Einfluss der Beschleunigungscharakteristik auf das Verletzungsrisiko bei der
HWS-Beschleunigungsverletzung

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät
der Universität Ulm

Von
Kai Guido Fruth
aus Stuttgart

Ulm 2004
Amtierender Dekan: Prof. Dr. K.-M. Debatin

1. Berichterstatter: Prof. Dr. Wilke
2. Berichterstatter: PD Dr. Hartwig

Tag der Promotion: 24.11.05
Meinen Eltern
1 Einleitung .. 3
1.1 Ziel dieses Beschleunigungsexperiments .. 6
2 Material und Methoden ... 7
2.1 Ablauf des Experiments in der Übersicht ... 7
2.2 Praktische Durchführung des Experiments ... 8
2.2.1 Vorbereitung der verwendeten HWS-Präparate .. 8
2.2.2 Aufbau der Beschleunigungsanlage ... 11
2.2.3 Kopfdummy .. 17
2.3 Verwendete Messelektronik ... 19
2.4 Messparameter ... 21
2.5 Flexibilitästest ... 23
2.6 Statistische Auswertung ... 25
3 Ergebnisse .. 26
3.1 Darstellung der Beschleunigungsmessdaten .. 26
3.1.1 Qualitative Darstellung der Beschleunigungsmessdaten .. 26
3.1.2 Quantitative Darstellung der Beschleunigungsmessdaten ... 30
3.2 Sichtbare strukturelle Verletzungen der Präparate .. 38
3.3 Wirbelsäulenbelastungsimulator .. 41
3.3.1 Seitneigung ... 42
3.3.2 Axiale Rotation ... 46
3.3.3 Flexion/Extension ... 50
3.3.4 Übersicht über die Ergebnisse des Flexibilitästests ... 54
3.4 Zusammenfassung der Ergebnisse .. 55
4 Diskussion .. 56
4.1 Einfluss des Verlaufes der Schlittenbeschleunigungskurve auf die verschiedenen Messparameter und das Verletzungsrisiko ... 56
4.2 Schlittenbeschleunigung ... 59
4.3 Kopfbeschleunigung ... 60
4.4 Funktionelle und strukturelle Defekte der HWS nach Seitenkollision 62
4.5 Übertragbarkeit des in vitro Experiments auf den klinischen Alltag 64
4.6 Schlussfolgerung ... 67
5 Zusammenfassung ... 68
6 Literatur ... 70
7 Danksagung ... 74
Abkürzungsverzeichnis

Abkürzungen:

C Halswirbelkörper cervical
 g Erdbeschleunigung
HWS Halswirbelsäule
Ligg. Ligamenta
li. links
ms Millisekunden
NLG Nervenleitgeschwindigkeit
norm. normiert
NZ Neutrale Zone
QTF Quebec Task Force
re. rechts
ROM Range of Motion
Th Brustwirbelkörper
1 Einleitung

Die Beschleunigungsverletzung ist eine der häufigsten leichten Verletzungen bei Verkehrsunfällen.

Obwohl sich die Sicherheitsvorkehrungen in und um die Fahrzeuge ständig verbessern, ist die Inzidenz der Beschleunigungsverletzung stetig steigend [13]. 1998 ereigneten sich in Deutschland im Straßenverkehr ca. 377 000 Unfälle mit Personenschaden. 245 000 Verunglückte in PKWs wurden polizeilich als leicht verletzt eingestuft (Bundesamt f. Straßenwesen). Durch Versicherungsstatistiken lässt sich in Deutschland eine Inzidenz von ca. 200 000 HWS-Distorsionen nach Heckkollision vermuten. Insbesondere Heck-, aber auch Frontal- und Seitenkollisionen, führen bei den beteiligten Personen zu so genannten „whiplash associated disorders“ (WAD) [16]. Bei 25% der Personen kommt es zu einer Chronifizierung dieser Verletzung und 10% dieser Personen leiden an erheblichen Schmerzen [1]. In Deutschland entstehen dadurch jährliche Kosten in Höhe von etwa einer Milliarde € [13]. Im Vergleich dazu belaufen sich die jährlichen Kosten, die durch derartige Beschleunigungsverletzungen entstehen, in den USA auf 4,5-10 Milliarden $ [42, 47, 48].

Die wohl gängigste Definition der HWS-Beschleunigungsverletzung stammt von der Quebec Task Force aus Kanada (Tabelle 1).

<table>
<thead>
<tr>
<th>Gradeinteilung</th>
<th>Klinisches Bild</th>
</tr>
</thead>
<tbody>
<tr>
<td>QTF 0</td>
<td>keine Beschwerden</td>
</tr>
<tr>
<td>QTF 1</td>
<td>subjektive Beschwerden (z.B. Schmerz und Bewegungseinschränkung)</td>
</tr>
<tr>
<td>QTF 2</td>
<td>+ objektive muskulöskelettale Zeichen</td>
</tr>
<tr>
<td></td>
<td>(z.B. Hartspann, passive Bewegungseinschränkung, Blockaden)</td>
</tr>
<tr>
<td>QTF 3</td>
<td>+ objektive neurologische Zeichen</td>
</tr>
<tr>
<td></td>
<td>(z.B. Verminderung der NLG, sensible oder motorische Ausfälle)</td>
</tr>
<tr>
<td>QTF 4</td>
<td>+ Frakturen, Dislokationen, Rückenmarksschädigungen</td>
</tr>
</tbody>
</table>

Sie teilt das Schleudertrauma in 5 Stadien nach Schweregrad und Art der auftretenden Symptome ein.
Diese Gliederung ist nach dem Schweregrad der Symptome, macht jedoch keine Aussage über den Verletzungsmechanismus und die Lokalisation der entstehenden Verletzung.

Um den Verletzungsmechanismus und die Lokalisation der Verletzung beschreiben zu können sind biomechanische Untersuchungen nötig, wie z.B. die von Macnab durchgeführten Beschleunigungsversuche mit narkotisierten Primaten [23].

Macnab beschrieb eine zufällige Häufung von Verletzungen der ventralen HWS-Strukturen und schloss daraus, dass eine Hyperextension der HWS die direkte Ursache der HWS-Beschleunigungsverletzung darstellt.

Aufgrund dieser Erkenntnis begann die Einführung von Kopfstützen in PKWs um bei einer Fahrzeugkollision eine Hyperextension der HWS zu verhindern und damit Verletzungen vorzubeugen.

Ca. 20 Jahre später wurde von Nygren et al. in einer Untersuchung beschrieben, dass trotz der Einführung von Kopfstützen lediglich ein Rückgang aller HWS-Verletzungen um 20% zu verzeichnen war [29].

Dies bedeutete, dass die Hyperextensionsvorstellung von Macnab als Verletzungsursache überprüft werden musste und somit weitere biomechanische Untersuchungen nötig waren.

Das Ziel war die Quantifizierung biomechanischer Veränderungen von humanen HWS-Präparaten nach experimentell zugeführtem Beschleunigungstrauma. Sie beschrieben den Unfallmechanismus als S-förmige Verformung der HWS während der ersten 50-75 ms nach Beginn des Stoßvorgangs und nicht wie Macnab als übermäßige Extensionsbewegung der HWS, die etwa 100 ms nach dem Stoßvorgang auftritt. Als Ort der Schädigung wurde die untere HWS beschrieben.

Die Grundlage dieses Experiments war die Beobachtung, dass ca. 20% aller Patienten nach Beschleunigungstraumata über Beschwerden im Bereich der oberen HWS klagen, obwohl es nach Panjabi zu Überlastungserscheinungen im Bereich der unteren HWS kommt [35].

Eine besondere anatomische Struktur der oberen HWS stellen die Ligg. alaria dar.

Bereits 1987 wurde von Saternus et al. beschrieben, dass die Ligg. alaria bei einer Kollision rupturieren können [36]. Ob diese Bandstrukturen bei der Beschleunigungsverletzung der HWS eine Rolle spielen, wird jedoch sehr kontrovers diskutiert [45, 20, 46].

In dem von Panjabi als auch in dem am Institut für Unfallchirurgische Forschung und Biomechanik in Ulm durchgeführten Beschleunigungsexperiment (Hartwig et al., 2004) konnte eine Zunahme der Flexibilität im unteren Bereich der HWS beobachtet werden. Eine Zunahme der Flexibilität des HWS-Präparates nach durchgeführtem Beschleunigungsexperiment kann als Maß der Schädigung gedeutet werden. Erstaunlich war, dass die humanen HWS-Präparate bei dem am Institut für Unfallchirurgische Forschung und Biomechanik in Ulm durchgeführten Beschleunigungsexperiments zum Teil bereits ab einer maximalen Schlittenbeschleunigung von 2g irreversible Schäden erlitten, Panjabi et al. jedoch mit ähnlichem Versuchsaufbau ihre Präparate einer maximalen Schlittenbeschleunigung von bis zu 10,5g aussetzen konnten [33].

Abbildung 1:
Schematischer Vergleich der Schlittenbeschleunigungskurven bei 4g.
Links: Hartwig et al., 2004.
Rechts: Panjabi et al. 1998 [6].
Beim Vergleich der Schlittenbeschleunigungskurven der beiden Experimente ist folgendes festzustellen (Abbildung 1):

Bei beiden Beschleunigungskurven ist die Dauer des Beschleunigungsvorgangs etwa gleich lang, beide Kurven erreichen den gleichen maximalen Beschleunigungswert, jedoch unterscheiden sie sich in der Steilheit des Kurvenanstiegs und damit in der Fläche unter der Kurve. Dies bedeutet, dass die maximale Beschleunigung bei dem am Institut durchgeführten Experiment bereits nach weniger als 20ms erreicht ist, bei Panjabi et al. jedoch erst nach ca. 50ms.

Eine mögliche Ursache für die früher eintretenden Verletzungen bei gleicher maximaler Beschleunigung und gleicher Beschleunigungsduer könnte der steilere Anstieg der Schlittenbeschleunigungskurve sein.

Diese Vermutung führt zu folgender neuer Fragestellung:

Welchen Einfluss hat die Beschleunigungscharakteristik auf das Verletzungsrisiko bei der HWS-Beschleunigungsverletzung?

1.1 Ziel dieses Beschleunigungsexperiments

Durchführung eines erneuten Beschleunigungsexperiments, bei dem die Schlittenbeschleunigungskurve jedoch im Vergleich zu dem 2001 am Institut für Unfallchirurgische Forschung und Biomechanik in Ulm durchgeführten Beschleunigungsexperiment, weniger steil ansteigen soll, sich jedoch hinsichtlich der Beschleunigungsduer und der jeweils erreichten Maximalbeschleunigung nicht von diesem Experiment unterscheiden soll. Anschließend soll eine Gegenüberstellung der gewonnenen Messparameter der beiden Experimente erfolgen und der Einfluss der Charakteristik der Beschleunigungskurve auf diese Parameter geklärt werden, um den Einfluss der Beschleunigungscharakteristik auf das Verletzungsrisiko bei der HWS-Beschleunigungsverletzung in Zukunft besser zu verstehen.
2 Material und Methoden

2.1 Ablauf des Experiments in der Übersicht

Zu Beginn des Experiments wurden Röntgenaufnahmen der insgesamt sechs Präparate angefertigt, um pathologische morphologische Veränderungen ausschließen zu können. Anschließend wurden die Präparate einem Flexibilitästest unterzogen, um die segmentale Stabilität zu dokumentieren. Die Präparate wurden nun einem Beschleunigungsexperiment unterzogen, das mit einer maximalen Schlittenbeschleunigung von 1g begann. Die Beschleunigung wurde wiederholt und zwar jeweils unter Steigerung der maximalen Schlittenbeschleunigung um 1g, bis sichtbare strukturelle Verletzungen am Präparat auftraten. Nach jedem Beschleunigungsvorgang wurde das Präparat erneut einem Flexibilitästest unterzogen, um lokale Instabilitäten des Präparates, die auf das Einwirken des Beschleunigungsvorgangs zurückzuführen sind und somit als Maß der Schädigung gelten, zu dokumentieren.

