Immunhistologische Untersuchungen zur Frakturheilung Midkine-defizienter Mäuse

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät der Universität Ulm

vorgelegt von
Simon Thomas Beie
geboren in Nürnberg

Ulm 2017
Amtierender Dekan: Prof. Dr. Thomas Wirth
1. Berichterstatter: Prof. Dr. Anita Ignatius
2. Berichterstatter: Prof. Dr. Rolf Brenner
Tag der Promotion: 16.11.2017
Inhaltsverzeichnis

Inhaltsverzeichnis ... I

Abkürzungsverzeichnis .. III

1 Einleitung ... 1

1.1 Aufbau des Knochengewebes ... 1

1.2 Knochenbildung und Knochenumbau .. 4

1.3 Proteine der Mineralisation ... 6

1.4 Frakturheilung ... 10

1.5 Familie der Heparin-bindenden Wachstumsfaktoren .. 17

1.6 Ziele der Arbeit ... 23

2 Materialien und Methoden .. 24

2.1 Chemikalien und Lösungen ... 24

2.2 Geräte und Software .. 28

2.3 Antikörper .. 30

2.4 Frakturheilungsstudie ... 31

2.5 Histologische Methoden .. 34

2.6 Zellkultur .. 41

2.7 Molekularbiologische Methoden ... 43

2.8 Statistische Methoden .. 48

3 Ergebnisse .. 49

3.1 Deskriptive Histologie des Frakturheilungsmodells .. 49

3.2 Immunhistologischer Nachweis von Midkine in der Frakturheilung 52

3.3 Immunhistologischer Nachweis von Mineralisationsproteinen im Frakturheilungsmodell ... 55

3.4 Immunhistologischer Nachweis neutrophiler Granulozyten im Frakturheilungsmodell ... 61

3.5 Immunhistologischer Nachweis von Makrophagen im Frakturheilungsmodell ... 64
Inhaltsverzeichnis

3.6 Expression möglicher MDK-Rezeptoren während der Differenzierung mesenchymaler Stammzellen... 69

3.7 Einfluss von rekombinanten Midkine auf die Genexpression von mesenchymalen Stammzellen... 71

4 Diskussion ... 74

4.1 Ergebnisse des immunhistologischen Nachweises von Midkine im Frakturheilungsmodell ... 75

4.2 Ergebnisse der Expression von Mineralisationsproteinen im Frakturheilungsmodell ... 77

4.3 Ergebnisse des Nachweises inflammatorischer Zellen im Frakturheilungsmodell ... 80

4.4 Ergebnisse der in-vitro Untersuchungen mesenchymaler Zellen............. 82

4.5 Schlussfolgerung und Ausblick ... 85

5 Zusammenfassung ... 86

6 Literaturverzeichnis.. 88

Danksagung .. 101

Lebenslauf ... 102
Abkürzungsverzeichnis

A. dest. Destilliertes Wasser
AKT Proteinkinase B
ALK anaplastic lymphoma kinase
ALPL human alkaline phosphatase gene
AMPase Adenosinmonophosphatase
ANK progressive ankylosis protein
ANKH human progressive ankylosis protein gene
AP Alkalische Phosphatase
APC adenosomatous polyposis coli
ATPase Adenosintriphosphatase
BMP bone morphogenetic protein
BMU bone multicellular unit
BSA Bovines Serumalbumin
Ca$^{2+}$ Kalzium-Ion
cbf-alpha1 core-binding factor subunit alpha-1
CO$_2$ Kohlenstoffdioxid
CT-Wert cycle threshold Wert
ΔCT Differenz der CT-Werte
DMP1 Dentin-Matrix-Protein 1
DNA Desoxyribonukleinsäure
EDTA Ethyldiamintetraacetat
EGF epidermal growth factor
ENPP1 ectonucleotide pyrophosphatase phosphodiesterase 1
EZM Extrazellulärmatrix
FGF fibroblast growth factor
FCS fetal calf serum
g Normfallbeschleunigung
GAPDH Glycerinaldehyd-3-Phosphat-Dehydrogenase
GDF growth differentiation factor
GPI-Anker Glycosylphosphatidylinositol-Anker
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
<th>Englischer Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSK3β</td>
<td>Glycogen synthase kinase 3β</td>
<td>Glycogen synthase kinase 3β</td>
</tr>
<tr>
<td>H⁺</td>
<td>Wasserstoffion oder Proton</td>
<td>Hydrogen ion</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Wasserstoffperoxid</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HA</td>
<td>Hydroxylapatit</td>
<td>Hydroxylapatite</td>
</tr>
<tr>
<td>HB-GAM</td>
<td>heparin-binding growth-associated molecule</td>
<td>Heparin-binding growth-associated molecule</td>
</tr>
<tr>
<td>HCL</td>
<td>Salzsäure</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
<td>Insulin-like growth factor</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
<td>Interleukin</td>
</tr>
<tr>
<td>K₀</td>
<td>Dissoziationskonstante</td>
<td>Dissociation constant</td>
</tr>
<tr>
<td>LRP</td>
<td>lipoprotein receptor-related protein</td>
<td>Lipoprotein receptor-related protein</td>
</tr>
<tr>
<td>Ly6G</td>
<td>lymphocyte antigen 6 complex, locus G</td>
<td>Lymphocyte antigen 6 complex, locus G</td>
</tr>
<tr>
<td>M-CSF</td>
<td>macrophagen colony-stimulating factor</td>
<td>Macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>M</td>
<td>Mol/Liter</td>
<td>Molar/Liter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimol/Liter</td>
<td>Millimol/Liter</td>
</tr>
<tr>
<td>MDK</td>
<td>Midkine-Protein</td>
<td>Midkine-Protein</td>
</tr>
<tr>
<td>Mdk</td>
<td>murines Midkine-Gen</td>
<td>Murine Midkine-Gen</td>
</tr>
<tr>
<td>Mdk⁻/⁻</td>
<td>Midkine-defiziente Maus</td>
<td>Midkine-deficient mouse</td>
</tr>
<tr>
<td>Mdk⁺/+</td>
<td>Wildtyp-Maus</td>
<td>Wildtype mouse</td>
</tr>
<tr>
<td>MEM</td>
<td>minimal essential Medium</td>
<td>Minimal essential Medium</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger-RNA</td>
<td>Messenger-RNA</td>
</tr>
<tr>
<td>MV</td>
<td>Matrixvesikel</td>
<td>Matrix vesicle</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Natrium-Ion</td>
<td>Sodium ion</td>
</tr>
<tr>
<td>NPP1</td>
<td>ectonucleotide pyrophosphatase phosphodiesterase 1</td>
<td>Ectonucleotide pyrophosphatase phosphodiesterase 1</td>
</tr>
<tr>
<td>OPG</td>
<td>Osteoprotegerin</td>
<td>Osteoprotegerin</td>
</tr>
<tr>
<td>OPN</td>
<td>Osteopontin</td>
<td>Osteopontin</td>
</tr>
<tr>
<td>PChol</td>
<td>Cholinphosphat</td>
<td>Choline phosphate</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet derived growth factor</td>
<td>Platelet derived growth factor</td>
</tr>
<tr>
<td>PEA</td>
<td>Phosphoethanolamin</td>
<td>Phosphoethanolamine</td>
</tr>
<tr>
<td>PHOSPHO1</td>
<td>phosphatase orphan 1</td>
<td>Phosphatase orphan 1</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

Pi Phosphat-Ion
PI3K Phosphoinositid-3-Kinase
PiT1 *sodium-dependent phosphate transporter 1*
PKB Proteinkinase B
PPI Pyrophosphationen
PTH Parathormon
PTN Pleiotrophin-Protein
Ptn murines Pleiotrophin-Gen
PTPRζ Protein-Tyrosin-Phosphatase-Rezeptor Typ ζ
qPCR Quantitative *Real-Time* PCR
RANKL *receptor activator of nuclear factor kappa-B ligand*
RNA Ribonukleinsäure
ROI *region of interest*
RT-PCR Reverse Transkriptase-PCR
RUNX2 *runt-related transcription factor 2*
SD Standardabweichung
SIBLING *small integrin-binding ligand N-linked glycoprotein*
Slc20a1 solute carrier family 20, member 1
STH somatotropes Hormon
TAE Tris-Acetat-EDTA
TGFβ *transforming growth factor beta*
TNFα Tumornekrosefaktor alpha
TNSALP *tissue non-specific alkaline phosphatase*
TRIS Tris(hydroxymethyl)-Aminomethan
VEGF *vascular endothelia growth factor*
VF Verdünnungsfaktor
Wnt Abkürzung aus *Wingless* und *Integration 1*
1 Einleitung

1.1 Aufbau des Knochengewebes

1.1.1 Knochenzellen

Im Knochengewebe finden sich verschiedene Zelltypen. Dazu gehören Zellen der mesenchymalen Vorläufer, z.B. Osteoblasten, Osteozyten und Knochenbelegzellen sowie Zellen der hämatopoetischen Zellreihe z.B. Osteoklasten.

