Epitaxie und Charakterisierung semimagnetischer Heterostrukturen auf Basis von GaMnAs

Dissertation
zur Erlangung des Doktorgrades
Dr. rer. nat
der Fakultät für Naturwissenschaften
der Universität Ulm

vorgelegt von
Dipl.-Phys. Achim Köder
aus Göppingen

APRIL 2007
Amtierender Dekan: Prof. Dr. Klaus-Dieter Spindler

1. Gutachter: Prof. Dr. Andreas Waag

2. Gutachter: Prof. Dr. Rolf Sauer

Inhaltsverzeichnis

1 Motivation 1

2 Epitaxie von GaMnAs 7
 2.1 Niedrigtemperatur MBE von GaMnAs 7
 2.2 Grenzbereiche und Optimierung des Wachstums 12
 2.2.1 Einfluss auf die Gitterparameter von GaMnAs 15
 2.2.2 Einfluss auf die magnetischen Eigenschaften 19

3 Bestimmung des Mn-Gehaltes 27
 3.1 Flussmessungen 28
 3.2 Hochauflösende Röntgenbeugung an GaMnAs 29

4 Ladungsträgergradienten in GaMnAs 35
 4.1 Kristallqualität von Ga$_{1-x}$Mn$_x$As Einzelschichten 35
 4.1.1 HRXRD an GaMnAs 36
 4.1.2 TEM an GaMnAs 38
 4.1.3 In-situ RHEED an GaMnAs 39
 4.1.4 SIMS Messungen an GaMnAs 40
 4.1.5 Zusammenfassung 41
 4.2 Elektrische, Optische und Magnetische Eigenschaften 41
 4.2.1 SWR an GaMnAs 41
 4.2.2 SQUID Messungen an stückweise geätztem GaMnAs 44
 4.2.3 Raman Messungen an stückweise geätztem GaMnAs 46
 4.2.4 ECV Messungen an as-grown GaMnAs 47
 4.3 Effekt des Temperns auf die Ladungsträgerprofile 49
 4.3.1 Experimentelles 50
 4.3.2 ECV an GaMnAs 51
 4.3.3 Ergebnisse 53
 4.3.4 Mn$_i$-Diffusion als Grund für Gradienten? 60
 4.4 Temperaturabhängige Magnetisierung 66
 4.5 Zusammenfassung 69
5 GaMnAs/InGaMnAs-Supergitter
 5.1 Erhöhung der Curie-Temperatur ... 71
 5.1.1 Warum Supergitter? .. 72
 5.1.2 Wachstum ... 72
 5.1.3 HRXRD an GaMnAs/InGaMnAs-Supergittern 73
 5.1.4 Ergebnisse und Resultate .. 75
 5.1.5 Diskussion ... 81

6 Zusammenfassung ... 83
Kapitel 1

Motivation

Spinelektronik, die Kombination von herkömmlicher Elektronik mit der Magnetoelektronik beziehungsweise, quantenmechanisch betrachtet, die Steuerung der Transporteigenschaften von elektronischen Bauelementen über die gezielte Veränderung der Bandstruktur und des Spinzustandes der Ladungsträger, ist in den letzten Jahren zu einem interessanten und viel beachteten Teilgebiet der Physik herangereift.

Erste Bauelemente, die physikalische Effekte wie z.B. GMR\(^1\) und TMR\(^2\) (bei beiden Effekten wird der elektrische Widerstand eines Bauelementes gesteuert über die Ausrichtung der Magnetisierung einzelner magnetischer Schichten), letztendlich also die rein quantenmechanische Eigenschaft Spin ausnutzen, sind schon käuflich zu erwerben und werden häufig z.B. in Festplatten zur Speicherung von Daten verwendet [1]. Diese Bauelemente werden größtenteils aus ferromagnetischen Metallen hergestellt und nutzen ausschließlich die magnetischen Eigenschaften dieser Materialien.

Im Gegensatz dazu vereinen zukünftige Spinelektronik-Bauelemente elektronische (Ladung) und magnetische Eigenschaften (rein quantenmechanisch begründeter spin-up- oder spin-down-Zustand mit der jeweiligen Quantenzahl \(S = \frac{1}{2}\) oder \(S = -\frac{1}{2}\) der Ladungsträger [2]. Prinzipielle theoretische Ideen zur Realisierung solcher Spinelektronik-Bauelemente, z.B. Spintransistoren, Spin-LEDs\(^3\) oder nichtflüchtige Speicherbauelemente mit elektrisch- und/oder photo-gesteuertem Ferromagnetismus, wurden in der Literatur schon mehrmals aufgezeigt [3] - [5].

Folgende grundlegenden Bedingungen müssen von zukünftigen Spinelektronik-Bauelementen erfüllt werden:

- Die Injektion spinpolarisierter Ladungsträger in einen nichtmagnetischen Halbleiter mit ausreichend großer Spindephasierungszeit möglichst bei Raumtemperatur.

\(^1\)Giant Magnetoresistance
\(^2\)Tunneling Magnetoresistance
\(^3\)Light Emitting Diode
- Das Umschalten bzw. das Verarbeiten des quantenmechanischen spin-up oder spin-down Zustandes polarisierter Ladungsträger (Elektronen oder Löcher).

- Das Auslesen dieser quantenmechanischen Zustände.

Trotz aller Fortschritte und Verbesserungen, die im Bereich der Spininjektion mittels ferromagnetischer Metalle erzielt werden konnten (erhebliche Steigerung der Polarisationsraten durch Verwendung von Tunnelkontakten, Theorie hierzu siehe [7]), ist es jedoch wünschenswert, zukünftige Spinelektronik-Bauelemente komplett aus Halbleitern herstellen zu können. Um diese Vision Wirklichkeit werden zu lassen, benötigt man semimagnetische beziehungsweise magnetische Halbleiter, die als Spininjektoren genutzt werden können. In Abbildung 1.1 ist der Unterschied zwischen magnetischen, semimagnetischen und unmagnetischen Halbleitern dargestellt. Die meisten magnetischen Halbleiter wie zum Beispiel CdCr$_2$S$_4$ oder auch EuO sind allerdings zur Anwendung in Spinelektronik-Bauelementen nicht geeignet, da sie sich als nicht kompatibel zu anderen gängigen Halbleitern zeigen. Die Vorteile neuartiger semimagnetischer, beziehungsweise verdünnter (DMS5) magnetischer Halbleiter liegen auf der Hand:

- Es kann sowohl die Magnetisierung als auch die Leitfähigkeit und die Bandlücke des Halbleiters kontrolliert und gesteuert werden, also kann in solchen Materialien außer dem schon bekannten „Band-Gap engineering“ auch das so genannte „Magnetic engineering“ zum Gestalten von zukünftigen Bauelementen ausgenutzt werden.

- Solche Materialien können gitterangepaßt an nichtmagnetische Halbleiter epitaktisch hergestellt werden und weisen dadurch vom kristallinen Standpunkt her gesehen eine sehr gute Qualität auf.

- Es gibt kein „conductivity mismatch“, da die Strukturen komplett aus Halbleitern bestehen und somit der Unterschied in der Leitfähigkeit an den zur Spinelektronik entscheidenden Übergängen sehr viel geringer ist im Vergleich zu Ferromagnet(Metall)-Halbleiter Übergängen.

4Leitfähigkeitsversatz
5Diluted Magnetic Semiconductor
Erste erfolgreiche Arbeiten zur elektrischen Spininjektion aus magnetischen Halbleitern (paramagnetische II-VI-Halbleiter ZnBeMnSe) wurden 1998 in Würzburg von Fiederling et al. [8] vorgestellt und zeigten eine Effizienz injizierter spinpolarisierter Elektronen (n+1) von verblüffenden 90%.

Im selben Jahr wurde von der japanische Gruppe um H. Ohno et al. [9] Spininjektion spinpolarisierter Löcher (p+) mit einer Effizienz von ca. 2% aus dem ferromagnetischen III-V-Halbleiter Ga1−xMnxAs heraus vorgestellt.

Diese beiden Arbeiten zeigen auf, dass die Realisierung zukünftiger Spinelektronik-Baulemente prinzipiell möglich ist. Es wird aber gleichzeitig auch klar, dass noch eine Menge Entwicklungsarbeit zu leisten ist, bis es zu einer kommerziellen Anwendung kommen kann. In beiden Fällen wurde zum Nachweis der Spinpolarisation eine LED benutzt (im Fall von GaMnAs eine GaAs/InGaAs/GaAs-LED, im Fall von ZnBeMnSe eine AlGaAs/GaAs/AlGaAs-LED), die durch Rekombination von spinpolarisierten Elektronen bzw. Löchern mit unpolarisierten Ladungsträgern polarisiertes Licht aussendet (so genannte Spin-LED-Strukturen). Mit Hilfe der Messung des optischen Polarisationsgrades kann dann über die quantenmechanischen Auswahlregeln zur Besetzung der Energie niveaus auf den Polarisationsgrad der jeweiligen Ladungsträger geschlossen werden. [8], [9]

Abbildung 1.1: Magnetismuseinteilung in Halbleitern: magnetische Halbleiter, semimag- netische oder verdünnte Halbleiter, nichtmagnetische Halbleiter.
nach ausreichend großer Spindepasphasierungszeit) erfüllt. Im Gegensatz dazu sollten die Spindepasphasierungszeiten bzw. Kohärenzlängen für spindpolarisierte Löcher im Valenzband aufgrund der hier wirkenden Spin-Bahn-Wechselwirkung sehr kurz sein. Dies muss demzufolge bei allen Überlegungen, welche einen Transfer von spindpolarisierten Löchern beinhalten, berücksichtigt werden. In dem von Ohno et al. durchgeführten Experiment wurde als Transferstrecke von Spinjektor (GaMnAs) zu Quantenwell (InGaAs) eine 50nm dicke GaAs-Schicht, welche gleichzeitig auch noch als Barrierenmaterial für die LED diente, benutzt.

In der folgenden Tabelle soll kurz dargestellt werden, worin sich die in den gerade erwähnten Arbeiten als Spininjektoren verwendeten magnetischen Materialsysteme unterscheiden:

<table>
<thead>
<tr>
<th>Materialsystem</th>
<th>Fiederling et al.</th>
<th>Ohno et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spineffizienz</td>
<td>90%</td>
<td>2%</td>
</tr>
<tr>
<td>Dotierung</td>
<td>n (Elektronen)</td>
<td>p (Löcher)</td>
</tr>
<tr>
<td>Magnetismusart</td>
<td>paramagnetisch</td>
<td>ferromagnetisch</td>
</tr>
<tr>
<td>Temperaturabhängige Leitfähigkeit</td>
<td>Halbleiterverhalten</td>
<td>Metallisches Verhalten</td>
</tr>
</tbody>
</table>

Die sich aus den unterschiedlichen Eigenschaften ergebenden Vor- und Nachteile der gerade erwähnten Materialsysteme stellen sich dann folgendermaßen dar:

Wie aus obiger Tabelle schon ersichtlich ist, können aus ZnBeMnSe heraus direkt Elektronen injiziert werden, wohingegen in GaMnAs spinpolarisierte Löcher ausgenutzt werden. Aufgrund der sehr viel längeren Spindepasphasierungszeit von Elektronen [11] gegenüber Löchern ist dies ein klarer Vorteil von ZnBeMnSe. Ebenso wie die erreichte Spineffizienz von ca. 90% polarisierter Elektronen in ZnBeMnSe im Vergleich zu den bis dahin erreichten ca. 2% in GaMnAs, wobei mittlerweile auch hier Werte von ~80% erreicht werden. [12]).

GaMnAs hingegen hat zum einen den Vorteil, dass als Basisgitter GaAs verwendet wird und es somit kompatibel zu den in der Industrie verwendeten Technologien und zu dem am besten geeigneten Transfermaterial für spinpolarisierte Ladungsträger (dotiertes GaAs) ist. Zum anderen kommt es in GaMnAs aufgrund indirekter Austauschwechselwirkungsmechanismen (magnetisches Moment eines Mn - magnetisches Moment eines Loches) zu einem Phasenübergang Paramagnetismus - Ferromagnetismus, was letztendlich eine parallele Ausrichtung sowohl der Mn-Spins als auch der magnetischen Momente der Löcher zueinander zur Folge hat. Im Vergleich zu ZnBeMnSe ist also zur Ausrichtung der Spins kein äußeres Magnetfeld mehr notwendig.

Und auch in der Frage, welche Art Ladungsträger (Elektronen oder Löcher) injiziert wer-

Um allerdings die Vision eines Spininjektors aus GaMnAs, m¨oglichst bei Raumtemperatur und einer Spinpolarisation von 100%, Wirklichkeit werden zu lassen, m¨ussen zun¨achst sowohl das nicht triviale kristalline Wachstum von GaMnAs als auch die zu dem Ferromagnetismus f¨uhrenden Wechselwirkungsmechanismen verstanden werden. Die vorliegende Arbeit widmet sich vorrangig dem Wachstum und der Charakterisierung von GaMnAs und st¨utzt sich dabei auf die Ergebnisse der von 2000-2001 angefertigten Diplomarbeit [13]. Sie wird deutlich machen, welche Anstrengungen notwendig sind und waren, um das Materialsystem GaMnAs an obiges Ziel zu f¨uhren. Hauptaugenmerk wird dabei auf die Erh¨ohung der ¨Ubergangstemperatur Paramagnetismus - Ferromagnetismus (der sogenannten Curietemperatur) gelegt werden. Besrieben werden hierbei das Wachstum in den Grenzbereichen (Parameter wie die Wachstumstemperatur TS oder das As/Ga-Fl¨ussverh¨alttnis w¨ahrend des Wachstums spielen hier eine entscheidende Rolle) oder die Steigerung der Curietemperatur in GaMnAs durch Einbau von geeigneten Zwischenschichten.

GaMnAs ist aber vor allem auch aufgrund seiner Vorreiterrolle als ferromagnetischer III-V-Halbleiter sehr interessant. Es ist in dieser Hinsicht ein Materialsystem, welches momentan sehr große Aufmerksamkeit erf¨ahrt und deshalb auch intensiv von diversen Arbeitsgruppen erforscht wird. Es ist desweiteren jenes Materialsystem, welches von den existierenden magnetischen Halbleitern am besten mit den g¨angigen Theoriekonzepten ¨ubereinstimmt, wobei es hier auch f¨ur GaMnAs noch viele Unklarheiten und Schwierigkeiten gibt. Selbst wenn der entscheidende Sprung von der bisher erreichten Curietemperatur (170 K in sehr d¨unnen, speziell nachbehandelten Einzelschichten, siehe Referenzen [15]-[19]) zu Raumtemperatur nicht gelingen sollte, so lassen sich an diesem Material viele grundlegenden Effekte zur Spinelektronik und zum Design zuk¨unftiger Spinelektronik- Bauelemente ¨uberpr¨ufen.
Kapitel 2

Epitaxie von GaMnAs

Ga$_{1-x}$Mn$_x$As gehört zur Klasse der ferromagnetischen III-V-Halbleiter. Als Basisgitter dient GaAs, welches in Zinkblendestruktur kristallisiert (siehe Abbildung 2.1).

Werden jetzt die Ga-Atome des Basisgitters teilweise durch Mn-Atome ersetzt, bildet sich die semimagnetische Legierung GaMnAs, welche ebenfalls in Zinkblendestruktur kristallisiert und unter bestimmten Voraussetzungen pseudomorph epitaxiert werden kann.

Im ersten Abschnitt dieses Kapitels wird zunächst auf die Niedrigtemperatur-Epitaxie (im folgenden LT2-Epitaxie genannt) von GaMnAs detailliert eingegangen, um darauf folgend dann das komplexere Wachstum von GaMnAs in Grenzbereichen wie der Epitaxie bei optimiertem V/III-Verhältnis oder optimierter Substrattemperatur T_S zu diskutieren. Es wird gezeigt, dass der jeweilig verwendete Wachstumsprozess in den Grenzbereichen des Wachstums erheblichen Einfluss auf die Gitterkonstante, die Magnetotransporteigenschaften und die Curietemperatur des ferromagnetischen Halbleiters GaMnAs hat. Es ist somit möglich, diese Eigenschaften durch die geeignete Wahl der Wachstumsbedingungen teilweise zu steuern.

Auf eine detaillierte Einführung in die Grundlagen der Molekularstrahlepitaxie wird in dieser Arbeit verzichtet, es sei auf die einschlägige Literatur verwiesen, z.B. [21].

2.1 Niedrigtemperatur MBE von GaMnAs

Alle in dieser Arbeit untersuchten und diskutierten Proben wurden im Reinraum3 des Mikroelektroniktechnikums der Universität Ulm hergestellt und soweit nötig auch dort prozessiert. Zur Herstellung der Proben wurde eine Riber32P-MBE4-Anlage benutzt, die auf die Bedürfnisse des Wachstums von III-V-Halbleitern ausgelegt und zusätzlich noch

1(3. bzw. 5. Hauptgruppe des Periodensystems der Elemente)
2Low-Temperature
3Reinraumklasse 1000
4Molecular Beam Epitaxy, zu Deutsch: Molekularstrahlepitaxie
mit der Möglichkeit ausgestattet war, das Übergangsmetall Mangan (Mn) und somit eine magnetische Komponente in das Wachstum zu integrieren. Eine schematische Darstellung des Funktionsprinzips der Molekularstrahlepitaxie ist in Abbildung 2.2 zu sehen. Um die sehr reinen Materialien in Form von Molekularstrahlen in geeignet hohem Dampfdruck in der Wachstumskammer zur Verfügung zu stellen, wurden konventionelle Knudsen-Zellen für die Materialien Ga (Reinheitsgrad 7N+), In (7N+), Al (6N), Be (5N) und Si (Reinstsilizium) verwendet. Ausnahmen bildeten Mn (Reinheitsgrad 5N), hier wurde eine Hot-Lip-Zelle verwendet und As (7N5), wo zur Bereitstellung von As₄ eine ventilgesteuerte As-Crackerzelle im nicht-crackenden Modus betrieben wurde. Der angebotene Fluss konnte hierbei sehr präzise über ein Nadelventil gesteuert werden.

Das hier beschriebene normale, im weiteren Verlauf dieses Kapitels, speziell im zweiten Teil, als unterkritisch bezüglich einer möglichen Clusterung bezeichnete Wachstum von GaMnAs zeichnet sich vor allem durch die im Vergleich zu dem Wachstum von Hochtemperatur-GaAs (im folgenden als HT-GaAs bezeichnet) benötigten sehr niedrigen Substrat- oder Wachstumstemperaturen T_S aus. Diese liegen, abhängig von der jeweiligen Mn-Konzentration in einem Temperaturfenster zwischen $\sim 160^\circ C$ (für das Wachstum von GaMnAs mit sehr hohen Mn-Konzentrationen $\geq 9\%$) und $\sim 300^\circ C$ (für das Wachstum von GaMnAs mit sehr niedrigen Mn-Konzentrationen $\leq 2\%$) im Vergleich zu Wachstumstemperaturen von ca. $600^\circ C$, die zur Epitaxie von HT-GaAs verwendet werden [21]. Die sehr niedrigen Wachstumstemperaturen für GaMnAs sind erforderlich, da die Löslichkeitsgrenze des Akzeptors Mn in HT-GaAs bei $\sim 1 \cdot 10^{18}\text{cm}^{-3}$ liegt, was nicht ausreichend ist, um ferromagnetisches GaMnAs herzustellen. Während des Wachstums im Nicht-Gleichgewicht bei sehr viel niedrigeren Temperaturen dagegen ist es möglich, sehr viel mehr Mn (bis $\sim 9\%$) in GaAs einzubauen und somit ferromagnetisches GaMnAs zu

5High Temperature
2.1. NIEDRIGTEMPERATUR MBE VON GAMNAS

Ein zweiter, für das Wachstum von GaMnAs sehr wichtiger Parameter ist das Verhältnis von während des Wachstums angebotenem Ga und Mn zu der parallel dazu angebotenen Menge an As, der so genannte BEP6 \(V_{\text{III}} \). Speziell für die Grenzbereiche des pseudomorphen Wachstums des Materials spielt dies eine entscheidende Rolle, was detailliert im nächsten Abschnitt dieses Kapitels diskutiert wird.

Beim Wachstum von HT-GaAs bei Substrattemperaturen von ca. 600°C hat ein Überschussangebot an As\textsubscript{4} nur geringen Einfluss auf die Kristallqualität oder die elektrischen Eigenschaften. Das zu viel angebotene Arsen kann sofort wieder von der Kristalloberfläche desorbieren, es steht nicht mehr zum Einbau in das Kristallgitter zur Verfügung. Im Gegensatz dazu besteht die Problematik bei einem Wachstum in einem LT-Temperaturbereich zwischen 200°C und 300°C darin, dass sich das im Überfluss angebotene As\textsubscript{4} teilweise auf Ga- und möglicherweise auch auf Zwischengitterplätze in das Kristallgitter einbaut, wobei der As-Überschuss in LT-GaAs bis zu \(\sim 1.5\% \) betragen kann. Vor allem die As-antisites7 wirken dann in GaMnAs als Doppeldomator und verringern die zur ferromagnetischen Wechselwirkung notwendige Anzahl an Löchern, was letztendlich eine Verringerung der Curietemperatur zur Folge hat.

Als Standard etablierte sich trotz den beschriebenen Nachteilen ein As/Ga-Flussverhältnis von ca. 10 ÷ 15, da sich das Wachstum in den Grenzbereichen (bei einem As/Ga-

6Beam Equivalent Pressure
7As auf Ga-Platz, energetisch betrachtet befinden sich diese Defekte in LT-GaAs in der Mitte der Bandlücke und wirken hier als Doppeldonator
KAPITEL 2. EPITAXIE VON GAMNAS

Flussverhältnis $\sim \frac{1}{1}$) als sehr knifflig und letztlich als nicht 100%-ig reproduzierbar erweisen hat.

Eine weitere Besonderheit von GaMnAs im Vergleich zu GaAs und auch zu LT-GaAs kann bei Beobachtung des RHEED-Bildes während des Wachstums festgestellt werden. Die Oberflächenrekonstruktionen von GaMnAs und GaAs unterscheiden sich folgendermaßen: Während bei HT-GaAs (2×4)-Rekonstruktionen und bei LT-GaAs (1×1)-Rekonstruktionen beobachtet werden, sind bei GaMnAs (1×2)-Rekonstruktionen zu sehen (siehe inset 1 in Abbildung 2.3). Werden jetzt die Wachstumsbedingungen ungünstig gewählt (z.B. zu hohe Substrattemperatur T_S oder zu niedriges BEP $\frac{V_{III}}{V_{II}}$-Verhältnis), so wird ein Umschlagen der (1×2)-Rekonstruktionen in sog. Chevrons beobachtet, welche signalisieren, dass es zu nicht erwünschtem dreidimensionalem Wachstum kommt (Clusterbildung, siehe inset 2 in Abbildung 2.3).

Im Folgenden soll kurz eine typische Wachstumsprozedur für Standard-GaMnAs beschrieben und erläutert werden:

Zur Epitaxie der in dieser Arbeit beschriebenen Proben wurden ausschließlich $1/4''$ epi-ready, semiisolierende undotierte VGF-GaAs-Substrate mit Kristallorientierung (100) der Firma Wafertech verwendet.