Nach der Entstehung von sichtbaren strukturellen Verletzungen am Präparat endete das Experiment mit der Anfertigung von Röntgenbildern, um die entstandene strukturelle Schädigung besser betrachten zu können.

Das Beschleunigungsexperiment wurde zudem mit einer Videokamera gefilmt, um die Kinematik der HWS während des Beschleunigungsvorganges darzustellen.

Tabelle 2 zeigt den schematischen Versuchsablauf des Beschleunigungsexperiments.

<table>
<thead>
<tr>
<th>Ablauf des Beschleunigungsexperiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbereitung der HWS-Präparate durch spezielle Präparationsschritte</td>
</tr>
<tr>
<td>Röntgenaufnahmen der Präparate um strukturelle Schäden auszuschließen</td>
</tr>
<tr>
<td>Flexibilitästest im Wirbelsäulenbelastungssimulator</td>
</tr>
<tr>
<td>Beschleunigungsexperiment, beginnend mit Schlittenbeschleunigung 1g</td>
</tr>
<tr>
<td>Wiederholungen des Beschleunigungsexperiments mit anschließendem Flexibilitästest</td>
</tr>
<tr>
<td>Abschlusrorüntgen, um strukturelle Schäden festzuhalten</td>
</tr>
</tbody>
</table>
Kapitel 2 Material und Methoden

2.2 Praktische Durchführung des Experiments

2.2.1 Vorbereitung der verwendeten HWS-Präparate

Es wurden sechs humane HWS-Präparate von Occiput bis zum zweiten thorakalen Wirbel verwendet, deren Alter und Geschlecht in Tabelle 2 aufgelistet sind.

Tabelle 3: Übersicht über die im Experiment verwendeten Präparate.

<table>
<thead>
<tr>
<th>Präparatnummer</th>
<th>Geschlecht</th>
<th>Alter [Jahre]</th>
</tr>
</thead>
<tbody>
<tr>
<td>831</td>
<td>weiblich</td>
<td>87</td>
</tr>
<tr>
<td>857</td>
<td>weiblich</td>
<td>92</td>
</tr>
<tr>
<td>858</td>
<td>weiblich</td>
<td>87</td>
</tr>
<tr>
<td>860</td>
<td>weiblich</td>
<td>85</td>
</tr>
<tr>
<td>861</td>
<td>weiblich</td>
<td>74</td>
</tr>
<tr>
<td>871</td>
<td>männlich</td>
<td>59</td>
</tr>
</tbody>
</table>

Das Durchschnittslebensalter dieser Präparate betrug 81 Jahre ± 12 (Tabelle 2).
Die HWS-Präparate wurden in frischem Zustand der Leiche entnommen und bei –20 °C gelagert.
Vor der Durchführung des Experiments mussten zunächst die HWS-Präparate durch spezielle Präparationsschritte so verändert werden, dass sie sicher im Wirbelsäulenbelastungssimulator und später auf dem Beschleunigungsschlitten der Beschleunigungsanlage befestigt werden konnten. Hierzu wurde das jeweilige Präparat ca.12 h vor Versuchsbeginn der Gefriertruhe entnommen und im Kühlraum bei 4°C zwischengelagert.
Die Präparation der HWS beinhaltete die Entfernung des die Wirbelsäule umgebenden Weichteilgewebes, unter Erhaltung des Kapsel-Bandapparates. Während der Präparation und der Versuchsdurchführung wurden die Präparate mit 0,9% NaCl-Lösung feucht gehalten.
Das kaudale Ende der Präparate wurde in Polymethylmethacrylat (Technovit 3040, Heraeus Kulzer, Wehrheim, Deutschland) eingebettet (Abbildung 2).

Abbildung 2: Einbetten des kaudalen Endes des HWS-Präparates in Polymethylmethacrylat.
Das Einbetten des kaudalen Endes in Polymethylmethacrylat erfolgte bei horizontal ausgerichtetem Foramen magnum und anterior um 20° nach kaudal geneigter Deckplatte des sechsten cervicalen Wirbels [10].

Des Weiteren wurde an dem jeweiligen kranialen Ende der Präparate ebenfalls ein Spezialflansch angebracht.

Der kraniale Metallflansch wurde mit Hilfe von Schrauben und Polymethylmethacrylat an der Kopfschuppe und am Felsenbein befestigt.

Das gehärtete Polymethylmethacrylat stellte eine stabile Verbindung zwischen der hinteren Schädelgrube des Präparats und dem kranialen Metallflansch her. Wichtig war, dass die Oberfläche des Flansches parallel zur Öffnungsfläche des Foramen magnum ausgerichtet wurde, nur so erhielt der Massenschwerpunkt des Kopfdummies den richtigen geometrischen Bezug zum Präparat (Abbildung 3).

Abbildung 3:
Kunststoffmodell des verwendeten HWS-Präparates zur Darstellung des kranialen und kaudalen Flansches.

Abbildung 4:
Links: Metallstäbchen ohne und mit 2 aufgefädelten Kugeln.
Rechts: Die drei verwendeten Metallstäbchen mit jeweils zwei reflektierenden Kugeln.

Abbildung 5:
Alternierend befestigte Metallstäbchen in unterschiedlichen Größen mit reflektierenden Kugeln am Kunststoffmodell.

Zuletzt wurden noch Zebrisschrauben, die zur Befestigung von Zebriskreuzen dienen, am Präparat angebracht (Abbildung 6). Die Zebriskreuze sind Teil eines akustischen Bewegungsanalysesystems (Zebris, Isny, Deutschland), das während des Flexibilitätstests im Wirbelsäulenbelastungssimulator eingesetzt wurde, um die dreidimensionale Bewegung benachbarter Wirbel zueinander zu bestimmen. Es stellte sich als sinnvoll heraus, die Zebrisschrauben leicht versetzt zueinander anzubringen, diejenige in C1 ganz links, in C2 etwas weniger weit links und so weiter (Abbildung 6).
Kapitel 2 Material und Methoden

Abbildung 6:
Zebrisschrauben im Kunststoffmodell verankert, zur Befestigung eines akustischen Bewegungsanalysesystems.

2.2.2 Aufbau der Beschleunigungsanlage

Der Versuchsaufbau bestand im Wesentlichen aus einer pneumatischen Beschleunigungseinheit, Schienen und einem HWS-Präparat, an dessen kranialem Ende ein Kopfdummy befestigt war. Das HWS-Präparat wurde mit seinem kaudalen Ende auf einem Kippteller befestigt, der seinerseits auf dem Beschleunigungsschlitten befestigt war. Durch eine entsprechende Ausrichtung des HWS-Präparats auf dem Beschleunigungsschlitten, der Größe 50 x 60 cm, konnte eine Seitenkollision von rechts simuliert werden (Abbildung 7).

Bei einer Realkollision wird der menschliche Körper zuerst um etwa 10° zur Seite geneigt, bis die Schulter mit starren Elementen der Fahrzeugkarosserie in Kontakt tritt. Im anschließenden Verlauf der Kollision ist nur noch die HWS des Insassen frei beweglich.
Folglich war es nötig, die Präparate in diesem Experiment unter einer Vorkippung von 10° auf dem Schlitten zu befestigen, da der Beschleunigungsschlitten die Beschleunigung auf Höhe von Th1 simuliert und Th1 beim Realunfall erst dann beschleunigt wird, wenn die Schulter mit der Karosserie in Kontakt getreten ist.

Der Kippteller, auf dem das HWS-Präparat befestigt war, erlaubte neben der Einstellung der Vorkippung, die passive Drehbewegung um eine Achse, die quer zur Beschleunigungsrichtung steht.

Um eine entsprechende Vorkippung des HWS-Präparates im Vorfeld des Beschleunigungsvorganges zu erreichen wurde ein Schaumstoffkeil unter den Kippteller platziert. Dieser Schaumstoffkeil diente zum einen der beschriebenen Vorkippung des Präparates um 10° in Richtung der Beschleunigungseinheit, zum anderen wurde der Übergang zwischen HWS und dem Beschleunigungsschlitten weniger starr, wie dies bei einem Ganzkörperpräparat, bei dem sich an die HWS die Brustwirbelsäule anschließt, auch der Fall gewesen wäre.

Abbildung 7:
Übersichtsdarstellung der Beschleunigungsanlage.
Kapitel 2 Material und Methoden

Die für das Beschleunigungsexperiment benötigte Energie lieferte die pneumatische Beschleunigungseinheit, die aus einem Pneumatikzylinder mit Luftreservoir und einem Kompressor bestand (Abbildung 8). Der Kompressor füllte den Pneumatikzylinder bis zu einem vorher festgelegten Druck mit Luft. Durch das Luftreservoir des Pneumatikzylinders konnte ein Druckabfall während des Beschleunigungsvorgangs vermindert und damit eine nahezu konstante Beschleunigung erzeugt werden.

![Abbildung 8: Detaildarstellung der verschiedenen Komponenten der Beschleunigungsanlage.](image)

Vor Beginn der Beschleunigung wird der Schlitten über Metallkrallen an einem Joch über den Schienen fixiert, die Zylinderstange des Pneumatikzylinders wird an den Schlitten angelegt und dann wird der Zylinder mit Luft gefüllt.

Der Metallkolben wird mit Hilfe des Druckreservoirs während der gesamten Beschleunigung mit konstanter Kraft gegen den Beschleunigungsschlitten gedrückt, so dass eine nahezu gleichförmige Beschleunigungskurve entsteht (Abbildung 9).
Die Beschleunigung wird zum einen über den Luftdruck im Zylinder und zum anderen über
den Beschleunigungsweg am Schlitten reguliert.

Bremsklötze, die von innen an die Schienen der Gleisanlage gepresst wurden, sorgten nach
Beendigung der Beschleunigung für ein gemäßigt Abbremsen des Schlittens auf der acht
Meter langen Schienenanlage.

\[\text{Zeit [ms]} \]

\[\text{Beschleunigung [g]} \]

Abbildung 9:
Gleichförmige Schlittenbeschleunigung ohne Federpakete (schematische Darstellung).

Da in der vorliegenden Studie keine Beschleunigungsexperimente mit konstanter
Beschleunigungskurve (Abbildung 9), sondern mit einer langsam ansteigenden
Beschleunigungskurve (Abbildung 10) durchgeführt werden sollten, musste der
Beschleunigungsschlitten initial angebremst werden.

\[\text{Zeit [ms]} \]

\[\text{Beschleunigung [g]} \]

Abbildung 10:
Schlittenbeschleunigung bei Einsatz von Federpaketen (schematische Darstellung).
Hierzu wurde ein spezielles Bremssystem entwickelt, das im Wesentlichen aus zwei Tellerfederpaketen bestand (Abbildung 11).

Diese Pakete pressen über ein Hebelsystem Bremsklötze an auf dem Beschleunigungsschlitten befestigte Bremsschienen. Die Federpakete waren ortsständig, d.h. sie bewegten sich während des Beschleunigungsvorgangs nicht mit dem Schlitten mit, sondern bremsten diesen nur in der Initialphase der Beschleunigung an.

Abbildung 11: Darstellung der Tellerfederpakete am Beschleunigungsschlitten.

Die Federpakete greifen in einem Winkel von 10° am Beschleunigungsschlitten an. Durch die schräge Angriffsfläche der Federpakete nimmt im Verlauf des Beschleunigungsvorganges die Bremskraft progredient ab und die Beschleunigung der Schlittenplattform progredient zu (Abbildung 12).