- Osteoklasten

Osteoklasten sind durch Fusion von Blutmonozytenvorläufern entstandene mehrkernige Riesenzellen, die mineralisierten Knochen und Knorpelgewebe resorbieren. Um Knochen abzubauen bildet der Osteoklast mit Hilfe von Integrinen zwischen sich und der Knochenoberfläche ein abgeschlossenes, extrazelluläres Kompartiment (Howship-Lakune). In dieser Resorptionslakune werden durch Exozytose zahlreiche lysosomale Enzyme sezerniert. Die in der Zellmembran gelegenen H+-ATPasen sezernieren Protonen und generieren so ein saures extrazelluläres Milieu (pH 4,5). Der niedrige pH-Wert aktiviert wiederum die lysosomalen Enzyme wie saure Proteasen (z.B. Cathepsin K), Matrixmetalloproteasen und Phosphatasen (z.B. tartrate-resistant acid phosphatase), um so organische und anorganische Knochenbestandteile abzubauen [71]. Für die Differenzierung bzw. Aktivierung der Osteoklasten bedarf es die Anwesenheit verschiedener Wachstumsfaktoren wie z.B. macrophagen colony-stimulating factor (M-CSF), receptor activator of nuclear factor kappa-B
ligand (RANKL) und Hormonen wie z.B. Cholecalciferol (Vitamin D₃) und Parathormon (PTH) [10, 71].

- **Osteoblasten**

Aus mesenchymalen Stammzellen entstehen unter Einfluss von Wachstumsfaktoren wie epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP) und Transkriptionsfaktoren wie runt-related transcription factor 2 (RUNX2) Präosteoblasten, die sich dann in der Gegenwart von Hormonen wie z.B. Parathormon (PTH), Somatotropes Hormon (STH), Östrogene und weiteren Wachstumsfaktoren z.B. insulin-like growth factor (IGF) zu differenzierten Osteoblasten entwickeln [19, 20]. Aktive Osteoblasten synthetisieren und sezernieren die unmineralisierte Knochenmatrix (Osteoid) und sind damit knochenbildende Zellen. Allerdings ist der Mechanismus, der zur Mineralisation des Osteoids führt, bis jetzt noch nicht abschließend verstanden. Weiterhin sind die Osteoblasten auch an der Regulation des Knochenabbaus beteiligt, sie sezernieren z.B. RANKL und Osteoprotegerin (OPG), zwei Proteine, die die Osteoklastendifferenzierung beeinflussen. Nach Abschluss der Knochenneubildung induziert ein Teil der Osteoblasten den programmierten Zelltod durch Apoptose. Einige Zellen lagern sich als ruhende Osteoblasten der neuen Knochenoberfläche an und werden somit zu Knochenbelegzellen, während andere Zellen durch die neue Knochenmatrix eingeschlossen werden und sich zu Osteozyten differenzieren [33, 116].

- **Osteozyten**

Osteozyten liegen in der Knochenmatrix eingebettet in sogenannten Lakunen, die durch ein System aus Kanälen untereinander verbunden sind. In diesen als canaliculi bezeichneten Gängen befinden sich zytoplasmatische Fortsätze der Osteozyten, die über gap junctions die Osteozyten untereinander und mit den Zellen des Endosts und Periosts verbinden [19, 62]. Über dieses Netzwerk können die Zellen einerseits ernährt werden und andererseits über Abgabe von Botenstoffen den Zustand und die Reparaturbedürftigkeit der Matrix nach außen übermitteln [15, 54].

In der Differenzierung der Osteoblasten in Osteozyten spielt das Protein Dentin-Matrix-Protein 1 (DMP1) eine wichtige Rolle. Untersuchungen an Dmp1-defizienten Mäusen konnten Anomalien in der Osteozytenmorphologie und eine
Einleitung

Störung des gesamten Osteozytennetzwerkes zeigen. Die Abwesenheit von DMP1 hatte einen hypomineralisierten Knochenphänotyp (Osteomalazie) zur Folge [23].

- Knochenbelegzellen

1.1.2 Knochenmatrix

Die Extrazellulärmatrix (EZM) des Knochens lässt sich in organische und anorganische Bestandteile unterscheiden. Die Biegefestigkeit des Knochens, also die Vereinigung der Materialeigenschaften von Druck- und Zugfestigkeit, beruht auf der Zusammensetzung dieser besonderen interzellulären Substanz [66]. Der anorganische Anteil besteht aus verschiedenen Salzen, darunter Calciumphosphat, Magnesiumphosphat und Calciumcarbonat. Diese organisieren sich zu einem hexagonalen Kristallsystem (Hydroxylapatit), das ca. 95% der anorganischen EZM ausmacht und dem Knochen seine Härte und Festigkeit verleiht [26]. Für die Elastizität des Knochens sind die organischen, aus Proteinen bestehenden Anteile (Osteoid), verantwortlich. Das Osteoid besteht zum größten Teil aus Kollagen Typ I und zu einem weitaus kleineren Teil aus nicht-kollagenen Proteinen und Glykoproteinen wie z.B. Osteocalcin und Osteopontin. Sie nehmen möglicherweise Einfluss auf die Zellbindungen, die Knochenmineralisation und binden Kalzium und Hydroxylapatit-Kristalle [123, 124].
1.2 Knochenbildung und Knochenumbau
1.2.1 Arten der Ossifikation

Grundsätzlich unterscheidet man zwei verschiedene Arten der Knochenbildung (Ossifikation): die chondrale und die desmale Ossifikation. Man findet die unterschiedlichen Formen der Ossifikation sowohl während der Entstehung eines neuen Knochens (Osteogenese) und dessen Wachstums, als auch bei der Knochenheilung (Frakturheilung) [66, 91].

Bei der chondralen Ossifikation erfolgt die Verknöcherung über eine knorpelige Matrise. Das heißt, dass Chondrozyten zunächst ein knorpeliges Grundgerüst modellieren. Dieses wird dann in einem zweiten Schritt entweder durch einsprossende Gefäße, Osteoklasten und Osteoblasten in Knochen umgewandelt (enchondrale Ossifikation), oder es differenzieren sich im außen anliegendem Perichondrium Osteoblasten und bilden eine knöcherne Manschette (perichondrale Ossifikation). Dieser Vorgang lässt sich nicht nur in der Entwicklung der menschlichen Röhrenknochen wiederfinden, sondern auch während ihres Längenwachstums in den Epiphysenfugen beobachten [17, 66].

1.2.2 Knochenremodeling

Der Vorgang des Knochenumbaus wird *Remodeling* genannt. Dieser Umbauprozess findet zeitlebens statt, nicht nur während der Entstehung des Knochens oder während der Frakturheilung. So werden jährlich ca. 28% der Spongiosa und 4% der Kompakta des Knochens umgebaut, was einem durchschnittlichen Umbau von 10% der gesamten Skeletts pro Jahr entspricht [17, 66]. Dieser ständige Vorgang ist einerseits essenziell um eine Materialermüdung durch Reparatur von Mikroschäden zu verhindern und ermöglicht andererseits dem Knochen, sich an funktionelle Belastungen anzupassen und rasch verfügbares Kalzium in großen Mengen für den Organismus bereitzuhalten [20, 73].

Damit die Abbau- und Aufbauprozesse zeitlich und örtlich koordiniert werden können, organisieren sich Osteoblasten und Osteoklasten zu sogenannten *basic multicellular units* (BMU) [103]. An der Spitze dieser BMU bauen Osteoklasten bestehende Knochensubstanz ab. Ihnen folgen Osteoblasten, die eine erste Osteoidlamelle an die neue Knochenoberfläche niederlegen. Die nächste Gruppe Osteoblasten sezerniert die zweite Lamelle, wodurch die erste Osteoblastengeneration eingemauert wird und sich zu Osteozyten entwickelt. Auf diese Art und Weise entsteht die typische Schichtung bzw. Lamellenform des reifen Knochens [71, 74, 88].
1.3 Proteine der Mineralisation

- Alkalische Phosphatase

Einleitung

• **NPP1**

Für die Produktion von PPi ist hauptsächlich die Familie der *ectonucleotide pyrophosphatase phosphodiesterase* zuständig, wobei das Gen *Enpp1* die Isoform NPP1 kodiert, die auch auf Matrixvesikeln (MV) exprimiert wird. Ebenso wie TNSALP ist auch NPP1 auf der Oberfläche von Osteoblasten und Osteozyten zu finden. Darüber hinaus konnte gezeigt werden, dass NPP1 die Differenzierung von Osteoblasten und deren Genexpression beeinflusst [67, 68]. Beim Menschen verursacht eine *Loss-of-function*-Mutation des NPP1-Proteins Erkrankungen mit ektoper Ossifikation wie z.B. bei der autosomal rezessiven hypophosphatämischen Rachitis Typ 2, der Ossifikation des Ligamentum longitudinale posterius und der generalisierten infantilen arteriellen Kalzifikation [104].