In einem ersten Schritt wurden die Substrate vor dem Einschleusen in die Wachstumskammer in einer Ausheizkammer im Vakuum auf $\leq 400^\circ C$ aufgeheizt, um eventuell vorhandene Verunreinigungen (z.B. H_2O, Aerosole) zu entfernen. In einem zweiten Schritt, schon in der Wachstumskammer, wurden die Substrate dann auf eine Temperatur von ca. $600^\circ C$ erhitzt, um die Oxidschicht (Galliumoxid + Arsenoxid), die sich durch den Aufenthalt an Luft gebildet haben kann, zu entfernen. Zum Ausheilen von eventuell vorhandenen Oberflächendefekten und zur Glättung der Kristalloberfläche konnte dann mit dem Wachstum einer undotierten HT-GaAs-Pufferschicht begonnen werden, welche typischerweise 200-400nm Schichtdicke aufwies.

8Reflection High Energy Electron Diffraction
9keine chemische Vorbehandlung notwendig
bei dieser Methode nur die lokale Wachstumsrate an einem bestimmten Punkt auf dem Substrat bestimmt werden kann, da die Messung im Gegensatz zum eigentlichen Wachstum ohne Rotation des Substrates durchgeführt wird (für ausführliche Information zur RHEED-Methode siehe auch [24], [13]).

Diese Methode funktioniert sehr gut während des Wachstums von HT-GaAs, wohingegen die RHEED-Oszillationen sowohl bei LT-GaAs als auch bei GaMnAs in sehr abgeschwächter Form zu Tage treten und dementsprechend schwer zu analysieren sind. In der vorliegenden Arbeit wurde deshalb auf die Analyse von RHEED-Oszillationsdaten, sowohl während des Wachstums von LT-GaAs als auch während dem von GaMnAs verzichtet. Die Schichtdicken der untersuchten GaMnAs-Schichten wurden zum einen über Röntgen-Diffraktometrie-Messungen bestimmt, zum anderen über den Vergleich der verwendeten Parameter mit zuvor epitaxierten Referenzschichten (die größtenteils sehr dünne AlGaAs-Markerschichten enthielten), an denen nach Beendigung des Wachstums über Rasterelektronenmikroskopie (REM10) die Schichtdicke bestimmt wurde.

Nach Beendigung des Wachstums der HT-GaAs-Pufferschicht wurde die Schicht dann schnellstmöglich abgekühlt auf die beabsichtigte Wachstumstemperatur (200°C-300°C) des GaMnAs und dort stabilisiert (normalerweise hatte dies jeweils eine Wachstumspause von ca. 45 min. zur Folge). Desweiteren wurde in der Phase des Abkühlens der Schicht auch das As-Ventil geschlossen, um bei den vorhandenen tiefen Temperaturen zusätzliche As-Ablagerungen auf der Kristalloberfläche zu vermeiden.

Nach Beendigung des Abkühlprozesses und Stabilisierung der Temperatur konnte dann mit dem eigentlichen Wachstum der LT-GaMnAs-Schicht begonnen werden. Zum Start des Wachstums dieser „aktiven“ magnetischen Schicht wurden die Shutter aller benötigten Materialien (Gallium, Mangan und Arsen) zeitgleich geöffnet. Durch geeignete Wahl der Temperatur der Zellen und somit des jeweiligen Materialflusses wurde die Mn-Konzentration $x = \frac{Mn}{Mn+Ga}$ in der jeweiligen Ga$_{1-x}$Mn$_x$As Schicht bestimmt. Durch das vorangegangene Wachstum von Referenzschichten und unter Berücksichtigung der dabei benutzten Flussverhältnisse konnte somit auch die genaue Wachstumsrate, welche bei der Standardwachstumsprozedur von GaMnAs jeweils im Bereich zwischen 200nm/h und 400nm/h lag, bestimmt werden. Als wichtiger Indikator für das Gelingen des Wachstums, im Besonderen zu Beginn, stellte sich das Beobachten des RHEED-Beugungsbildes heraus, welches direkt nach dem Start des Wachstums die für GaMnAs typischen 1×2-Rekonstruktionen aufweisen musste. Im Gegensatz zu dem im Folgenden diskutierten Wachstum in den Grenzbereichen war allerdings die ständige Beobachtung des RHEED-Bildes des Wachstums nicht zwingend notwendig, da sich dieses im Normalfall nach erfolgreichem Start des Standardwachstumsprozesses auf 2-dimensional pseudomorph fortsetzte und es zu keinem Umschlagen in ein 3-dimensionales Wachstum kam. Unter Benutzung bestimmter Wachstumsmodi konnten auch mehrere Stunden andauernde Wachstumsprozesse erfolg-

10Raster Elektronen Mikroskopie
reich durchgeführt und beendet werden, so konnte z.B. beim Wachstum einer Schicht von 1µm Dicke (Wachstumszeit 2,5 Stunden) kein Umschlagen in 3-dimensionales Wachstum beobachtet werden. Eine Allgemeingültigkeit kann allerdings aus den Beobachtungen nicht abgeleitet werden, da es durchaus auch vereinzelt Proben gab, die bei lange andauerndem Wachstum Clusterung zeigten. Diese Clusterung kann auf eine Mn-Segregation an der Substratoberfläche oder aber auch auf eine Erhöhung der Sustrattemperaturen während des Wachstums zurückgeführt werden.

2.2 Grenzbereiche und Optimierung des Wachstums

Wie schon in der Einführung zu diesem Kapitel erwähnt, wird in diesem Abschnitt des Kapitels auf die Grenzbereiche des GaMnAs-Wachstums eingegangen, welche sich konkret in einem optimierten, im Vergleich zu unkritischem Wachstum sehr niedrigen V/III-Flussverhältnis und einer wieder im Vergleich zu unkritischem Wachstum hohen Wachstumstemperatur widerspiegeln. Es wird der Effekt dieser optimierten Wachtumsparameter auf die Gitterkonstante, die Magnetotransporteigenschaften und die Curietemperatur diskutiert.

Zu diesem Zweck wurden GaMnAs-Einzelschichten mit einer Mn-Konzentration von \(x_{Mn} = 0.04 \) in der oben erwähnten Riber32-Feststoffquellen-MBE epitaxiert. Wie auch bei der Standardprozedur wurden undotierte semiisolierte epiready GaAs-(100)-Substrate verwendet, die mittels flüssigem In auf einen Molybdän-Block aufgeklebt wurden. Die Wachstumsrate für diese Schichten betrug jeweils 240nm/h.

Für die in diesem Abschnitt untersuchten Schichten wurde folgende Wachstumsprozedur verwendet:

Zuerst wurde eine 150 nm dicke HT-Pufferschicht GaAs bei einer Substrattemperatur von \(T_S = 580°C \) aufgewachsen, um dann nach Beendigung des Wachstums dieser Schicht die Temperatur während einer Wachstumsunterbrechung auf die jeweils gewünschten Substrattemperaturen von \(T_S = 190°C, T_S = 225°C \) und \(T_S = 240°C \) abzukühlen.

Ein für die Reproduzierbarkeit und Genauigkeit der Ergebnisse sehr wichtiger Parameter war, dass für das jeweilige Wachstum immer derselbe Molybdän-Block verwendet wurde, da das Temperaturverhalten der in der MBE verwendeten unterschiedlichen Molybdänblöcke durchaus starke Differenzen zueinander zeigten.

In diesem Zusammenhang sollte auch erwähnt werden, dass es seit langem bekannt ist, dass die genaue Bestimmung der Substrattemperatur bei niedrigen Wachstumstemperaturen sehr schwierig und diffizil ist. Aber genau dieses war notwendig, um den hier beschriebenen Einfluss des V/III-Flussverhältnisses auf die Gitterkonstante \(a_{GaMnAs} \) zu untersuchen, da die Substrattemperatur einen nicht geringen Einfluss auf den Einbau von überstöchiometrischem As und damit auch auf die Gitterkonstante \(a_{GaMnAs} \) hat, wie auch schon in der Literatur aufgezeigt wurde [25],[26].
Ein indirekter Weg, die Wachstumstemperatur auf dem verwendeten Molybdänblock festzustellen, besteht darin, die Gitterparameter \(\Delta a \) von LT-GaAs Referenzschichten mittels HRXRD zu bestimmen und mit in der Literatur veröffentlichten Daten zu vergleichen. Die in der Literatur [27] - [30] angegebenen Daten beschreiben die Temperaturabhängigkeit des Parameters \(\Delta a \) von unter normalen, As stabilisierten Bedingungen (typisches V/III-Flussverhältnis von ca. 3) gewachsenem LT-GaAs.

Dieses Verfahren kam dann auch zur Anwendung. Es war damit im Nachhinein und über den Umweg des Wachstums einer LT-GaAs Referenzschicht zur jeweiligen GaMnAs-Schicht möglich, die wirkliche Substrattemperatur während des Wachstums zu bestimmen bzw. die jeweils verwendeten, unterschiedlichen Substrattemperaturen auf Basis der Literaturdaten miteinander zu vergleichen.

Für jede der drei untersuchten Substrattemperaturen \(T_S \) wurde eine Referenzschicht LT-GaAs bei einem V/III-Flussverhältnis von nominell 3 auf demselben Molyblock wie die jeweilige GaMnAs-Schicht gewachsen, um die wirkliche Substrattemperatur dann mittels der in Referenz [28] veröffentlichten \(\Delta a (T_S) \)-Abhängigkeit kalibrieren zu können.

Die chemische Zusammensetzung der GaMnAs-Schichten wurde über zuvor durchgeführte Flussmessungen der jeweiligen Materialien ermittelt. Spätere ERD-Messungen der Proben konnten sowohl die über Flussmessungen ermittelten Mn-Konzentrationen bestätigen als auch eine hohe Reproduzierbarkeit von Probe zu Probe attestieren. Für Details zur Methode der Elastic Recoil Detection siehe [29].

Um das Minimum des V/III-Flussverhältnisses, bei dem das Wachstum von GaMnAs-Schichten mit einem Mn-Gehalt von \(x_{Mn} = 0.04 \) noch möglich war, zu bestimmen, wurde eine Serie von Proben bei jeweils unterschiedlichen Substrattemperaturen \(T_S \) und jeweils unterschiedlichen V/III-Flussverhältnissen hergestellt. Die Wachstumszeit betrug dabei für jede Probe eine Stunde. Bei einem Absinken des V/III-Verhältnisses unter einen bestimmten Grenzwert konnte durch das Beobachten des RHEED-Bildes, während des Wachstums, eine Clusterbildung an der Oberfläche festgestellt werden, was ein Anzeichen für 3-dimensionales Wachstum ist. Durch Veränderung des RHEED-Bildes von einer das 2-dimensionale Wachstum repräsentierenden, streifenförmigen \((1 \times 2)\)-Rekonstruktion hin zu einer das 3-dimensionale Wachstum repräsentierenden, unregelmäßigen, punktförmigen Anordnung (sogenannte Chevrons), konnte der Beginn der Clusterphase aufgezeigt werden. Es bilden sich je nach Wachstumsbedingungen \((V/III)_{min}, \text{Substrattemperatur } T_S \) zwei unterschiedliche Phasen aus, wobei in der ersten Phase unter den gegebenen Bedingungen das Wachstum 2-dimensional pseudomorph bleibt, es aber in der zweiten möglichen Phase zum Umschlagen in ein unkontrolliertes 3-dimensionales Wachstum kommt (siehe Abbildung 2.3).

In Abbildung 2.3 ist das zum pseudomorphen Wachstum von GaMnAs minimal nötige V/III-Verhältnis in Abhängigkeit von der Substrattemperatur aufgetragen. Deutlich zu
Abbildung 2.3: Abhängigkeit des minimal möglichen V/III-Flussverhältnisses von der Substrattemperatur T_S. Der Inset 1 zeigt die typischen streifenförmigen (2 \times 1)-Rekonstruktionen des kontinuierlichen 2-dimensionalen Wachstums, Inset 2 die für die Clusterung typische 3-dimensionale punktförmige Chevronbildung.

sehen ist die starke, nichtlineare Abhängigkeit dieses Grenzwertes von der Substrattemperatur T_S.

Gleichzeitig kann damit auch sehr eindrucksvoll die Schwierigkeit des Wachstums in den Grenzbereichen „minimales V/III-Verhältnis“ und dabei möglicher „maximaler Temperatur“ aufgezeigt werden. So ist z.B. bei einer Substrattemperatur von 190$^\circ$C das Wachstum auch bei einem V/III-Flussverhältnis von \simeq 1 (stöchiometrische Verhältnisse) möglich, wohingegen eine Substrattemperatur von 225$^\circ$C schon ein V/III-Flussverhältnis von 1.25 nötig machte, um das Wachstum erfolgreich gestalten zu können.

Desweiteren konnte sehr gut beobachtet werden, dass sich bei gegebener Wachstumstemperatur T_S die Wachstumszeit bis zum Eintreten der Clusterung mit sinkendem V/III-Flussverhältnis verringerte. Dies verdeutlichte nochmals, dass das V/III-Verhältnis eine tragende Rolle bei der Epitaxie und, wie im weiteren Verlauf des Kapitels gezeigt wird, auch für die Gitterparameter und die Magnetotransporteigenschaften von GaMnAs spielt.

Grundlegend kann gesagt werden, dass höhere Substrattemperaturen höhere V/III-Flussverhältnisse zur Folge haben müssen, wenn das Wachstum 2-dimensional pseudomorph verlaufen
2.2. **GRENZBEREICHE UND OPTIMIERUNG DES WACHSTUMS**

soll:

\[T_S^\uparrow \Rightarrow \left(\frac{V}{III} \right)^\uparrow_{\text{min}} \]

Eine mögliche Begründung für die beschriebene Abhängigkeit der Grenztemperatur zwischen den einzelnen Wachstumsmodi (2-dimensional bzw. 3-dimensional) von dem V/III-Flussverhältnis und der Substrattemperatur kann in der Temperaturabhängigkeit des Haftkoeffizienten von As gefunden werden. Je nach Substrattemperatur variiert die auf der Substratoberfläche zum Einbau angebotene Menge an As, und es wird entweder pseudomorphes GaMnAs-Wachstum energetisch bevorzugt oder es kommt zur schon beschriebenen Clusterbildung (höchstwahrscheinlich unregelmässig angeordnete MnAs-Cluster).

Eine zweite mögliche Erklärung ist die Unterdrückung der 2-Phase (3-dimensionales Wachstum) durch ein Überangebot an As während der Epitaxie. Dies heisst, dass für ein erfolgreiches 2-dimensionales Wachstum generell ein Überangebot an As vorhanden sein muss, da ansonsten die Bildung von Mn-haltigen Clustern an der Oberfläche energetisch günstiger für das Wachstum sein kann. Daraus kann wiederum geschlossen werden, dass auch das Wachstum bei höheren Mn-Konzentrationen ein höheres V/III-Flussverhältnis bedingt:

\[x_{Mn}^\uparrow \Rightarrow \left(\frac{V}{III} \right)^\uparrow_{\text{min}} \]

Sehr gut vorstellbar als Begründung für die beobachteten Resultate ist auch eine Kombination aus den Effekten der Temperaturabhängigkeit des As-Haftkoeffizienten und dem für das Wachstum notwendigen Überangebot an As.

Um jetzt den Einfluss des V/III-Flussverhältnisses und der Substrattemperatur auf die Gitterparameter und die Magnetotransporteigenschaften von GaMnAs zu untersuchen, wurden Ga$_{1-x}$Mn$_x$As Einzelschichten mit einem Mn-Gehalt $x_{Mn} = 0.04$ und einer Schichtdicke von 200 nm mit jeweils hohem und niedrigem V/III-Flussverhältnis bei Substrattemperaturen von 190°C, 225°C und 240°C epitaxiert.

Die in Abbildung 2.3 aufgezeigten V/III-Flussverhältnisse von 1, 1.25 und 1.55 für die jeweiligen Substrattemperaturen 190°C, 225°C und 240°C sollen im Folgenden als niedrig (nahezu stöchiometrische Verhältnisse) bezeichnet werden. Mit einem hohen V/III-Wert sind im Gegensatz dazu Flussverhältnisse von ca. 3 gemeint, wie sie für As-stabilisierendes Wachstum von HT-GaAs üblich sind.

Die Dicke der einzelnen GaMnAs-Schichten wurde aus in HRXRD-Messungen auftretenden Schichtdickenoszillationen bestimmt (siehe dazu auch Kapitel 3.2).

2.2.1 Einfluss auf die Gitterparameter von GaMnAs

Um die Effekte der Veränderung der Substrattemperatur und des V/III-Verhältnisses auf die Gitterparameter von GaMnAs zu untersuchen, wurden an allen epitaxierten GaMnAs...
Schichten HRXRD-Messungen durchgeführt und diese in Hinblick auf die Gitterparameter ausgewertet.

Für alle untersuchten Proben zeigten die mittels eines (004)-Reflexes aufgenommenen \(\omega \)-2\(\Theta \)-Scans symmetrische Hauptreflexe (GaMnAs Peaks) und ausgeprägte Schichtdickenoszillationen. Dies weist auf gute Grenzflächen und auf das Fehlen jeglicher Inhomogenitäten in den Gitterparametern der einzelnen Epitaxieschichten hin.

In Abbildung 2.4 sind die Effekte unterschiedlicher Substrattemperaturen und unterschiedlicher V/III-Verhältnisse auf die Gitterparameter der Ga\(_{1-x}\)Mn\(_x\)As-Schichten mit einem Mn-Gehalt von \(x=0.04 \) zusammengefasst. Wie Abbildung 2.4 deutlich macht, steigt die Gitterkonstante \(a_{GaMnAs} \) mit steigender Substrattemperatur an.

Bei steigender Substrattemperatur wird die Differenz der Werte der Gitterkonstante \(a_{GaMnAs} \) in den bei unterschiedlichen V/III-Verhältnissen gewachsenen Schichten kleiner und verschwindet schließlich bei \(T_S = 240^\circ C \) nahezu ganz.

Es sollte erwähnt werden, dass ein ähnlicher Anstieg von \(a_{GaMnAs} \) mit sinkendem V/III-Verhältnis auch von Sadowski und Domagala [35] berichtet wurde. Auch hier wurde das V/III-Flussverhältnis (von 2 auf 9) variiert und eine Wachstumstemperatur von \(230^\circ C \) verwendet. Allerdings wurden die beschriebenen Schichten mit „gecracktem“ As\(_2\) epiti-

xiert, und der Mn-Gehalt war mit \(\sim 0.1\% \) deutlich niedriger im Vergleich zu den hier beschriebenen Schichten.

Auf den ersten Blick scheint der beobachtete Anstieg von \(a_{GaMnAs} \) mit steigender Wachstumstemperatur nicht den Erwartungen zu entsprechen, da dies der Tatsache widerspricht, dass die von überschüssigem As-Einbau herrührende Gitterausdehnung von LT-GaAs mit zunehmender Substrattemperatur abnimmt, siehe hierzu auch [27]. Dieser scheinbare Widerspruch kann erklärt werden durch den gemeinsamen Einfluss aller in GaMnAs vorhandenen Defektarten auf die Gitterparameter. Betrachtet man die Abhängigkeit von \(a_{GaMnAs} \) von der Mn-Konzentration \(x \) für verschiedene Wachstumstemperaturen (siehe Abbildung 2.5 für \(T_S = 200^\circ C \) und \(T_S = 240^\circ C \)), so ist zu erkennen, dass die aus den Messpunkten extrahierte Gerade für die höhere Substrattemperatur (240\(^\circ\)C) bei niedrigeren Werten der Gitterkonstante für LT-GaAs startet und dann aber steil ansteigt. Dahingegeben zeigt die aus den Messpunkten bei niedrigerer Temperatur extrahierte Gerade bei niedrigem Mn-Gehalt höhere Werte für die Gitterkonstante, dafür aber ein weniger starkes Ansteigen bei Erhöhung des Mn-Gehaltes. Beide Geraden schneiden sich bei ca. 2.5\% Mn-Gehalt (siehe Inset Abbildung 2.5). In diesem Punkt scheint die Substrattemperatur also keinen übermäßigen Einfluss auf die Gitterparameter auszuüben.

Die bei höheren Wachstumstemperaturen gewachsenen Schichten zeigen eine jeweils höhere Gitterkonstante für den Bereich > 2.5\% Mn-Gehalt im Vergleich zu bei niedrigeren Temperaturen epitaxierten Schichten. Ähnliches Verhalten wurde auch von Schott et al. für Wachstumstemperaturen von \(T_S = 220^\circ C \) und \(T_S = 270^\circ C \) beobachtet [25]. Aus den gezeigten Ergebnissen kann geschlossen werden, dass die Beiträge aller vorhandenen
Abbildung 2.4: Gitterparameter von $\text{Ga}_{0.96}\text{Mn}_{0.04}\text{As}$ als eine Funktion der Substrattemperatur für niedrige und hohe V/III-Flussverhältnisse. Die durchgezogenen Linien dienen der besseren Übersicht.
Abbildung 2.5: Gitterparameter von GaMnAs für Substrattemperaturen von 200°C (ausgefüllte Quadrate) und 240°C (offene Kreise) als eine Funktion der Mn-Konzentration x.
Defektarten \((Mn_Ga, Mn_i, As_Ga und As_i)\) und deren Komplexe für die Gitterausdehnung in GaMnAs eine gewichtige Rolle spielen und gemeinsam betrachtet werden müssen. Unglücklicherweise können die Effekte der unterschiedlichen Defektarten mittels der zur Zeit vorliegenden Daten nicht eindeutig voneinander getrennt werden, was spezielle Studien hierzu notwendig machen wird.

Für eine detaillierte HRXRD\(^{12}\)-Analyse von GaMnAs sei auf das Kapitel 3.2 verwiesen.

2.2.2 Einfluss auf die magnetischen Eigenschaften

Die Transporteigenschaften der GaMnAs-Schichten wurden mittels Widerstands- und Hallmessungen an photolithographisch definierten Hall-Kreuz-Strukturen in einem Temperaturbereich von 4.2K bis 300K in einem Magnetfeld von bis zu 14T untersucht. Die jeweiligen Curietemperaturen wurden bestimmt aus der Temperaturabhängigkeit des remanenten Anteils des Hallwiderstandes \(R_{xy}(0)\), dividiert durch den Schichtwiderstand \(R_{xx}(0)\), gemessen jeweils im Nullmagnetfeld, nachdem die jeweilige Probe zuvor in einem Magnetfeld von ca. 2T Stärke magnetisiert worden war. Der Wert \(R_{xy}(0)/R_{xx}(0)\) ist hier proportional zur remanenten Magnetisierung M des Materials und somit geeignet, aus der Messung der Temperaturabhängigkeit dieser Parameter die Curietemperatur der jeweiligen Epitaxieschicht zu bestimmen. Diese Proportionalität kann folgendermaßen aus dem Zusammenhang zwischen Hallwiderstand, Magnetfeld und Magnetisierung abgeleitet werden:

\[
\rho_{Hall} = R_0 B + R_S M \tag{2.1}
\]

mit \(R_0\) als dem normalen Hall-Koeffizient und \(R_S = c \cdot \rho_{xx}^n\) als anomalem Hallkoeffizient [36]. Unter der Annahme, dass \(n=1\) (skew scattering: in 1. Ordnung Spin-Spin-Streuung von freien spinpolarisierten Ladungsträgern an ortsfesten spinpolarisierten Ionen) ist, wovon man in magnetischen Halbleitern ausgeht, und einem äußeren Magnetfeld von \(B=0\ T\) kann folgende Beziehung schnell abgeleitet werden:

\[
\left(\frac{R_{xy}}{R_{xx}}\right)_{B=0} \propto M_{rem} \tag{2.2}
\]

Details zu dieser Methode können in den Referenzen [37], [36] nachgelesen werden.