Abbildung 12:

Abbildung 13:
Ansicht von oben auf das rechte Federpaket und den rechten Teil des Beschleunigungsschlittens.

Abbildung 14:
Ansicht von oben auf die 3 unterschiedlich großen Tellerfederpakete.
Um bei jeder beliebigen Maximalbeschleunigung einen langsamen (> 60ms) Kurvenanstieg zu erhalten, musste es möglich sein, die Bremskraft beliebig variieren zu können.

Es gab vier Möglichkeiten die Bremskraft zu variieren:
- 1. über die Größe der einzelnen Federn
- 2. über die Stärke der Komprimierung der Federn
- 3. über die Art der Stapelung der Tellerfedern, wobei eine gleichsinnige Stapelung eine entsprechende Kraftzunahme bei gleichem Federweg bewirkt

Vor jedem Beschleunigungsversuch wurde mit Hilfe eines starren Metallzylinders als Halswirbelsäulenersatz eine Kalibrierungs-Probebeschleunigung durchgeführt, um die verschiedenen Brems- und Beschleunigungsparameter so einzustellen, dass die Beschleunigungskurve in ihrer Dauer, ihrem Maximalwert und in ihrer Steilheit den gewünschten Vorstellungen entsprach und vor allem, dass sie reproduzierbar war.

2.2.3 Kopfdummy

Der Kopfdummy selbst besteht aus Holz und Messing.

![Abbildung 15: Seitenansicht des aus Holz und Messing bestehenden Kopfdummys.](image)
Drei lineare Beschleunigungsaufnehmer wurden auf einem 3D-Montageblock im Bereich des Massenschwerpunktes des Kopfdummys montiert (EGE-73AE1, ± 100g, ENTRAN Sensoren Ludwigshafen, Deutschland) (Abbildung 18).

Abbildung 16:
Darstellung von 2 der 3 Beschleunigungsaufnehmer im Massenschwerpunkt des Kopfdummys.

Um eine Berechnung der Winkelbeschleunigung zu ermöglichen, wurden drei weitere lineare Beschleunigungsaufnehmer auf der äußeren Dummyoberfläche befestigt.

Der Kopfdummy wurde frei beweglich mit einem Faden am Gestell des Beschleunigungsschlittens aufgehängt und ausgerichtet.

Mit Einleitung der Beschleunigung wurde die Dummyaufhängung manuell mit Hilfe eines Skalpells durchtrennt, wobei zusätzliche Sicherungsketten (Abbildung 17) den Kopf in dem Moment sicherten, in dem das Präparat komplett zerriss. Diese Sicherungsketten hatten keinen Einfluss auf die HWS- und Kopfkinematik vor Eintreten der strukturellen Schädigung.

Abbildung 17:
Aufhängemechanismus des Kopfdummys am Beschleunigungsschlitten.
2.3 **Verwendete Messelektronik**

Die bei diesem Experiment verwendete Messelektronik bestand aus **drei linearen Beschleunigungsaufnehmern** auf der Kopfberfläche und **drei linearen Beschleunigungsaufnehmern** im Kopfzentrum.

Dies bedeutet, dass pro Bewegungsrichtung 2 Beschleunigungsaufnehmer zu Verfügung standen und somit auch die Winkelbeschleunigung des Kopfes berechnet werden konnte. Es wurde zudem eine **6-Komponentenkraftmessdose** zwischen Kippteller und Hals eingesetzt. Diese ermöglichte eine Messung der auftretenden Drehmomente und Kräfte in allen drei Richtungen. Das an dem Kippteller befindliche **Drehpotentiometer** maß die während der Beschleunigung auftretende Verkipfung des Kipptellers.

Außerdem befand sich noch ein **linearer Beschleunigungsaufnehmer** am Schlitten, der Daten über die Schlittenbeschleunigung lieferte.

Abbildung 18:
Messverstärker mit Messverstärker, Laptops und Videokamera (Tabelle 4: Kanalbelegung) Messkanalbelegung des MGCplus bei Benutzung der Strukturdatei „Crash CFC 443“. CFC=channel frequency class, CAC=channel amplitude class (Siehe SAE J211) –Bezeichnung für einen Datenkanal, der bestimmten Amplitudencharakteristika, wie sie durch diese internationale Norm spezifiziert werden, genügt. Die CAC-Nummer entspricht numerisch der oberen Grenze des Messbereichs.
Tabelle 4: Kanalbelegung der Messelektronik.

<table>
<thead>
<tr>
<th>Kanal</th>
<th>Kürzel</th>
<th>Messwert</th>
<th>Sensor</th>
<th>Hersteller</th>
<th>CAC</th>
<th>Nennwert [mV/V]</th>
<th>FCF</th>
<th>Tiefpassfilter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ax</td>
<td>Beschleunigung Schlitten x-Achse</td>
<td>EGAS-FS-50-/V5/ZU/L10M</td>
<td>ENTRAN</td>
<td>50 g</td>
<td>5.4</td>
<td>60</td>
<td>Butterworth 250 Hz</td>
</tr>
<tr>
<td>2</td>
<td>ay</td>
<td>Beschleunigung Kopfschwerpunkt y-Achse</td>
<td>EGAS-FS-50-/V5/ZU/L10M</td>
<td>ENTRAN</td>
<td>50 g</td>
<td>5.85</td>
<td>1000 (180 NIC)</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>3</td>
<td>az</td>
<td>Beschleunigung Kopfschwerpunkt z-Achse</td>
<td>EGE-73AE1-100D1</td>
<td>ENTRAN</td>
<td>100 g</td>
<td>70 g</td>
<td>26.4</td>
<td>17.787</td>
</tr>
<tr>
<td>4</td>
<td>Mx</td>
<td>Drehmoment zwischen Hals und Plattform x-Achse</td>
<td>lower neck load cell</td>
<td>DENTON</td>
<td>451.9 Nm</td>
<td>1.77793</td>
<td>600</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>5</td>
<td>My</td>
<td>Drehmoment zwischen Hals und Plattform y-Achse</td>
<td>lower neck load cell</td>
<td>DENTON</td>
<td>451.9 Nm</td>
<td>1.70183</td>
<td>600</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>6</td>
<td>Mz</td>
<td>Drehmoment zwischen Hals und Plattform z-Achse</td>
<td>lower neck load cell</td>
<td>DENTON</td>
<td>451.9 Nm</td>
<td>3.1114</td>
<td>600</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>7</td>
<td>Fx</td>
<td>Kraft zwischen Hals und Plattform x-Achse</td>
<td>lower neck load cell</td>
<td>DENTON</td>
<td>13344.7 N</td>
<td>1.85762</td>
<td>1000</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>8</td>
<td>Fy</td>
<td>Kraft zwischen Hals und Plattform y-Achse</td>
<td>lower neck load cell</td>
<td>DENTON</td>
<td>13344.7 N</td>
<td>1.90474</td>
<td>1000</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>9</td>
<td>Fz</td>
<td>Kraft zwischen Hals und Plattform z-Achse</td>
<td>lower neck load cell</td>
<td>DENTON</td>
<td>13344.7 N</td>
<td>0.9221</td>
<td>1000</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>10</td>
<td>Potentiometer Kippplattform</td>
<td>Drehwinkel zwischen Kippplattform und Schlitten</td>
<td>P0501 30049</td>
<td>Novotechnik</td>
<td>30 °</td>
<td>481</td>
<td>60</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>11</td>
<td>ax</td>
<td>Beschleunigung Kopfoberfläche oben x-Achse</td>
<td>EGAS-FS-50-/V5/ZU/L10M</td>
<td>ENTRAN</td>
<td>50 g</td>
<td>5.55</td>
<td>1000</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>12</td>
<td>ay</td>
<td>Beschleunigung Kopfoberfläche vorne y-Achse</td>
<td>EGAS-FS-50-/V5/ZU/L10M</td>
<td>ENTRAN</td>
<td>50 g</td>
<td>5.68</td>
<td>1000</td>
<td>Butterworth 2000 Hz</td>
</tr>
<tr>
<td>13</td>
<td>az</td>
<td>Beschleunigung Kopfoberfläche rechts z-Achse</td>
<td>EGAS-FS-50-/V5/ZU/L10M</td>
<td>ENTRAN</td>
<td>50 g</td>
<td>5.50</td>
<td>1000</td>
<td>Butterworth 2000 Hz</td>
</tr>
</tbody>
</table>
2.4 **Messparameter**

Mit Hilfe der verwendeten Messaufnehmer wurden die folgenden Parameter direkt oder indirekt aufgezeichnet (Tabelle 5).

Tabelle 5: Darstellung der Messparameter und der dafür benötigten Messaufnehmer.

- \(dt = \text{mittlerer Messwert im Zeitraum delta } t \)
- \(max = \text{maximaler Wert} \)
- \(t_{max} = \text{Zeitpunkt des Erreichens des maximalen Wertes} \)
- \(t_1 / t_2 = \text{Anfang / Ende} \)

<table>
<thead>
<tr>
<th>Messaufnehmer</th>
<th>Messwert</th>
<th>Ausgewertete Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beschleunigungsaufnehmer im Schlitten</td>
<td>- Schlittenbeschleunigung</td>
<td>- (dt, \ max, t_{max})</td>
</tr>
<tr>
<td></td>
<td>- Schlittengeschwindigkeit</td>
<td>- (\max)</td>
</tr>
<tr>
<td></td>
<td>- zurückgelegter Weg</td>
<td>- (\text{--------})</td>
</tr>
<tr>
<td>Beschleunigungsaufnehmer im Kopfmassenschwerpunkt + Schwerpunkt</td>
<td>- Beschleunigung x</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
<tr>
<td></td>
<td>- Beschleunigung y</td>
<td>- (\text{--------})</td>
</tr>
<tr>
<td></td>
<td>- Beschleunigung z</td>
<td>- (\text{--------})</td>
</tr>
<tr>
<td></td>
<td>- result. Beschleunigung</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
<tr>
<td>Beschleunigungsaufnehmer auf der Kopfoberfläche</td>
<td>- Winkelbeschleunigung x</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
<tr>
<td></td>
<td>- Winkelbeschleunigung y</td>
<td>- (\text{--------})</td>
</tr>
<tr>
<td></td>
<td>- Winkelbeschleunigung z</td>
<td>- (\text{--------})</td>
</tr>
<tr>
<td>6-Komponentenkraftmessdose</td>
<td>- Drehmoment x</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
<tr>
<td></td>
<td>- Drehmoment y</td>
<td>- (\text{--------})</td>
</tr>
<tr>
<td></td>
<td>- Drehmoment z</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
<tr>
<td></td>
<td>- resultierend. Drehmoment</td>
<td>- (\text{--------})</td>
</tr>
<tr>
<td></td>
<td>- Kraft in x Richtung</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
<tr>
<td></td>
<td>- Kraft in y Richtung</td>
<td>- (\text{--------})</td>
</tr>
<tr>
<td></td>
<td>- Kraft in z Richtung</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
<tr>
<td></td>
<td>- resultierende Kraft</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
<tr>
<td>Drehwinkelpotentiometer</td>
<td>Verkippung des Kipptellers</td>
<td>- (t_1, \ max, t_{max})</td>
</tr>
</tbody>
</table>
Die Auswertung der Daten erfolgte in Matlab (The Mathworks Inc., MA, USA), einer selbstentwickelten Auswerteroutine jeweils individuell.

Die Messparameter hatten verschiedene Bezugskoordinatensysteme: global, Kopf, Schlitten und untere HWS (Abbildung 19).

Abbildung 19: Darstellung der verschiedenen Bezugskoordinatensysteme.