• **ANK**

• PiT1
Der Natrium/Phosphat-Kotransporter *sodium-dependent phosphate transporter 1* (PiT1) wird durch das Gen *Slc20a1* kodiert. Er nützt den natürlichen Na+-Gradienten der Zellmembran, um im Gegenzug den Einstrom von Phosphat (Pi) durch die Membran zu ermöglichen. Man geht davon aus, dass PiT1 eine wichtige Rolle in der Gefäß- und Knochenphysiologie spielt. So konnte in Untersuchungen die verstärkte Expression von *Slc20a1* (mRNA) in hypertrophen Chondrozyten nachgewiesen werden. Dies führte zu der Annahme, dass PiT1 eine potentielle Rolle in der Gewebsmineralisation spielt. So wurde PiT1 auch in Zusammenhang mit der Kalzifikation von Gefäßen gebracht. Hierbei scheint der Transporter entscheidend Einfluss auf die Transdifferenzierung von glatten Muskelzellen in osteoblastenähnliche Zellen zu nehmen [25, 55]. In Experimenten an Ratten mit transgener Überexpression von *Slc20a1* konnte zwar ein Einfluss auf den Kalzium-Phosphat-Stoffwechsel festgestellt werden, jedoch nicht auf die Mineralisation der Knochenmatrix oder die Skelettentwicklung [8, 111]. *Slc20a1*-Knockout-Mäuse sterben noch in der embryonalen Phase, sodass hierdurch keine weiteren Rückschlüsse auf die Funktion des Transporters möglich sind [55].

• DMP1
Dentin Matrix Protein 1 (DMP1) gehört zur Familie der *small integrin-binding ligand N-linked glycoproteins* (SIBLING) und scheint auf unterschiedliche Weise an der Mineralisation beteiligt zu sein. Einerseits wirkt DMP1 intrazellulär als Transkriptionsfaktor, andererseits wird es im phosphorylierten Zustand in den extrazellulären Raum transportiert und fördert dort die Entstehung von HA-Kristallen [83]. In transgenen Mäusen mit *Dmp1*-Überexpression zeigte sich ein Knochenphänotyp mit höherer Mineralisationsdichte und insgesamt verbesserten kortikalen Knocheneigenschaften [7]. Auch in der Knochenheilung scheint DMP1 ein wichtige Rolle zu spielen, so konnte während der Frakturheilung eine starke Expression von *Dmp1* (mRNA) im Bereich des Kallus in Präosteozyten und Osteozyten nachgewiesen werden [117].
Abbildung 1: Schematische Abbildung der Regulierung des Phosphat-Pyrophosphat (Pi/PPi)-Spiegels in der Matrixvesikel (MV)-abhängigen Mineralisation

Hydroxalapatit (HA) formt sich aus Phosphat (Pi) und Kalzium (Ca2+) im Inneren von MV oder in ihrer unmittelbaren Umgebung. Dazu steigt der Pi-Spiegel von MV durch die Aktivität des Pi-Transporters PiT1/2 oder durch die Hydrolyse der Phosphomonoester Phosphoethanolamin (PEA) bzw. Cholinphosphat (PChol) mit Hilfe der phosphatase orphan 1 (PHOSPHO1). Der nötige Ca2+-Einstrom erfolgt über den Annexin-Kanal der MV. Extrazelluläres Pyrophosphat hemmt die Bildung von HA. Der Pool des extrazellulären Pyrophosphats (ePPi) stammt aus der ATP-Katalyse der eckonucleotid phosphodiesterase phosphodiesterase 1 (NPP1) und aus dem Export von intrazellulärem PPi durch den progressive ankylosis protein transporter (ANK) der Osteoblasten und Chondrozyten. Die tissue non-specific alkaline phosphatase (TNSALP) und die NPP1 der MV können dieses ePPi wieder in ePi umwandeln. In Osteoblasten und Chondrozyten gibt es verschiedene Rückkopplungsmechanismen. So inhibiert intrazelluläres PPI (iPPi), das durch Phosphatase-Aktivität aus intrazellulärem Adenosintriphosphat (iATP) entstand, die Expression von Ank und Enpp1, die für ANK bzw. NPP1 kodieren. Auf der anderen Seite verstärkt dieses iPPi die Expression von Osteopontin (Opn), einem Inhibitor von extrazellulärem HA in der Umgebung von Osteoblasten und Chondrozyten [125].
1.4 Frakturheilung

Die Frakturheilung ist ein einzigartiger, physiologischer Reparaturmechanismus, der eine narbenlose Regeneration und Wiederherstellung der ursprünglichen Eigenschaften ermöglicht [22]. Im Allgemeinen lassen sich dabei viele zelluläre und biochemische Aspekte der Skelettwicklung und des Wachstums wiederfinden [108].

1.4.1 Ablauf der Frakturheilung

Der Ablauf der Reparatur hängt von den mechanischen Bedingungen im Frakturspalt und der anatomischen Lokalisation der Fraktur ab. So unterscheidet man die metaphysäre bzw. epiphysäre Knochenheilung und die diaphysäre Knochenheilung, weiterhin unterteilt man in primäre und sekundäre Frakturheilung [16].

Die primäre oder direkte Frakturheilung bedarf einer äußerst stabilen Frakturversorgung mit minimaler interfragmentärer Beweglichkeit und Spaltgröße, Bedingungen wie sie nur selten im natürlichen Frakturheilungsverlauf zu finden sind. Sind diese Voraussetzungen gegeben, z.B. durch Druckplattenosteosynthese, kommt es zur Ausbildung sogenannter cutting cones, bestehend aus Osteoklasten, die den Frakturspalt überqueren und dabei einen länglichen Kanal generieren. Es folgen Osteoblasten, die den entstandenen Hohlräum wieder mit lamellären Knochengerweben auffüllen und so die knöcherne Verbindung der Frakturrenden wiederherstellen [44, 75]. Dieser Vorgang findet bei Spaltgrößen kleiner 0,1 mm statt und wird Kontakttheilung genannt. Bei Spaltgrößen bis zu 0,8 mm findet man die sogenannte Spaltheilung, bei der lamellärer Knochen zunächst senkrecht zur Knochenachse generiert wird und dadurch den Frakturspalt überbrückt. Es bedarf demnach einen zweiten Schritt, in dem durch Remodeling die achsengerechte Lamellenstruktur wieder hergestellt wird [72].

In den meisten Fällen der osteosynthetischen Frakturversorgung wie z.B. beim Fixateur externe verbleibt jedoch ein deutlich größerer Frakturspalt. Dieser ist mit einer erhöhten interfragmentären Beweglichkeit verbunden, die zur Ausbildung eines temporären Knochenkallus führt [16]. Diese Art der Frakturheilung wird sekundäre oder indirekte Frakturheilung genannt, sie stellt eine Kombination aus desmaler und enchondraler Ossifikation dar. Man beobachtet die enchondrale
Knochenentstehung vorwiegend in direkter Nähe zum Frakturspalt angrenzenden Bereichen mit geringer Stabilität. Die desmale Ossifikation hingegen ist vor allem in den proximalen und distalen Randbereichen der Frakturzone zu finden, wo sie zur direkten Ausbildung von knöchernem („harten“) Kallus führt [21]. Im Verlauf der sekundären Knochenheilung lassen sich im Wesentlichen vier überlappende Phasen der Frakturheilung unterscheiden: die Phase der Inflammation, die Phase des knorpeligen („weichen“) Kallus, die Phase des knöchernen („harten“) Kallus und die Phase des Remodelings [108].

Im Laufe der nächsten Phase kommt es zu einer starken Neubildung von Knorpel und damit zur Ausbildung eines periostalen, „weichen“ Kallus. Das Knorpelgewebe stabilisiert zunächst den Frakturspalt und liefert ein Gerüst für neues Knochengewebe. Die im Zentrum des wachsenden Kallus befindlichen hypertrophen Chondrozyten induzieren im weiteren Verlauf ihren apoptotischen Zelltod und werden durch einwandernde Gewebsosteoklasten und Osteoblasten
ersetzt. Damit beginnt die Umwandlung des Knorpelgewebes in trabekulären Knochen, wodurch der sogenannte „harte“ Kallus entsteht. Mit der Zeit wird so eine vollständige, knöcherne Überbrückung des Frakturspaltes erreicht. Die letzte Phase der Frakturheilung, das sogenannte Remodeling, sorgt schließlich durch die Reduktion des periostalen Kallus und die Umwandlung des Geflechtknochens in Lamellenknochen für die Wiederherstellung der ursprünglichen anatomischen Struktur des Knochens [29].