Die Ergebnisse zu diesen Messungen sind im Folgenden dargestellt und werden diskutiert. Es konnte ein starker Einfluss des V/III-Flussverhältnisses auf die Leitfähigkeit und die Lage der ferromagnetischen Übergänge innerhalb der GaMnAs-Proben festgestellt werden. Einige der bei 190°C Substrattemperatur epitaxierten Proben zeigten einen Metall-Isolator-Übergang (MIT). An Proben, die unter hohem As-Druck hergestellt wurden, konnte semiisolierendes Verhalten festgestellt werden, wohingegen bei Proben, die unter niedrigem

12High Resolution X-Ray Diffraction
KAPITEL 2. EPITAXIE VON GAMNAS

Abbildung 2.6: Temperaturabhängige Messungen des remanenten Teils von \(R_{\text{xy}}(0) \) dividiert durch den Widerstand im Nullmagnetfeld \(R_{\text{xx}}(0) \) für die bei 240°C gewachsenen Ga\(_{0.96}\)Mn\(_{0.04}\)As-Schichten bei hohem (untere Kurve, offene Kreise) und niedrigem (obere Kurve, offene Dreiecke) As-Druck.

As-Druck hergestellt wurden, metallisches Verhalten beobachtet wurde. Bei den semiisolierenden Proben konnte aufgrund des zu hohen Widerstandes aus Transportmessungen keine Curietemperatur extrahiert werden. Für die metallischen Proben hingegen konnten mittels Transportmessungen jeweils Curietemperaturen ermittelt werden, die allerdings immer bei \(T_C < 35K \) lagen, woraus auf eine relativ hohe elektrische Kompensation der jeweiligen Schichten geschlossen werden kann. Alle bei höheren Substrattemperaturen hergestellten Proben zeigten metallisches Verhalten, wobei für die bei niedrigem As-Druck gewachsenen Proben höhere Leitfähigkeiten und Curietemperaturen von 70K für \(T_S = 225°C \) und 95K für \(T_S = 240°C \) gemessen wurden, im Vergleich zu den bei gleicher Temperatur, aber hohem As-Druck gewachsenen Gegenstücken, welche Curietemperaturen von jeweils nur 45K (\(T_S = 225°C \)) und 60K (\(T_S = 240°C \)) zeigten. In Abbildung 2.6 sind die aus Magnetotransportdaten abgeleiteten Temperaturabhängigkeiten von \(R_{\text{xy}}(0)/R_{\text{xx}}(0) \) für die bei \(T_S = 240°C \) mit jeweils hohem und niedrigem As-Druck hergestellten Proben dargestellt. Beide \(R_{\text{xy}}(0)/R_{\text{xx}}(0) \)-Kurven zeigen eine deutliche Abweichung von dem für Ferromagneten erwarteten \((T_C - T)^{1/2} \)-Verhalten. Dieses ungewöhnliche Verhalten kann auf Inhomogenitäten in den magnetischen Eigenschaften, siehe dazu Kapitel 4.2.1 und Referenz [54], zurückgeführt werden, welche durch nicht gleichmäßige Verteilung der magnetischen Momente der Mn-Atome und/oder der freien Löcher verursacht werden. Letzterer Fall von Inhomogenitäten in der
Ladungsträgerdichte ist hierbei wahrscheinlicher, wie aus tiefenaufgelösten ECV-Profilen deutlich gemacht werden kann, siehe hierzu auch Kapitel 4.3.2.

Details zu diesen Annahmen können ausführlich in Kapitel 4 und Referenz [48] nachgelesen werden.

Die Ergebnisse der dort gemachten Untersuchungen zeigen einen ausgeprägten Gradient in der Ladungsträgerdichte von der Oberfläche hin zur GaMnAs/GaAs-Grenzschicht mit dem höchsten Wert der Ladungsträger an der Probenoberfläche. Basierend auf diesen Ergebnissen kann geschlossen werden, dass der oberste Teil der GaMnAs-Schicht die Curie-Temperatur festlegt. Bei Betrachtung der beiden $R_{xy}(0)/R_{xx}(0)$-Kurven in Abbildung 2.6 ist deutlich zu erkennen, dass die bei niedrigem As-Druck gewachsene Probe eine komplexere Kurvenform zeigt, als die bei hohem As-Druck epitaxierte. Unter der zusätzlichen Annahme eines vertikalen Gradienten weist dieser eine sehr viel stärkere Ausprägung der Ladungsträgerdichte dieser Probe auf, im Vergleich zu der bei hohem As-Druck gewachsenen.

Die Löcherkonzentration p in der oberflächenahen Region der GaMnAs-Schicht konnte zusätzlich auch noch mittels Raman-Spektroskopiemessungen aus der Form und der spektralen Position der gekoppelten Plasmon-LO-Phononmode bestimmt werden. Mit ansteigender Ladungsträgerdichte verbreitert diese Linie drastisch und schiebt von der Position des LO-Phonons zu der des TO-Phonons. Mehr Details zu dieser Methode der Bestimmung der Ladungsträgerdichte p in GaMnAs sind in Kapitel 4.2.3 und in Referenz [50] beschrieben. In diesem Zusammenhang ist es allerdings noch wichtig zu erwähnen, dass für eine in diesen Experimenten benutzte Anregungswellenlänge von 514 nm die Informationstiefe aus der Raman-Spektroskopie nur ca. 50 nm beträgt, also nur die oberflächenahene Region der GaMnAs-Schicht abgetastet wird, welche ja die Region mit der höchsten Ladungsträgerdichte ist, wie aus der Analyse von ECV-Tiefenprofilen (siehe Kapitel 4.3.2 und Referenz [48]) geschlossen werden kann.

Die hieraus erhaltenen Daten sollten folgerichtig dann mit den ermittelten Daten der Curietemperatur zumindest qualitativ vergleichbar sein. Werden jetzt die Raman-Spektren der untersuchten Proben miteinander verglichen, wie dies in Abbildung 2.7 der Fall ist, so kann daraus geschlossen werden, dass für alle untersuchten Substrattemperaturen die Proben, die bei niedrigem V/III-Verhältnis gewachsen wurden eine höhere Ladungsträgerdichte an der Oberfläche besitzen, als die bei hohem V/III-Verhältnis gewachsenen, was auch in Einklang mit den jeweils ermittelten Curietemperaturen steht. Am auffälligsten in Abbildung 2.7 ist die drastische Abweichung des Raman-Spektrums, der unter hohem As-Druck und bei $T_S = 190^\circ C$ gewachsenen Probe, im Vergleich zu den anderen untersuchten Proben. In Einklang mit den Transportdaten dieser Probe, welche ein isolierendes Verhalten der Leitfähigkeit zeigt, erscheint die gekoppelte Mode in dieser Probe als enge Linie in der Nähe der LO-Phonon-Frequenz, wohingegen sie in der Probe, die unter niedrigem As-Druck gewachsen wurde, als stark verbreiterte, in Richtung TO-Phonon-Frequenz ver-
Abbildung 2.7: Raman-Spektren der Ga_{0.96}Mn_{0.04}As-Schichten, gewachsen unter hohem und niedrigem As-Druck und bei unterschiedlichen Substrattemperaturen \(T_S \). Die gestrichelte Linien markieren die TO- und LO-Phonon-Frequenzen für das GaAs Substrat.
schobene Linie in Erscheinung tritt. Die bei 225°C und 240°C unter niedrigem As-Druck hergestellten Proben zeigen einen deutlichen Unterschied in der Curietemperatur (jeweils 70 K und 95 K), obwohl die Raman-Spektren sich sehr ähnlich sind und somit ähnliche Ladungsträgerdichten \(n \) vorhanden zu sein scheinen. Zurückgehend auf das von T. Dietl et al. [42] vorgeschlagene Modell, kann die Erhöhung der Curietemperatur zum einen auf die Ladungsträgerdichte \(n \), zum anderen auf die effektive Konzentration der Mn-Spins \(x_{\text{eff}} \)

\[
T_C \sim x_{\text{eff}} \cdot p^{1/3}
\]

zurückgeführt werden. Wie schon erwähnt, zeigen die Abschätzung und der Vergleich der Ladungsträgerdichte \(n \) aus der Linienformanpassung der Raman-Spektren keinen so großen Unterschied, als dass damit der Unterschied in der Curietemperatur dieser beiden Proben erklärt werden könnte. Wahrscheinlicher ist in diesem Zusammenhang also das Zurückführen der Erhöhung der Curietemperatur auf eine höhere Konzentration an Mn-Spins (z.B. erhöhte Anzahl von Mn-Ionen auf Ga-Platz) in der oberflächennahen Region der bei 240°C gewachsenen GaMnAs-Schicht.

Diskussion

Basierend auf den beobachteten Ergebnissen kann geschlossen werden, dass Mn und überschüssiges As während des Wachstums einer GaMnAs-Schicht in Konkurrenz um den Einbau auf einem Ga-Gitterplatz an der Wachstumsoberfläche zueinander treten. Die Menge an überschüssigem As nimmt mit abnehmendem V/III-Flussverhältnis und/oder ansteigender Substrattemperatur \(T_S \) ab. Aus diesem Grunde ist es für Mn bei abnehmendem V/III-Flussverhältnis und/oder zunehmender \(T_S \) wahrscheinlicher, sich auf einem Ga-Platz als Akzeptor in das Gitter einzubauen als auf einem Zwischengitterplatz, wo es als kompensierender Donator wirkt. Gleichzeitig führt die Verringerung an überschüssigem As zu einer verminderten Anzahl an kompensierenden Donatoren und somit zu einer höheren Löcherdichte in den Schichten. Als Ergebnis sollte die Curietemperatur in den bei niedrigem As-Druck gewachsenen Proben ansteigen, was auch experimentell bestätigt wurde.

Eine andere mögliche Erklärung der Erhöhung der Curietemperatur beruht auf der Annahme der Bildung Mn-haltiger Komplexe. Mahavedan und Zunger [31] haben in einem theoretischen Beitrag über „auf Komplexstrukturen beruhendem Ferromagnetismus in Mn-dotiertem GaAs“ gezeigt, dass weniger As-haltige Bedingungen (d.h. Reduzierung des V/III-Flussverhältnisses) während des Wachstums prinzipiell zu der Bildung von \(Mn_{Ga-Mn_i-Mn_{Ga}} \)-Clustern führen können, welche im Gegensatz zu den antiferromagnetisch gekoppelten \(Mn_{Ga-Mn_i} \)-Paaren ferromagnetisch koppeln können. Die Autoren schreiben allerdings auch davon, dass die Bildung solcher Komplexe zu einer teilweisen bzw. kompletten Kompensation der Löcher führen sollte. Dies steht allerdings in drastischem
Widerspruch zu der von uns beobachteten Erhöhung der Leitfähigkeit in den GaMnAs-Schichten, die bei niedrigem V/III-Verhältnis gewachsen wurden im Vergleich zu den bei hohem As-Druck gewachsenen. Deshalb erscheint fraglich, ob die aufgezeigte Theorie für die hier dargestellten Experimente herangezogen werden kann.

Um ein abschließendes Bild über die komplexen Eigenschaften von GaMnAs-Schichten zu bekommen, die bei niedrigem (nahezu stöchiometrischen Bedingungen) V/III-Flussverhältnis gewachsen wurden, bedarf es sicherlich noch weiterführender Erkenntnisse über die Defektstruktur und die Verteilung der Ladungsträgerdichte in den epitaxierten Proben. Auf die Verteilung der Ladungsträgerdichte in GaMnAs Thema wird in Kapitel 4 noch detaillierter eingegangen.

Abschließend für dieses Kapitel kann gesagt werden, dass es mittels der durchgeführten Experimente gelungen ist, durch Variation der Wachstumsparameter, nämlich des V/III-BEP-Flussverhältnisses und/oder der Substrattemperatur T_S sowohl die magnetischen (z.B. Erhöhung der Curietemperatur T_C in Epitaxieschichten mit geringem V/III-Flussverhältnis) als auch die elektrischen (z.B. Erhöhung der Ladungsträgerdichte p oder Verringerung des spezifischen Widerstandes ρ der Schichten) Eigenschaften von GaMnAs reproduzierbar zu verbessern. Die Auswirkungen der Variation dieser zwei Wachstumsparameter auf die Eigenschaften der GaMnAs-Epitaxieschichten soll in Abbildung 2.8 nochmals abschließend dargestellt werden.
Abbildung 2.8: Darstellung, wie sich die Variation der Wachstumsparameter, des V/III-Flussverhältnis und/oder der Substrattemperatur T_S auf die Eigenschaften von GaMnAs auswirkt. Die Pfeile kennzeichnen jeweils eine Veränderung der Parameter zu höheren oder niedrigeren Werten.
KAPITEL 2. EPITAXIE VON GAMNAS
Kapitel 3

Bestimmung des Mn-Gehaltes

Dieser Abschnitt beschäftigt sich mit zwei Methoden zur Ermittlung des Mn-Gehaltes in den epitaxierten GaMnAs-Schichten. Hierbei kamen die zwei folgenden Verfahren zur Anwendung:

Die Bestimmung des Mn-Gehaltes über die Messung der Flüsse bzw. der dazu äquivalenten Dampfdrücke der Molekularstrahlen der einzelnen zur Epitaxie benutzten Materialien.

Die hochauflösende Röntgendiffraktometrie (HRXRD), die unterschiedliche Gitterkonstanten zwischen GaAs-Substrat und pseudomorph epitaxierter GaMnAs-Schicht detektieren kann.

Während mittels der hochauflösenden Röntgendiffraktometrie der Mn-Gehalt indirekt über die Messung der Gitterkonstante bereits epitaxierter Schichten bestimmt wird und somit den vor der Epitaxie geplanten Mn-Gehalt bestätigen kann, wird die Methode der Flussmessung vor der Epitaxie unter anderem dazu verwendet, den Mn-Gehalt der entsprechenden Schichten zu planen.

Desweiteren können Untersuchungen an Proben mit nominal gleichem Mn-Gehalt (bestimmt mittels Flussmessung), aber bei unterschiedlichen Wachstumsbedingungen epitaxiiert, im Zusammenspiel mit weiteren Charakterisierungsmethoden wie z.B. Raman-Spektroskopie oder Magnetotransportmessungen auf Unterschiede in den magnetischen bzw. elektrischen/elektronischen Eigenschaften der jeweiligen Proben hinweisen (wie in Kapitel 2 auch schon aufgezeigt wurde).

Das Hauptaugenmerk beider Methoden soll auf die Diskussion der Ergebnisse und die vorhandenen Besonderheiten der jeweiligen Messmethoden speziell bei der Anwendung auf das Materialsystem GaMnAs gelegt werden. Für allgemeine Betrachtungen zur Anwendung der diskutierten Methoden sei auf die Literatur verwiesen [13], [32], [33], [23], [21], [22].
3.1 Flussmessungen

Prinzipiell bietet die Methode der Flussmessung eine Möglichkeit zur Bestimmung der Zusammensetzung von ternären Materialien. Hierbei werden Teilchenflüsse bzw. der dazu äquivalente Dampfdruck der Molekularstrahlen (BEP), also die jeweilig angebotene Menge eines zum Einbau zur Verfügung stehenden Materials, mit einer Ionisationsmessröhre gemessen. Diese liefert proportional zu dem ankommenden Molekularfluss einen Ionenstrom, welcher dann gemessen werden kann. Die Empfindlichkeit solcher Bayard-Alpert Ionenmessröhren hängt für die einzelnen Materialien von verschiedenen Faktoren ab, hauptsächlich aber von der Wahrscheinlichkeit, ankommende Atome und Moleküle zu ionisieren. Die Ionisierbarkeit hängt dabei aber wieder zu einem sehr großen Anteil von der Anzahl der Elektronen in der Hüllle der Atome bzw. der Moleküle ab und wird bei der Kalibrierung durch einen Korrekturfaktor berücksichtigt. Für Details zu dieser Methode, insbesondere auch zur Kalibrierung solcher Messröhren, sei auf die Literatur verwiesen ([21], [22]).

Unter der Annahme eines Haftkoeffizienten von 1, was bei den für GaMnAs verwendeten niedrigen Temperaturen von ca. 250 °C für Ga und Mn auch der Fall ist, kann dann aus dem Verhältnis von angebotenem Fluss (unter Berücksichtigung der jeweiligen Korrekturfaktoren) zum Fluss der Summe der angebotenen Materialien die jeweilige Konzentration bestimmt werden. Für GaMnAs wäre dies dann

$$x_{Mn} = \frac{Mn}{(Ga + Mn)}$$ (3.1)

Diese Methode liefert bei hohen Wachstumstemperaturen (wie sie z.B. für InGaAs oder auch AlGaAs verwendet werden) unter Berücksichtigung der jeweiligen Haftkoeffizienten (temperaturabhängig) sehr genaue Werte für die jeweiligen Konzentrationen.

Im Falle von GaMnAs muss allerdings auch dies kritisch betrachtet werden, da sich, wie auch im Kapitel 2 schon beschrieben, nicht die komplett angebotene Menge an Mn auch auf einem Gitterplatz einbaut. Durch die verwendeten Wachstumstemperaturen von ca. 250 °C besteht für die Mn-Atome auch die Möglichkeit, sich auf andere Gitterplätze wie z.B. auf einen As-Platz (Mn_{Ga} antisites) oder einen Zwischengitterplatz (Mn_{i}) einzubauen. Da dies, wie in Kapitel 4 noch ausführlich beschrieben wird, in nicht unbeträchtlichem Maße auch geschieht, kann die Methode der Flussmessung nur zur Bestimmung der gesamten Mn-Konzentration verwendet werden. Für einige Proben wurden die so gemessenen Werte auch mittels ERD bestätigt. Keinerlei Erkenntnisse liefern diese Methoden allerdings in der Frage, welcher Anteil an Mn sich auf welchem Gitterplatz eingebaut hat. Trotz der gerade beschriebenen Unzulänglichkeiten dieser Methode kann sie dazu benutzt werden, GaMnAs-Schichten, die nominal laut Flussmessung den gleichen Mn-Gehalt besitzen, aber unter unterschiedlichen Wachstumsbedingungen epitaxiert wurden, zu planen und miteinander zu vergleichen. Dieser Vergleich kann in Zusammenhang mit anderen
Charakterisierungsmethoden unter anderem Aufschluss über die Lokalisation der Mn-
Atome liefern (Mn$_{\text{Ga}}$, Mn$_{\text{i}}$ oder Mn$_{\text{As}}$).

3.2 Hochauflösende Röntgenbeugung an GaMnAs

Die im Folgenden diskutierten HRXRD-Messungen wurden mittels eines Röntgendiffraktometers vom Typ D5000 HR der Firma Siemens durchgeführt. Das Messschema der Apparatur ist in Abbildung 3.1 dargestellt. Der Vierkristallmonochromator des Diffrak-

Abbildung 3.1: Schematische Darstellung des verwendeten Röntgendiffraktometers D5000 HR [32]

tometers war abgestimmt auf die Wellenlänge der Kupfer-K$_{\alpha}$-Linie (1,5418 Å). Mit der verwendeten Apparatur konnte eine Wellenlängenunschärfe von $\Delta\lambda/\lambda = 1,5 \cdot 10^{-4}$ und eine Strahldivergenz von 12° erreicht werden. Die Probe saß in der Mitte einer Eulerwie-
ge, die dreidimensional in alle Raumrichtungen positioniert werden konnte. Die maximale Auflösung bezüglich minimale Schrittweite des für unsere Messungen entscheiden-
den Θ-Kreises betrug dabei 0,0002° [32].

Um HRXRD-Messungen an GaMnAs verstehen zu können, bedarf es einiger Erklä-
rungen, unter anderem, wie es möglich ist, aus solchen Messungen die Gitterkonstante der GaMnAs-Schichten zu bestimmen. In Abbildung 3.2 ist eine typische HRXRD-Messung (ω-2Θ-scan eines (004)-Reflexes) einer GaMnAs-Einzelschicht dargestellt. Aufgrund der unterschiedlichen Gitterkonstanten von GaAs (a_{GaAs}) und GaMnAs ($a_{\text{Ga}_{1-x}\text{Mn}_x\text{As}}$) und der daraus resultierenden Gitterfehlanpassung der Epitaxieschichten ist die Bragg-Bedingung (n: Ordnung des Bragg Reflexes, d_{hkl}: Netzebenenabstand) für unterschiedliche Glanzwin-
KAPITEL 3. BESTIMMUNG DES MN-GEHALTES

Abbildung 3.2: HRXRD Messung der Probe B049 (obere Kurve) und der dazu gehörigen Simulation (untere Kurve)

Kel Θ (entspricht dem Intensitätsmaxima der Reflexe) erfüllt:

\[n \cdot \lambda = 2 \cdot d_{hkl} \sin \Theta \]

(3.2)

Dies spiegelt sich im Spektrum in zwei deutlich ausgeprägten Maximas, dem Substrat- und dem Schichtpeak, wieder. Aus dem Abstand zwischen Substratpeak (GaAs) und Schichtpeak (GaMnAs) kann die vertikale Gitterkonstante von GaMnAs bestimmt werden mittels (siehe auch [13], [33]):

\[(\Delta d)_{\perp} \approx -\Delta \Theta \cdot \cot \Theta_S \]

(3.3)

Hierbei beschreibt \((\Delta d)_{\perp}\) die Gitterfehlanpassung senkrecht zur Normalebene, \(\Delta \Theta\) die Differenz zwischen Substratpeak und Schichtpeak und \(\Theta_S\) den Braggwinkel des Substratpeaks. Für pseudomorph epitaxierte Schichten kann für die Gitterfehlanpassung parallel zur Normalebene \((\Delta d)_{\parallel} = 0\) angenommen werden. Unter Einbeziehung des Poisson-Faktors \(P = \frac{C_{11}}{C_{11} + 2C_{12}} = \frac{\varepsilon_{\parallel}}{\varepsilon_{\parallel} - \varepsilon_{\perp}}\) kann dann die Gitterkonstante von GaMnAs ermittelt werden mittels:

\[\frac{a_{GaMnAs} - a_{GaAs}}{a_{GaAs}} = P \cdot (\frac{\Delta d}{d})_{\perp} \]

(3.4)

Der Poisson-Faktors P beschreibt hierbei die elastische Antwort der Epitaxieschicht auf eine biaxiale Verspannung und ist abhängig von der Kristallorientierung. Mit den Konstanten \(C_{11}=11,092\) und \(C_{12}=5,381\) erhält man für GaAs einen Poissonfaktor von \(P=0,5076\).
Eine Änderung der elastischen Konstanten C_{ii} mit steigender Mn-Konzentration wurde vernachlässigt. Die in der vorliegenden Arbeit untersuchten Schichten zeigen keinerlei Relaxationsmerkmale. Die Relaxationsgrenze von GaMnAs liegt in einem Bereich einer Schichtdicke von $d > 3 \mu m$.

In einigen ternären Halbleitern wie z.B. dem InGaAs kann mittels des Vegardschen Gesetzes [34] die Zusammensetzung bestimmt werden. Betrachtet man den linearen Anstieg der Gitterkonstante mit ansteigender Mn-Konzentration in GaMnAs (für $x_{Mn} \leq 10\%$, siehe dazu die Abbildungen 2.5 und 3.3), so kann vermutet werden, dass das Vegardsche Gesetz auch hier Gültigkeit besitzt. Es kann dann folgendermaßen formuliert werden:

$$a_{Ga_{1-x}Mn_x As} = a_{GaAs} + x \cdot (a_{MnAs} - a_{GaAs}) \quad (3.5)$$

Bei genauerer Betrachtung dieser Gleichung und den einzelnen Parametern stößt man jedoch auf Ungereimtheiten. Als erstes ist hier die im Vegardschen Gesetz verwendete Gitterkonstante a_{GaAs} zu nennen. Da GaMnAs bei tiefen Temperaturen epitaxiert wird (siehe Kapitel 2), muss man im Vegardschen Gesetz zur Berechnung von a_{GaMnAs} natürlich auch die Gitterkonstante von LT-GaAs (a_{GaAs}) heranziehen, welche aber wiederum selbst sehr stark von der Wachstumstemperatur abhängt.