Abbildung 20: Schematische Darstellung der Parameter, die die Wucht des Zusammenstoßes beschreiben: Maximalbeschleunigung (a_{max}), mittlere Beschleunigung (a_{mittlere}) und die Geschwindigkeitsänderung (Delta-v), die der blauen Fläche unter der Beschleunigungskurve entspricht.
2.5 **Flexibilitätstest**

Mit Hilfe des jeweils vor und nach dem Beschleunigungsexperiment durchgeführten Flexibilitätstests sollen inkomplette Band- und Weichteilverletzungen aufgespürt werden. Es wurden reine Momente von ± 1,5Nm in Flexions-/ Extensionsrichtung, in Seitneigung und in axiale Rotation eingeleitet. Durch Zuhilfenahme eines akustischen Bewegungsanalysystems, das die Lage der Wirbel zueinander bestimmen konnte, konnte die dreidimensionale intervertebrale Bewegung der einzelnen Segmente zueinander gemessen werden.

Eine Zunahme der intervertebralen Bewegung kann bei äußerlich nicht sichtbarer Verletzung als Verletzung der Weichteile gewertet werden.

Dieser Flexibilitätstest im Wirbelsäulenbelastungssimulator (WISI) lief folgendermaßen ab:
Zuerst erfolgte die starre kaudale Fixierung des Präparates am Rahmen des WISIs und anschließend die kraniale Befestigung des Präparates in einem Kardangelenk. Drei in dieses Kardangelenk integrierte Schrittmotoren sind in der Lage die Präparate mit reinen Momenten in den drei Hauptebenen zu belasten.

Es wurden reine Momente kontinuierlich über Schrittmotoren nacheinander für Seitneigung nach rechts (+MX) und links (-Mx), Flexion (+My) und Extension (-My) sowie für axiale Rotation nach links und rechts eingeleitet. Das Präparat wird nur in die Richtung der einleitenden Drehmomente geführt, in allen anderen 5 Freiheitsgraden bleibt es weiter frei beweglich. Als Umkehrbedingung der Momenteinleitung galt das Erreichen eines Drehmomentes von + 1.5 bzw. –1.5 Nm, gemessen in einer 6-Komponentenkraftmessdose, die sich zwischen Präparat und Kardangelenk befand. Es wurden jeweils zwei Vorzyklen durchgeführt, um den viskoelastischen Effekt zu minimieren, die Last-Deformationskurve des dritten Zyklus wurde ausgewertet (Abbildung 22).
Mit Hilfe des akustischen Bewegungsanalysystems (Winchain, Win Biomechanics Zebris, Isny, Deutschland) konnte die Messung der resultierenden monosegmentalen Bewegungen erfolgen (Abbildung 21).

Es wurden der Bewegungsumfang (Range of Motion, ROM) und die Neutrale Zone (NZ) jeweils für die positive als auch für die negative Bewegungsrichtung bestimmt.

Die entscheidenden Messparameter waren der Bewegungsumfang (ROM) und die Neutrale Zone (NZ) des Gesamtpräparates und aller einzelnen Segmente C0-1 bis C6-7 in allen drei Ebenen.
Das Einleiten von reinen Momenten ist hier beispielhaft für die Extensions- und Flexionsrichtung dargestellt (Abbildung 21). In Abbildung 22 ist eine schematische Last-Deformationskurve dargestellt, wie sie sich bei den Messungen im Wirbelsäulenbelastungssimulator darstellte.

Abbildung 21:
Darstellung des Flexibilitätstests im Wirbelsäulenbelastungssimulator
Links: in Extensionsrichtung; Rechts: in Flexionsrichtung.

Abbildung 22:
Last-Deformationskurve des Flexibilitätstests.

NZ = Neutrale Zone
EZ = Elastische Zone
ROM = Range of motion
2.6 Statistische Auswertung

Mit Hilfe des Wilcoxon Signed Rank Tests wurde der Effekt des Beschleunigungsverlaufs auf die Maximalbeschleunigung, auf die mittlere Beschleunigung und auf die Geschwindigkeitsänderung des Schlittens zum Zeitpunkt der auftretenden sichtbaren strukturellen Verletzung untersucht. Bei \(p < 0,05 \) wurde der Unterschied als statistisch signifikant angenommen.
3 Ergebnisse

3.1 Darstellung der Beschleunigungsmessdaten

3.1.1 Qualitative Darstellung der Beschleunigungsmessdaten

Im ersten Beschleunigungsexperiment hatte die Schlittenbeschleunigungskurve einen trapezförmigen Verlauf (Abbildung 23, rote Kurve) und im zweiten Experiment (Abbildung 23, blaue Kurve) einen sägezahnförmigen Verlauf. Die Schlittenbeschleunigungskurven sind in Abbildung 23 exemplarisch bei einer maximalen Schlittenbeschleunigung von 3g dargestellt.

Die beiden Schlittenbeschleunigungskurven haben etwa die gleiche Beschleunigungsdauer von ca. 120ms, erreichen die gleiche Maximalbeschleunigung, unterscheiden sich jedoch durch die beim zweiten Experiment eingesetzten Federpakete in ihrer Anstiegssteilheit und in der Fläche unter der Beschleunigungskurve. Stellvertretend für eine Folge von Beschleunigungsversuchen sind in Abbildung 24 die gewonnenen Messergebnisse für einen Beschleunigungsversuch mit einer maximalen Schlittenbeschleunigung von 3g dargestellt.
Abbildung 24 zeigt die Schlittenbeschleunigung, Schlittengeschwindigkeit, Kopfbeschleunigung und die relative Kopfbeschleunigung der beiden Experimente exemplarisch für einen „3g“-Beschleunigungsversuch in der Gegenüberstellung. Bei Experiment 2 zusätzliche Darstellung von Moment Mx, das zwischen Kippteller und Nacken auftritt, der Scherkraft Fy zwischen Kippteller und Nacken, die Verkippung des Kipptellers und die Winkelbeschleunigung des Kopfes.

Im ersten Schaubild von Abbildung 24 sind die Schlittenbeschleunigungskurven der beiden Projekte gegenüber gestellt. Die Beschleunigungszeit beträgt bei beiden Experimenten ca. 120ms. In Experiment 1 zeigt sich ein rascher Anstieg der Schlittenbeschleunigung, die bereits nach ca. 20ms ihr Maximum erreicht hat, dann für ca. 90ms konstant bleibt, um dann wieder innerhalb von ca. 10ms steil auf ihr Ausgangsniveau abzufallen. In Experiment 2 steigt die Schlittenbeschleunigung über einen Zeitraum von ca. 100ms an, bleibt dann für ca. 10ms konstant und fällt dann ebenfalls innerhalb von ca. 10ms wieder steil auf ihr Ausgangsniveau ab.

Den Verlauf der Schlittenbeschleunigungskurve in Experiment 1 kann man als trapezförmig und den in Experiment 2 als sägezahnförmig beschreiben. Durch den unterschiedlichen Verlauf der Schlittenbeschleunigungskurven in den beiden Experimenten verändert sich auch die Fläche unter der jeweiligen Beschleunigungskurve. In Experiment 2 ist diese aufgrund des weniger steilen Anstiegs etwa halb so groß wie in Experiment 1. Dieser Flächenunterschied spiegelt sich in der im zweiten Diagramm abgebildeten Schlittengeschwindigkeit der beiden Experimente wider. In Experiment 1 steigt diese über eine Zeitspanne von ca. 120 ms nahezu linear an und bleibt dann nach dem Ende des Beschleunigungsvorganges konstant bei ca. 13 km/h. In Experiment 2 steigt die Schlittengeschwindigkeit ebenfalls über einen Zeitraum von ca. 120ms, was dem Zeitraum des Beschleunigungsvorganges entspricht, an. Innerhalb der ersten 50ms ist der Anstieg im Vergleich zu Experiment 2 weniger steil, wird dann jedoch bis zum Erreichen der maximalen Geschwindigkeit immer steiler, steiler als in Experiment 1 und erreicht dann eine konstante Maximalgeschwindigkeit von ca. 6 km/h. Im dritten Diagramm ist zu erkennen, dass die Kopfbeschleunigung in beiden Experimenten nach ca. 120ms – 150ms ihr Maximum erreicht hat.

In Experiment 2 beginnt die Kopfbeschleunigung weniger stark und erreicht auch nur einen Maximalwert von knapp 4g, während bei Experiment 1 ein Maximalwert von knapp 8g, also das Doppelte erreicht wird.

Während in Experiment 1 die Kopfbeschleunigung nach ca. 160ms auf ihr Ausgangsniveau zurückgekehrt ist, ist dies in Experiment 2 erst nach ca. 275ms der Fall.
Im 4. Diagramm der Abbildung 24 ist die relative Kopfbeschleunigung aufgetragen, d.h. die Kopfbeschleunigung im Bezug zum Beschleunigungsschlitten. Diese Beschleunigungskurve erreicht in den ersten 50ms des Experiments 1 einen Wert von ca. -4g, steigt dann, immer steiler werdend, bis 120ms an, erreicht einen Maximalwert von ca. 8g und hat nach 175ms wieder das Ausgangsniveau erreicht.

In Experiment 2 ist in den ersten 120ms ebenfalls eine Kopfbeschleunigung entgegengesetzt der Beschleunigungsrichtung des Beschleunigungsschlittens mit einem Maximum bei ca. -3g zu beobachten.

Auffällig ist jedoch, dass sich nun die Richtung der Beschleunigungskurve abrupt ändert, der Kopf eine abrupte Änderung seiner Beschleunigungsrichtung erfährt, zum Zeitpunkt des Endes der Schlittenbeschleunigung die Kurve der relativen Kopfbeschleunigung ihren Nulldurchgang hat, nach ca. 170ms ihr Maximum von ca. 4g erreicht und sich innerhalb der nächsten 180ms zwar ihrem Ausgangsniveau annähert, es jedoch nicht erreicht. Der erreichte Maximalwert variiert sehr stark in beiden Experimenten. In Experiment 1 ist dieser Maximalwert doppelt so groß wie in Experiment 2.

Die nur bei Experiment 2 gewonnenen Messergebnisse des Drehmoment Mx, das zwischen Kippteller und HWS wirkt, der Scherkraft Fy zwischen Kippteller und Hals sowie des Verkippens des Kipptellers sind in ihrem grafischen Verlauf ähnlich. Beim Vergleich der Ergebniskurven zeigt sich, dass alle 3 Parameter ihren Maximalwert nach ca. 175ms erreichen und nach ca. 300ms wieder auf ihr Ausgangsniveau zurückgekehrt sind.

Beim Vergleich der Schlittenbeschleunigungskurve und der Kurve der Winkelbeschleunigung des Kopfes zeigt sich, dass der Kopf bis zum Erreichen des Ausgangsniveaus der Schlittenbeschleunigung nach rechts, also in die Richtung des Anpralls beschleunigt wird. Mit der Beendigung der Schlittenbeschleunigung wird auch die Rotationsbeschleunigung des Kopfes in Richtung des Anpralles geringer.

Die Geschwindigkeitsänderung \(\Delta v \) war in Experiment 2 kleiner als in Experiment 1. In Experiment 2 war \(\Delta v \) etwa doppelt so groß wie die maximale Schlittenbeschleunigung, in Experiment 1 lag dieser Faktor zwischen vier und fünf und halb so groß wie \(\Delta v \) in Experiment 1 (Abbildung 26).
Die mittlere Beschleunigung war bei Experiment 2 kleiner als bei Experiment 1 (Abbildung 27). Bei Experiment 2 entsprach der Median der mittleren Beschleunigung mit 2,6g bei einem „5g“-Beschleunigungsversuch dem Median der mittleren Beschleunigung von Experiment 1 bei einem „3g“-Beschleunigungsversuch. Statistisch signifikant war dieser Unterschied jedoch nicht.

Abbildung 27:
Vergleich der mittleren Beschleunigung (adt) in Experiment 1 (n=6) [11] und Experiment 2 (n=6). Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g in Experiment 2.