Abbildung 2: Verschiedene Modelle des Frakturheilungsverlaufs
(A) Beispielhafte histologische Abbildungen der vier Phasen des Frakturheilungsverlaufs. Zwischen der Phase 2 und 3 findet das Remodeling des weichen Kallus statt (soft callus remodeling). (B) Anabolismus/Katabolismus-Modell der Frakturheilung beschreibt die stattfindenden Umbauprozesse im Verlauf der Heilung, wobei das Konzept des nicht-spezifischen Anabolismus (non-specific anabolism) die frühe Wundreparatur und der nicht-spezifische Katabolismus (non-specific catabolism) das Remodeling des weichen Kallus beschreibt. (C) Schematische Übersicht im zeitlichen Verlauf der am Prozess der Frakturheilung beteiligten Zellen [108].

1.4.2 Regulation der Frakturheilung

• Pro-inflammatorische Zytokine

Man geht davon aus, dass die inflammatorischen Zytokine die Reparaturkaskade der Frakturheilung starten. So werden vor allem Interleukin-1 und -6 (IL-1 und IL-6) und Tumornekrosefaktor-alpha (TNFα) in der Initialphase der Frakturheilung von Zellen mesenchymalen Ursprungs, Entzündungszellen und Makrophagen sezerniert. Durch sie werden weitere inflammatorische Zellen rekruitiert, die die Synthese von extrazellulärer Matrix anregen und die Angiogenese stimulieren [53]. Die Expression von Interleukinen und TNFα ist in den ersten 24 Stunden nach Trauma am höchsten und nimmt dann schnell bis auf kaum nachweisbare Werte am dritten Tag nach Fraktur ab [13, 53]. Während die Expression von IL-1 und IL-6 erst wieder in der Phase des Remodelings der Frakturheilung ansteigt, beobachtet man einen Anstieg von TNFα am Ende der enchondralen Ossifikation, in Verbindung mit der Resorption von mineralisiertem Knorpel [28]. Dabei stimuliert TNFα die Osteoklasten und induziert die Apoptose von hypertrophen Chondrozyten. Die Abwesenheit von TNFα führt folglich zu einer Verzögerung der Resorption von mineralisiertem Knorpelgewebe und verhindert damit die Entstehung von neuem Knochen [28]. Die Expression von RANKL und OPG, zwei Mitglieder der TNF-Familie, sowie die Expression von M-CSF, allesamt Schlüsselfaktoren der Osteoklastogenese, steigt vor allem in der inflammatorischen Phase und während der Resorption von mineralisiertem Knorpel an. In der Phase des Remodelings treten wieder vermehrt IL-1 und IL-6 auf, während man keinen Anstieg von RANKL, OPG und M-CSF beobachtet [29].

• Transforming growth factor beta (TGFβ)

Einleitung

Chemotaxis, mesenchymale Zelldifferenzierung, Angiogenese und Synthese von EZM [97]. In Studien zur murinen Knochenheilung konnten maximale Expressionswerte von Bmp2 (mRNA) bereits in den ersten 24 Stunden nach Trauma festgestellt werden. Man geht daher davon aus, dass BMP2 für die Einleitung der Frakturheilung relevant ist. BMP3, -4, -7 und -8 zeigen einen begrenzten Expressionszeitraum zwischen Tag 14 und Tag 21 der Frakturheilung, wenn die Resorption von verkalktem Knorpel und die Rekrutierung von Osteoblasten am stärksten aktiv ist. BMP5 und -6 wiederum werden zwischen Tag 3 und 21 nach Trauma konstant exprimiert, was zu der Annahme führt, dass sie für die Regulation der desmalen und enchondralen Ossifikation gleichermaßen wichtig sind [13]. Verschiedene Studien kamen zu dem Ergebnis, dass BMP2, -6 und -9 die stärksten Aktivatoren der mesenchymalen Differenzierung zu Osteoblasten sind, während die restlichen BMP für die Reifung der osteoblastären Vorläufer verantwortlich sind [12].

Auch TGFβ unterstützt die Proliferation und Differenzierung von Osteoblasten und Chondrozyten und induziert darüber hinaus die Expression von extrazellulären Matrixproteinen. So wird beispielsweise der Zeitpunkt der maximalen Expression von TGFβ2 und -3 an Tag 7 der murinen Frakturheilung beobachtet, wenn die Synthese von Kollagen Typ 2 am höchsten ist. Daher wird davon ausgegangen, dass TGFβ2 und -3 essentiell für die Knorpelentstehung sind [3, 13].

- Angiogene Faktoren

Auch VEGF wird eine Schlüsselrolle in der Gefäßregeneration zugesprochen [51]. So konnte gezeigt werden, dass sowohl Osteoblasten als auch hypertrophe Chondrozyten große Mengen an VEGF während der Frakturheilung [27]. Dabei unterstützt VEGF nicht nur die Neo-Angiogenese durch Aggregation und Proliferation von mesenchymalen Stammzellen, sondern auch die Ausbildung von Kollateralgefäßen. Darüber hinaus konnte gezeigt werden, dass die Zugabe von exogenem VEGF die Frakturheilung zusätzlich fördert, während die Blockierung von VEGF-Rezeptoren die Gefäßbildung behindert und dadurch zu einer verzögerten Frakturheilung führt [1, 51].
Tabelle 1: Zusammenfassung der Phasen der Frakturheilung und der begleitenden Expression von Signal molekülen [1].

<table>
<thead>
<tr>
<th>Phase</th>
<th>Biologische Prozesse</th>
<th>Signal moleküle und ihrer Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
<td>Hämatoxon</td>
<td>IL-1, -6 und TNFα starten u. a. die Reparaturkaskade.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inflammation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGFβ, PDGF und BMP2 initiieren die Kallusbildung.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rekrutierung mesenchymaler Stammzellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GDF-8-Expression nur am Tag 1 lässt eine Regulation der Zellproliferation vermuten.</td>
</tr>
<tr>
<td>Knorpelbildung und periostale Reaktion</td>
<td>Chondrogenese und Beginn der enchondralen Ossifikation</td>
<td>TGFβ2, -β3 und GDF5 sind beteiligt an Chondrogenese und enchondraler Ossifikation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zellproliferation der desmalen Ossifikation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMP5 und -6 steigen an.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einwachsen von Gefäßen und Neo-Angiogenese</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angiopoetin und VEGF stimulieren das Einwachsen von Gefäßen in das Periost.</td>
</tr>
<tr>
<td>Knorpelresorption und primäre Knochenentstehung</td>
<td>Osteogenese</td>
<td>TNFα steigt in Verbindung mit der Resorption mineralisierten Knorpels an. Dies unterstützt die Rekrutierung mesenchymaler Stammzellen und leitet die Apoptose hypertropher Chondrozyten ein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rekrutierung von Knochenzellen und Entstehung von Geflechtknochen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RANKL und M-CSF steigen in Verbindung mit der Resorption mineralisierten Knorpels an.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apoptose von Chondrozyten und Matrixproteolyse; Rekrutierung von Osteoklasten und Knorpelresorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neo-Angiogenese</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEGFs sind hochreguliert und stimulieren die Neo-Angiogenese.</td>
</tr>
<tr>
<td>Sekundäre Knochenentstehung und Remodeling</td>
<td>Knochenremodeling in Verbindung mit Osteoblastenaktivität</td>
<td>IL-1 und -6 steigen in Verbindung mit dem Knochenremodeling an, während RANKL und M-CSF verminderte Expressionswerte zeigen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entstehung von Knochenmark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verminderte Expression der Mitglieder der TGFβ-Familie.</td>
</tr>
</tbody>
</table>
1.5 Familie der Heparin-bindenden Wachstumsfaktoren

1.5.1 Unterschiede und Gemeinsamkeiten von Pleiotrophin und Midkine

In adulten Organismus ist die Expression beider Wachstumsfaktoren im Regelfall sehr stark limitiert. Eine verstärkte Expression beider Wachstumsfaktoren findet man während der Reparatur geschädigter Gewebe, im Verlauf entzündlicher Reaktionen sowie in der Tumoriologie verschiedener Organe. Dabei unterstützen diese Wachstumsfaktoren unterschiedliche Funktionen, wie z.B. die Migration von neuronalen, osteoblastären und inflammatorischen Zellen, sowie das Wachstum von Fibroblasten, Keratinozyten und verschiedenen Tumorzellen [41, 80, 94].