Das zweite und schwerwiegenderere Problem aber ist die Bestimmung der Gitterkonstante von kubischem MnAs (a_{MnAs}), da dieses Material nur in hexagonalen Wurtzitstruktur und nicht in kubisch-flächenzentrierter Form hergestellt werden kann.

Abhilfe schafft hier die Ermittlung der kubischen Gitterkonstante von MnAs über eine Extrapolation der Gitterkonstante der ternären Legierungen InMnAs (hier kann während

Abbildung 3.3: Extrapolation der hypothetischen Gitterkonstante von kubischem MnAs (aus [67]).
KAPITEL 3. BESTIMMUNG DES MN-GEHALTES

des Wachstums bis zu ca. 20% Mn eingebaut werden) und GaMnAs (maximal ca. 10% Mn-
Gehalt) auf eine Mn Konzentration von 100% (Abbildung 3.3). Dieses Verfahren wurde
Gruppen weltweit auch bedenkenlos benutzt.

Betrachtet man jetzt aber diese Extrapolation bei verschiedenen Wachstumstemperaturen,
so stellt man fest, dass die extrapolierte hypothetische Gitterkonstante im Bereich
zwischen 0.584 nm - 0.6 nm sehr stark variiert (siehe dazu Abbildung 3.4 oder auch diverse
Veröffentlichungen zu diesem Thema [25], [26], [35]).

Abbildung 3.4: Extrapolation der hypothetischen Gitterkonstante von kubischem MnAs
für zwei verschiedene Wachstumstemperaturen $T_G = 250^\circ C$ und $T_G = 200^\circ C$. Im Inset ist
der entscheidende Bereich zwischen 0 und 10% Mn-Gehalt vergrößert dargestellt.

Diese Änderung der hypothetischen Gitterkonstante von kubischen MnAs hat nun drasti-
sche Auswirkungen auf die Bestimmung des Mn-Gehaltes der GaMnAs-Epitaxieschichten
mittels des Vegardsschen Gesetzes.

In Abbildung 3.5 sind verschiedene, mittels des Vegardschen Gesetzes berechneten Werte
für den Mn-Gehalt einer GaMnAs-Schicht dargestellt, wobei sowohl die Gitterfehlanspa-
sung $\Delta d/d$ als auch die Gitterkonstante für LT-GaAs jeweils konstant gehalten wurde. Ein-
ziger variabler Parameter war die hypothetische Gitterkonstante für kubisches MnAs, diese
wurde im Bereich von 0.575 nm bis 0.605 nm variiert. Aus dieser Darstellung wird ersicht-
liech, dass die Bestimmung der Mn-Konzentration mittels HRXRD Messungen nur zum
Vergleich von unter denselben Bedingungen (speziell mit gleicher Wachstumstemperatur)
gewachsenen Schichten verwendet werden kann, aber bei Verwendung dieser Angaben in
theoretischen Modellen oder anderen Experimenten sehr vorsichtig damit umgegangen
werden muss.

Abbildung 3.5: Berechnung der Mn Konzentration bei Variation der hypothetischen Gitterkonstante von MnAs (Abstand Substratpeak-Schichtpeak als auch die Gitterkonstante von LT-GaAs wurden nicht variiert.)

Da auch Flussmessungen keinen Aufschluss über die Lokalisation der Mn-Atome geben, muss festgelegt werden, welche Methode verwendet wird, wenn im Folgenden vom Mn-Gehalt oder der Mn-Konzentration gesprochen wird.

In der vorliegenden Arbeit wurde, soweit nicht gesondert beschrieben, die Mn-Konzentration in den Schichten mittels HRXRD-Messungen aus dem Abstand des Schichtpeaks zum Substratpeak unter Verwendung der hypothetischen Gitterkonstante $a_{\text{MnAs}}=5.98 \ \text{Å}$ berechnet, welche wiederum aus der Referenz [67] übernommen wurde. Für die im Vegardschen Gesetz auch benötigte Gitterkonstante für GaAs wurde der Wert $a_{\text{GaAs}} = 5.6533 \ \text{Å}$ verwendet, was der Angabe für HT-GaAs entspricht.
Kapitel 4

Ladungsträgergradienten in GaMnAs

In diesem Kapitel wird das Materialsystem Ga$_{1-x}$Mn$_x$As im Hinblick auf vorhandene Inhomogenitäten, vor allem in den elektrischen und damit zwangsläufig auch in den magnetischen Eigenschaften, betrachtet.

Es wird zuerst auf die kristallographischen und strukturellen Eigenschaften eingegangen, bevor dann im zweiten Teil klar ersichtliche Inhomogenitäten in den elektrischen und damit verbunden in den magnetischen Eigenschaften beschrieben werden, welche letztendlich als vertikale Gradienten in der Löcherdichte über die gesamte Schichtdicke hinweg identifiziert werden konnten.

Im weiteren Verlauf des Kapitels wird dann auf die Veränderung dieser Gradienten während des Tempers der Schichten eingegangen. Aus diesen Untersuchungen wird deutlich, dass Diffusionsprozesse für die beobachteten Veränderungen der Gradienten in der Löcherdichte eine entscheidende Rolle spielen. Auf ECV-Tiefenprofilmessungen der Löcherdichte basierende Abschätzungen deuten an, dass eine Diffusion von Mn_i, wie sie in der Literatur diskutiert wird [69], [71], nicht der alleinige Grund für die beobachteten vertikalen Gradienten sein kann. Eine mögliche Erklärung wäre unter anderem, dass zusätzliche Punktdifkditdiffusionsprozesse (z.B. von As$_{Ga}$-Antisites) zu den beobachteten Ergebnissen beitragen.

Im letzten Teil dieses Kapitels wird dann anhand eines simplen Modells dargestellt, welche Auswirkungen die beobachteten Gradienten auf die Kurvenform der temperaturabhängigen Magnetisierung der Schichten haben können.

4.1 Kristallqualität von Ga$_{1-x}$Mn$_x$As Einzelschichten

Die im Folgenden beschriebenen kristallographischen und strukturellen Untersuchungen des bei niedrigen Wachstumstemperaturen hergestellten GaMnAs (für Details zur Epitaxie siehe Kapitel 2) zeigen Schichten von sehr guter Qualität und Homogenität.

Dies zeigen insbesondere sowohl HRXRD-Messungen und TEM-Aufnahmen von GaMnAs-
KAPITEL 4. LADUNGSTÄGERGRADIENTEN IN GAMNAS

Einzelschichten (siehe Abbildungen 4.1, 4.2 und 4.3) als auch in-situ-Beobachtungen des RHEED-Bildes während des Wachstums der Schichten.

4.1.1 HRXRD an GaMnAs

Auf die Schwierigkeiten der Interpretation von HRXRD-Messungen an GaMnAs speziell bei der Bestimmung des Mn-Gehaltes ist bereits in Kapitel 3.2 ausführlich eingegangen worden.

In diesem Kapitel nun sollen HRXRD-Messungen dazu dienen, eventuelle Inhomogenitäten in der vertikalen Verteilung der Mn-Konzentration zu detektieren.

Zuerst soll allerdings noch auf eine weitere Schwierigkeit bei der Interpretation von HRXRD-Messungen an GaMnAs eingegangen werden. Wie schon zuvor diskutiert, ist der lineare Anstieg der Gitterkonstante \(a_{GaMnAs} \) direkt korreliert zu einem Anstieg des Mn-Gehaltes in den Schichten (siehe auch Abbildung 2.5, Kapitel 2.2.1). Es wird im Folgenden kurz diskutiert werden, dass nicht nur Mn-Atome auf Ga-Plätzen einen Einfluss auf die Gitterkonstante \(a_{GaMnAs} \) haben, sondern mehrere Faktoren Einfluss auf die Gitterparameter ausüben. So berichten Masek et al. [72] von mittels der DFT-Theorie durchgeführten Rechnungen von einer folgendermaßen zusammengesetzten Gitterkonstante:

\[
a_{GaMnAs} = a_{GaAs} + 0.02x + 0.69y + 1.05z(\text{Å}) \quad (4.1)
\]

Hierbei beschreibt \(x \) den Anteil an Mn\(_{Ga}\)-Atomen, \(y \) den Anteil an As\(_{Ga}\)-Antisiteatomen und \(z \) den Anteil an Mn\(_{i}\)-Atomen. Wie der Formel zu entnehmen ist, hat innerhalb dieses Modells der Anteil an Mn-Atomen auf Zwischengitterplätzen den größten Anteil an der Gitterkonstante von GaMnAs, wohingegen der Einfluss von Mn-Atomen auf Ga-Plätzen vermeintlich vernachlässigbar ist. In einer weiteren, experimentellen Arbeit von Zhao et al. [73] wurden mittels Röntgenbeugung und Hallmessungen zum einen Proben untersucht, die vermeintlich kompensationsfrei waren, zum anderen Proben, die eine vermeintlich sehr hohe Kompensationsrate durch Mn\(_{i}\) aufwiesen. In dieser Arbeit wird zwar der lineare Anstieg der Gitterkonstante mit zunehmendem Mn\(_{i}\)-Anteil bestätigt, es wurden im Vergleich zu Masek et al. aber unterschiedliche Faktoren, sowohl für den Anteil an Mn\(_{Ga}\) (0.26 im Vergleich zu 0.02 bei Masek et al.), als auch für den Anteil an Mn\(_{i}\) (0.6 im Vergleich zu 1.05 bei Masek et al.), gefunden. Beide Veröffentlichungen zeigen, dass sich die Gitterkonstante von GaMnAs aus mehreren Teilen zusammensetzt.

Diese Überlegungen müssen in Betracht gezogen werden, wenn HRXRD-Messungen an GaMnAs diskutiert werden. Es kann aus solchen Messungen kein Rückschluss auf die Lokalisation der Mn-Atome im Gitter gezogen werden.

Wie schon erwähnt, sollten eventuell vorhandene Inhomogenitäten in der Mn-Konzentration

\[1\] Dichtefunktionaltheorie
über die gesamte Schichtdicke hinweg trotz der angesprochenen Schwierigkeiten in der Interpretation der Messungen mittels HRXRD zu detektieren sein. Schon aus dem Vergleich und der nahezu perfekten Übereinstimmung von HRXRD-Messung und der mittels dynamischer Röntgenbeugungstheorie errechneten Simulation der exemplarisch in Kapitel 3.2 in Abbildung 3.2 dargestellten Einzelschicht GaMnAs (Probe B049) mit einer Mn-Konzentration von $x = 0.051$ kann vermutet werden, dass in der Schicht keine sichtbaren Inhomogenitäten in Bezug auf die Mn-Konzentration zu detektieren sind. Die durchgeführten ω-2Θ-scans deuten im Gegensatz dazu auf eine sehr homogene Verteilung des Mangans innerhalb der Schicht hin. Desweiteren deuten die ausgeprägten Schichtdickenoszillationen auf gute Grenzflächen GaMnAs/GaAs hin, was aufgrund der sehr niedrigen Wachstumstemperaturen nicht unbedingt zu erwarten war. Bestätigt werden diese Ergebnisse durch den Vergleich der HRXRD-Messungen eines as-grown Stückes der Probe B049 mit den Messungen an einem Stück derselben Probe, dessen Schichtdicke mittels nasschemischen Abätzens um 140 nm reduziert wurde. Beide HRXRD-Messungen sind in Abbildung 4.1 dargestellt. Es ist keine Verschiebung des

Abbildung 4.1: Die HRXRD Messungen der as-grown (schwarz, durchgezogene Linie) und der zu 140 nm Tiefe geätzten (rot, gestrichelte Linie) Probe sind im Vergleich dargestellt. GaMnAs-Peaks der Messung der geätzten im Vergleich zur Messung der as-grown Probe zu beobachten. Unterschiedliche Mn-Konzentrationen im Tiefenprofil der Probe sollten sich aber genau durch eine solche Verschiebung hin zu größeren (höhere Mn-Konzentration) bzw. zu kleineren (geringere Mn-Konzentration) Bragg-Winkeln niederschlagen. Dies ist ein weiterer Hinweis darauf, dass in den Proben keine ausgeprägten vertikalen Gradienten in der Mn-Konzentration vorliegen. Die leichte Verbreiterung und die Abnahme in der
Intensität des GaMnAs-Peaks der geätzten Probe im Vergleich zur as-grown Probe kann durch die verringerte Schichtdicke der geätzten Probe erklärt werden. Abschließend lässt sich sagen, dass aus HRXRD Messungen kein Rückschluss auf vertikale Gradienten oder Inhomogenitäten der Mn-Konzentration innerhalb der untersuchten GaMnAs-Proben gezogen werden kann. Es sollte noch erwähnt werden, dass keine Schichten zur Untersuchung herangezogen wurden, die während des Wachstums Anzeichen von Clusterung zeigten.

4.1.2 TEM an GaMnAs

In Abbildung 4.2 ist die komplette Schichtstruktur der Probe B049 dargestellt. Deutlich sichtbar ist zum einen der Übergang GaAs-Substrat zu HT-GaAs-Pufferschicht, zum anderen der Übergang HT-GaAs-Pufferschicht zu GaMnAs. Lediglich an der Grenzfläche GaAs-Substrat zu HT-GaAs-Pufferschicht ist ein sehr dünner Bereich zu erkennen, der auf Oberflächendefekte des Substrates oder auch auf eine nicht 100% erfolgreiche Entfernung der Oxidationsschichten zu Beginn des Wachstumsprozesses zurückgeführt werden kann. Die Abbildung 4.2 zeigt aber auch, dass diese Defekte einzig auf die Grenzfläche Substrat zu GaAs-Pufferschicht beschränkt sind und sich nicht innerhalb der GaAs-Pufferschicht fortsetzen. Weder innerhalb der GaAs-Pufferschicht, noch innerhalb der GaMnAs-Schicht sind mittels TEM Kristallbaufehler zu erkennen.

Dies wird nochmals bestätigt durch eine hochauflösende TEM-Aufnahme der GaMnAs-Schicht in Abbildung 4.3. Die TEM-Aufnahmen der untersuchten GaMnAs-Proben, speziell die wiederum exemplarisch aufgezeigten Ergebnisse der Untersuchungen der Probe B049 bestätigen die bisher gewonnenen Erkenntnisse, dass die Ursachen für die beobachteten vertikalen Gradienten in den magnetischen Eigenschaften der bei niedrigen Temperaturen epitaxierten GaMnAs-Schichten nicht in Clustern, Fehlstellen oder Versetzungen innerhalb des Kristalles zu finden sind.
4.1. KRISTALLQUALITÄT VON GA$_{1-x}$MN$_x$AS EINZELSCHICHTEN

Abbildung 4.2: TEM-Aufnahme der Probe B049. Klar zu erkennen ist die Pufferschicht GaAs sowie die GaMnAs-Schicht als Abschluss der Probe.

Abbildung 4.3: Hochauflösende TEM-Aufnahme der Probe B049 an der Grenze HT-GaAs/GaMnAs. Es sind keinerlei Anzeichen von Gitterfehlern in der Kristallstruktur erkennbar.

4.1.3 *In-situ* RHEED an GaMnAs

Weiteren Aufschluss über den Verlauf des Kristallwachstums bekommt man aus der Beobachtung des RHEED-Bildes während des Wachstums, welches erkennen lässt, ob im jeweiligen Fall 2-dimensionales Schichtwachstum oder 3-dimensionales Clusterwachstum vorliegt.

Normalerweise liegt im Falle von GaMnAs vollständiges 2-dimensionales Wachstum vor. Werden die Wachstumsbedingungen wie zum Beispiel die Wachstumstemperatur oder das V/III-Flussverhältnis beim Wachstum von GaMnAs schlecht gewählt, so kommt es, wie auch in Kapitel 2.1 zuvor schon beschrieben, zu einem Umschlagen in einen 3-dimensionalen Wachstumsmodus (Clusterbildung, vermutlich hexagonale MnAs Cluster). Kommt es zu einem solchen Umschlagen zu Beginn oder während des Wachstums, so macht sich dies wiederum auch im RHEED-Bild bemerkbar: Es bilden sich Punktrefflexe, die in bestimmter Weise angeordnet sind, sogenannte Chevrons (siehe auch Abbildung 2.3).

Die sich an der Probenoberfläche bildenden Cluster setzen sich sehr wahrscheinlich aus hexagonalem MnAs zusammen, welches ferromagnetisches Verhalten aufweisen kann. Da dieses die Ergebnisse der weiteren Charakterisierung der GaMnAs-Schicht beeinflussen kann, wurden in der vorliegenden Arbeit nur Schichten zur weiteren Charakterisierung herangezogen, die komplett 2-dimensionales Wachstumsverhalten zeigten. Ergaben sich während des Wachstums Anzeichen von Clusterbildung, so wurde das Wachstum abge-
brochen oder die jeweilige „geclusterte“ Schicht wurde nicht zu weiteren Untersuchungen herangezogen.

In-situ-RHEED-Beobachtungen liefern daher auch nur Anhaltspunkte über den Verlauf des Wachstums der epitaxierten Schichten (2-dimensionales GaMnAs-Wachstum beziehungsweise 3-dimensionales Clusterwachstum), lassen allerdings keinen Rückschluss auf Inhomogenitäten oder Gradienten in den epitaxierten GaMnAs-Schichten zu.

4.1.4 SIMS Messungen an GaMnAs

Eventuell auftretende Inhomogenitäten in der vertikalen Mn-Konzentration sollten mittels tiefenaufgelöster SIMS Profile detektierbar sein. Allerdings ist bei dieser Messmethode von vorn herein klar, dass nur die Gesamtzahl an Mn-Ionen detektiert wird, also sowohl Mn auf Ga-Platz als auch Mn auf Zwischengitterplatz oder auch Mn eingebettet in Cluster. Sehr wohl erhält man aber Information über auftretende Inhomogenitäten in der Gesamtverteilung des eingebauten Mn und somit über die vertikale Verteilung der Mn-Atome. Eine quantitative Auswertung der Dichte einer gegebenen Atomsorte ist prin-

![Graphik](image)

Abbildung 4.4: Mn-Profil der Probe B049 bestimmt aus einer SIMS-Messung.

zipiell aus SIMS-Messungen möglich, wenn geeignete Kalibrierstandards existieren. Leider ist dies für Mn-Konzentrationen größer 10^{20}cm^{-3}, wie sie in GaMnAs vorkommen, nicht der Fall. In der hier vorgestellten Messung ist deshalb das Absolutsignal für Mn angegeben und dargestellt. Die Messung (Abbildung 4.4) der as-grown Probe B049, gemessen von der Firma Charles Evans and Associates (USA) mittels eines Cameca S Spektrometers, zeigt

3Secondary Ion Mass Spectroscopy, zu Deutsch: Sekundär Ionen Massen Spectroskopie
ein homogenes Profil der Mn-Konzentration. Es ist kein ausgeprägter Gradient über die Schichtdicke hinweg zu sehen, wie man es zum Beispiel für Diffusionsprozesse von Mn\textsubscript{i} erwarten würde. Die Abnahme des Signals in den ersten 30-40 nm zur Oberfläche hin ist ein für SIMS-Messungen typischer, von der Messmethode herrührender Artefakt und stellt somit keine glaubhaften Messdaten in diesem Bereich dar.

4.1.5 Zusammenfassung

4.2 Elektrische, Optische und Magnetische Eigenschaften

Erste Hinweise auf mögliche Inhomogenitäten in GaMnAs-Einzelschichten lieferten im Gegensatz zu den strukturellen Untersuchungen sowohl FMR4 als auch temperaturabhängige MagnetisierungsMESSungen. Aufgrund der Ergebnisse dieser Methoden, sowie den Ergebnissen der darauf folgenden weiteren Charakterisierungsmethoden wie Raman-Spektroskopie, ECV und SQUID konnten erstmals vertikale Inhomogenitäten in der Ladungsträgerdichte, sowie eine Abhängigkeit der Curie-Temperatur von der Schichtdicke nachgewiesen werden.

Im folgenden Abschnitt der Arbeit sollen die Ursachen dieser Inhomogenitäten näher diskutiert werden und darüber hinaus ein simples Modell vorgestellt werden, wie mittels der auftretenden Inhomogenitäten die ungewöhnliche Form der temperaturabhängigen SQUID-MagnetisierungsMESSungen gedeutet werden kann.

4.2.1 SWR an GaMnAs

Aus Ferronagnetischen Resonanz (FMR)- bzw. Spinwellenresonanzmessungen (SWR) können wichtige Rückschlüsse auf die magnetischen Eigenschaften eines Materials gezogen werden. Goennenwein et al. konnten durch FMR-Messungen an GaMnAs-Proben

4FerroMagnetic Resonance, zu Deutsch: Ferromagnetische Resonanz
Abbildung 4.5: Vergleich der FMR-Spektren verschiedener Ga$_{1-x}$Mn$_x$As-Einzelschichten mit verschiedener Mn-Konzentration x. Die Pfeile markieren das höchste FMR-Resonanzfeld $B_{\text{res},\perp} = B_{\text{res},j=0}$ für die jeweilige Probe. Die Mn-Konzentration wurde jeweils bestimmt aus HRXRD-Messungen.

verschiedenen Mn-Gehaltes Spinwellen nachweisen (siehe Abbildung 4.5) [56]. Im speziellen wurde von dieser Gruppe auch die Probe B049 untersucht. In dieser Probe konnten bis zu 8 ausgeprägte FMR-Moden beobachtet werden, mit der höchsten Resonanzfeld-Position bei $H_{\text{max}} = 915$ mT (siehe Abbildung 4.6). Die beobachteten FMR-Moden konnten als Spinwellenresonanzen identifiziert werden [54]. Um den Einfluss magnetischer Anisotropieeffekte auf die Probe zu untersuchen, wurde die Probe systematisch nasschemisch abgeätzt. Nach dem Ätzen der Probe konnten Veränderungen in den SWR-Spektren beobachtet werden. Insbesondere das Resonanzfeld der Kollektivmode $B_{\text{res},0}$ verringerte sich mit abnehmender Schichtdicke, dargestellt in Abbildung 4.7.

In klassischen Spinwellenresonanz Experimenten erwartet man quadratische Abstände zwischen dem Resonanzfeld $B_{\text{res},j}$ der j-ten Mode und der Kollektivmode $B_{\text{res},0}$ [53]:

$$
\sum_{\text{klassisch}} (j) = B_{\text{res},j} - B_{\text{res},0} \propto j^2
$$

Für eine lineare Änderung der magnetischen Kopplung (Austauschwechselwirkung) in Abhängigkeit von der Probendicke wird hingegen folgendes Verhalten erwartet [57]:

$$
\sum (j) \propto (j + 1/4)^{2/3}
$$

Eine Anpassung der Messungen für die zu unterschiedlichen Tiefen abgeätzte Probe B049 ergibt eine gute Übereinstimmung unter der Annahme eines linearen Gradienten in den magnetischen Eigenschaften über die gesamte Schichtdicke hinweg (siehe Abbildung 4.8),
Abbildung 4.6: FMR-Spektrum der Probe B049 mit $x = 0.051$, aufgenommen bei einer Temperatur von $5K$. Die FMR-Moden wurden mit dem laufenden Index j gekennzeichnet. Die Pfeile kennzeichnen die jeweiligen Resonanzfelder $B_{res,j}$.