Die resultierende Kopfbeschleunigung lag bei Experiment 1 immer etwas höher als bei Experiment 2 (Abbildung 28).

Abbildung 28:
Vergleich der resultierenden maximalen Kopfbeschleunigung in Experiment 1 (n=6) [11] und in Experiment 2 (n=6). Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g in Experiment 2.
Einige Messparameter wurden nur in Experiment 2 bestimmt:
Das maximale Drehmoment, das zwischen Hals und Kippteller auftrat, stieg von ca. 10Nm bei einer Schlittenbeschleunigung von 1g kontinuierlich bis auf 64Nm bei einer Schlittenbeschleunigung von 5g an. (Abbildung 29).

Abbildung 29:
Darstellung des aufgetretenen maximalen Drehmoments zwischen Hals und Kippteller für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.

In allen fünf Beschleunigungsversuchen trat das Maximum des Drehmoments in einem Zeitraum zwischen 130 und 269ms nach Beschleunigungsbeginn auf (Abbildung 30).

Abbildung 30:
Zeitliche Darstellung des aufgetretenen maximalen Drehmoments zwischen Hals und Kippteller für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.
Die gemessene maximale Kraft zwischen Hals und Kippteller variierte von 32 bei 1g bis 289N bei 5g und trat nahezu unabhängig von der Beschleunigung in einem Zeitraum von 106 bis 254ms nach Beginn der Schlittenbeschleunigung auf (Abbildung 31, Abbildung 32).

Abbildung 31:
Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.

Abbildung 32:
Zeitliche Darstellung der aufgetretenen maximalen Kraft Fy für Experiment 2, n=6.
Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.
Es zeigte sich, dass die maximale Kraft, die in z-Richtung auf das Präparat wirkt und somit eine Distraktion der HWS bewirkt, Werte zwischen 12N bei 1g und 252N bei 5g in einem Zeitraum von 113 bis 206ms nach Beginn des Beschleunigungsvorgangs ergab (Abbildung 33, Abbildung 34).

Abbildung 33
Darstellung der aufgetretenen maximalen Kraft in z-Richtung zwischen Hals und Kippteller (vgl. Abbildung 19 Material und Methoden) für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.

Abbildung 34:
Zeitliche Darstellung der aufgetretenen maximalen Kraft Fz für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.
Die maximale Winkelbeschleunigung des Kopfes nahm von ca. 600°/s² bei 1g auf ca. 3400°/s² bei 4g zu (Abbildung 35).

Abbildung 35:
Darstellung der aufgetretenen maximalen Winkelbeschleunigung des Kopfes für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.

Die Winkelbeschleunigung des Kopfes hatte ihr Maximum, ähnlich wie die anderen beschriebenen Parameter, 71 bis 206ms nach Beginn der Schlittenbeschleunigung erreicht (Abbildung 36).

Abbildung 36:
Zeitliche Darstellung der aufgetretenen maximalen Winkelbeschleunigung des Kopfes für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.
Die Auslenkung des Kipptellers nahm mit steigender Schlittenbeschleunigung gleichmäßig zu (Abbildung 37). Bei einer Beschleunigung von 1g konnte eine Auslenkung von ca. 1° gemessen werden. Bei einer Beschleunigung von 2g konnte eine Auslenkung von ca. 2° gemessen werden. Schließlich führte eine Beschleunigung von 5g zu einer Auslenkung des Kipptellers von ca. 5°. Der zeitliche Verlauf bezüglich der maximalen Auslenkung ist in Abbildung 38 dargestellt.

Abbildung 37:
Darstellung der aufgetretenen maximalen Auslenkung des Kipptellers für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.

Abbildung 38:
Zeitliche Darstellung der maximalen Auslenkung des Kipptellers für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.
Die Verkippung des Kipptellers begann jeweils kurz vor Erreichen der maximalen Schlittenbeschleunigung (Abbildung 39).

Abbildung 39:
Darstellung des Beginns der maximalen Auslenkung des Kipptellers für Experiment 2, n=6. Median mit Minimum und Maximum für 1g, 2g, 3g, 4g; Einzelwert für 5g.
Kapitel 3 Ergebnisse

3.2 Sichtbare strukturelle Verletzungen der Präparate

Das Beschleunigungsexperiment begann mit einer Schlittenbeschleunigung von 1g und sofern es das Präparat zuließ, kam es zur Wiederholung des Beschleunigungsexperiments unter Steigerung der maximalen Schlittenbeschleunigung in 1g Schritten, bis schließlich sichtbare strukturelle Verletzungen am Präparat auftreten (Abbildung 40). Diese Detaildarstellung einer strukturellen HWS-Verletzung, wie sie häufig auftrat, zeigt eine Schädigung der HWS in Höhe C6/7 sowie Teile des Rückenmarks und der Bandscheibe.

Abbildung 40:
Rechtes Bild: Darstellung einer strukturellen HWS-Verletzung nach Beschleunigungsversuch bei einer Maximalbeschleunigung von 4g.

In Tabelle 6 sind die Präparatedaten und die Art und die Lokalisation der aufgetretenen Verletzungen dargestellt.

Tabelle 6: Präparatedaten, Lokalisation und Art der aufgetretenen Verletzungen.

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Alter (Jahre)</th>
<th>Geschlecht</th>
<th>Beschleunigungsversuch</th>
<th>Max. Beschleunigung [g]</th>
<th>Mittlere Beschleunigung [g]</th>
<th>delta-v [km/h]</th>
<th>Lokalisation</th>
<th>Art der Verletzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>86</td>
<td>2</td>
<td>2,3</td>
<td>1,7</td>
<td>7,74 [km/h]</td>
<td>C5-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>67</td>
<td>2</td>
<td>2,3</td>
<td>1,7</td>
<td>7,74 [km/h]</td>
<td>C5-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>91</td>
<td>2</td>
<td>2,4</td>
<td>1,8</td>
<td>8,03 [km/h]</td>
<td>C6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>72</td>
<td>3</td>
<td>3,7</td>
<td>2,8</td>
<td>12,64 [km/h]</td>
<td>C7-T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>74</td>
<td>4</td>
<td>5,1</td>
<td>3,8</td>
<td>21,82 [km/h]</td>
<td>C6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>87</td>
<td>4</td>
<td>4,0</td>
<td>1,1</td>
<td>8,19 [km/h]</td>
<td>C7-T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>92</td>
<td>4</td>
<td>4,7</td>
<td>2,8</td>
<td>11,44 [km/h]</td>
<td>C6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>87</td>
<td>5</td>
<td>5,6</td>
<td>2,6</td>
<td>11,61 [km/h]</td>
<td>C6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>85</td>
<td>4</td>
<td>4,3</td>
<td>1,2</td>
<td>8,158 [km/h]</td>
<td>C4-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>74</td>
<td>4</td>
<td>4,3</td>
<td>1,3</td>
<td>9,46 [km/h]</td>
<td>C6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>59</td>
<td>4</td>
<td>4,6</td>
<td>1,3</td>
<td>8,65 [km/h]</td>
<td>C6-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Es zeigte sich, dass die Lokalisation und die Art der aufgetretenen Verletzungen in beiden Experimenten nahezu identisch waren. Immer wurde die linke Gelenkkapsel in den Segmenten der unteren HWS, meist in Verbindung mit der Bandscheibe, geschädigt. Mit Ausnahme eines Präparats entstanden keine knöchernen Verletzungen, was durch die jeweils am Ende des Beschleunigungsexperiments durchgeführte Röntgenaufnahme in zwei Ebenen gezeigt werden konnte.

Die HWS-Präparate konnten bei Experiment 2 im Vergleich zu Experiment 1 einer höheren maximalen Schlittenbeschleunigung bis zum Erlangen von strukturellen Verletzungen ausgesetzt werden. Während bei Experiment 1, mit trapezförmigen Verlauf der Schlittenbeschleunigungskurve, einige Präparate bereits ab einer maximalen Schlittenbeschleunigung von 2g irreversible strukturelle Verletzungen erlitten, konnten die HWS-Präparate bei Experiment 2, mit sägezahnförmigen Verlauf der Schlittenbeschleunigungskurve, einer Maximalbeschleunigung zwischen 4,0g und 5,6g ausgesetzt werden.

Bei der statistischen Auswertung zeigte sich, dass sich die maximale Beschleunigung, bei der sich die HWS-Präparate strukturelle Verletzungen zuzogen, statistisch signifikant in den beiden Experimenten unterschied (Abbildung 41).

\[p < 0,05, \text{Wilcoxon signed rank test} \]

Abbildung 41:
Abbildung 42:

Abbildung 43:

Wie der Abbildung 42 und der Abbildung 43 zu entnehmen ist, unterschied sich nur die maximale Schlittenbeschleunigung, bei der sichtbare strukturelle Verletzungen am HWS-Präparat auftraten, signifikant in beiden Experimenten. Bei der mittleren Beschleunigung und bei der Geschwindigkeitsänderung konnte ein solcher statistischer Zusammenhang nicht gesehen werden.
3.3 Wirbelsäulenbelastungssimulator

Vor und nach jedem Beschleunigungsversuch wurde ein Flexibilitätstest im Wirbelsäulenbelastungssimulator durchgeführt.

Die entscheidenden Messparameter sind der ROM (Range of Motion), der dem maximalen Bewegungsausmaß des HWS-Präparates unter einem bestimmten eingeleiteten Moment entspricht und die NZ (Neutrale Zone), die die Laxität der HWS um die Neutralposition beschreibt.

Die Messung der genannten Parameter war nicht immer problemlos möglich. Bei Messung von ROM und NZ bei Seitneigung stieß die Aufhängevorrichtung des WISIs mit der das Präparat kranial geführt wird, aufgrund des großen Bewegungsumfangs des HWS-Präparates am Metallrahmen des WISIs an, und somit konnte die eingeleitete Bewegung nicht bis zu Ende geführt werden. Diese Messversuche mussten dann wiederholt werden, wobei durch eine Wiederholung der Messung das Problem nicht immer beseitigt werden konnte.

Bei Messungen in Flexions- bzw. Extensionsrichtung wurde das Präparat an den Umkehrpunkten der Zyklen durch das eingeleitete Moment einer geringen, aber unphysiologischen Beschleunigung ausgesetzt. Die Präparate zeigten eine Bewegung, die nicht auf die Flexions- bzw. Extensionsrichtung beschränkt blieb und somit die aufgezeichnete Lastdeformationskurve auch die unphysiologischen Bewegungen des Präparates beinhaltete und teilweise nicht auswertbar war. Ein Großteil der durchgeführten Messungen war dennoch verwertbar und die Messung von ROM und NZ bei axialer Rotation verlief meist problemlos.

Für die Darstellung der Flexibilitätsmessung im WISI wurde ein Säulendiagramm mit einer prozentualen Skalierung auf der y-Achse gewählt (Abbildung 46).

Der ROM, orange dargestellt, entspricht bei 0g, also vor der Durchführung eines Beschleunigungsversuches 100 %, die NZ, blau dargestellt, wird zum ROM ins Verhältnis gebracht und ihr prozentualer Anteil am ROM im Säulendiagramm aufgetragen.

Die Fehlerbalken entsprechen dem Maximum, dem Minimum und dem Median.

Neben dem jeweiligen Säulendiagramm sind die zugehörigen Absolutwerte der Messergebnisse für die einzelnen Präparate abgebildet. Messergebnisse, die nicht zur Auswertung verwendet werden konnten, sind nicht als Absolutwerte aufgeführt. Eine Darstellung als Säulendiagramm erfolgte nur dann, wenn die 0g, 1g, 2g und 3g Messwerte von mindestens 3 Präparaten sowohl für den ROM als auch für die NZ zur Verfügung standen.
3.3.1 Seitneigung

HWS-Segment C0 / C1, Seitneigung:

Abbildung 44:
Prozentuale Darstellung des ROM und der NZ in Seitneigung für Segment C0/C1.