1.5.2 Einfluss auf den Knochenstoffwechsel von Midkine und Pleiotrophin

In verschiedenen Untersuchungen konnte der Einfluss von Ptn auf den Knochen nachgewiesen werden. So zeigten in-vitro Experimente eine starke Expression von Ptn in murinen, osteoblastären MC3T3-E1-Zellen sowie einen positiven Effekt

In anderen Studien konnte nachgewiesen werden, dass MDK Einfluss auf die Knochenheilung nimmt. Beispielsweise zeigte die Arbeitsgruppe Ohta et al. 1999 einen positiven Einfluss von MDK auf die Chondrogenese. So konnte gezeigt

Die Ergebnisse aus diesen Studien am Mausmodell lassen zusammengefasst auf einen anabolen Effekt der *Mdk*-Defizienz schließen. Inwieweit sich die Frakturheilung *Mdk*-defizienter Mäuse von Wildtyp-Mäusen unterscheidet wurde bisher jedoch noch nicht untersucht.

1.5.3 Rezeptoren und Signalwege von Midkine und ihr Einfluss auf den Knochenstoffwechsel

Es konnten bereits mehrere, mögliche Rezeptoren für MDK beschrieben werden. So wäre es denkbar, dass abhängig vom zellulären Kontext unterschiedliche Rezeptoren exprimiert werden und dadurch die vielfältigen Wirkungen des Wachstumsfaktors vermittelt werden [47].

- **ALK**

Anaplastic lymphoma kinase (ALK) ist eine Rezeptor-Protein-Tyrosin-Kinase und bekannt aus der Tumorgenese des anaplastischen Riesenzelllymphoms oder des
Einleitung

nicht-kleinzeligem Lungenkarzinoms. ALK wird als möglicher Rezeptor von MDK angesehen, so zeigt MDK eine hohe Affinität zu ALK (K_D 100 pM) [110]. Es scheint auch gewisse funktionelle Gemeinsamkeiten von ALK und MDK zu geben, so dass beide Faktoren eine verbesserte Proliferation von unreifen sympathischen Nervenfasern. Umgekehrt lässt sich durch Knockdown von Alk oder Mdk die Proliferation der Nervenfasern unterdrücken [99]. Aktivierung von ALK, z.B. durch agonistische Antikörper, resultiert in einer Phosphorylierung von Transkriptionsfaktoren wie Erk oder Akt. Diese Phosphorylierung von ALK konnte jedoch für MDK bisher noch nicht eindeutig nachgewiesen werden [47].

• PTPRζ und Integrine

• LRP-Familie

MDK bindet zudem auch an verschiedene Mitglieder der low-density lipoprotein receptor-related protein (LRP)-Familie [77]. Proteine der LRP-Familie wiederum sind als Co-Rezeptoren im β-Catenin-abhängigen Wnt-Signalweg bekannt und damit auch an der Regulation des Knochenremodelings beteiligt. Dabei agieren vor allem LRP5 und LRP6 zusammen mit Molekülen der Frizzled-Familie als...
Einleitung

Oberflächenrezeptoren des Wnt-Signalwegs [30, 85]. Welchen besonderen Einfluss diese Moleküle auf den Knochenstoffwechsel nehmen können, zeigen bekannte Mutationen im Lrp5 Gen, die sowohl eine Osteoporose als auch eine erhöhten Knochenmasse zur Folge haben können [9, 37].

- **Syndecan-Familie**

Auch Mitglieder der Syndecan-Familie wurden als möglicher Rezeptoren für MDK beschrieben. Hier scheint die Bindung von MDK an Syndecan-1 und Syndecan-3 für die neuronale Entwicklung während der embryonalen Phase von Bedeutung zu sein [82].

- **Signaltransduktion**

Die Bindung von MDK an die unterschiedlichen Oberflächenrezeptoren könnte modulierend auf verschiedene intrazelluläre Signalkaskaden wirken. So könnten die zytoplastischen Tyrosinkinasedomänen der Rezeptoren zytoplastische Proteine wie Paxillin oder Src-Kinasen aktivieren und damit die Tyrosinphosphorylierung weiterer Signalmoleküle fördern. Weitere intrazelluläre Signalwege, die durch MDK induziert werden, könnten über die Familie der MAP-Kinasen oder Phosphoinositid-3-Kinase (PI3K) vermittelt werden. PI3K wiederum spielt zusammen mit der Proteinkinase B (AKT) eine Schlüsselrolle im PI3K/AKT-Signalweg, der eine wichtige Rolle in der Proliferation und im Überleben von Zellen zu spielen scheint [80]. Auch glycogen synthase kinase 3β (GSK3β) und β-Catenin, zwei Komponenten des Wnt/β-Catenin-Signalwegs, könnten so durch

Abbildung 3: Midkine-Rezeptoren und ihre möglichen intrazellulären Signalwege
Midkine (Mdk) bindet an Oberflächenrezeptoren wie z.B. anaplastic lymphoma kinase (Alk), Mitglieder der Syndecan-Familie, Rezeptor Protein-Tyrosin-Phosphatase Typ ζ (Rptp ζ) oder low-density lipoprotein receptor-related protein (Lrp). Bei der Bindung von Mdk an einige dieser Rezeptormoleküle spielen Chondroitinsulfatketten eine wichtige Rolle. Lrp und Molekülen der Frizzled-Familie (Fz) bilden zusammen mit Wnt-Liganden (Wnt) einen Rezeptorkomplex, der wahrscheinlich einen modulierenden Einfluss auf die glycogen synthase kinase 3β (Gsk-3β) und β-Catenin hat. β-Catenin aktiviert zusammen mit Transkriptionsfaktoren wie z.B. Lef-1 oder Tcf, Zielgene des Wnt/β-Catenin-Signalwegs. Außerdem können die zytoplasmatischen Domänen der Transmembranrezeptoren z.B. auch Src-Kinasen (Src) aktivieren, die wiederum andere intrazelluläre Signalmoleküle wie die Phosphoinosid-3-Kinase (PI3 kinase) oder die Proteinkinase B (Akt) aktivieren [126]
1.6 Ziele der Arbeit

Die an der Regulation der Frakturheilung beteiligten Moleküle und Signalwege sind bisher noch nicht vollständig aufgeklärt worden. Insbesondere die Rolle des Wachstumsfaktors *Mdk* im Zusammenhang mit der Frakturheilung und seines Einflusses auf die Mineralisation des Knochens ist unbekannt.

In der vorliegenden Arbeit sollten folgende Fragen beantwortet werden:

1. Welchen Einfluss hat die *Mdk*-Defizienz *in-vivo* auf die Expression von Mineralisationsproteinen während der Frakturheilung?
2. Welchen Einfluss hat die *Mdk*-Defizienz *in-vivo* auf die inflammatorischen Zellen im Kallus während der frühen Phase der Frakturheilung?
3. Welche potentiellen Rezeptorproteine von Midkine werden während der Differenzierung mesenchymaler Zellen exprimiert?
4. Welchen Einfluss hat MDK *in-vitro* auf die Expression von Zielgenen des Wnt/β-Catenin-Signalwegs in mesenchymalen Zellen?
2 Materialien und Methoden