Abbildung 4.7: Abhängigkeit der FMR-Spektren von der Schichtdicke der GaMnAs-Einzelschicht. Begonnen bei der as-grown-Probe B049 (Schichtdicke $d = 330nm$), wurde die Schichtdicke d systematisch verringert durch nasschemisches Ätzen der Schicht. Die Position der jeweilig höchsten Spinwellenresonanz für verschiedene Schichtdicken, $B_{res,j=0}$, ist gekennzeichnet durch Pfeile.
KAPITEL 4. LADUNGSTRÄGERGRADIENTEN IN GAMNAS

was von Goennenwein et al. letztendlich auf eine Änderung der uniaxialen magnetischen Anisotropie zurückgeführt werden konnte. Für Details zur Messmethode und für weite-

4.2.2 SQUID Messungen an stückweise geätztem GaMnAs

Folgt man der Vorstellung von vertikalen Gradienten in den magnetischen Eigenschaften in GaMnAs, wie aus FMR bzw. SWR-Messungen anzunehmen ist, so müssten sich diese auch mittels SQUID5-Messungen nachweisen lassen.

Die SQUID-Magnetometer-Messungen wurden freundlicherweise von der Abteilung Festkörperphysik der Universität Ulm mit einem kommerziellen Gerät der Marke QUAN-

5Superconducting Quantum Interference Design
Abbildung 4.9: Temperaturabhängige SQUID- Magnetisierungsmessungen an zu unterschiedlichen Tiefen geätzten Stückchen der Probe B049. Im Inset ist T_C in Abhängigkeit von der Ätztiefe dargestellt.

TUM DESIGN MPMS5 SQUID-Magnetometer durchgeführt. Mittels dieses Gerätes war es möglich, Magnetisierungsmessungen in Magnetfeldern von bis zu 5T und innerhalb eines Temperaturbereichs von 2K bis 400K durchzuführen. Für Details zu dieser Messmethode sei auf die Literatur verwiesen [86]. Im Folgenden soll wiederum exemplarisch an der Probe B049 gezeigt werden, dass sich vertikale Gradienten in den magnetischen Eigenschaften tatsächlich mittels SQUID-Magnetometer-Messungen nachweisen lassen. Zu diesem Zweck wurden verschiedene Stückchen der Probe B049 zu jeweils unterschiedlichen Tiefen (100 nm, 140 nm Ätztiefe) geätzt und die Curie Temperatur ermittelt. Dazu wurden temperaturabhängige Magnetisierungsmessungen in einem kleinen in-plane (parallel zur Probenoberfläche) angelegten Magnetfeld (5 mT || [110]) durchgeführt. Um die Probe vollständig zu magnetisieren, wurde vor der Messung ein 0.1 T starkes Magnetfeld bei einer Temperatur von 5 K in-plane angelegt und wieder abgeschaltet. Um die Curietemperatur T_C zu ermitteln, wurde dann die Temperatur schrittweise von 5 K ab auf bis zu 150 K (in Abbildung 4.9 sind die Messungen bis 100 K dargestellt) erhöht. Als Curie-Temperatur T_C wurde die Temperatur festgelegt, bei der der Magnetisierungswert $M(T)$ erstmalig deutlich unter dem minimal messbaren Signal des SQUID- Magnetometers lag (siehe Pfeile in Abbildung 4.9). In Abbildung 4.9 sind die Ergebnisse dieser Messungen dargestellt. Eine deutliche Abnahme von T_C in Abhängigkeit von der Ätztiefe ist zu erkennen.

Dies bestätigt die Existenz von vertikalen Gradienten in den magnetischen Eigenschaften
KAPITEL 4. LADUNGSTRÄGERGRADIENTEN IN GAMNAS

der GaMnAs-Schichten und bekräftigt die Richtigkeit der Ergebnisse der zuvor beschrie­benen FMR Messungen.
Wie in Kapitel 2 beschrieben, hängt die Curie- Temperatur von zwei entscheidenden Parametern ab, der Ladungsträgerdichte \(p \) und der effektiven Mn- Konzentration \(x_{\text{eff}} \) (\(T_C \sim x_{\text{eff}} \cdot p^{1/3} \)). Die Ursache der vertikalen Gradienten in \(T_C \) sollte also in diesen beiden Parametern zu finden sein.

4.2.3 Raman Messungen an stückweise geätztem GaMnAs

Abbildung 4.10: Raman Messungen der as-grown und der 140 nm tief geätzten Probe B049. Für die 140 nm geätzte Probe kann eine Verschiebung der gekoppelten Mode hin zu der LO-Phonon-Frequenz beobachtet werden.

Wie auch schon in Kapitel 2.2.2 kurz und in Referenz [50] ausführlich erläutert, führt die hohe Löherkonzentration in Ga\(_{1-x}\)Mn\(_x\)As zur Bildung einer gekoppelten Mode des LO-Phonons und des Löcherplasmons. Mit Erhöhung der Ladungsträgerdichte wandert die Frequenz dieser gekoppelten Mode von der Frequenz des LO-Phonons zu der des TO-Phonons. Ein möglicherweise vorhandener Gradient in der Ladungsträgerdichte sollte also mittels Raman-Spektroskopie Untersuchungen an stückweise abgeätzten GaMnAs-Schichten nachzuvollziehen sein.

Zu diesem Zweck wurden dieselben abgeätzten Stückchen der Probe B049, die zuvor SQUID-vermessen wurden, jetzt auch mittels Raman-Spektroskopie untersucht. Die Er-
4.2. ELEKTRISCHE, OPTISCHE UND MAGNETISCHE EIGENSCHAFTEN

gewinnisse der Messungen für die as-grown und die 140nm geätzte Probe sind in Abbildung 4.10 dargestellt.
Die Ergebnisse dieser Messungen zeigen eine deutliche Verschiebung der gekoppelten Mode in der geätzten Probe hin zu der LO-Phonon-Frequenz im Vergleich zur nicht geätzten Probe. Dieses Ergebnis deutet auf eine niedrigere Ladungsträgerdichte in der geätzten Probe hin, was ein erster direkter Hinweis darauf ist, dass die Ladungsträgerdichte p eine mögliche Ursache der beobachteten Gradienten in den untersuchten Proben ist.

4.2.4 ECV Messungen an as-grown GaMnAs

Im Unterschied zu normalen CV-Messungen bieten ECV-Messungen für das Erstellen von Dotierprofilen von hochdotierten Halbleitern mehrere Vorteile:

- Im Gegensatz zu normalen CV-Messungen wird der notwendige Kontakt zwischen dem hochdotierten Halbleiter (GaMnAs) selbst und einer Elektrolytlösung hergestellt. Bei geeigneter Wahl der Elektrolytlösung kommt es hier zu einem Schottky-Kontakt Halbleiter zu Metall, was die Messung der Dotierung erst möglich macht.
- Die verwendete Elektrolytlösung kann gleichzeitig auch noch als Ätzlösung verwendet werden. Kennt man die Ätzrate der Lösung für den entsprechenden Halbleiter (GaMnAs), so kann im Zusammenspiel mit dem ersten genannten Punkt ein relativ genaues Dotierprofil der GaMnAs-Schicht erzeugt werden.

Wieder wurde zu Vergleichszwecken ein as-grown Stück der Probe B049 für die Messungen ausgewählt. Und tatsächlich ist aus den Messungen (siehe Abbildung 4.11), die freundlicherweise von S. Brotzmann und H. Bracht an der Universität Münster mittels eines BioRad PN4400 Gerätes und Benutzung einer 0.2 M NaOH:EDTA-Lösung als Elektrolyt durchgeführt wurden, eine Abnahme der Ladungsträgerdichte um den Faktor 2 von $8 \times 10^{20}\text{cm}^{-3}$ auf $4 \times 10^{20}\text{cm}^{-3}$ von der Probenoberfläche hin zur $\text{Ga}_{1-x}\text{Mn}_x\text{As}/\text{GaAs}$-Grenzschicht zu erkennen.

6Electrochemical Capacitance Voltage
Abbildung 4.11: ECV- Messung der freien Ladungsträgerdichte \(p \) in Abhängigkeit von der Ätztiefe

Es sollte noch erwähnt werden, dass mittels ECV die Dichte ionisierter Dotierungen (Donatoren oder Akzeptoren) gemessen werden, was im Falle von GaMnAs der Anzahl von Mn-Atomen auf Ga-Platz (\(\text{Mn}_{\text{Ga}} \)) entspricht ohne Berücksichtigung möglicher elektrisch kompensierender Defekte. Für eine detailliertere Beschreibung der ECV-Messungen siehe Kapitel 4.3.2

Diese Messung bestätigt die Ergebnisse der Raman- und SQUID- Messungen und ist ein direkter Beweis für die Vermutung, dass Gradienten in der Ladungsträgerdichte die Ursache der gemessenen Gradienten in den magnetischen Eigenschaften (wie mittels SQUID und SWR festgestellt wurde) sind.

Eine mögliche Erklärung des Auftretens solcher Gradienten in as-grown GaMnAs-Proben kann in der hohen Ladungsträgerdichte dieser Schichten gefunden werden. Aufgrund der hohen Ladungsträgerdichte der GaMnAs-Schicht kann es zu einem Aufheizeffekt während des Wachstums kommen. Die tiefe Infrarotstrahlung der Effusionszellen wird während des Wachstums der hochdotierten GaMnAs-Schichten mit zunehmender Dicke der Schicht immer stärker absorbiert aufgrund der Absorption durch freie Ladungsträger, die in dem Bereich der Strahlung der Effusionszellen maximal ist. Dies hat eine zusätzliche Erwärmung der Schicht zur Folge, die Wachstumstemperatur steigt also kontinuierlich mit der Dicke der Schicht an. Höhere Wachstumstemperaturen haben, wie in Kapitel 2.2 beschrieben, einen verringerten Einbau von Punktdefekten zur Folge, was sich letztendlich in vertikalen Gradienten in der Ladungsträgerdichte niederschlagen kann.

Dass dies allerdings nicht der einzige Grund für die beobachteten Gradienten sein kann,
4.3 Effekt des Temperns auf die Ladungsträgerprofile

In vielen Fällen kann durch das Tempern von GaMnAs-Schichten bei Temperaturen in der Nähe der Wachstumstemperatur oder sogar leicht darunter eine Erhöhung der Curie-Temperatur der so nachbehandelten Schichten erreicht werden \[16,39,17,68-71\]. Da die Curie-Temperatur direkt mit der Ladungsträgerdichte der Proben in Zusammenhang

Der Vergleich dieser beiden Proben zeigt, dass ein komplexes Zusammenwirken verschiedener Effekte für das Zustandekommen der beobachteten Gradienten verantwortlich ist.

4.3 Effekt des Temperns auf die Ladungsträgerprofile

In vielen Fällen kann durch das Tempern von GaMnAs-Schichten bei Temperaturen in der Nähe der Wachstumstemperatur oder sogar leicht darunter eine Erhöhung der Curie-Temperatur der so nachbehandelten Schichten erreicht werden \[16,39,17,68-71\]. Da die Curie-Temperatur direkt mit der Ladungsträgerdichte der Proben in Zusammenhang
KAPITEL 4. LADUNGSTRÄGERGRADIENTEN IN GAMNAS

steht, sollte das Temernen sowohl einen Einfluss auf die Ladungsträgergradienten als auch auf die Leitfähigkeit der Proben haben.

In diesem Kapitel wird beschrieben, welchen Effekt das Temernen der Proben bei einer Temperatur von 250°C nach dem Wachstum, sowohl auf die Leitfähigkeit der Proben als auch auf die Ladungsträgergradienten, wie sie in Kapitel 4.2 beobachtet wurden, haben kann. Es wird gezeigt, dass die beobachteten vertikalen Gradienten in der Ladungsträgerdichte und die Veränderung dieser Gradienten während des Temperns eine Schlüsselrolle spielen für das Verständnis von Tempereffekten an GaMnAs-Einzelschichten. Weitergehend wird auch demonstriert, dass für die von uns untersuchten „dicken“ Schichten von \(\sim 1 \mu m \) die Diffusion von Mn an die Oberfläche der Probe nicht der entscheidende Mechanismus für die Erhöhung der Ladungsträgerdichte und der Curietemperatur während des Temperns sein kann, wie dies in Referenz [69] für „dünne“ Schichten \(\leq 100 \text{ nm} \) publiziert worden ist.

4.3.1 Experimentelles

Die hier exemplarisch beschriebenen Proben wurden unter Niedrigtemperatur-Bedingungen, wie schon in Kapitel 2.1 näher beschrieben, bei Substrattemperaturen von \(T_S = 230^\circ C \) (Probe B313) bzw. \(T_S = 240^\circ C \) (Probe B352) und einem V/III-Flussverhältnis von ca. 3 (hoher As-Druck, Probe B313) bzw. 1.6 (niedriger As-Druck, Probe B352) hergestellt. Die Mn-Konzentration wurde mittels HRXRD-Messungen bestimmt, unter der Annahme einer Gitterkonstante von 0.56533 nm für HT-GaAs und einer Gitterkonstante von 0.598 nm für hypothetisches kubisches MnAs. Die Unzulänglichkeiten dieser Methode, wie in Kapitel 3.2 und Kapitel 4.1.3 schon näher beschrieben, sollten aber immer im Gedächtnis behalten werden. Bei den hier beschriebenen Proben wurde die Mn-Konzentration zusätzlich noch mittels Fluss- und ERD-Messungen bestimmt, wobei die Resultate dieser Methoden übereinstimmende Ergebnisse brachten.

Mikro-Raman Messungen zur Bestimmung der Ladungsträgerdichte wurden bei Raumtemperatur unter Benutzung der 514 nm-Linie eines Ar+-Lasers als Anregungsquelle durchgeführt. Das Raman-Signal wurde im Rückstreungsmodus \(\vec{\varepsilon}(x, y) \) mittels eines DILOR XY 800 nm Dreifachgitter-Spektrometers mit konfokaler Eingangsoptik und einer mit flüssigem Stickstoff gekühlten CCD-Kamera detektiert. Details zu dieser Methode sind in Kapitel 4.2.3 und in Ref. [50] ausführlich beschrieben.

4.3. EFFEKT DES TEMPERNS AUF DIE LADUNGSTRAGERPROFILE

Getempert wurden die Proben dann an Luft in einer LINKAM THMS 600 Heizkammer, die mit einer elektrischen Durchfuhrung ausgestattet wurde, um in-situ-Messungen der Leitfahigkeit durchzufuhr. Die Proben wurden auf einem Silberblock befestigt, welcher elektrisch geheizt oder mittels flussigem Stickstoff abgekuhlt werden konnte in einem Temperaturbereich von -200°C bis 300°C innerhalb von nur 2 Minuten.

Um Informationen uber die Tiefenprofile der Mn-Konzentration zu bekommen, wurden an einigen der untersuchten Proben von der Firma RTG Mikroanalyse SIMS-Messungen mittels eines kommerziellen Cameca IMS 6 Spektrometers mit Cs⁺ als Primarionenstrahl (Energie 5.5 keV) bei einer Sputter-Rate von ~1 nm/s durchfuhr. In Ermangelung eines geeigneten Kalibrierstandards fur Mn wurde die quantitative Auswertung fur die Mn-Konzentration auf die Flussmessung der Probe B313 zuruckgefuhrt, welche uns einen Wert von 6 % lieferte. Eine detaillierte Einfuhrung in die Methode der SIMS-Messung ist gegeben in Referenz [61].

Die Magnetisierungsmessungen wurden in der Abteilung Festkorperphysik der Universitat Ulm mit einem QUANTUM DESIGN MPMS 5 SQUID Magnetometer unter Anlegen eines kleinen in-plane Magnetfeldes von 5 mT durchfuhr. Die Hauptcharakterisierungsmethode in diesem Kapitel wird aber ECV (electrochemical capacity-voltage) sein, weshalb dieser Messmethode das nache Unterkapitel gewidmet ist.

4.3.2 ECV an GaMnAs

konnten Ohmsche Kontakte mit geringem Widerstand festgestellt werden. Das Potential der jeweiligen Probe wird potentiometrisch in Bezug zu einer gesättigten Kalomel-Elektrode gemessen. Die Admittanz Y des Elektrolyt-GaMnAs-Kontaktes wird mittels AC-Messungen unter Sperrvorspannung bei einer Frequenz ω_c gemessen. Zusätzlich wird die Vorspannung V_m variiert bei einer beträchtlich niedrigeren Modulationsfrequenz, um daraus die differentielle Admittanz dY/dV zu erhalten. V_m und ω_c werden so gewählt, dass ein optimales Schottky-Verhalten des Elektrolyt-GaMnAs-Kontaktes beobachtet werden kann. Das korrespondierende Ersatzschaltbild hierzu (siehe Abbildung 4.15), welches dann in die Analyse mit eingeht, besteht aus der Kapazität C der Raumladungsschicht, dem parallel geschalteten Leitwert G und einem in Serie hierzu geschalteten Widerstand R, welcher aus den bei zwei verschiedenen Frequenzen ω_c gemessenen Admittanz-Daten ermittelt werden kann. Benutzt man jetzt die gemessenen Werte Y, dY/dV und R, so kann daraus die Kapazität C und dC/dV ermittelt werden, was dann letztendlich zu der Ladungsträgerkonzentration $N(w_d)$ am Rand der Verarmungszone der Breite w_d führt:

$$N(w_d) = -\frac{C^3}{q\varepsilon A^2} \left(\frac{dC}{dV} \right)^{-1}$$

mit

$$w_d = \varepsilon A/C,$$

wobei $\varepsilon = 0.12 nF/m$ die Dielektrizitätskonstante und q die Ladung eines Elektrons darstellt. Durch Anlegen eines Gleichstromes I zwischen dem anodisch polarisierten GaMnAs und der Graphit- Gegenlektrode wird die GaMnAs-Schichtdicke kontrolliert in Schritten.
von wenigen zehn Nanometern reduziert. Die abgetragene Dicke w_e kann dann mittels des Faradayschen Gesetzes der Elektrolyse aus der akkumulierten transferierten Ladung folgendermaßen berechnet werden:

$$w_e = \frac{M}{zF \rho A} \int I dt,$$

wobei $M = 144.6$ die molekulare Masse, $z = 6$ die effektive Wertigkeit, $F = 96490$ $Asmol^{-1}$ die Faradaysche Konstante und $\rho = 5.36g/cm^3$ die Dichte von GaAs ist. Die Diodenfläche $A = 0.005 \pm 0.008cm^2$ ist durch einen Dichtring aus Plastik vorgegeben. Normalerweise ist die Fläche A zu Beginn einer ECV-Tiefenprofilmessung nicht genau bekannt, wird aber routinemäßig im Nachhinein vermessen. Die zur korrekten Auswertung notwendigen Werte A der Diodenfläche und des Serienwiderstandes R werden separat gemessen und werden in der Bio-Rad Software des PN 4200- Gerätes zur Analyse herangezogen. Die gemessenen ECV-Profile sind reproduzierbar innerhalb eines Fehlers in den absoluten Werten von ca. 15%. Für mehr Details zu dieser Methode sei auf Referenz [62] verwiesen.

4.3.3 Ergebnisse

Die im folgenden beschriebenen Experimente wurden an zahlreichen GaMnAs-Einzelschichten mit Schichtdicken zwischen 200 nm und 1.2 μm durchgeführt, welche unter einem V/III-Flussverhältnis von ≤ 3 epitaxiert wurden. Der Einfluss des V/III-Flussverhältnisses auf die strukturellen, elektrischen und magnetischen Eigenschaften von GaMnAs ist allerdings nicht Punkt dieses Kapitels und wurde schon in Kapitel 2.1 und in Referenz [64] ausführlich diskutiert.

Im Folgenden sollen die experimentellen Ergebnisse exemplarisch anhand verschiedener Stückchen einer 1.2 μm-dicken GaMnAs-Einzelschicht mit einer Mn-Konzentration von 6 % (Probe B313) und einer 240 nm dicken Schicht mit einem Mn-Konzentration von 4.5 % (Probe B352) aufgezeigt werden, da für diese Proben die meisten Untersuchungen durchgeführt wurden und die Daten repräsentativ erscheinen für alle bis zu diesem Zeitpunkt untersuchten GaMnAs-Schichten.

Wie schon in Kapitel 4.3.2 kurz beschrieben, zeigten die ECV-Tiefenprofile einen vertikalen Gradienten in der Löcherdichte der GaMnAs-Einzelschichten. In Abbildung 4.16 sind die ECV-Tiefenprofile der Probe B313 vor und nach dem Tempern bei jeweils 250 °C für 30 bzw. für 370 min. dargestellt. Dieses Bild macht klar, dass der schon in der as-grown-Probe vorhandene Gradient nach dem Tempern sehr viel stärker ausgeprägt ist. Die beobachtete Veränderung der ECV-Tiefenprofile beeinflusst die elektrischen und magnetischen Eigenschaften der Probe in drastischer Art und Weise, wie im Folgenden gezeigt wird. Das Tempern der Probe für 30 min. resultiert in einer doppelt so hohen Ladungsträgerdichte in der oberflächennahen Region im Vergleich zu der Region um die GaAs/GaMnAs-Grenzschicht. Die gesamte Ladungsträgerdichte für die as-grown- Probe,
KAPITEL 4. LADUNGSTRÄGERGRADIENTEN IN GAMNAS

Abbildung 4.16: ECV-Tiefenprofile der Probe B313 vor und nach dem Tempern bei 250°C für 30 und 370 min.

die 30 min. getemperte und die 370 min. getemperte Probe, über die Schichtdicke gemittelt, ergibt Werte von jeweils $(3.8 \pm 0.6) \times 10^{20} \text{cm}^{-3}$ (as-grown), $(4.3 \pm 0.6) \times 10^{20} \text{cm}^{-3}$ (30 min. getempert) und $(4.9 \pm 0.6) \times 10^{20} \text{cm}^{-3}$ (370 min. getempert). Die locale Löcherdichte in der Nähe der Oberfläche der Probe hingegen scheint sich schon nach einer Temperzeit von 30 min. nicht mehr zu verändern. Die beobachtete Entwicklung des Ladungsträgerprofiles während des Tempers scheint die Annahme zu bestätigen, dass das Ausdiffundieren von kompensierenden Defekten hin zur Probenoberfläche verantwortlich für die Erhöhung der Ladungsträgerdichte während des Tempers nach dem Wachstum ist [69], [70], [71].

In Abbildung 4.17 sind die ECV-Profile der Probe B352 jeweils vor und nach einer Temperzeit von 30 min. bei einer Temperatur von 250°C dargestellt. Es ist deutlich zu sehen, dass der Gradient in der as-grown Probe B352 deutlich stärker ausgeprägt ist als in der Probe B313. Nach dem Tempern für 30 min. ist in Probe B352 eine Abflachung des ECV-Profiles zu erkennen, begleitet allerdings durch eine Erhöhung der Ladungsträgerdichte über die gesamte Epitaxieschicht hinweg. Die gemessenen ECV-Profile der Probe B352 ähneln denen der getemperten Probe B313 im Bereich der Probenoberfläche bis hin zu einer Tiefe von $\sim 240 \text{ nm}$, getempert für 30 bzw. 370 min. (siehe Abbildung 4.16).