HWS-Segment C1 / C2, Seitneigung:

Abbildung 45:
Prozentuale Darstellung des ROM und der NZ in Seitneigung für Segment C1/C2.

Da die Ergebnisse der Flexibilitätsmessungen in Seitneigung für die Segmente C0/C1 und C1/C2, die zur prozentualen Darstellung nötigen Kriterien nicht erfüllt haben, wurden sie nicht als Diagramm abgebildet (Abbildung 44, Abbildung 45).
HWS-Segment C2 / C3, Seitneigung:

Abbildung 46:
Rechts: Absolutwerte.

HWS-Segment C3 / C4, Seitneigung:

Abbildung 47:
Rechts: Absolutwerte.

HWS-Segment C4/C5, Seitneigung:

Abbildung 48:
Rechts: Absolutwerte.

In Segment C4/C5 sieht man eine deutliche Zunahme des ROMs und eine geringe Zunahme der NZ mit zunehmender Schlittenbeschleunigung (Abbildung 48).

HWS-Segment C5/C6, Seitneigung:

Abbildung 49:
Rechts: Absolutwerte.

In Segment C5/C6 sieht man eine deutliche Zunahme des ROMs und der NZ mit zunehmender Schlittenbeschleunigung (Abbildung 49).
HWS-Segment C6/C7, Seitneigung:

Abbildung 50
Rechts: Absolutwerte.

In Segment C6/C7 sieht man ebenfalls eine deutliche Zunahme des ROMs und der NZ mit zunehmender Schlittenbeschleunigung, wobei die initiale Abnahme des ROMs auf Messungenaigkeiten zurückzuführen ist (Abbildung 50).
3.3.2 Axiale Rotation

HWS-Segment C0 / C1, axiale Rotation:

Abbildung 51:
Links: Prozentuale Darstellung des ROM und der NZ in axialer Rotation für Segment C0/C1 mit Median, Minimum und Maximum; Rechts: Absolutwerte.

In den Segmenten C0/C1 und C1/C2 ist keine deutliche Zunahme des ROMs und der Neutralen Zone zu erkennen (Abbildung 51, Abbildung 52).

Auffällig ist die große Spannbreite der Ausgangsbeweglichkeit der verschiedenen Präparate im Segment CO/C1 bei axialer Rotation. Die Werte bewegen sich im Bereich von 3,3 (Präparat 858) bis 14,6 (Präparat 831) (Abbildung 51).

HWS-Segment C1 / C2, axiale Rotation:

Abbildung 52:
Links: Prozentuale Darstellung des ROM und der NZ in axialer Rotation für Segment C1/C2 mit Median, Minimum und Maximum; Rechts: Absolutwerte.
Für Segment C2 / C3 ist bei axialer Rotation ebenfalls keine Zunahme der NZ und des ROMs zu erkennen (Abbildung 53).

Kapitel 3 Ergebnisse

HWS-Segment C4 / C5, axiale Rotation:

Abbildung 55:
Links: Prozentuale Darstellung des ROM und der NZ in axialer Rotation für Segment C4/C5.
mit Median, Minimum und Maximum; Rechts: Absolutwerte.

In Segment C4/C5 (Abbildung 55) ist eine stetige Zunahme des ROMs mit wachsender Schlittenbeschleunigung zu beobachten.

HWS-Segment C5/ C6, axiale Rotation

Abbildung 56:
mit Median, Minimum und Maximum; Rechts: Absolutwerte.

Auch in Segment C5/C6 (Abbildung 56) ist eine stetige Zunahme des ROMs und der NZ mit wachsender Beschleunigung erkennbar. Diese Zunahme betrug nach einer Schlittenbeschleunigung mit 3g bis zu 60% des Ausgangswertes.
HWS-Segment C6/C7, axiale Rotation:

Abbildung 57:

In Segment C6/C7 (Abbildung 57) ist ebenfalls eine Zunahme des ROMs und der NZ zu erkennen. Auffällig ist jedoch die große Streubreite der Messwerte, was durch die Größe der Fehlerbalken verdeutlicht wird.
3.3.3 Flexion/Extension

HWS-Segment C0 / C1, Flexion/Extension:

Weder im Segment C0 / C1 noch im Segment C1/2 konnte eine Zunahme der NZ oder des ROMs erkannt werden (Abbildung 58, Abbildung 59).

HWS-Segment C1 / C2, Flexion/Extension:

Abbildung 58:
Links: Prozentuale Darstellung des ROM und der NZ in Flexion/Extension für Segment C0/C1 mit Median, Minimum und Maximum.
Rechts: Absolutwerte.

Abbildung 59:
Links: Prozentuale Darstellung des ROM und der NZ in Flexion/Extension für Segment C1/C2.
Rechts: Absolutwerte.
Kapitel 3 Ergebnisse

HWS-Segment C2 / C3, Flexion/Extension:

Abbildung 60:
Links: Keine prozentuale Darstellung möglich, da Kriterien nicht erfüllt.
Rechts: Absolutwerte.

Trotz der Unvollständigkeit der Messreihen könnte eine Zunahme des ROMs in Segment C2/C3 für Flexion/Extension nur bei Präparat 857 und 861 vermutet werden (Abbildung 60).

HWS-Segment C3 / C4, Flexion/Extension:

Abbildung 61:
Links: Keine prozentuale Darstellung möglich, da Kriterien nicht erfüllt
Rechts: Absolutwerte.

In Segment C3/C4 konnte keine Zunahme des ROMs oder der NZ beobachtet werden, da die Messreihen sehr uneinheitlich waren und es häufig innerhalb einer Messreihe zu Messschwankungen kam (Abbildung 61).
WS-Segment C4 / C5, Flexion/Extension:

HWS-Segment C5 / C6, Flexion/Extension:

Abbildung 62:
Links: Keine prozentuale Darstellung möglich, da Kriterien nicht erfüllt
Rechts: Absolutwerte.

Abbildung 63:
Links: Keine prozentuale Darstellung möglich, da Kriterien nicht erfüllt
Rechts: Absolutwerte.
HWS-Segment C6 / C7, Flexion/Extension:

<table>
<thead>
<tr>
<th>Daten</th>
<th>nach</th>
</tr>
</thead>
<tbody>
<tr>
<td>0g</td>
<td>0,6</td>
</tr>
<tr>
<td>1g</td>
<td>0,7</td>
</tr>
<tr>
<td>2g</td>
<td>0,8</td>
</tr>
<tr>
<td>3g</td>
<td>0,8</td>
</tr>
<tr>
<td>4g</td>
<td>0,6</td>
</tr>
</tbody>
</table>

In keinem der abgebildeten HWS-Segmente konnte eine deutliche Zunahme des ROMs oder der Neutralen Zone beobachtet werden.

Es kann somit angenommen werden, dass die Beschleunigungsvorgänge diesen HWS-Segmenten in Flexion- und Extensionsrichtung keine nennenswerten Mikroverletzungen zugefügt haben.
3.3.4 Übersicht über die Ergebnisse des Flexibilitätstests

<table>
<thead>
<tr>
<th>Segment</th>
<th>Seitneigung</th>
<th>Flexion/Extension</th>
<th>Axiale Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0/C1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1/C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2/C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3/C4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4/C5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5/C6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6/C7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 65: Übersichtsdarstellung der Messergebnisse (ROM und NZ) des Flexibilitätstests mit Median, Minimum und Maximum.
3.4 Zusammenfassung der Ergebnisse

Durch die bei Experiment 2 eingesetzten Tellerfederpakete, die den Beschleunigungsschlitten in der Initialphase des Beschleunigungsvorgangs angebremst haben, entstand eine Schlittenbeschleunigungskurve, die sich in ihrer Anstiegssteilheit und der Fläche unter der Kurve von der Beschleunigungskurve in Experiment 1 unterschied. Die Beschleunigungskurven der beiden Experimente unterschieden sich nicht in der Dauer des Beschleunigungsvorgangs und nicht in der jeweiligen Maximalbeschleunigung.

Es konnte gezeigt werden, dass die HWS-Präparate in Experiment 2 einer signifikant höheren Maximalbeschleunigung als in Experiment 1 ausgesetzt werden konnten, bevor strukturelle Verletzungen am HWS-Präparat aufraten.

Die Geschwindigkeitsänderung delta v und die mittlere Beschleunigung unterschieden sich in den beiden Experimenten beim Auftreten von strukturellen Verletzungen am Präparat nicht signifikant voneinander.

Die Lokalisation der Schädigung betraf in beiden Experimenten die Segmente der untere HWS.

Weiter zeigte sich eine tendenzielle Zunahme des ROM und NZ insbesonders bei Seitneigung und bei axialer Rotation in den Segmenten der unteren HWS. Ein vergleichbares Verhalten konnte bei Messungen in Flexions-/Extensionsrichtung nicht gezeigt werden.
4 Diskussion

4.1 Einfluss des Verlaufes der Schlittenbeschleunigungskurve auf die verschiedenen Messparameter und das Verletzungsrisiko.

Nach dem gegenwärtigen Stand der Literatur könnten eine Vielzahl von Parametern als Vorhersagewerte für das Verletzungsrisiko bei HWS-Beschleunigungsverletzungen benutzt werden. In den meisten Fällen hat sich die Berechnung der Geschwindigkeitsänderung, delta v, als Maß für die Unfallschwere durchgesetzt [26], [27, 39].

In einer Studie von Kraft et al., 2002 wird die mittlere Beschleunigung als Maß für die Unfallschwere angeführt [18, 19]. Es konnte bei Realunfällen eine bessere Korrelation zwischen dem Verletzungsrisiko und der mittleren Beschleunigung als zwischen dem Verletzungsrisiko und der Geschwindigkeitsänderung beobachtet werden. Ähnliche Beobachtungen wurden auch in weiteren Studien beschrieben [4, 14].

Eine andere Gruppe von Autoren beschreibt eine Korrelation zwischen der Änderung der Beschleunigung und dem Verletzungsrisiko [3, 22, 41].

Diese sehr unterschiedlichen Beobachtungen verdeutlichen die Relevanz der vorliegenden Studie, in der der Einfluss der Beschleunigungscharakteristik auf die verschiedenen Messparameter und auf das Verletzungsausmaß bei der HWS-Beschleunigungsverletzung untersucht wurde.

In Experiment 1 und Experiment 2 war unter anderem ein erwünschter Effekt, dass die Dauer der Schlittenbeschleunigung in beiden Experimenten aus Gründen der Vergleichbarkeit gleich lang sein sollte. Als Vorhersagewert für das Maß der Schädigung bei bekannter Beschleunigungsdauer scheint sowohl die Geschwindigkeitsänderung als auch die mittlere Beschleunigung geeignet zu sein. Bei nicht bekannter Beschleunigungsdauer wäre eine Betrachtung der mittleren Beschleunigung sicherlich sinnvoller, da diese die jeweilige und teilweise variierende Beschleunigungsdauer der Kollision mit berücksichtigt. Als Alternative kann delta v mit Angabe der Beschleunigungsdauer verwendet werden.

Zu beachten ist jedoch, dass die Geschwindigkeitsänderung, die maximale Beschleunigung und die mittlere Beschleunigung Fahrzeugparameter sind, die lediglich indirekt die Belastung des Insassen widerspiegeln. Die alleinige Betrachtung einer dieser Parameter ist sicherlich nicht statthaft, da andere Parameter, wie z.B. die Winkelbeschleunigung des Kopfes und das auftretende Drehmoment, einen Einfluss auf den Schweregrad der Verletzung haben könnten [3, 37, 38, 43]. Die Annahme, dass z.B. das Drehmoment einen Einfluss auf das Verletzungsrisiko hat, wird dadurch bestätigt, dass dieser Parameter als Maß für das Verletzungsrisiko in den EuroNCAP Richtlinien aufgeführt wird und in Experiment 2 beim Auftreten von Verletzungen überschritten wurde. Ein auftretendes Drehmoment, das das physiologische Maß übersteigt, könnte auch eine Erklärung für das entstandene Verletzungsmuster, das einseitige Aufklaffen der unteren HWS, liefern.

