig. 13. Different cross sections of the SSL filter and placement of bond ribbon vias.

Fig. 14. Theoretical and experimental results of a modified six-resonator SSL filter.

as shown in Fig. 13 (top left). In practice, however, the substrate has to be clamped in grooves at the side of the waveguide channel (Fig. 13, top right). Consequently, the shunt inductances at the central resonator exhibit an increased inductance.

An approximate calculation of this effect was done using a wider channel for the computation and introducing longitudinal via walls at the sides. The return loss calculated with this approach is included in Fig. 12 as a dotted line. In principle, the measured performance is approximated reasonably well. Following this, the substrate was cut away in the clamping area close to the shunt inductances, and the short circuit was realized connecting bond ribbons around the substrate edges at exactly the positions as the short circuits were assumed for the original design. The measured results are plotted in Fig. 14, compared to the design curves. Center frequency is 6 GHz, bandwidth amounts to 3.25 GHz. An excellent agreement can be stated between theory and experiment. No spurious response remains at around 12 GHz, and the filter edges are steeper than before due to the additional resonator. Furthermore, this six-pole resonator filter is even smaller than its five-pole counterpart, as shown in Fig. 5.

IV. CONCLUSION

A new concept for wide-bandwidth filters has been presented. Alternatively, impedance steps and coupled-line sections are used as inverters. As a consequence, a five-resonator filter of this type includes one half-wavelength and four quarter-wavelength resonators, leading to a very compact filter. In a second step, the spurious passband response at twice the center frequency due to the half-wavelength resonator is removed either by contacting the center resonator at field minima for the harmonic resonance or by introducing a shunt inductance in its center, increasing the filter degree by one, and dividing the center resonator into two quarter-wavelength resonators. Design and results of four five-pole filters and one six-pole resonator filter have been presented. An excellent agreement between design and measurement, in conjunction with low loss and very compact size, is observed for the given examples.
MENZEL et al.: DESIGN OF NOVEL COMPACT BAND-BAND PLANAR FILTERS

REFERENCES

Dr. Zhu is currently a member of the editorial board of the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. He was the recipient of the Japanese Government (Monbusho) Graduate Fellowship (1989–1993). He was also the recipient of the 1993 First-Order Achievement Award in Science and Technology (IEEE MTT-S) International Symposium. From 2002 to 2004, he was the first recipient of the IEEE MTT-S Outstanding Young Engineer Award. He was inducted as a Fellow of the Canadian Academy of Engineering (CAE) in 2002.
Frank Bögelsack received the Dipl.-Ing. degree in electrical engineering from the Technical University of Baunschweig, Baunschweig, Germany, in 1983, and the Dr.-Ing. degree in microwave technique from the University of Duisburg, Duisburg, Germany, in 1989.

From 1984 to 1989, he was with the Institute of Electromagnetic Theory and Engineering, University of Duisburg, where he was engaged in numerical computation of electromagnetic fields applied to microstrip discontinuity problems. His current research and teaching interests include electromagnetic theory, computer methods in electromagnetism, and microwave measurements.