ECV-Messungen an dermaßen hochdotierten Schichten stellen hohe Anforderungen an die Messtechnik und bergen dadurch bedingt einige Unzulänglichkeiten. So könnte z.B. auch ein ‘Verschleppungseffekt aufgrund inhomogener Ätzkrater und dadurch inhomogener Oberfläche oder auch möglicherweise auftretende Leckströme die Ursache für die mittels ECV gemessenen Gradienten sein. Um sicher zu gehen, dass die ECV-Messungen auch
4.3. EFFECT OF ANNEALING ON THE DEPTH PROFILE OF …

Es ist zu sehen, dass die gekoppelte Mode mit ansteigender Ätztiefe verbreitert und hin zu höheren Frequenzen verschiebt, was eine abnehmende Löcherkonzentration andeutet. Bei einer Ätztiefe von 175 nm befindet sich die verbleibende Schichtdicke in der Nähe der Informationstiefe von 1/2α ~ 50 nm der Raman-Spektroskopie, wobei α den Absorptionskoeffizient bei einer Wellenlänge von 514 nm des Ar⁺-Lasers darstellt. Aus diesem Grunde ist in dem obersten Spektrum der Abbildung 4.18 auch die enge Linie der rei-
Abbildung 4.18: Raman-Spektren der zu unterschiedlichen Tiefen geätzten Probe B352 und die aus der Linienformanalyse ermittelten zugehörigen Löcherdichten.
4.3. **EFFEKT DES TEMPERNS AUF DIE LADUNGSTRÄGERPROFILE**

Abbildung 4.19: *in-situ*-Messung der Leitfähigkeit der Probe B313 während eines Langzeittempervorganges für ca. 400 min. bei 250°C.

Unter der Annahme, dass die Beweglichkeit sich während des Temperprozesses nicht signifikant ändert, sollte sich eine Erhöhung der Ladungsträgerdichte, wie in Abbildung 4.16 für Probe B313 dargestellt, in einer Erhöhung der elektrischen Leitfähigkeit der GaMnAs-Einzelschichten niederschlagen. Der Effekt des Temperns bei 250°C auf die Leitfähigkeit der Probe B313 ist in Abbildung 4.19 dargestellt. Die Entwicklung der Leitfähigkeit während des Temperns, aufgenommen durch *in-situ*-Messungen für 400 min., zeigt einen monotonen Anstieg der Leitfähigkeit mit einer immer geringer werdenden Rate bei ansteigender Temperzeit. Nach jeweils 30, 60, 180 und 370 min. absolutor Temperzeit wurde der Temperprozess für jeweils 10 min. unterbrochen und die Probe schnell auf 25°C abgekühlt, um an diesen Punkten die Raumtemperatur-Leitfähigkeit zu prüfen (gestrichelte Linie in Abbildung 4.19). Während der ersten 30 min. erhöhte sich die Leitfähigkeit bei Raumtemperatur von 91 auf 103 Ω⁻¹ cm⁻¹. Nach einer Temperzeit von 370 min. ergab sich für die Leitfähigkeit ein schon nahezu gesättigter Wert von 116 Ω⁻¹ cm⁻¹. Bezug nehmend auf diese Werte, verzeichnet die Raumtemperatur-Leitfähigkeit einen Anstieg um die Faktoren 1.13 und 1.27 für die jeweiligen Temperzeiten von 30 bzw. 370 min. Im Gegensatz zu Referenz [39] wurde in unseren Experimenten keine Abnahme der Leitfähigkeit
bei Temperzeiten von länger als 2 Stunden beobachtet. Es sollte erwähnt werden, dass die Ergebnisse dieser in-situ-Messungen in qualitativer Übereinstimmung mit Ergebnissen sind, die an sehr viel dünneren GaMnAs-Schichten (10-100 nm) bei geringeren Temperaturn (≤200°C) beobachtet wurden [17], [69].

Es können jetzt die Faktoren für den Anstieg der Leitfähigkeit mit den Faktoren für den Anstieg der Löcherdichte verglichen werden. Aus den durchschnittlichen Ladungsträgerdichten der ECV-Profilen aus Abbildung 4.16 konnten Werte von 1.13±0.3 und 1.29±0.4 für eine Erhöhung der Ladungsträgerdichte nach einer Temperzeit von 30 bzw. 370 min. ermittelt werden, welche exzellent übereinstimmen mit den aus Leitfähigkeitsuntersuchungen ermittelten Werten von 1.13 und 1.27 (aus Abbildung 4.19). Diese Ergebnisse bestätigen die Annahme einer nur kleinen Änderung der Löcherbeweglichkeit während des Tempermns. Aus den Werten für die Leitfähigkeit und den gemittelten Ladungsträgerdichten konnten effektive Löcherbeweglichkeiten von (1.5±0.3) cm²/Vs sowohl für die as-grown-Proben als auch für die getemperten Proben extrahiert werden.

Sowohl für die as-grown- Probe als auch für die getemperten Stücken der Probe B313 wurden Raman-Spektroskopie-Messungen durchgeführt, welche in Abbildung 4.20 dargestellt sind. Während innerhalb der ersten 30 min. der Temperung ein starker Anstieg in

Abbildung 4.20: Raman-Spektren (offene Kreise) der Probe B313 vor und nach dem Tempern bei 250°C. Die durchgezogenen Linien sind wieder die berechneten Linienformen.

der Löcherdichte gesehen wird, ändert sich das Raman-Spektrum der 370 min. getemperten Probe im Vergleich zu der 30 min. getemperten Probe fast nicht mehr. Dies ist in Übereinstimmung mit den ECV-Profilen aus Abbildung 4.16, welche in der Nähe der
Oberfläche eine nur geringfügig erhöhte Löcherdichte bei Temperzeiten länger als 30 min. zeigt. Für die Interpretation der Raman-Spektren sollte man stets im Gedächtnis behalten, dass das Raman-Signal, wie zuvor auch schon angesprochen, aus der oberflächennahen Region der Probe stammt. Die durchgezogenen Linien in Abbildung 4.20 repräsentieren Modellrechnungen der Linienform unter der Annahme einer Beweglichkeit von $\mu = 1.2 \text{ cm}^2/\text{Vs}$ und Löcherkonzentrationen von $4.3 \times 10^{20} \text{ cm}^{-3}$ und $7.8 \times 10^{20} \text{ cm}^{-3}$, jeweils für die as-grown- bzw. die getemperten Proben.

Bezug nehmend auf die schon mehrfach angesprochene Relation

$$T_C \propto x \cdot p^{1/3} \quad (4.5)$$

zwischen der Curietemperatur T_C und der Löcherdichte p, in der x die Konzentration der magnetisch aktiven Mn-Ionen auf Ga-Plätzen beschreibt, sollte ein Anstieg in der Löcherdichte einen Anstieg in der Curietemperatur zur Folge haben. In Abbildung 4.21 sind die temperaturabhängigen SQUID-Messungen der Magnetisierung dargestellt für die Probe B313, jeweils vor und nach dem Tempern bei $250^\circ C$ für 30 bzw. 370 min. Die Messungen zeigen eine deutliche Erhöhung der Curie-Temperatur T_C.

Abbildung 4.21: Temperaturabhängige Magnetisierung der Probe B313 vor und nach dem Tempern.

Die gezeigten Magnetisierungskurven wurden auf den jeweiligen Wert bei 5 K normiert, und können deswegen nicht herangezogen werden, um Aussagen über den Einfluss des Temperns nach dem Wachstum auf die Sättigungsmagnetisierung der Proben zu machen. Die für ferromagnetische Materialien ungewöhnliche Form der temperaturabhängigen Magnetisierung unterhalb der Curietemperatur T_C kann eventuell auch auf die beobachteten vertikalen Gradienten in den Proben zurückgeführt werden.
Laut Gleichung 4.5 sollte ein Gradient in der Löcherdichte eine Tiefenabhängigkeit der Curie-Temperatur T_C zur Folge haben. Dies wiederum würde bedeuten, dass die in Abbildung 4.21 gezeigten Kurven jeweils Superpositionen einzelner Magnetisierungskurven sind. Diese Vermutung wird in Kapitel 4.4 anhand eines diese Gradienten einbeziehenden Modells näher erläutert werden. Aufgrund dieser Vermutung werden die in Abbildung 4.21 ermittelten Curietemperaturen (durch Pfeile gekennzeichnet) auch den oberflächennahen Regionen der jeweiligen Probe zugeordnet, ähnlich den aus Raman-Messungen ermittelten Löcherdichten. Für die as-grown Probe B313 wurde eine Curietemperatur von $T_C = (60 \pm 5) \text{ K}$, für die 30 bzw. 370 min. getemperten Proben ein konstanter Wert von $T_C = (100 \pm 5) \text{ K}$ ermittelt, was einer Erhöhung um den Faktor 1.7 ± 0.3 für T_C entspricht. Es kann für die Erhöhung der Löcherdichte p, bestimmt aus ECV-Messungen der oberflächennahen Region der Probe, derselbe Faktor 1.7 ± 0.5 extrahiert werden. Obwohl die beschriebenen Ergebnisse der SQUID-Messungen qualitativ mit den Ergebnissen der Raman-Messungen und den ECV-Profilen übereinstimmen, bleiben einige Unstimmigkeiten. So wird aus der Formel 4.5 nur eine Erhöhung der Curietemperatur T_C um den Faktor 1.2 ± 0.1 erwartet. Diese Diskrepanz kann erklärt werden durch eine zusätzlich zu einem Diffusionsprozess ablaufenden Reduzierung der Anzahl der antiferromagnetisch gekoppelten Mn-Atome während des Temperns [41].

4.3.4 Mn$_i$-Diffusion als Grund für Gradienten?

Der Anstieg der Löcherdichte, der Leitfähigkeit und der Curietemperatur nach dem Tempern wird in der Literatur für gewöhnlich zurückgeführt auf eine Änderung in der Punktdefektstruktur von GaMnAs. So zeigen z.B. Ion-channelling- Experimente7 vor und nach dem Temperprozess eine Reduzierung der auf Zwischengitterplatz eingebauten Mn-Ionen Mn\textsubscript{i} [40], welche als kompensierende Doppel-Donatoren wirken [41].

Einige Arbeitsgruppen konnten die Verringerung dieser Defekte auf einen Ausdiffundierungsprozess von Mn\textsubscript{i} hin zur Probenfläche mit anschliessender Oxidation zurückführen [69], [71], [74]. Die Beobachtung von Mangan an GaMnAs-Probenoberflächen in Zusammenhang mit theoretischen Berechnungen stützen diese These. In weiteren Experimenten konnte auch nachgewiesen werden, dass das Ausdiffundieren von Mn\textsubscript{i} auch beim in-situ-Tempern unter einem As-cap funktioniert, hier wirkt das As-cap als Senke für die Mn\textsubscript{i} [75],[76]. Im Gegensatz dazu funktioniert die Mn-Ausdiffusion nicht, wenn die GaMnAs-Schicht mittels eines GaAs-caps geschützt wird [71].

Um die Annahme der Ausdiffusion von Mn\textsubscript{i}-Atomen auch für die hier untersuchten, dicken GaMnAs-Schichten zu verifizieren, wurden experimentell von der Fa. RTG Mikroanalyse in Berlin SIMS8-Tiefenprofile der Mn-Konzentration erstellt. Es wurden dieselben Proben

7Ionen-Gitterführung
8SecondaryIonMassSpectroscopy
4.3. **EFFEKT DES TEMPERNS AUF DIE LADUNGSTRÄGERPROFILE**

untersucht, die zuvor auch schon mittels ECV analysiert wurden.

Abbildung 4.22: Mn-Tiefenprofil der Probe B352 vor und nach dem Tempern bei einer Temperatur von 250°C für 30 min. gemessen mittels SIMS. Die gestrichelte Linie repräsentiert die berechneten Mn-Profile der getemperten Probe unter Benutzung der Gleichung 4.8 und 4.9

In den Abbildungen 4.22 und 4.23 sind jeweils die SIMS-Tiefenprofile für die Proben B352 und B313 dargestellt. Während in Abbildung 4.22 scheinbar eine geringe, vom Temperprozess herrührende Abnahme des Mn-Anteils in der 240 nm dicken Probe zu beobachten ist, kann laut Abbildung 4.23 in der 1.2 µm dicken Probe kein signifikanter Unterschied zwischen den zwei getemperten und dem as-grown-Stück der Probe festgestellt werden. Es kommt unweigerlich die Frage auf, ob eine Mn₃-Diffusion hin zur Probenoberfläche, als einzig verantwortlicher Effekt für die beobachteten ECV-Ladungsträgerprofile, eine detektierbare Änderung der mittels SIMS gemessenen Tiefenprofile der Mn-Konzentration hervorrufen würde.

Im Folgenden wird nun aufgrund einfacher Betrachtungen, welche auf den gemessenen ECV-Profilen der Löcherdichte (siehe Abbildung 4.16) basieren, die erwartete Änderung im Mn-Profil der getemperten Proben B352 und B313 abgeschätzt, und letztlich mit dem aus SIMS-Messungen bestimmten Mn-Profile verglichen.

Wird der Extremfall angenommen, dass die Erhöhung der Ladungsträgerdichte (wie in den Abbildungen 4.17 und 4.16 dargestellt) einzig auf einer Ausdiffusion von Mn₃ hin zur Probenoberfläche beruht, so können folgende Überlegungen angestellt werden:

Die Löcherkonzentration \(p \) ist gegeben durch die Dichte \([\text{Mn}_\text{Ga}] \) von substitutionell auf Ga-Plätzen eingebauten Mn-Akzeporen \((\text{Mn}_\text{Ga}) \) minus der gesamten Dichte an kompen-
EFFECT OF ANNEALING ON THE DEPTH PROFILE OF … PHYSICAL REVIEW B 71, 205213 s2005 d

... diffusion has been traced back to an out-diffusion of MnI to-
... in Fig. 8. Inevitably the question arises if an out-
... atoms during annealing. The hole concentration
... of temperature before and after annealing.

... by the removal of compensating defects in

... Defekte bezeichnet wird. Bemerkt werden sollte, dass alle Terme in Gleichung 4.6 lokale
... innerhalb der Probe ... amounts of Mn as follows:

\[[Mn] = [Mn_{Ga}] + [Mn_i] + [Mn_{io}] \]

wobei \([Mn_{io}]\) die Dichte aller elektrisch inaktiven Mn-Atome kennzeichnet. Wird jetzt
... anhand der Ladungsträgerdichte, hin zur Probenoberfläche nach dem Tempern der Proben, aus-

... above the Schichtdicke hinweg variieren können. Der Faktor C steht für den als Donator bzw. Doppeldonator (C=2) wirkenden Anteil an Mn\(_i\)-Atomen (mittlerer Ionisationsgrad von Mn\(_i\) pro Atom). Generell gilt also die Ungleichung \(C \leq 2\), wobei das Gleichheitszeichen \(C = 2\) den Fall darstellt, dass alle Mn\(_i\) als Doppeldonatoren wirken. Die gesamte Dichte \([Mn]\) an vorhandenem Mangan in GaMnAs kann folgendermaßen beschrieben werden:

\[p = [Mn_{Ga}] - C \times [Mn_i] - d \]

wobei \([Mn_i]\) die Dichte der Mn\(_i\) und mit \(d\) die Dichte aller anderen kompensierenden Defekte bezeichnet wird. Bemerkt werden sollte, dass alle Terme in Gleichung 4.6 lokale Grössen darstellen, die im allgemeinen über die Schichtdicke hinweg variieren können.

\[p = [Mn_{Ga}] - C \times [Mn_i] - d \]

\[[Mn] = [Mn_{Ga}] + [Mn_i] + [Mn_{io}] \]
sowohl d (Dichte aller anderen kompensierenden Defekte) als auch [MnGa] und [Mnia] nach dem Tempern konstant bleiben, so kann unter Verwendung von Gleichung 4.6 und 4.7 die lokale Dichte \([\text{Mn}_\text{ann}]\) der Mn-Atome innerhalb einer getemperten Probe (Schichtdicke \(z>0\)) beschrieben werden als

\[[\text{Mn}]_{\text{ann}} = [\text{Mn}]_{\text{ag}} - (p_{\text{ann}} - p_{\text{ag}})/C \] (4.8)

wobei die Indizes „ann“ und „ag“ jeweils für annealed\(^9\) und as-grown\(^10\) stehen.

Der Anstieg der Mn-Konzentration an der Probenoberfläche (\(z=0\)), welcher sich aus einer Anhäufung ausdiffundierter Mn\(_i\)-Atome ergeben würde, kann dann unter Berücksichtigung der Erhaltung der Gesamtmenge an Mn-Atomen in der Probe folgendermaßen berechnet werden:

\[([\text{Mn}]_{\text{ann}} - [\text{Mn}]_{\text{ag}})_{z=0} \times \delta = \int_0^t dz(p_{\text{ann}} - p_{\text{ag}})/C \] (4.9)

Mit \(t\) wurde hier die Dicke der as-grown-GaMnAs-Schicht, und mit \(\delta\) die Dicke der Mn-Schicht an der Oberfläche der Probe bezeichnet, welche in der Größenordnung von einigen Nanometern liegen dürfte.

Es können jetzt die experimentellen Daten für [Mn]_{ag} (SIMS-Tiefenprofil) und die jeweiligen Ladungsträgerdichten \(p_{\text{ann}}\) und \(p_{\text{ag}}\) (ECV-Tiefenprofile, siehe Abbildungen 4.17 und 4.16) verwendet werden, um ein Tiefenprofil für [Mn]_{ann} zu berechnen.

Die gestrichelten und gepunkteten Linien in den Abbildungen 4.22 und 4.23 repräsentieren jeweils die mittels der Gleichungen 4.8 und 4.9 berechneten Mn-Profile für die 30 min. bzw. 370 min. getemperten Proben. Bei der Berechnung wurde der Faktor \(C=2\) angenommen und berücksichtigt, dass ein Anteil von 1% Mn in der Probe einer Konzentration von von \(2.2 \times 10^{20}\) cm\(^{-3}\) entspricht.

Im Falle der Probe B352, dargestellt in Abbildung 4.22, hat die berechnete Kurve (gestrichelt) für [Mn]_{ann} innerhalb der Probe zwar qualitativ die gleiche Form wie das mittels SIMS gemessene Tiefenprofil, quantitativ betrachtet ist aber die durch das Tempern verursachte Verringerung der Mn-Konzentration im berechneten Profil nahezu doppelt so groß im Vergleich zum gemessenen Profil. Bemerkt werden sollte, dass das berechnete Profil bei Benutzung eines Faktors \(C\leq2\) zu noch geringeren Werten verschoben würde. Diese Ergebnisse deuten an, dass in der Probe B352 mit einer Schichtdicke von 240 nm nur ein kleiner Anteil der Erhöhung der Ladungsträgerdichte auf das Ausdiffundieren von Mn\(_i\) hin zur Probenoberfläche zurückzuführen ist.

Im Falle der Probe B313 zeigen die berechneten Kurven (gestrichelt/gepunktet in Abbildung 4.23) für [Mn]_{ann} innerhalb der Probe eine deutliche Abweichung zu der gemessenen Mn-Verteilung innerhalb der as-grown-Probe und den getemperten Proben, beginnend in

\(^9\)engl: annealed, deutsch: getempert
\(^10\)wie gewachsen, also nicht behandelt, hier: nicht getempert
KAPITEL 4. LADUNGSTRÄGERGRADIENTEN IN GAMNAS

einem Bereich von 0.5 - 0.7 μm und dann immer stärker abweichend hin zur Probenoberfläche. Dieses berechnete Verhalten (gepunktete/gestrichelte Linien in Abbildung 4.23) wird im Gegensatz zur Probe B352 nicht einmal qualitativ von den gemessenen Profilen bestätigt.

Aus den beobachteten Ergebnissen kann geschlossen werden, dass zumindest für „dicke“ Proben (∼1 μm) die Diffusion von Mn$_i$ hin zur Probenoberfläche nicht der Hauptgrund für die beobachtete Erhöhung der Löcherkonzentration in der Epitaxieschicht sein kann. Diese Aussage befinde sich in Einklang mit dem Argument, dass Mn$_i$ bei 250°C ein sehr geringes Diffusionsvermögen besitzen, wie es in Referenz [69] auch abgeleitet wurde. Als weiteres Argument hierfür kann angeführt werden, dass die für die Probenoberfläche berechneten engen Peaks, die die Anhäufung an Mn$_i$ beschreiben (siehe gestrichelte/gepunktete Linien in den Abbildungen 4.22 und 4.23), in den gemessenen Profilen nicht zu beobachten waren. Die Berechnungen für diese Peaks lieferten Werte von ([Mn]$_{ann}$-[Mn]$_{aG}$)$_z=0 ≥ 6$% für die Probe B352 und ([Mn]$_{ann}$-[Mn]$_{aG}$)$_z=0 ≥ 11$% für die Probe B313 bei einer Dicke dieser Schicht von $δ ≤ 10$ nm. Allerdings sollte bemerkt werden, dass die mittels SIMS ermittelten experimentellen Daten in den Abbildungen 4.22 und 4.23 möglicherweise zu grob sind, um eine vorhandene extrem dünne Mn-reiche Oxidschicht an der Probenoberfläche auflösen zu können.

Die eben diskutierten Ergebnisse widersprechen aber nicht den Beobachtungen, welche für sehr viel dünnere GaMnAs-Schichten gemacht wurden ($≤ 100$ nm) und welche eine Diffusion von Mn$_i$ als dominierenden Prozess zeigen.

Die bisher ermittelten experimentellen Daten weisen darauf hin, dass das Ausdiffundieren von Mn$_i$-Atomen aufgrund deren geringen Diffusionsvermögens bei 250°C hauptsächlich in oberflächennahen Regionen stattfindet, wohingegen sich die höchst unstabilen Mn$_i$-Atome innerhalb der Schicht umordnen und willkürlich verteilte elektrisch inaktive Präzipitate bilden, wie auch in Referenz [40] vorgeschlagen wurde.

Aus der Entwicklung der ECV-Profile, speziell dem ECV-Profil der Probe B313 (siehe Abbildung 4.16) folgt auch, dass diese Umordnungsprozesse der [Mn$_i$] nicht homogen über die gesamte GaMnAs-Schicht hinweg stattfinden (welches zu einer Erhöhung der Ladungsträgerdichte überall führen würde), sondern eine ausgeprägte Abhängigkeit von der Probendicke aufweisen.

Welche Prozesse jetzt im Einzelnen für die Entwicklung des Löcher-Tiefen-Profiles nach
4.3. EFFEKT DES TEMPERNS AUF DIE LADUNGSTRÄGERPROFILE

dem Temppern, speziell dieser Proben, verantwortlich ist, kann letztlich nicht abschließend geklärt werden. Weitere Experimente wie zum Beispiel tiefenaufgelöste Untersuchungen der Mn$_i$-Verteilung und theoretische Studien sind notwendig, um die Prozesse, die während des Tempperns in GaMnAs ablaufen, verstehen zu können.

Der zweite diskutierte Mechanismus ist mehr hypothetischer Art und basiert auf einer Ausdiffusion von anderen, möglicherweise kompensierenden Defekten (nicht Mn$_i$), welche, zumindest teilweise, als Auslöser für mögliche Umordnungsprozesse der Mn$_i$-Atome dienen könnten. Ein möglicher Kandidat hierfür wäre z.B. As, welches sich auf Zwischengitterplatz befindet (As$_i$). Die extrem niedrigen Wachstumstemperaturen führen zu dem Einbau von überschüssigem As sowohl auf Zwischengitterplatz (As$_i$) als auch auf Ga-Platz (As$_{Ga}$) in einer Größenordnung von bis zu 1 – 2% [78]. Für mehr Information zu den Eigenschaften von bei niedrigen Temperaturen (LT) gewachsenem GaAs siehe Ref. [79]. Werden nun sowohl As$_{Ga}$ als auch As$_i$ als mögliche Kandidaten für Diffusionsprozesse betrachtet, so kann festgestellt werden, dass As$_{Ga}$, eingebettet in eine LT-GaAs-Matrix, in der Literatur für Tempertemperaturen unter 450°C als sehr stabile Defekte gelten [40],[80] und somit sehr wahrscheinlich nicht zu einer Diffusion beitragen können. Für As$_i$ hingegen ist die Situation etwas anders. Leider gibt es bis zum heutigen Zeitpunkt keine eindeutigen Beweise dafür, aber es kann vermutet werden, dass As$_i$ eine viel wichtigere Rolle als sehr bewegliche kompensierende Defekte spielen, als bisher allgemein angenommen wurde. So kann zum Beispiel die Ausdiffusion von As$_i$ die Ursache für lokale Umordnungsprozesse sein, wobei es für Mn$_i$-Atome dabei energetisch günstiger sein kann, sich in neutralen Komplexen oder in anderer neutraler Position anzuordnen. Ein experimenteller Nachweis hierfür ist schwierig, da As-Atome, die während des Tempperns von einem
Abbildung 4.24: As-Tiefenprofile der Probe B313 vor und nach dem Tempern bei 250°C, gemessen mittels SIMS.