2.1 Chemikalien und Lösungen

Tabelle 2: Liste der Chemikalien

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller/Vertrieb</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC Single Solution</td>
<td>Zytomed Systems</td>
<td>Berlin</td>
</tr>
<tr>
<td>Agarose</td>
<td>Invitrogen</td>
<td>Karlsruhe</td>
</tr>
<tr>
<td>Aquatex</td>
<td>Merck KGaA</td>
<td>Darmstadt</td>
</tr>
<tr>
<td>Ascorbatphosphat</td>
<td>Sigma-Aldrich</td>
<td>Steinheim</td>
</tr>
<tr>
<td>Augengel Vidisic</td>
<td>Dr. Mann Pharma</td>
<td>Berlin</td>
</tr>
<tr>
<td>Basenpaarleiter</td>
<td>Gibco BRL</td>
<td>Karlsruhe</td>
</tr>
<tr>
<td>BSA</td>
<td>SERVA GmbH</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Pfizer Pharma</td>
<td>Karlsruhe</td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma-Aldrich</td>
<td>St. Louis, USA</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Merck KGaA</td>
<td>Darmstadt</td>
</tr>
<tr>
<td>Ethanol</td>
<td>VWR International, LLC</td>
<td>Radnor, USA</td>
</tr>
<tr>
<td>FCS</td>
<td>PAA Laboratories GmbH</td>
<td>Pasching, Austria</td>
</tr>
<tr>
<td>Formalin</td>
<td>Merck KGaA,</td>
<td>Darmstadt</td>
</tr>
<tr>
<td>GelStar</td>
<td>Lonza Group AG</td>
<td>Basel, Schweiz</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Otto Fischar GmbH</td>
<td>Saarbrücken</td>
</tr>
<tr>
<td>Hämatoxylin</td>
<td>Merck KGaA</td>
<td>Darmstadt</td>
</tr>
<tr>
<td>Isofluran</td>
<td>Abbott Biotechnology GmbH</td>
<td>Wiesbaden</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>PAA Laboratories GmbH</td>
<td>Pasching, Austria</td>
</tr>
<tr>
<td>Methanol</td>
<td>Sigma-Aldrich</td>
<td>St. Louis, USA</td>
</tr>
<tr>
<td>Midkine</td>
<td>CYT-26805</td>
<td>Dianova, Hamburg</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Hersteller/Vertrieb</td>
<td>Ort</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sigma-Aldrich</td>
<td>St. Louis, USA</td>
</tr>
<tr>
<td>Omniscript RT Kit</td>
<td>Qiagen</td>
<td>Venlo, Niederlande</td>
</tr>
<tr>
<td>Paraplast Plus</td>
<td>McCormick Scientific</td>
<td>St. Louis, USA</td>
</tr>
<tr>
<td>PBS-Puffer</td>
<td>PAA Laboratories GmbH</td>
<td>Pasching, Austria</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>Biochrom</td>
<td>Berlin</td>
</tr>
<tr>
<td>QIAshredder Kit</td>
<td>Qiagen</td>
<td>Venlo, Niederlande</td>
</tr>
<tr>
<td>RLT-Puffer</td>
<td>Qiagen</td>
<td>Venlo, Niederlande</td>
</tr>
<tr>
<td>RNase-Free DNase Kit</td>
<td>Qiagen</td>
<td>Venlo, Niederlande</td>
</tr>
<tr>
<td>RNeasy Mini Kit</td>
<td>Qiagen</td>
<td>Venlo, Niederlande</td>
</tr>
<tr>
<td>Salzsäure</td>
<td>Carl Roth GmbH</td>
<td>Karlsruhe</td>
</tr>
<tr>
<td>Streptavidin-HRP-Conjugate</td>
<td>Zytomed Systems</td>
<td>Berlin</td>
</tr>
<tr>
<td>Tramalhydrochlorid</td>
<td>Gruenenthal</td>
<td>Aachen</td>
</tr>
<tr>
<td>Tri-Natriumcitrat</td>
<td>Merck KGaA,</td>
<td>Darmstadt</td>
</tr>
<tr>
<td>TRIS-Base</td>
<td>USB Corporation</td>
<td>Cleveland, USA</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Sigma-Aldrich</td>
<td>St. Louis, USA</td>
</tr>
<tr>
<td>Trypan-Blau</td>
<td>Sigma-Aldrich</td>
<td>Steinheim</td>
</tr>
<tr>
<td>Xylen</td>
<td>VWR International, LLC</td>
<td>Radnor, USA</td>
</tr>
<tr>
<td>Zitronensäuremonohydrat</td>
<td>Merck KGaA</td>
<td>Darmstadt</td>
</tr>
<tr>
<td>α-MEM</td>
<td>Biochrom</td>
<td>Berlin</td>
</tr>
<tr>
<td>β-Glycerophosphat</td>
<td>Sigma-Aldrich</td>
<td>Steinheim</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>Sigma-Aldrich</td>
<td>Steinheim</td>
</tr>
</tbody>
</table>
Material und Methoden

Tabelle 3: Liste der Lösungen und Puffer

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x TAE</td>
<td>40 mM TRIS-HCl, 1 mM EDTA; pH 8,0</td>
</tr>
<tr>
<td>1x TBST</td>
<td>6,1 g TRIS-Base, 8,8 g NaCl, 10 ml Triton-X100 in 1 L H₂O; pH 7,6</td>
</tr>
<tr>
<td>Alkalifarbstofflösung</td>
<td>110 µl Natriumnitrit-Lösung, 110 µl Diazoniumsalz-Lösung, 110 µl Naphtol-Alkali-Lösung in 5 ml H₂O</td>
</tr>
<tr>
<td>Antigen-Blocklösung</td>
<td>1% BSA in PBS-Puffer, 0,1% Triton X-100</td>
</tr>
<tr>
<td>Antikörper-Verdünnungspuffer</td>
<td>1% BSA in PBS-Puffer, 0,1% Triton X-100</td>
</tr>
<tr>
<td>Fixiernatriumlösung</td>
<td>5 g Natriumthiosulfat-Pentahydrat in 100 ml H₂O</td>
</tr>
<tr>
<td>Lysepuffer</td>
<td>RLT-Puffer, 1% 2-Mercaptoethanol</td>
</tr>
<tr>
<td>Peroxidase-Blocklösung</td>
<td>10 ml 30% H₂O₂, 90 ml 100% Methanol</td>
</tr>
<tr>
<td>Pyrogalluslösung</td>
<td>1 g Pyrogallol in 100 ml H₂O</td>
</tr>
<tr>
<td>Silbernitratlösung</td>
<td>5 g AgNO₃ in 100 ml H₂O</td>
</tr>
<tr>
<td>Weigerts Eisenhämatoxylin-Lösung A</td>
<td>1 g Hämatoxylin in 100 ml 95% Ethanol</td>
</tr>
<tr>
<td>Weigerts Eisenhämatoxylin-Lösung B</td>
<td>4 ml 29% Eisenchlorid-Lösung, 1 ml 1 M Salzsäure in 95 ml H₂O</td>
</tr>
<tr>
<td>Zitrat-Aceton-Formaldehyd-Lösung</td>
<td>5 ml 0,1 M Natriumcitrat, 13 ml Propanon, 1,6 ml 37% Propanon</td>
</tr>
<tr>
<td>Zitratpuffer</td>
<td>5,4 ml 0,1 M Zitronensäuremonohydrat, 24,6 ml 0,1 M Tri-Natriumcitrat in 300 ml H₂O; pH 6,0</td>
</tr>
</tbody>
</table>
Tabelle 4: Liste der Zellkulturmedien

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differenzierungsmedium</td>
<td>α-MEM, 10% FCS (hitzeinaktiviert), 1% Penicillin/Streptomycin, 1% L-Glutamin, 0,2 mM Ascorbatphosphat, 10 mM β-Glycerolphosphat, 10nM Vitamin D</td>
</tr>
<tr>
<td>Serumreduziertes Medium</td>
<td>α-MEM, 0,25% BSA, 1% Penicillin/Streptomycin, 1% L-Glutamin, 0,2 mM Ascorbatphosphat, 10 mM β-Glycerolphosphat, 10nM Vitamin D</td>
</tr>
<tr>
<td>Zellkultur Medium</td>
<td>α-MEM, 10% FCS (hitzeinaktiviert), 1% Penicillin/Streptomycin, 1% L-Glutamin, 10nM Vitamin D</td>
</tr>
</tbody>
</table>
2.2 Geräte und Software