Wie bereits erwähnt, unterschieden sich in Experiment 1 und 2 lediglich die erreichten Spitzenbeschleunigungen, denen die Präparate ausgesetzt werden konnten, signifikant voneinander. Für die mittlere Beschleunigung und die Geschwindigkeitsänderung war dieser Unterschied nicht zu erkennen.
Dies bedeutet, dass diese zwei Parameter nicht vom Verlauf der Beschleunigungskurve beeinflusst werden und daher als Parameter zur Verletzungsrisikoeinschätzung geeignet sind. Durch den unterschiedlichen Beschleunigungskurvenverlauf in Experiment 1 und Experiment 2 veränderte sich nicht nur die Anstiegssteilheit der Schlittenbeschleunigungskurven, sondern damit auch die Fläche unter der jeweiligen Kurve.

Zur Klärung, inwieweit die Anstiegssteilheit der Schlittenbeschleunigungskurven oder die Fläche unter der Kurve für die Beeinflussung der verschiedenen Parameter verantwortlich ist, wurde ein weiteres Experiment von Kettler et al., 2004 durchgeführt [16], bei dem die Beschleunigungskurve spiegelbildlich zu der aus Experiment 2 verlief.

Der Vergleich zwischen Experiment 2 und dem Experiment von Kettler et al. soll weitere Aufschlüsse über den Einfluss der Beschleunigungscharakteristik auf das Verletzungsrisiko bei Beschleunigungsverletzungen geben.

Es konnte durch den Vergleich der beiden Experimente, mit annähernd spiegelbildlichem Verlauf der Schlittenbeschleunigungskurven, gezeigt werden, dass die unterschiedliche Beschleunigungscharakteristik der beiden Experimente keinen Einfluss auf die Winkelbeschleunigung des Kopfes und keinen Einfluss auf das Drehmoment Mx zwischen HWS und Kippteller hatte. Diese beiden Parameter unterschieden sich beim Vergleich der beiden Experimente hinsichtlich ihrer Messwerte zum Zeitpunkt des Auftretens von Verletzungen am Präparat nicht signifikant voneinander.

Dies bedeutet, dass diese beiden Parameter, die die direkte Belastung der HWS beschreiben, nicht durch die Beschleunigungscharakteristik beeinflusst wurden und ein konstantes Verhalten beim Auftreten von Verletzungen zeigten.

Die Winkelbeschleunigung des Kopfes und das Drehmoment der unteren HWS scheinen daher als Vorhersagewerte für das Verletzungsrisiko der HWS-Beschleunigungsverletzung, vor allem bei unbekanntem Verlauf der Schlittenbeschleunigungskurve, nützlich zu sein.

Die von den Präparaten tolerierte Scherkraft Fy und die lineare Kopfbeschleunigung waren dagegen vom Verlauf der Schlittenbeschleunigung abhängig und sind daher zur Vorhersage des HWS-Verletzungsrisikos weniger geeignet.
4.2 Schlittenbeschleunigung

Die Beschleunigungskurven der in dieser Arbeit untersuchten Experimente 1 und 2 unterschieden sich nicht in der Dauer des Beschleunigungsvorganges und nicht in der erreichten maximalen Beschleunigung.

Durch den Einsatz der Tellerfederpakete hat sich in Experiment 2 die Anstiegssteilheit der Schlittenbeschleunigungskurve und die Fläche unter der Kurve geändert.

Im Vergleich mit Beschleunigungskurven von realen Verkehrsunfällen zeigt sich, dass deren initialer Anstieg meist zwischen dem aus Experiment 1 und Experiment 2 liegt (Abbildung 66).

![Abbildung 66: Darstellung einer Beschleunigungskurve des gestoßenen Fahrzeuges bei einer realen Heckkollision, gefiltert und ungefiltert [28].](image)

Der Anstieg der Schlittenbeschleunigungskurve bei Experiment 1 und Experiment 2 stellt sicherlich jeweils eine Extremform des Kurvenanstiegs dar. In Experiment 1 ist der Anstieg der Schlittenbeschleunigungskurve sehr steil gewählt, im Gegensatz dazu in Experiment 2 sehr flach. Ein Kurvenanstieg, wie er in der Realität häufig beobachtet werden kann, befindet sich meist zwischen diesen beiden Extremformen. Um den Einfluss der Beschleunigungskarakteristik auf die verschiedenen Messparameter und schließlich auf das Verletzungsrisiko der HWS untersuchen zu können, war es nötig zwei Experimente mit Schlittenbeschleunigungskurven durchzuführen, die sich deutlich in ihrem Anstieg unterschieden, um die daraus resultierenden Veränderungen erfassen zu können.
4.3 Kopfbeschleunigung

Diese S-förmige Verformung der Halswirbelsäule entspricht der S-förmigen Verformung in der Sagitalebene, wie sie bei Heckkollisionen beobachtet wurde [10, 15, 6].
Häufig wird genau diese S-förmige Verformung als Verletzungsursache diskutiert.

Abbildung 68:
Zeitliche schematische Darstellung des Bewegungsablaufes des Kopfes und der HWS bei der Entstehung einer Beschleunigungsverletzung bei Heckkollision (nach Grauer et al, 1997 [10]).

Dieser Verletzungsmechanismus soll sich nach Grauer et al. zwischen 50ms und 75ms nach Beginn des Beschleunigungsvorgangs abspielen. Die untere Halswirbelsäule ist zu diesem Zeitpunkt stark extendiert, während die obere HWS flektiert ist (Abbildung 68).

Folglich liegt zu diesem Zeitpunkt eine S-förmige Verformung der HWS vor [10].

Bei der zeitlichen Darstellung der in diesem Experiment aufgetretenen Maxima der Kräfte und Beschleunigungen, am Beispiel des Präparates 831 bei einem „3g“ Beschleunigungsversuch (Abbildung 69), zeigt sich, dass diese erst nach dem Ende der Schlittenbeschleunigung aufgetreten sind.

Abbildung 69:
Zeitliche Darstellung der einzelnen Maxima der für Präparat 831 gemessenen Parameter.
Unter der Annahme, dass eine Schädigung des Präparates zum Zeitpunkt der maximalen Belastung auftritt, bedeutet dies, dass die Verletzung der HWS ebenfalls erst nach Beendigung der Schlittenbeschleunigung auftritt. Aufgrund dieses Ergebnisses muss die S-förmige Verformung der HWS als Verletzungsursache in Frage gestellt werden, da sich die S-förmige Verformung der HWS ca. 50-75ms nach Beginn der Beschleunigung abspielt (Abbildung 67) [10]. Die C-förmige Verformung, die sich zeitlich der S-förmigen Verformung der HWS anschließt, könnte somit für die entstandenen Verletzungen verantwortlich gemacht werden. Dieser Verletzungsmechanismus würde auch die Art der aufgetretenen Verletzung, eine Verletzung der ligamentären Strukturen auf der dem Stoß abgewandten Seite und die intakten anatomischen Verhältnisse der oberen HWS, besser erklären.

4.4 Funktionelle und strukturelle Defekte der HWS nach Seitenkollision

Da die Ligg. alaria bei Rotation angespannt sind [31], könnten diese bei einer Seitenkollision beschädigt werden [46]. Bei einer Verletzung der Ligg. alaria wäre eine Zunahme von ROM und NZ in den oberen Segmenten der HWS zu erwarten. Eine deutliche Zunahme von ROM und NZ konnte jedoch nur in den unteren Segmenten der Halswirbelsäule beobachtet werden, besonders bei Seitneigung und axialer Rotation.
Man kann somit davon ausgehen, dass die Ligg. alaria nicht beschädigt wurden und ihnen somit auch keine entscheidende Rolle beim Pathomechanismus für die Entstehung der HWS-Beschleunigungsverletzung bei Seitenkollision zukommt.

Die aufgetretenen strukturellen Verletzungen betrafen immer die linke, also die dem Stoß abgewandte Seite, einmal auf Höhe C4/C5, viermal auf Höhe C6/C7 und einmal auf Höhe C7/Th1. Meist waren die linke Gelenkkapsel und die Bandscheibe betroffen.

Dieses Verletzungsmuster gleicht dem, das von Hartwig et al., 2004, beschrieben wurde [11]. Bei diesem 2002 durchgeführten Beschleunigungsexperiment, Experiment 1, kam es zweimal zu Verletzungen in Höhe C5-C6, zweimal in Höhe C6-C7 und zweimal in Höhe C7-Th1. Die Lokalisation dieser Verletzungen entsprach der Beschwerdelokalisation, die man bei Patienten nach Heckkollision beobachten konnte [12].

Auch die Art der aufgetretenen Verletzungen waren im Vergleich zu denen, die in Experiment 2 aufraten, sehr ähnlich. Es kam ebenfalls zu einer Schädigung der linken Gelenkkapsel und der Bandscheibe, sowie einmal zusätzlich zur Schädigung der rechten Gelenkkapsel.

Das gemessene Drehmoment Mx, das zwischen der unteren HWS und dem Kippteller wirkt, betrug in Experiment 2 bei der Entstehung sichtbarer struktureller Verletzungen 32Nm bis 64Nm.

Folglich muss in diesem Experiment das aufgetretene Drehmoment als ein möglicher Parameter, der für die Entstehung und das Ausmaß der entstandenen Verletzung mit verantwortlich sein könnte, berücksichtigt werden.
Aufgrund der technischen Beschaffenheit dieses Experimentes war die Messung der auftretenden Scherkräfte \(F_y \) und der Drehmomente \(M_x \) nur für den Übergang zwischen HWS und Beschleunigungsschlitten möglich. Dies bedeutet, dass diese Messergebnisse nur eine Aussage über die auftretenden Scherkräfte und Drehmomente der unteren HWS zulassen. Der Pathomechanismus, der zur Schädigung des Präparates führte, konnte, obwohl keine Aussage zur Belastung der oberen HWS gemacht werden konnte, sehr gut beobachtet werden, da der Ort der Schädigung die untere HWS war, es dort zu einer Zunahme der Flexibilität und schließlich zum Auftreten sichtbarer struktureller Verletzungen kam.

4.5 Übertragbarkeit des in vitro Experiments auf den klinischen Alltag

Ein weiterer Vorteil der verwendeten Beschleunigungsanlage war die Reproduzierbarkeit der Beschleunigungen und damit eine Vergleichbarkeit der durch die Beschleunigungscharakteristik beeinflussten Messparameter.
Es muss berücksichtigt werden, dass es sich bei den Testobjekten um nicht lebendiges Material mit einem Durchschnittsalter von 81 ± 12 Jahren, handelte. Um den negativen Einfluss des hohen Alters zu reduzieren, wurden nur Präparate ohne oder mit geringen altersbedingten Degenerationen verwendet.

Es kann davon ausgegangen werden, dass die Einfrier- und Auftauvorgänge, die zur Präparation und schließlich für die Beschleunigungsversuche nötig waren, keine biomechanischen Veränderungen der Präparate verursachten [34]. Aus ethischen und technischen Gründen wurde nur C0 bis Th2 der Präparate verwendet, den kranialen Abschluss des Präparates bildete ein Kopfdummy (4,5 kg, physiologischer Kopfschwerpunkt in Bezug zur Wirbelsäule [7], [44]).