Zwischengitterplatz an die Probenoberfläche diffundieren, dort effektiv wegdesorbieren werden und somit mit oberflächen sensitiven Methoden nicht mehr nachgewiesen werden können. Auch die von der Probe B313 aufgenommenen SIMS-Tiefenprofile von As (siehe Abbildung 4.24) helfen in diesem Zusammenhang nicht wirklich weiter, da As

\[\text{in}\] nur einen geringen Bruchteil der gesamten in der Probe vorhandenen As-Menge darstellt und sogar eine komplett Ausdiffusion der As

\[\text{in}\] das gemessene SIMS-Profil nicht merklich beeinflus sen würde. Der in Abbildung 4.24 deutlich sichtbare Unterschied in den Absolutwerten der beiden Messungen kann auf eine in den SIMS-Messungen immer zu berücksichtigende Toleranz zurückgeführt werden. Um aber die Vermutung von sehr beweglichen As

\[\text{in}\] zu unterstreichen, sollte hervorgehoben werden, dass beträchtliche Mengen (ca. \(4 \times 10^{20} \text{cm}^{-3}\)) an As

\[\text{in}\] in LT-GaAs vorhanden sein können und als bewegliche Donatoren identifiziert wurden [81]-[84]. Desweiteren wurde von Newman et al. [85] schon 1993 nachgewiesen, dass As

\[\text{in}\] in p-Typ GaAs unter hochenergetischer Elektronenbestrahlung schon bei Raumtemperatur sehr beweglich werden können.

Demnach gibt es kein schlagendes Argument dafür, warum die Anwesenheit von As

\[\text{in}\] in GaMnAs, welches unter ähnlichen Bedingungen wie p-Typ LT-GaAs gewachsen wird, komplett ausgeschlossen werden sollte.

4.4 Temperaturabhängige Magnetisierung

Zur Bestimmung der Curie-Temperatur wurden, wie schon in Kapitel 4.2 erwähnt, zwei verschiedene Methoden verwendet: Zum einen temperaturabhängige SQUID Magnetisierungsmessungen zur direkten Bestimmung des Übergangs Paramagnetismus-Ferromagne-
4.4. TEMPERATURABHÄNGIGE MAGNETISIERUNG

... zum anderen temperaturabhängige Magnetotransport-Untersuchungen, aus denen dieser Übergang indirekt bestimmt werden kann. Beide Methoden zeigen übereinstimmende Ergebnisse, welche allerdings vom erwarteten Curie-Weiss-Verhalten stark abweichen. Abbildung 4.25 zeigt eine typische temperaturabhängige Magnetisierungsmessung für eine GaMnAs-Einzelschicht im Vergleich zu theoretisch erwarteten Magnetisierungskurven, zum einen berechnet über die numerische Lösung der impliziten Gleichung der Magnetisierung (Brillouin-Funktion), zum anderen berechnet über die Näherung der Wurzelabhängigkeit der Magnetisierung.

Am auffälligsten an der Messung (siehe Abbildung 4.25) ist die nahezu lineare Abnahme der Magnetisierung bei niedrigen Temperaturen. In der Literatur wird solch ungewöhnliches Verhalten unter anderem erklärt mit unterschiedlichen Werten für die Austauschintegrale bei verschiedenen Temperaturen [87]. Es wird angenommen, dass die Schichten keinerlei vertikale Inhomogenitäten aufweisen. Werden jetzt vertikale Inhomogenitäten oder Gradienten angenommen, so können die gemessenen Kurven mittels eines simplen Modells erklärt werden.

Innerhalb dieses Modells wird angenommen, dass die beobachteten Kurven für die Magnetisierung zustande kommen aus der Superposition einzelner, sehr dünner Schichten, welche jeweils eine ideale temperaturabhängige Magnetisierungskurve aufweisen und nicht untereinander wechselwirken können. Weiter wird jetzt vorausgesetzt, dass jede einzelne dieser virtuellen Schichten eine eigene Curie-Temperatur hat, welche von der Grenzfläche zur Oberfläche hin ansteigt.
Eine phänomenologische Beschreibung des Ferromagnetismus führt auf folgende implizite Formel [88],[89]:

\[
\frac{M_S}{M_0} = \tanh \left(\frac{T_C}{T} \frac{M_S}{M_0} \right)
\] (4.10)

Diese Gleichung kann nicht explizit aufgelöst werden. Die Benutzung der Molekularfeldtheorie führt aber zu den folgenden angenäherten Abhängigkeiten:

\[
M_S = M_0 \left(\frac{3}{T_C} (T_C - T) \right)^{1/2} \quad T \leq T_C
\] (4.11)

\[
M_S = M_0 \left(1 - 2 \exp \left(-\frac{2T_C}{T} \right) \right)^{1/2} \quad T \approx 0
\] (4.12)

Die Magnetisierungskurven ferromagnetischer Materialien lassen sich in der Näherung durch die folgende einfache Formel beschreiben:

\[
M_S = d (T_C - T)^f
\] (4.13)

bzw. unter Berücksichtigung der Schichtdickenabhängigkeit der Curietemperatur

\[
M_S = d \sum_i (T_{Ci} - T_C)^f
\] (4.14)

Setzt man jetzt \(f = \frac{1}{2} \) und benutzt \(d \) als Fitparameter, so können die gemessenen Magnetisierungskurven unter Berücksichtigung des oben angeführten Modells angefittet werden, wie an dem Beispiel der Probe B049 as-grown und abgeätzt dargestellt ist (Abbildung 4.26). Die in GaMnAs beobachteten Gradienten in der Löcherdichte und somit

Abbildung 4.26: Magnetisierungsmessungen (gepunktet) und mittels der Formel 4.14 ausgerechneten Simulationen der as-grown und der geätzten Stückchen der Probe B049 (durchgezogene Linie).

... auch die Schichtdickenabhängigkeit der Curie-Temperatur können also auch der Grund...
für die ungewöhnliche Form der temperaturabhängigen Magnetisierungskurven sein. Eine Superposition von vielen idealen Magnetisierungskurven mit jeweils unterschiedlicher Curie-Temperatur T_C, wie in den simplen Überlegungen oben angenommen, könnte eine Erklärung für das beobachtete Verhalten sein.

4.5 Zusammenfassung

Abschließend für dieses Kapitel kann gesagt werden, dass es in dem Materialsystem GaMnAs zu vertikalen Inhomogenitäten in den magnetischen Eigenschaften der Schichten kommen kann. Erste Hinweise darauf lieferten SWR-Messungen an GaMnAs-Einschichten. Die Inhomogenitäten konnten mittels ECV- und Raman-Messungen auf vertikale Gradienten in der Ladungsträgerdichte zurückgeführt werden, wohingegen alle Untersuchungen bezüglich möglicher Inhomogenitäten in der Mn-Konzentration (HRXRD, SIMS) oder möglicher Cluster (TEM) das Ergebnis brachten, dass die untersuchten Schichten in Bezug auf die Mn-Konzentration als homogen anzusehen sind.

Bezüglich der Herkunft der gemessenen Gradienten kann folgendes gesagt werden:

- Die Form der tiefenabhängigen Ladungsträgerdichte und vor allem die Veränderung dieser nach der Temperung der Schichten deutet einen Diffusionsprozess von Punktdefekten hin zur Oberfläche an.

- Die in der Literatur [69] viel diskutierte Diffusion von Mangan auf Zwischengitterplätzen hin zur Oberfläche kann zwar vorhanden, aber nicht der alleinige Grund für die gemessenen Gradienten sein, wie aus SIMS-Messungen und dem Vergleich dieser mit einer auf gemessenen ECV-Daten basierenden Abschätzung des getemperten Mn-Profiles klar ersichtlich ist.

- Mögliche Kandidaten für Punktdifffusion hin zur Oberfläche sind alle mit einem As-Überschuss in Verbindung stehenden Punktdefekte, wie z.B. As_i oder V_{Ga}, wobei zu bemerken ist, dass As_i in einem Temperaturbereich um 200°C als sehr beweglich gelten, wohingegen z.B. As_{Ga} erst bei sehr viel höheren Temperaturen Tendenz zur Diffusion zeigen können.

- Vertikale Gradienten in der Ladungsträgerdichte in as-grown Proben, wie sie auch sehr oft beobachtet werden, können allerdings auch noch einen anderen Hintergrund besitzen. Aufgrund der hohen Ladungsträgerdichte der GaMnAs-Schicht kann es zu einem Aufheizeffekt durch Absorption von Infrarotstrahlung während des Wachstums kommen. Dies hat eine zusätzliche Erwärmung der Schicht zur Folge, was dann

11vacancy on Ga site, deutsch: Ga-Leerstelle
KAPITEL 4. LADUNGSTRÄGERGRADIENTEN IN GAMNAS

wiederum einen verringerten Einbau von Punktdefekten zur Folge hat. Dieser Prozess kann dann letztendlich vertikalen Gradienten in der Ladungsträgerdichte zur Folge haben.

Grundsätzlich scheinen vertikale Gradienten in der Ladungsträgerdichte und somit zwangsläufig auch in den magnetischen Eigenschaften eine generelle, mehr oder weniger stark ausgeprägte und von dem jeweiligen Wachstumsprozess abhängige Eigenschaft des bei niedrigen Temperaturen gewachsenen Materialsystems Ga$_{1-x}$Mn$_x$As zu sein.

Desweiteren wurde gezeigt, dass sich die Form der Gradienten und damit die magnetischen Eigenschaften der Schichten auch nach dem Wachstum durch entsprechendes Tempen der Schichten in der Nähe der Wachstumstemperatur bzw. sogar bei tieferen Temperaturen verändern lässt. Es wurde gezeigt, dass außer den in der Literatur schon vermuteten Diffusionsprozessen von Mn$_i$ auch Umordnungsprozesse in der Punktdefektstruktur bzw. der Lokalisation der Punktdefekte eine entscheidende Rolle bei der Veränderung der magnetischen Eigenschaften während des Temperns spielen.

Im letzten Unterkapitel konnte dann noch anhand eines simplen Modells gezeigt werden, dass die beobachtete ungewöhnliche Form der Magnetisierungskurven in direktem Zusammenhang mit den beobachteten Ladungsträgergradienten in GaMnAs stehen kann. Dies muss bei der Betrachtung zukünftiger theoretischer Modelle und vor allem bei dem Design zukünftiger Bauelemente berücksichtigt werden. Der Weg zur Kontrolle der magnetischen Eigenschaften und somit der Kontrolle über die spinelektronischen Zustände des Materials führt letztendlich zu einer Kontrolle des Punktdefektsystems in GaMnAs. Allerdings besteht hierin auch noch erheblicher Forschungsbedarf, da sich das Zusammenspiel von magnetischen Eigenschaften und Punktdefektdichte in GaMnAs als sehr schwierig und komplex darstellt.
Kapitel 5

GaMnAs/InGaMnAs-Supergitter

Dieses Kapitel beschreibt, wie durch das Wachstum von ferromagnetischen Supergittern die ferromagnetischen Eigenschaften von GaMnAs beeinflusst werden können.

Es wird auf das Wachstum von GaMnAs/InGaMnAs- Supergitterstrukturen eingegangen und gezeigt, dass der Einbau von InGaMnAs-Schichten erheblichen Einfluss auf die magnetischen Eigenschaften, wie zum Beispiel die Magnetisierung oder die Curietemperatur, der GaMnAs-Schichten hat. Weiter wird gezeigt, dass auch diese magnetischen Supergitter durch nachfolgende Temperprozesse in ihren ferromagnetischen Eigenschaften verbessert werden können.

5.1 Erhöhung der Curie-Temperatur

In diesem Abschnitt wird diskutiert, wie das Einbringen von dünnen InGaMnAs-Zwischenschichten die ferromagnetischen Eigenschaften von GaMnAs beeinflussen und zu einer Erhöhung der Curietemperatur führen kann. Zuerst wird auf das Wachstum dieser Supergitter eingegangen, bevor andiskutiert wird, was die Gründe für die beobachtete Erhöhung der Curie-Temperatur sein können.

Es wird gezeigt, dass die beobachtete Steigerung der Curie-Temperatur stark korreliert ist zu dem In-Gehalt in den eingebrachten InGaMnAs-Schichten. Es konnten in as-grown Supergittern mit einem In-Gehalt von 40% Curie-Temperaturen von bis zu 110 K festgestellt werden, im Vergleich zu bei gleichen Bedingungen gewachsenen GaMnAs-Einzelschichten mit einer Curie-Temperatur $T_C = 60$ K.

Durch Tempern dieser Supergitter nach dem Wachstum bei Temperaturen in der Nähe der Wachstumstemperatur konnten Curie-Temperaturen von bis zu $T_C = 130$ K erreicht werden.
5.1.1 Warum Supergitter?

Wie in den Kapiteln zuvor ausführlich beschrieben, spielt die Kontrolle der Punktdefekte eine entscheidende Rolle im Hinblick auf eine Optimierung der magnetischen Eigenschaften von GaMnAs. Dies kann jetzt erreicht werden durch die Wahl der Wachstumsbedingungen an sich, sowie durch ein Temperi der Schichten während oder nach dem Wachstum, aber auch durch die Reduzierung der Punktedefektdichte schon während des Wachstums durch geeignete Gestaltung der Schichtstruktur.

Der von uns verfolgte Ansatz kann folgendermaßen beschrieben werden: Durch das Einbringen geeigneter dünnen Zwischenschichten (hier: \((\text{In}_y\text{Ga}_{1-y})_{1-x}\text{Mn}_x\text{As}) in magnetisch aktive GaMnAs-Einzelschichten kann es zu einer Umordnung beweglicher Punktdefekte kommen, beziehungsweise sollen Punktdefekte aus dem magnetisch aktiven Material in die entsprechenden Zwischenschichten „abgesaugt“ werden. Eine Veränderung der Punktedefektkonfiguration sollte wiederum eine Veränderung der magnetischen Eigenschaften, insbesondere der Curie-Temperatur zur Folge haben.

Dies ermöglicht dann letztendlich durch die Wahl eines geeigneten Schichtlayouts schon direkt während des Wachstums eine Kontrolle der ferromagnetischen Eigenschaften der Schichten.

5.1.2 Wachstum

Wiederum wurden alle für dieses Kapitel relevanten Proben auf „epi-ready“-semiisolierenden GaAs-(100)-Substraten epitaxiert.

Die Wachstumsprozedur für die GaMnAs/ InGaMnAs-Supergitter kann wie folgt beschrieben werden: Zuerst wurde auf das Substrat eine ca. 100 nm - 150 nm dicke Pufferschicht GaAs bei einer Substrattemperatur von 585°C gewachsen. Als nächstes wurde die Substrattemperatur während einer Wachstumspause von 45 min. schnellstmöglich auf die LT-Substrattemperatur von 230°C abgekühlt und der As-Fluss hin zur Oberfläche durch Schließen des Hauptshutters und des As-Ventils unterbunden. Nach Stabilisierung der Temperatur bei 230°C wurde dann mit dem LT-Wachstum der Supergitter begonnen. Gestartet wurde mit einer 20 nm dicken Schicht Ga\(_{1-x}\)Mn\(_x\)As, gefolgt von einer 3-6 nm dicken Schicht (In\(_y\)Ga\(_{1-y}\))\(_{1-x}\)Mn\(_x\)As. Diese Schichtfolge wurde dann 15-mal wiederholt. Zum Abschluss des Wachstums wurde dann eine Ga\(_{1-x}\)Mn\(_x\)As-cap-Schicht aufgebracht.

In Abbildung 5.1 ist der Probenaufbau einer typischen Supergitter-Struktur am Beispiel der Probe B315 dargestellt, einer Probe mit einem Mn-Gehalt von \(x = 0.058\), welcher mittels HRXRD an der Referenzschicht B313 (unter identischen Bedingungen gewachsen als GaMnAs-Einzelschicht) bestimmt wurde und mit einem In-Gehalt von 40% in den Zwischenschichten InGaMnAs, bestimmt aus Flussmessungen.

\(^1\)keine Vorbehandlung der Oberfläche notwendig, direkt für die Epitaxie einsetzbar.

\(^2\)zu Deutsch: Deck- oder Abschlussschicht
5.1. ERHÖHUNG DER CURIE-TEMPERATUR

Abbildung 5.1: Typischer Aufbau der Schichtstruktur eines Supergitters am Beispiel der Probe B315.

Der In-Gehalt in den eingebrachten Zwischenschichten \((\text{In}_y \text{Ga}_{1-y})_x \text{Mn}_{1-x} \text{As}\) wurde zwischen 0% und 50% variiert. Ansonsten wurden innerhalb dieser Probenserie alle anderen Wachstumsparameter konstant gehalten. Der Mn-Fluss wurde während des gesamten Wachstums konstant gehalten und stimmt mit einer mittels HRXRD an einer Referenz-Einzelschicht \(\text{Ga}_{1-x} \text{Mn}_x \text{As}\) bestimmten Mn-Konzentration von \(x=0.058\) überein. Abhängig von dem In-Gehalt war die Mn-Konzentration in den \((\text{In}_y \text{Ga}_{1-y})_x \text{Mn}_{1-x} \text{As}\)-Schichten etwas geringer (so beträgt die Mn-Konzentration für eine Schicht mit 40% In-Gehalt nur ca. 4.2%). In Abbildung 5.2 ist sowohl die Mn-Verteilung als auch die In-Verteilung einer solchen Epitaxieschicht schematisch dargestellt.

Dieselbe Wachstumsprozedur wurde verwendet für die als Referenzschichten gedachten Supergitter \(\text{GaMnAs}/(\text{In}_y \text{Ga}_{1-y})_x \text{Mn}_{1-x} \text{As}\) und \(\text{LT-GaAs}/(\text{In}_y \text{Ga}_{1-y})_x \text{Mn}_{1-x} \text{As}\).

Das Wachstum wurde in-situ überwacht durch Beobachtung des RHEED-Bildes. Es konnte stabiles Wachstum von \((1 \times 2)\)-Oberflächenrekonstruktion über die gesamte Dauer hinweg beobachtet werden, wie es auch für \(\text{GaMnAs}\)-Einzelschichten der Fall ist (siehe Kapitel 2.1).

5.1.3 HRXRD an GaMnAs/InGaMnAs-Supergittern

Es wurden für alle untersuchten Supergitter hochauflösende Röntgendiffraktometermessungen durchgeführt. Eine für diese Art Supergitter typisches Messergebnis ist in Abbildung 5.3 dargestellt. Sehr deutlich sind die Supergitter-Peaks, welche bis hin zur 10. Ordnung ausgeprägt zu sehen sind und gemeinsam mit den auch sehr deutlich ausgeprägten
Abbildung 5.2: Schematischer Aufbau der Supergitter. In den Bereichen der eingefügten Zwischenschichten InGaMnAs steigt der In-Gehalt sprungartig an. Im Gegensatz dazu nimmt in diesem Bereich der Mn-Gehalt entsprechend ab. Die eingefügten Werte repräsentieren ein Supergitter mit 40% In-Gehalt in den InGaMnAs-Zwischenschichten und 5.8% Mn-Gehalt innerhalb der GaMnAs-Schichten.

Abbildung 5.3: Exemplarische HRXRD-Messung an einem Supergitter mit 5.8% Mn in den GaMnAs-Schichten und 30% In-Gehalt in den Zwischenschichten mit einer Dicke von 3 nm
5.1. ERHÖHUNG DER CURIE-TEMPERATUR

Schichtdickenoszillationen eine exzellente Strukturqualität mit scharf definierten Grenzflächen GaMnAs/InGaMnAs beweisen. Aus den HRXRD-Messungen kann dann sowohl aus dem Abstand der Supergitter-Peaks die Dicke einer Periode als auch aus den Schichtdickenoszillationen die Gesamtdicke berechnet werden. In der hier exemplarisch gezeigten Probe B304 wurde die Dicke einer Periode zu 23.6 nm und die Gesamtdicke des LT-gewachsenen Anteils dieser Probe zu ca. 400 nm bestimmt, was auch mit den aus den Wachstumsraten ermittelten 23 nm Periodendicke und 368 nm Gesamtdicke, im Rahmen der schon zuvor erwähnten Ungenauigkeiten in den einzelnen Methoden, sehr gut übereinstimmt.

Bei Betrachtung der HRXRD-Messungen der Supergitter wurde im Bereich zwischen 0% und 40% die zuvor schon erwähnte gute Qualität der Schichten festgestellt, ohne jedwedes Anzeichen von Relaxierung der InGaMnAs-Zwischenschichten, was auch bei Schichtdicken von ca. 3 nm den Erwartungen entspricht. Bei HT-Wachstum von Schichten mit einem In-Gehalt von 50% liegt die kritische Schichtdicke für InGaAs > 10 nm [90]-[92].

5.1.4 Ergebnisse und Resultate

Um den Effekt des Einbaus von In-haltigen Zwischenschichten auf die magnetischen Eigenschaften der Proben zu untersuchen, wurde eine Probenserie GaMnAs/InGaMnAs-Supergitter gewachsen mit variierendem In-Gehalt von 0% (GaMnAs-Einzelschicht) bis 50% unter Konstanthaltung aller anderen Wachstumsparameter.

Um die Curie-Temperatur der Supergitter zu extrahieren, wurden temperaturabhängige SQUID-Magnetisierungsmessungen in einem kleinen in-plane3 ($5mT||[110]$) angelegten Magnetfeld an den Proben durchgeführt, nachdem die Magnetisierung der Probe vollständig gesättigt worden war durch temporäres Anlegen eines Magnetfeldes von 0.1 T Stärke. T_C konnte mit einer Genauigkeit von ± 5 K ermittelt werden.

Wie in Abbildung 5.4 zu sehen ist, steigt die Curie-Temperatur der gemessenen Proben kontinuierlich mit steigendem In-Gehalt in den Proben an von 60 K in der GaMnAs-Einzelschicht bis hin zu 110 K in dem as-grown- Supergitter mit 50% In-Gehalt in den Zwischenschichten. Um die Ursache dieses Effektes genauer zu untersuchen, wurden einige Referenzproben unter denselben Wachstumsbedingungen gewachsen.