Tabelle 5: Liste der verwendeten Geräte und Software

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modell/Version</th>
<th>Hersteller/Vertrieb, Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutschrank</td>
<td>Heracell 150i</td>
<td>ThermoScientific, USA</td>
</tr>
<tr>
<td>Einbettkassetten</td>
<td>M490-6</td>
<td>Simport, Kanada</td>
</tr>
<tr>
<td>Einbettstation</td>
<td>MPS/C+P</td>
<td>Slee medical GmbH, Mainz</td>
</tr>
<tr>
<td>Elektrophoresekammer</td>
<td>Horizon 11-14</td>
<td>Life Technologies GmbH, Karlsruhe</td>
</tr>
<tr>
<td>Fettstift</td>
<td>Dako Pen S2002</td>
<td>Dako, Dänemark</td>
</tr>
<tr>
<td>Fixateur externe</td>
<td>MouseExFix</td>
<td>RISystem, Schweiz</td>
</tr>
<tr>
<td>Geldokumentations-Programm</td>
<td>Fusion-Capt</td>
<td>Vilber Lourmat Deutschland GmbH, Eberhardzell</td>
</tr>
<tr>
<td>Geldokumentationsgerät</td>
<td>Fusion SL</td>
<td>Vilber Lourmat Deutschland GmbH, Eberhardzell</td>
</tr>
<tr>
<td>Gewebeeinbettautomat</td>
<td>MTM I/II</td>
<td>Slee medical GmbH, Mainz</td>
</tr>
<tr>
<td>Gigli-Säge</td>
<td>0.22 mm</td>
<td>RISystem, Schweiz</td>
</tr>
<tr>
<td>Inhalationsarbeitsplatz</td>
<td>IAS-38</td>
<td>Foehr Medical Instruments GmbH, Seeheim</td>
</tr>
<tr>
<td>Kamera Mikroskop</td>
<td>DFC420C</td>
<td>Leica Mikrosysteme Vertrieb GmbH, Wetzlar</td>
</tr>
<tr>
<td>Literaturprogramm</td>
<td>EndNote X6</td>
<td>Thomson Reuters</td>
</tr>
<tr>
<td>Magnetrührer</td>
<td>RCT Basic</td>
<td>IKA Labortechnik, Staufen</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>DMI6000</td>
<td>Leica Mikrosysteme Vertrieb GmbH, Wetzlar</td>
</tr>
<tr>
<td>Mini-Schanz</td>
<td>MountingPin 0.45 mm</td>
<td>RISystem, Schweiz</td>
</tr>
<tr>
<td>Objektträger</td>
<td>SuperFrost-Plus</td>
<td>VWR International, USA</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Modell-Version</td>
<td>Hersteller/Vertrieb, Ort</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>OneStep Plus System</td>
<td>Ver. 2.0</td>
<td>Applied Biosystems, Darmstadt</td>
</tr>
<tr>
<td>PCR Platten</td>
<td>96 Well</td>
<td>Greiner</td>
</tr>
<tr>
<td>Photospektrometer</td>
<td>NanoQuant M200</td>
<td>Teca, Schweiz</td>
</tr>
<tr>
<td>Rotationsmikrotom</td>
<td>CUT 6062</td>
<td>Slee medical GmbH, Mainz</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>LinRegPCR Ver.</td>
<td>Heart Failure Research Center (HFRC), Niederlande</td>
</tr>
<tr>
<td>Analysesoftware</td>
<td>2012.1</td>
<td></td>
</tr>
<tr>
<td>Schüttler</td>
<td>HS 501 D</td>
<td>IKA Labortechnik, Staufen</td>
</tr>
<tr>
<td>Software Mikroskop</td>
<td>LAS 4.1</td>
<td>Leica Mikrosysteme Vertrieb GmbH, Wetzlar</td>
</tr>
<tr>
<td>Software</td>
<td>i-Control</td>
<td>Teca, Schweiz</td>
</tr>
<tr>
<td>Photospektrometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistikprogramm</td>
<td>SPSS 19</td>
<td>IBM</td>
</tr>
<tr>
<td>Thermocycler</td>
<td>T1 Thermocycler</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Waage</td>
<td>440-47</td>
<td>Kern & Sohn GmbH, Balingen</td>
</tr>
<tr>
<td>Wärmeschrank</td>
<td>III 30</td>
<td>Memmert, Schwabach</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>WB 24</td>
<td>Medax Nagel KG, Kiel</td>
</tr>
</tbody>
</table>
2.3 Antikörper

Tabelle 6: Liste der verwendeten Antikörper

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Bestellnr.</th>
<th>Hersteller, Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Maus F4/80-Antikörper</td>
<td>ab6640</td>
<td>AbD Serotec, Kidlington, UK</td>
</tr>
<tr>
<td>AP-konjugiertes Anti-Ratten IgG</td>
<td>STAR131A</td>
<td>AbD Serotec, Raleigh USA</td>
</tr>
<tr>
<td>Biotinyliertes Anti-Ziegen IgG</td>
<td>SC-3854</td>
<td>Santa Cruz Biotechnology, Dallas USA</td>
</tr>
<tr>
<td>Monoklonaler Anti-Maus Ly6G(Purified)-Antikörper</td>
<td>127601</td>
<td>BioLegend, San Diego USA</td>
</tr>
<tr>
<td>Polyklonaler Anti-Maus DMP1-Antikörper</td>
<td>AF-4386</td>
<td>R&D Systems, Minneapolis USA</td>
</tr>
<tr>
<td>Polyklonaler Anti-Maus ENPP1-Antikörper</td>
<td>SAB2500355</td>
<td>Sigma-Aldrich, St. Louis USA</td>
</tr>
<tr>
<td>Polyklonaler Anti-Maus MDK-Antikörper</td>
<td>SC-1398</td>
<td>Santa Cruz Biotechnology Inc, Dallas USA</td>
</tr>
<tr>
<td>Ratten IgG</td>
<td>405401</td>
<td>BioLegend, San Diego USA</td>
</tr>
<tr>
<td>Ziegen IgG</td>
<td>I-9140</td>
<td>Sigma-Aldrich, St. Louis USA</td>
</tr>
</tbody>
</table>
2.4 Frakturheilungsstudie

2.4.1 Versuchstiere

In der vorliegenden Arbeit wurden insgesamt 24 weibliche Versuchstiere des Stammes C57BL/6 im Alter von 36 Wochen eingesetzt. Dabei handelte es sich um Wildtyp-Tiere (Mdk $^{+/+}$) und Mdk-defiziente Tiere (Mdk $^{-/-}$). Sowohl die Mdk-defizienten Tiere als auch die Wildtyp-Tiere wurden freundlicherweise von der Arbeitsgruppe um Prof. Dr. Amling des Universitätsklinikums Hamburg Eppendorf zur Verfügung gestellt [81].

Die Mäuse wurden in klimatisierten und fensterlosen Räumen des Tierforschungszentrums der Universität Ulm in Käfigen (Grundfläche von 370 cm2) in Gruppen von bis zu 5 Tieren gehalten. Die Tiere unterlagen einem Tag-Nacht-Rhythmus von 14 zu 10 Stunden und erhielten Standardfutter und Wasser ad libitum. Der Tierversuch wurde vom Regierungspräsidium Tübingen genehmigt (Registernummer 1079).

2.4.2 Aufbau der Frakturheilungsstudie

Um den Einfluss von Midkine auf den Frakturheilungsverlauf durch histologische und immunhistologische Methoden untersuchen zu können, wurden jeweils 12 Mdk $^{+/+}$ und 12 Mdk $^{-/-}$ Tiere in einem standardisierten Operationsverfahren im Bereich der rechten Femurdiaphyse osteotomiert und anschließend mit einem Fixateur externe versorgt.

Zur Darstellung des zeitlichen Verlaufs der Frakturheilung in beiden Versuchsgruppen wurden drei verschiedene Tötungszeitpunkte (Tag 4, Tag 10 und Tag 21) nach dem Operationstag (Tag 0) gewählt. An diesen drei
Untersuchungszeitpunkten wurden histologische Schnitte des Frakturspaltes angefertigt und anschließend mit Hilfe immunhistologischer Färbungen hinsichtlich der Expression verschiedener Proteine untersucht.

Tabelle 7: Liste aller Versuchstiere und ihrer Aufteilung auf die Versuchsgruppen und den Tötungszeitpunkt

<table>
<thead>
<tr>
<th>Tötungstag</th>
<th>Genotyp</th>
<th>Versuchstier-Nr.</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag 4</td>
<td>Mdk (^{+/+})</td>
<td>1067, 1093, 1107, 1108</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mdk (^{+-})</td>
<td>1102, 1103, 1190, 1191</td>
<td>4</td>
</tr>
<tr>
<td>Tag 10</td>
<td>Mdk (^{+/+})</td>
<td>1705, 9346, 9347, 9348</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mdk (^{+-})</td>
<td>994, 1019, 1020, 1021</td>
<td>4</td>
</tr>
<tr>
<td>Tag 21</td>
<td>Mdk (^{+/+})</td>
<td>11426, 11428, 1056, 1118</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mdk (^{+-})</td>
<td>1037, 1039, 1040, 1074</td>
<td>4</td>
</tr>
<tr>
<td>Anzahl der Versuchstiere insgesamt</td>
<td></td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

2.4.3 Operationsverfahren

Die Schnittosteotomie und die Frakturversorgung durch Fixateur externe wurde in den beiden Versuchsgruppen in einem standardisierten Operationsverfahren durchgeführt [40, 102].

Hierfür bekamen alle Tiere zur Schmerz- und Stressreduktion während der perioperativen Phase jeweils zwei Tage vor der geplanten Operation bis drei Tage nach der Operation 12.55 mg Tramadol in eine 500 ml fassende Trinkwasserflasche gemischt.