Ein weiterer Unterschied zu in vivo Experimenten stellt die fehlende bzw. die nicht nerval innervierte Halsmuskulatur dar. Eine passive Stabilisierung des Kopfes und somit die Möglichkeit den Kopf frei zu balancieren fehlte. Auch die ca. 73ms bis 175ms nach Beginn der Beschleunigung auftretende aktive Anspannung der Nackenmuskulatur, wie sie bei Beschleunigungsversuchen mit Freiwilligen beobachtet wurde [24], [5], fehlte.

Diese Tatsache verändert das Ergebnis dieses Experiments sicherlich dahingehend, dass die Größenordnung der Messparameter verschoben wird, der qualitative Zusammenhang zwischen Beschleunigungscharakteristik und den Parametern, die für das Verletzungsrisiko verantwortlich sind, jedoch voraussichtlich nicht an Aussagekraft verliert.

Der beschriebene Versuchsaufbau sieht eine zunehmende Beschleunigung der Präparate vor, was aus ethischen Gründen und Gründen der Verfügbarkeit von Humanpräparaten nicht anders zu lösen ist. Wenn für jede Beschleunigung ein anderes Präparat getestet werden würde, so wäre aufgrund der individuellen anatomicen Besonderheiten der Präparate die Vergleichbarkeit der Messergebnisse stark eingeschränkt. Geht man davon ausgeht, dass es keinen eindeutigen Schwellenwert für nicht sichtbare strukturelle Verletzungen gibt, so muss man annehmen, dass jede Beschleunigung dem Präparat eine funktionelle Schädigung zufügt. Dies könnte zu einer Addition der aufgetretenen funktionellen Schäden führen. Bei den vorgestellten Ergebnissen bezüglich der funktionellen Schädigung konnte dies nicht berücksichtigt werden, was jedoch hinsichtlich der Fragestellung dieser Studie nicht von Bedeutung ist.
Ziel dieser Studie war eine Untersuchung des Verletzungsmusters und der Lokalisation der aufgetretenen strukturellen Verletzungen und keine Grenzwertbestimmung für die Entstehung von funktionellen oder strukturellen Verletzungen.

Eine Übertragbarkeit der quantitativen Schädigung auf Realkollisionen ist nicht statthaft, wohl aber eine Übertragung der Art und der Lokalisation der aufgetretenen Verletzungen. Dies wird durch Untersuchungen an Patienten und derer Symptome sowie deren Behandlungserfolgen bestätigt [2], [12].

Bei den durchgeführten Freiwilligenversuchen wurde in der Regel eine Kollision mit zwei PKWs simuliert. Jede Realkollision wird durch die unterschiedlichen elastischen und plastischen Eigenschaften der Karosserie, die Fahrzeugsitze und durch den Überdeckungsgrad der Fahrzeuge beeinflusst [29], was zu einer jeweils unterschiedlichen Belastung der Insassen und damit zu einem unterschiedlich hohen Verletzungsrisiko führt.

Da in Experiment 2 aus Gründen der Vergleichbarkeit immer der gleiche Beschleunigungsimpuls simuliert wurde, können die Ergebnisse somit nicht für alle Kollisionen verallgemeinert werden.

Ein erheblicher Vorteil dieses Experimentes gegenüber Beschleunigungsversuchen mit Freiwilligen, war die Möglichkeit, Beschleunigungsaufnehmer und Kraftmessdosen an Körperregionen der Präparate zu positionieren, was bei in vivo Experimenten nicht mit dem Leben der Freiwilligen vereinbar gewesen wäre. So konnte z.B. eine Kraftmessdose zwischen HWS und Kippteller oder drei intracranielle Beschleunigungsaufnehmer angebracht werden.

Eine Überlegenheit dieses Versuchsaufbaus, im Vergleich zu Freiwilligen-Versuchen, besteht in der Möglichkeit, Präparate einer reproduzierbaren Beschleunigung auszusetzen, bei der unsichtbare funktionelle oder sichtbare strukturelle Schäden entstehen, sowie in der Möglichkeit, die Charakteristik der Beschleunigungskurve zu variieren und somit einerseits Kausalzusammenhänge zwischen der Beschleunigungscharakteristik und verschiedenen Belastungsparametern herzustellen, andererseits Parameter ermitteln zu können, die zur Abschätzung des Verletzungsrisikos dienen.
4.6 Schlussfolgerung

Es konnte gezeigt werden, dass das Verletzungsrisiko durch die Charakteristik der Beschleunigungskurve beeinflusst wurde. Als Vorhersagewert des Verletzungsrisikos kann zum einen die mittlere Beschleunigung, zum anderen bei bekannter Beschleunigungsdauer die Geschwindigkeitsänderung betrachtet werden. Die Maximalbeschleunigung sollte dagegen nicht zur Vorhersage des Verletzungsrisikos eingesetzt werden, da die HWS-Präparate bei langsamem Anstieg der Schlittenbeschleunigungskurve höhere Maximalbeschleunigungen tolerierten als bei schnellem Kurvenanstieg.

Für die aufgetretenen Verletzungen schien das gemessene Drehmoment Mx der unteren HWS verantwortlich gewesen zu sein. Zum einen wurden die tolerierbaren Grenzwerte einer Real-kollision überschritten, zum anderen entsprach das Verletzungsbild den Folgen eines übermäßig stark aufgetretenen Drehmoments. Es kam zu einem einseitigen Aufreißen der unteren HWS.

Eine Angabe der Absolutwerte dieser Parameter, die etwa einen Schwellenwert von HWS-Verletzungen unter Real-kollisionen beschreiben, ist in diesem Experiment aufgrund der bestehenden Unterschiede zwischen einer in vitro Beschleunigung und einer realen PKW-Kollision nicht möglich.
Zusammenfassung

„Welchen Einfluss hat die Beschleunigungskurzcharakteristik auf das Verletzungsrisiko bei der HWS-Beschleunigungsverletzung?“

In einer selbst entwickelten Beschleunigungsanlage wurden sechs humane HWS-Präparate (Occiput bis Thorakalwirbelkörper 2) einer Seitenkollision ausgesetzt. Es wurde eine Schlittenbeschleunigungskurve mit sägezahn-förmigen Verlauf (= langsamer Anstieg, steiler Abfall) generiert. Mit jedem der sechs Präparate wurde der jeweilige Beschleunigungsversuch unter Steigerung der Schlittenbeschleunigung so lange wiederholt, bis sichtbare strukturelle Schäden am Präparat auftraten. Die HWS-Präparate erhielten an ihrem kranialen Ende einen Kopfdummy um realistische Massenverhältnisse zu gewährleisten.
Die kaudale Verbindung zwischen den Präparaten und dem Beschleunigungsschlitten bildete ein in Beschleunigungsrichtung beweglicher Kippteller, um mit dessen Hilfe die Rumpfbewegung, die bei einem Ganzkörperpräparat auftreten würde, zu simulieren. Vor und nach jedem Beschleunigungsversuch wurde ein dreidimensionaler Flexibilitästest durchgeführt, mit dessen Hilfe disco-ligamentäre Mikroverletzungen jedes einzelnen Segmentes der HWS erkannt werden sollten. Es wurde mit steigender Schlittenbeschleunigung eine Flexibilitätszunahme in den Segmenten der unteren HWS, vor allem bei axialer Rotation und Seitneigung beobachtet. Die schließlich entstandenen strukturellen Schäden traten an der dem Stoß abgewandten Seite der unteren HWS meist in Form einer Schädigung der Facettengelenkkapseln und der Bandscheiben auf.

Es konnte beobachtet werden, dass die HWS-Präparate in dem vorliegenden Experiment, mit sägezahnförmigen Verlauf der Schlittenbeschleunigung, eine signifikant höhere maximale Schlittenbeschleunigung gegenüber dem Vergleichsexperiment mit trapezförmigen Verlauf (=steiler Anstieg, steiler Abfall) der Schlittenbeschleunigungskurve, tolerierten. Von der Beschleunigungscharakteristik unbeeinflusst blieben die Geschwindigkeitsänderung und die mittlere Beschleunigung des Beschleunigungsschlittens.

Die Beschleunigungscharakteristik hatte dennoch einen signifikanten Einfluss auf die von den HWS-Präparaten tolerierte Maximalbeschleunigung.

Aus diesen Gründen scheint die Betrachtung der Geschwindigkeitsänderung und der mittleren Beschleunigung zur Einschätzung des Verletzungsrisikos bei Realkollisionen sinnvoll. Bei unbekannter Beschleunigungsdauer empfiehlt sich eine Betrachtung der mittleren Beschleunigung, da diese die Beschleunigungsdauer mit berücksichtigt.

Es ist stets zu bedenken, dass diese beiden Parameter nur eine indirekte Aussage über die Belastung der HWS machen können.

Die Bestimmung von Schwellenwerten für das Auftreten von HWS-Beschleunigungsverletzungen bei Realkollisionen war nicht Ziel dieser Studie.

6 Literatur

Kapitel 6 Literatur

kinematic responses from human subject testing in rear-end automobile collisions.

40. Siegmund GP, Myers BS, Davis MB, Bohnet HF, Winkelstein BA: Mechanical
evidence of cervical facet capsule injury during whiplash: a cadaveric study using

41. Siegmund GP, Sanderson DJ, Inglis JT: The effect of perturbation acceleration and
advance warning on the neck postural responses of seated subjects. Exp Brain Res

42. Tencer AF, Mirza S, Huber P: A comparison of injury criteria used in evaluating seats

43. Viano DC, Davidsson J: Neck displacements of volunteers, BioRID P3 and Hybrid III
in rear impacts: Implications to whiplash assessments by a neck displacement criterion

44. Vital JM, Senegas J: Anatomical bases of the study of the constraints to which the
cervical spine is subject in the sagittal plane. A study of the center of gravity of the

45. Volle E, Montazem A: MRI video diagnosis and surgical therapy of soft tissue trauma
to the craniocervical junction. Ear Nose Throat J 80: 41-48 (2001)

46. Willauschus WG, Kladny B, Beyer WF, Gluckert K, Arnold H, Scheithauer R:
Lesions of the alar ligaments. In vivo and in vitro studies with magnetic resonance

47. Yoganandan N, Cusick JF, Pintar FA, Rao RD: Whiplash injury determination with
conventional spine imaging and cryomicrotomy. Spine 26: 2443-2448 (2001)

49. Yoganandan N, Pintar FA, Cusick JF: Biomechanical analyses of whiplash injuries
7 Danksagung

Herrn Prof. Dr. Claes danke ich für die Möglichkeit meine Doktorarbeit am Institut für Unfallchirurgische Forschung und Biomechanik durchführen zu können.

Danken möchte ich auch Herrn Prof. Dr. Wilke für die Organisation und den reibungslosen Ablauf des experimentellen Teils meiner Arbeit und für seine Betreuung während meiner Zeit als Doktorand.

Für seine Hilfe bei der Durchführung des experimentellen Teils meiner Arbeit bedanke ich mich bei PD Dr. med. Erich Hartwig.

Mein besonderer Dank gilt Frau Dr. med. Annette Kettler für ihr großartiges Engagement während der gesamten Zeit meiner Arbeit und ganz besonders für ihre tatkräftige Unterstützung bei der Durchführung des experimentellen Teils.

Ihre exzellente Betreuung zeichnete sich vor allem dadurch aus, dass bei auftretenden Problemen stets rasch mit ihrer Hilfe zur Bewältigung dieser Probleme gerechnet werden konnte.

Für die Konstruktion der Schlittenanlage bedanke ich mich bei Herrn Schmidt, Mitarbeiter des Instituts für Unfallchirurgische Forschung und Biomechanik und bei der Werkstatt der Universität Ulm.

Schließlich möchte ich mich noch bei allen Mitarbeitern, Doktoranden und Praktikanten des Institutes für Unfallchirurgische Forschung und Biomechanik für die freundliche Aufnahme und Unterstützung bedanken.