Um zu untersuchen, inwieweit die gemessene Erhöhung der Curie-Temperatur in den GaMnAs/InGaMnAs- Supergittern auf die eingebauten InGaMnAs- Zwischenschichten zurückzuführen ist, wurden LT-GaAs/InGaMnAs-Supergitter mit 20% bzw. 30% In-Gehalt gewachsen und jeweils mittels temperaturabhängigen SQUID- Magnetisierungsmessungen analysiert. In Abbildung 5.4 sind die Curie-Temperaturen dieser Referenzproben als ausgefüllte Dreiecke dargestellt. Für diese beiden Proben wurden erheblich niedrigere Curie-Temperaturen festgestellt, was auch den Erwartungen entspricht, da aufgrund der Zugabe

\footnote{\(\perp\) zur Wachstumsrichtung}
Abbildung 5.4: Curie-Temperatur in Abhängigkeit von der In-Konzentration in den Zwischenschichten. Die ausgefüllten Quadrate stellen die Messergebnisse der GaMnAs/InGaMnAs- Supergitter dar, die ausgefüllten Dreiecke die Ergebnisse der Referenzstrukturen LT-GaAs/InGaMnAs und die offenen Kreise die Referenzschichten GaMnAs/InGaAs.
5.1. ERHÖHUNG DER CURIE-TEMPERATUR

von In die Mn-Konzentration in diesen Schichten etwas geringer ist (die Mn-Konzentration für eine InGaMnAs-Schicht mit 20% In-Gehalt beträgt dann ca. 4.9%, für eine Schicht mit 30% In-Gehalt ca. 4.5%), was natürlich auch eine geringere Curie-Temperatur zur Folge hat. Diese Referenzproben zeigen, dass die eingefügten InGaMnAs-Zwischenschichten nicht der alleinige Grund für die Erhöhung der Curie-Temperatur sein können.

Im Gegensatz zu den gerade beschriebenen Referenzproben sollte es jedoch möglich sein, der Argumentation in der Motivation zu Beginn dieses Kapitels (Abschnitt 5.1.1) folgend, die Curie-Temperatur durch Einbau von InGaAs-Zwischenschichten in GaMnAs, also GaMnAs/ InGaAs-Supergitterstrukturen in demselben Maße zu erhöhen, wie es bei dem Einbau von Mn-haltigen InGaMnAs-Zwischenschichten in GaMnAs/ InGaMnAs-Strukturen der Fall gewesen war. Die Ergebnisse der SQUID-Messung zweier Referenzproben, mit 40% bzw. 50% In-Gehalt in den Zwischenschichten, sind als offene Kreise in Abbildung 5.4 dargestellt. Die ermittelten Curie-Temperaturen von 70 K bzw. 80 K stellen im Vergleich zu der unter gleichen Bedingungen gewachsenen GaMnAs-Einzelschicht eine Erhöhung dar, welche jedoch nicht so stark ist, wie die beobachtete Erhöhung der GaMnAs/InGaMnAs-Strukturen. Die Gründe für den Unterschied in den Curie-Temperaturen der Supergitter mit und ohne Mn in den In-haltigen Zwischenschichten konnten mit den vorliegenden Messergebnissen allerdings nicht geklärt werden.

Eine weitere Erhöhung der Curie-Temperatur in den GaMnAs/ InGaMnAs- Supergittern konnte durch nachträgliches Tempern für 30 min. bei 250°C festgestellt werden. Letztendlich konnten Curie-Temperaturen von 100 K für die getemperte GaMnAs-Einzelschicht und 130 K für das getemperte Supergitter mit 40% In-Gehalt in den Zwischenschichten extrahiert werden.

Als Zwischenfazit der bis hierher untersuchten Proben lässt sich festhalten:

Die Erhöhung der Curie-Temperaturen der GaMnAs/InGaMnAs- Supergitter im Vergleich zu GaMnAs-Einzelschichten kann auf eine Erhöhung der Curie-Temperatur in den magnetisch aktiven GaMnAs-Schichten zurückgeführt werden.

In Abbildung 5.5 sind sowohl die Raman-Spektren der GaMnAs-Einzelschicht (Probe B313) als auch des GaMnAs/ InGaMnAs-Supergitters mit einem In-Gehalt von 40% (Probe B315) jeweils vor und nach der Temperung im Vergleich dargestellt. Alle 4 Spektren zeigen eine breite Raman-Linie, in der Nähe der Frequenz des GaAs-TO-Phonons, welche der gekoppelten Mode zugeordnet werden kann. Es ist bekannt, dass diese Linie mit ansteigender Ladungsträgerdichte von der Frequenz des LO-Phonons hin zu der des TO-
Abbildung 5.5: Raman-Spektren einer GaMnAs-Einzelschicht und eines GaMnAs/InGaMnAs-Supergitters mit 40% In-Gehalt jeweils vor und nach der Temperung.
Abbildung 5.6: Raman-Spektren eines GaMnAs/InGaMnAs-Supergitters und eines GaMnAs/InGaAs-Supergitters im Vergleich.
Phonons verschoben. Die Raman-Spektren offenbaren also zwei Eigenschaften:

- Eine drastische Erhöhung der Ladungsträgerdichte in dem GaMnAs-Bereich der Supergitter im Vergleich zu den GaMnAs-Einzelschichten.

- Einen Anstieg der Ladungsträgerdichte nach dem Tempern in beiden Proben.

In Abbildung 5.6 sind die Raman-Spektren eines GaMnAs/InGaMnAs-Supergitters im Vergleich zu einem Supergitter ohne Mn in den Zwischenschichten dargestellt. In dem Raman-Spektrum des Supergitters ohne Mn in den Zwischenschichten ist eine von den Zwischenschichten InGaAs herrührende dominierende Linie zu sehen, die aufgrund ihrer Lage (Frequenz) eindeutig darauf hinweist, dass in den Zwischenschichten keine oder nur sehr wenige Ladungsträger vorhanden sind. Dies wiederum lässt den Schluss zu, dass es sich bei dem beobachteten Effekt nicht um eine Modulationsdotierung der Ladungsträger aus dem GaMnAs-Bereich der Supergitter in die InGaAs bzw. InGaMnAs-Zwischenschichten hinein handelt, sondern dass die Erhöhung der Curie-Temperatur der Supergitter ihre Ursache in einer Erhöhung der Ladungsträgerdichte im GaMnAs-Bereich der Supergitter hat.

Diese Ergebnisse stimmen auch sehr gut überein mit der beobachteten Erhöhung der Curie-Temperatur in den untersuchten Proben. Wie weiter oben schon erwähnt, kann die Curie-Temperatur in den GaMnAs/InGaMnAs-Supergittern durch Tempern der Strukturen nach dem Wachstum noch weiter gesteigert werden. Dies wird am Beispiel der
5.1. ERHÖHUNG DER CURIE-TEMPERATUR

SQUID-Messungen der Probe B315 (40% In-Gehalt) vor und nach dem Tempern exemplarisch dargestellt in Abbildung 5.7. Die Erhöhung der Curie-Temperatur von 90 K auf 130 K ist deutlich zu erkennen.

5.1.5 Diskussion

Die Ursache für die beobachtete drastische Erhöhung der Curie-Temperatur in den GaMnAs/InGaMnAs-Supergittern konnte mittels der vorhandenen Messergebnisse nicht vollständig geklärt werden. Als mögliche Ursachen können aber folgende Punkte genannt werden:

- Aufgrund der unterschiedlichen Gitterparameter von GaMnAs und InGaMnAs und den daraus resultierenden Verspannungen kann es zu einer Umordnung bzw. U mverteilung von beweglichen Defekten innerhalb der unterschiedlichen Schichten kommen, z.B. zu einem Abwanderungsprozess beweglicher Punktdefekte hin zum InGaMnAs, welches im Vergleich zu GaMnAs die größere Elementarzelle besitzt.

- Als weitere mögliche Ursache kann der unterschiedliche Einbau von As-Überschuss in die Supergitterstrukturen genannt werden, beziehungsweise der Einbau und die darauffolgende Umverteilung/Umordnung aller mit As in Zusammenhang stehenden Defekte wie zum Beispiel As$_i$ oder auch As$_{Ga}$.

Wie schon in Kapitel 5.1.1 kurz erwähnt, geht unser Erklärungsansatz, und alle experimentellen Daten stützen diese These, in die Richtung einer verringerten Punktdichte im GaMnAs-Bereich der Supergitter, hervorgerufen durch den Einbau verspannter InGaMnAs-Schichten in das magnetisch aktive GaMnAs. Eine mögliche treibende Kraft für einen solchen „Absaugprozess“ von Punktdefekten könnte zum Beispiel in der unterschiedlichen Größe der Elementarzelle von GaMnAs und InGaMnAs zu finden sein. Als mögliche Punktdichte kommen, wie schon in Kapitel 4 erwähnt, sowohl Mn$_i$-Atome und As$_{S}$-Atome auf Zwischengitterplätzen als auch As$_{Ga}$-Antisites in Frage, wobei letztere sehr unwahrscheinlich sind, da sie bis zu Temperaturen von ca. 450°C sehr stabil sind.

Aus der Literatur [69] ist bekannt, dass Mn$_i$ zur Oberfläche hin diffundieren können, also sehr beweglich sind, und deshalb auch als möglicher diffundierender Punktdefekt in den GaMnAs/InGaMnAs-Supergittern angesehen werden kann. Allerdings ist aus Kapitel 4 auch bekannt, dass es noch andere sehr bewegliche Punktdefekte geben kann, wie z.B. die As$_{Si}$-Atome, welche in LT-GaAs durch Bestrahlung schon bei RT sehr beweglich werden können.

Desweiteren scheinen die Zwischenschichten nicht alle Punktdichte absorbiert zu können, wie aus dem weiteren Anstieg der Curie-Temperatur nach dem Tempern der Schichten abgeleitet werden kann. Es muss noch eine gewisse Anzahl an Punktdefekten direkt nach dem Wachstum vorhanden sein, um eine weitere Erhöhung der Curie-Temperatur nach dem Tempern bei 250°C erklären zu können.
Ein zweites mögliches Szenario, um die Erhöhung der Curie-Temperatur sowohl direkt beim Wachstum als auch nach dem Temperprozess erklären zu können, beruht auf dem Ansatz, dass jeweils verschiedene Punktdefekte für eine Erhöhung von T_C verantwortlich gemacht werden können. So könnte z.B. ein verringelter Einbau von Mn_i während des Wachstums für die Erhöhung der Curie-Temperatur bei den Supergittern verantwortlich sein, wohingegen die weitere Erhöhung von T_C nach dem Tempern auf eine Diffusion von As_i zurückzuführen sein könnte. Quantitative Aussagen oder Experimente hierzu sind allerdings sehr schwierig und komplex, da die einzelnen Arten von Punktdefekten schwer einzeln, im Falle von As_i sogar momentan noch gar nicht, nachzuweisen sind.
Kapitel 6
Zusammenfassung

Ferromagnetisches GaMnAs, beziehungsweise semimagnetische Heterostrukturen basierend auf GaMnAs, und deren prinzipiellen Eigenschaften wurden in der vorliegenden Arbeit mittels unterschiedlichster Methoden untersucht. Im ersten Teil der Arbeit lag das Hauptaugenmerk auf der Epitaxie und auf der Optimierung der Wachstumsparameter von GaMnAs. Im zweiten Teil wurde dann detailliert auf in den Schichten vorhandene Ladungssträgergradienten und deren Veränderung nach durchgeführten Temperexperimenten eingegangen. Im dritten Teil schließlich wurde dargelegt, wie durch das Wachstum von GaMnAs/InGaMnAs-Supergittern die Curie-Temperatur der Strukturen im Vergleich zu GaMnAs-Einzelschichten deutlich gesteigert werden konnte.

Es wurde aufgezeigt, dass sich die Epitaxie von GaMnAs mittels MBE als sehr aufwändig gestaltet und stark von den jeweilig verwendeten Wachstumsparametern abhängt. Aufgrund der geringen Löslichkeitsgrenze von Mn in Hochtemperatur-GaAs (ca. $1 \times 10^{18} \text{ cm}^{-3}$) mussten sehr viel niedrigere Wachstumstemperaturen (200°C - 300°C) benutzt werden, um ferromagnetisches GaMnAs herstellen zu können. Bei niedrigen Wachstumstemperaturen konnte dann bis zu 10% Mn in GaAs eingebaut werden.

Die verwendeten Wachstumsprozesse für GaMnAs sowie die dabei auftretenden Probleme wurden ausführlich diskutiert. Im weiteren Verlauf wurde detailliert darauf eingegangen, wie das MBE-Wachstum in Hinblick auf die Gitterparameter und die magnetischen Eigenschaften optimiert werden kann. Dabei wurde aufgezeigt, dass durch die Variation der Wachstumstemperatur T_S und/oder des V/III-Flussverhältnisses sowohl die magnetischen (Erhöhung der Curie-Temperatur T_C) als auch die elektrischen (Verringerung des spezifischen Widerstandes ρ) Eigenschaften von GaMnAs reproduzierbar verbessert werden konnten.

Weiter wurde diskutiert, welche Probleme bei der Bestimmung des Mn-Gehaltes in den GaMnAs-Schichten auftreten können, bzw. welche Unzulänglichkeiten die bis dahin weltweit anerkannte Methode der Bestimmung des Mn-Gehaltes mittels HRXRD unter Be-
nutzung des Vegardschen Gesetzes aufweist. Vor allem die Extrapolation der hypothetischen Gitterkonstante für kubisches MnAs \(a_{\text{MnAs}}\) spielt hier eine große Rolle. Es wurde gezeigt, dass die Extrapolation für \(a_{\text{MnAs}}\) bei Variation der Wachstumstemperatur zu unterschiedlichen Werten führt (exemplarisch gezeigt für die Temperaturen 200°C und 250°C). Schon eine geringe Variation dieser Größe (im Bereich von 0.2 Å) bedeutet sehr große Änderungen in der Berechnung des Mn-Gehaltes (bis zu 4% Unterschied), wie in Abbildung 3.5 dargestellt wurde.

Allerdings birgt nicht nur die Bestimmung des Mn-Gehaltes Risiken, sondern wie im weiteren Verlauf auch noch diskutiert wurde, ist auch die Interpretation von HRXRD-Messungen keineswegs eindeutig. So muss bei der Auswertung der HRXRD-Messungen beachtet werden, dass noch nicht abschließend geklärt ist, ob Mn\(_{\text{Ga}}\), also Mn, welches auf Ga-Platz eingebaut ist, für die im Vergleich zu GaAs größere Gitterkonstante verantwortlich ist, oder ob eventuell Mn\(_{\text{i}}\), also Mn-Atome, die auf Zwischengitterplätzen eingebaut sind, verantwortlich für die Größe der GaMnAs-Gitterkonstante sind. Beides ist denkbar und wird in der Literatur kontrovers diskutiert.

Im dritten und letzten Teil der Arbeit wurde dargestellt, wie durch das Einbringen
geeigneter dünner Zwischenschichten (hier: \((\text{In}_y\text{Ga}_{1-y})_{1-x}\text{Mn}_x\text{As})\) in magnetisch aktive \(\text{GaMnAs-Einzelschichten}\) die magnetischen Eigenschaften der Strukturen schon während des Wachstums gesteuert werden können. So war es möglich, die Curie-Temperatur in diesen Schichten abhängig vom In-Gehalt in den Zwischenschichten im Vergleich zu einer vergleichbaren \(\text{GaMnAs-Einzelschicht}\) deutlich zu steigern. Durch weiteres Ausheizen der Supergitterstrukturen konnten schließlich Curie-Temperaturen von bis zu 130 K erreicht werden. Als Ursache für diesen Effekt wird vermutet, dass es innerhalb der Supergitter durch den Einbau verspannter \(\text{InGaMnAs-Zwischenschichten}\) in den \(\text{GaMnAs-Schichten}\) zu einer verminderten Punktdefektdichte und dadurch zu einer erhöhten Ladungsträgerdichte kommt, was dann zwangsläufig auch eine höhere Curie-Temperatur zur Folge hat. Als Ursache oder treibende Kraft für solch einen „Absaugprozess“ von Punktdefekten aus den \(\text{GaMnAs-Schichten}\) heraus können zum Beispiel die unterschiedlichen Gitterparameter in den Supergitterstrukturen genannt werden oder auch der unterschiedliche Einbau von As-Überschussatomen in \(\text{InGaMnAs}\) im Vergleich zu \(\text{GaMnAs}\). Mit den vorhandenen Ergebnissen konnte diese Frage allerdings noch nicht vollständig geklärt werden. Als potenzielle Kandidaten für eine Umordnung bzw. Diffusion von Punktdefekten kommen wie schon bei der Diskussion um \(\text{GaMnAs-Einzelschichten}\) erwähnt, alle beweglichen Punktdefekte wie z.B \(\text{Mn}_i\)-Atome oder auch eventuell vorhandene \(\text{As}_i\)-Atome in Frage.

Letztendlich bleibt die Frage, ob der semimagnetische Halbleiter \(\text{GaMnAs}\) auch bei Raumtemperatur ferromagnetisch werden kann, noch ungeklärt. Theoretisch scheint es möglich, dieses Ziel zu erreichen, wenn es gelingen sollte, quasi-punktdefektfreie Schichten mit einem Mn-Gehalt von 10% oder mehr herzustellen. Die vorliegende wie auch viele andere Arbeiten haben klar gemacht, dass der Schlüssel dazu in der Kontrolle der Punktdefektstruktur des Materialsystems \(\text{GaMnAs}\) liegt.
Literaturverzeichnis

[34] L. Vegard, Zeitschrift für Physik V, 17 (1921)

[49] W. Limmer, A. Koeder, S. Frank, M. Glunk, W. Schoch, V. Avrutin, K. Zuern, R. Sauer, and A. Waag, Physica E 21, 970 (2004); the conductivity data presented in this paper are incorrect and have to be multiplied by a factor of 1.4.

Publikationen

• Goennenwein STB, Graf T, Wassner T, Brandt MS, Stutzmann M, Koeder A, Frank S, Schoch W, Waag A. Ferromagnetic resonance in GaMnAs. [Conference Paper]

Poster und Vorträge

• Deutscher MBE Workshop 2000, Bochum
 Achim Köder, Wladimir Schoch, Andreas Waag
 Low Temperature GaMnAs für die Spin-Elektronik

• Euro-MBE Workshop 2001, Hinterzarten

• CELDIS workshop on low dimensional and hybrid diluted magnetic semiconductor structures 2001, Warschau

• DPG Frühjahrstagung 2002, Regensburg
 Achim Köder, Sybille Frank, Marcus Oettinger, Wladimir Schoch, Wolfgang Limmer, Klaus Thonke, Rolf Sauer, Andreas Waag
 Semimagnetische Tunnelstrukturen als Spinelektronik-Bauelemente

• Deutscher MBE Workshop 2002, Freiburg
 Achim Köder, Sybille Frank, Dariusz Humienik, Wladimir Schoch, Vitaly Avrutin
 Wolfgang Limmer, Klaus Thonke, Andreas Waag
 MBE von ferromagnetischen Heterostrukturen basierend auf GaMnAs

• Nanostructures 2003, St. Petersburg
 Depth dependence of magnetic and electric properties in GaMnAs layers

• Spintech II 2003, Brügge
 GaMnAs single and multilayer structures: electronic and magnetic properties
Danksagung

Zuletzt möchte ich mich allen, die mitgeholfen haben, diese Arbeit anzufertigen, ganz herzlich danken:

Als erstes steht hier natürlich der Dank an meinen Doktorvater Prof. Dr. Andreas Waag. Er hat es mir ermöglicht, nach Abschluss der Diplomarbeit weiter in seiner Arbeitsgruppe auf dem Gebiet der Spintronik, speziell an GaMnAs, zu arbeiten. Durch seine Fachkompetenz und seine immer neuen Ideen konnte er sehr viel zum Gelingen der Arbeit beitragen. Durch seine immer offene Art hat die Zusammenarbeit über die gesamte Zeit sehr viel Spaß gemacht. Ich werde gerne an das Spintronic-Team zurückdenken.

Ein großes Dankeschön gilt auch Prof. Dr. Rolf Sauer, in dessen Abteilung die Arbeit entstanden ist und der sich freundlicherweise bereit erklärt hat, das Zweitgutachten für meine Arbeit zu erstellen.

Meinem Zimmergenossen Dr. Wladimir Schoch für die gute und erfolgreiche Zusammenarbeit an der MBE im Reinraum, für viele fruchtbare Diskussionen rund um GaMnAs und andere Themen, und dafür, dass er beim Korrekturlesen der Arbeit nie die Geduld verloren hat und mir noch viele Anregungen und Tipps gegeben hat.

Meiner Kollegin Dr. Sybille Frank, die mit mir jahrelang zusammen versucht hat, den Geheimnissen des GaMnAs auf die Spur zu kommen, dies nicht nur im Labor, sondern auch manchmal abends bei einem Glas Bier.

Dr. Sebastian Gönnenwein, PD Dr. Martin Brandt und dem Rest der Münchner Truppe vom Walter Schottky Institut für die Durchführung von ESR-Messungen an unseren Proben und für eine Super-Zusammenarbeit.

Dr. Wolfgang Limmer für die unzähligen, an meinen Proben durchgeführten Raman-Messungen und für viele fruchtbare Diskussionen und Erklärungen, bei denen er seine Fachkenntnisse immer wieder neu bewiesen hat. Und natürlich dafür, dass er mir gezeigt hat, wie man Weißwürsche ohne Aufplatzen kocht.

Dr. Vitaly Avrutin, der mir viele Geheimnisse des MBE-Wachstums gezeigt und beigebracht hat.

Der Abteilung Festkörperphysik, speziell Klaus Zürn und Dr. Michael Krieger für zahlreiche SQUID-Magnetometermessungen und die Diskussion der daraus erhaltenen Ergebnisse.

PD Dr. Erwin Peiner von der TU Braunschweig für die Durchführung der ECV-Tiefenprofile.
Dem Rest des Spintronic-Teams, speziell unseren ZnO-Spezialisten Dr. Rainer Kling, Dr. Thomas Gruber und Dr. Frank Reuss für zahlreiche gewonnene und verlorene Badmintonspiele, sehr netten Abenden in der Ulmer City und für das klasse Arbeitsklima innerhalb der Arbeitsgruppe.

Nicole Rothenhöfer für alle Arbeiten, die sie für mich im Reinraum, vor allem in der Prozessierung der Schichten, erledigt hat. Petra Silber für das sehr gut organisierte Sekretariat. Kurt Schwarz für die technische Hilfe bei der Anfertigung von so manchem mechanischen Hilfsmittel.

Das Arbeitsklima innerhalb der Abteilung war immer sehr angenehm und freundlich, deshalb möchte ich mich auch beim Rest der Abteilung für die gemeinsam verbrachte Zeit bedanken.

Meinen Eltern, die mich während der ganzen Zeit an der Universität immer unterstützt haben.

Mein allergrößter Dank allerdings gilt meiner Frau Marion Mangold-Köder, meiner Tochter Lara-Marie und meinem inzwischen schon 1 Jahr alten Sohn Luca-Fabian für die Liebe, die sie mich immer spüren lassen und die mir immer wieder zeigt, dass es auch noch mehr als Physik oder Arbeit gibt.
Curriculum Vitae

Name: Achim Horst Köder

Geburtsdatum und Ort: 14. Februar 1971 in Göppingen

08/1977 - 07/1981 Grundschule Jebenhausen

08/1981 - 07/1987 Schiller-Realschule Göppingen

08/1987 - 07/1991 Technisches Gymnasium Göppingen,
Abschluss mit allg. Hochschulreife

10/1993 - 03/2000 Physikstudium, Universität Ulm,
Vertiefungsrichtung Halbleiterphysik, Abschluss als Diplom-Physiker

04/2000 - 03/2001 Diplomarbeit, Abteilung Halbleiterphysik, Universität Ulm,
Thema: Magnetische III-V-Halbleiter: Epitaxie und Charakterisierung

04/2001 - 04/2004 Wissenschaftlicher Mitarbeiter, Abteilung Halbleiterphysik, Universität Ulm

06/2004 - 01/2007 Tesat-Spacecom GmbH, Backnang