Zur Durchführung der Anästhesie der Versuchstiere diente ein Inhalationsanästhesie-Arbeitsplatz für kleine Labortiere. Dabei kam das Inhalationsanästhetikum Isofluran zum Einsatz. Zur Einleitung der Narkose erhielten die Versuchstiere initial ein Isofluran-Sauerstoff-Gasmischung mit 5% bis 6% Isofluran in einer nach außen abgeschlossenen Inhalationskammer. Anschließend wurde die Narkose bis zum Ende der Operation mit reduzierter Isoflurankonzentration von 1,5% bis 2% über eine Inhalationsmaske fortgesetzt. Zur Beurteilung der korrekten Narkosetiefe wurde vor Beginn der Operation der
Reflexstatus (Zwischenzehen- und Schwanzreflex) der Maus überprüft. Um während der Anästhesiedauer ein Austrocknen der Kornea des Versuchstieres zu verhindern, wurden je ein Tropfen Augengel aufgetragen und die Augen anschließend mit Klebestreifen verschlossen. Zur Prophylaxe operationsbedingter Wundinfektionen erhielt das Versuchstier anschließend eine subkutane Injektion von 500 µl 0,9% NaCl-Lösung versetzt mit 45 mg/kg Clindamycin.

2.4.4 Postoperativer Verlauf und Tötung

Entsprechend dem Versuchsprotokoll erfolgte die Tötung der Tiere in der Kohlendioxidkammer am jeweils festgelegten Versuchstag.
2.5 Histologische Methoden

2.5.1 Aufbereitung histologischer Proben

Anschließend folgte eine Fixierung der Präparate in 3,5% Formaldehyd über mindestens 24 Stunden. Dieser Schritt wurde bei Raumtemperatur auf einem Schüttler durchgeführt. Vor der Entkalkung der Knochenpräparate, schloss sich ein zweistündiger Waschschritt unter Leitungswasser zur Entfernung des Fixiermediums an. Danach folgte die Entkalkung in 20% EDTA-Lösung über ca. 10 bis 12 Tage.

2.5.2 Einbettung und Schneiden der Präparate

Direkt im Anschluss an die Entkalkung und einem weiteren Waschschritt unter Leitungswasser folgte die Entwässerung der Knochenpräparate in aufsteigender Alkoholreihe mit Hilfe eines Gewebeeinbettautomaten.
Material und Methoden

Tabelle 8: Protokoll der aufsteigenden Alkoholiehe des Gewebeeinbettautomaten

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Zeit</th>
<th>Anzahl der Inkubationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% reiner Alkohol</td>
<td>45 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>70% reiner Alkohol</td>
<td>50 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>70% reiner Alkohol</td>
<td>60 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>80% reiner Alkohol</td>
<td>60 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>90% reiner Alkohol</td>
<td>60 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>100% reiner Alkohol</td>
<td>60 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>100% reiner Alkohol</td>
<td>60 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>Xylol (rein)</td>
<td>90 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>Xylol (rein)</td>
<td>90 Minuten</td>
<td>1 x</td>
</tr>
<tr>
<td>Paraffin 60°C</td>
<td>60 Minuten</td>
<td>4 x</td>
</tr>
</tbody>
</table>

2.5.3 Entparaffinieren der Gewebsschnitte

Um eine immunhistologische Färbung zu ermöglichen, mussten die Schnittpräparate zunächst entparaffiniert und rehydriert werden. Hierfür mussten die Objektträger für 10 bis 20 min bei ca. 60°C im Wärmeschrank erhitzt und anschließend in einer absteigende Alkoholreihe rehydriert werden.

Tabelle 9: Protokoll der absteigenden Alkoholreihe zur Rehydrierung der histologischen Schnittpräparate

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Zeit</th>
<th>Anzahl der Inkubationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylol</td>
<td>5 min</td>
<td>2 x</td>
</tr>
<tr>
<td>100% Ethanol</td>
<td>5 min</td>
<td>2 x</td>
</tr>
<tr>
<td>90% Ethanol</td>
<td>5 min</td>
<td>2 x</td>
</tr>
<tr>
<td>70% Ethanol</td>
<td>5 min</td>
<td>1 x</td>
</tr>
<tr>
<td>A. dest.</td>
<td>5 min</td>
<td>2 x</td>
</tr>
</tbody>
</table>

Nach dem Entparaffinieren konnten die Schnittpräparate histologisch bzw. immunhistochemisch gefärbt werden.

2.5.4 Safranin O Färbung

Die Safranin O Färbung eignet sich besonders zur Identifikation von Knorpelgeweben in histologischen Schnitten, da sich durch diese Methode proteoglykanhaltige Gewebe orange bis rot färben, während sich Zellzytoplasma grünlich und Zellkerne schwarz darstellen.

Nach erfolgter Entparaffinierung der Schnitte wurden diese für 4 min mit Weigerts Eisenhämatoxilin-Lösung (Lösung A und B 1:1) gefärbt. Daraufhin wurden sie kurz in angesäuertem Alkohol (1 ml 1 M HCl in 100 ml 70% Alkohol) inkubiert und anschließend für 5 min unter fließendem Leitungswasser gewässert. Es folgte ein 3 min Färbeschritt mit 0,02% Echtgrün und einer 30 sec Spülung mit 1% Essigsäure. Nach 5 min in 0,1% Safranin O-Lösung konnten die gefärbten Objektträger schließlich eingedeckt werden.

2.5.5 Immunhistologische Färbungen

Zur Detektion der Proteine MDK, DMP-1 und ENPP-1 sowie der Makrophagen wurde jeweils das gleiche Protokoll verwendet. Zum Einsatz kam eine sogenannte

Um eine Hintergrundfärbung der Schnitte durch die endogene Peroxidaseaktivität zu verhindern, wurde die Schnitte nach der Rehydrierung in einer 3% Wasserstoffperoxid-Lösung für 15 min inkubiert. Es folgte eine zweimalige Spülung der Objektträger für 5 min in entmineralisiertem Wasser.

Anschließend wurden die Schnitte zur Demaskierung der gesuchten Antigene in einer Küvette mit 100 ml Zitratpuffer bei pH 6,0 für 15 min in einem 95°C warmen Wasserbad erhitzt. Nach einer Abkühlungsphase von 15 min konnten die Objektträger in eine TRIS-Puffer-Lösung bei pH 7,6 für 5 min gewaschen werden.

Um bei der weiteren Bearbeitung der Schnitte die Menge an eingesetzten Antikörpern und Chemikalien zu reduzieren, wurden die Präparate nun mit einem Fettstift in ausreichendem Abstand umfahren.

Dann wurden jeweils 50 µl einer 10% BSA-Lösung auf die jeweiligen Präparate gegeben, um freie Bindungsstellen zu Beginn der Färbungen zu blockieren. Diese wurden anschließend für eine Stunde bei Raumtemperatur in einer feuchten Kammer inkubiert. Danach wurden die beiden auf dem Objektträger befindlichen Gewebeschnitte von der Serumlösung durch Abklopfen gereinigt. Im folgenden Schritt wurde jeweils eine Probe auf dem Objektträger mit einem Primärantikörper behandelt, während die zweite Probe (Negativkontrolle) mit einem entsprechenden nichtbindenden Immunglobulin der Spezies des Primärantikörpers behandelt wurde.

<table>
<thead>
<tr>
<th>Typ Farbung</th>
<th>Datum</th>
<th>Tiernummer + Projekt-Nr.</th>
<th>Probe</th>
<th>Negativkontrolle</th>
</tr>
</thead>
</table>

Abbildung 6: Schematische Darstellung der Aufteilung und Beschriftung der Objektträger

Material und Methoden

Tabelle 10: Für die immunhistologischen Färbungen eingesetzte Primärantikörper und ihre Verdünnungsverhältnisse

<table>
<thead>
<tr>
<th>Primärantikörper</th>
<th>Verdünnungsverhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoklonaler Anti-Maus MDK-Antikörper</td>
<td>1:100</td>
</tr>
<tr>
<td>Polykonaler Anti-Maus DMP1-Antikörper</td>
<td>1:400</td>
</tr>
<tr>
<td>Polykonaler Anti-Maus ENPP1-Antikörper</td>
<td>1:500</td>
</tr>
<tr>
<td>Polykonaler Anti-Maus Ly6G-Antikörper</td>
<td>1:300</td>
</tr>
<tr>
<td>Polykonaler Anti-Maus F4/80-Antikörper</td>
<td>1:500</td>
</tr>
</tbody>
</table>

Am nächsten Tag folgte ein dreimaliger Waschschritt von jeweils 2 min in 100 ml TRIS-Puffer-Lösung (TBST bei pH 6,4), bevor alle Proben mit einem biotinylierten Sekundärantikörper im Verdünnungsverhältnis 1:100 behandelt wurden. Die anschließende, halbstündige Inkubationsphase bei Raumtemperatur in der feuchten Kammer ermöglichte die Bindung des Sekundärantikörpers an den Primärantikörper. Es folgte abermals eine dreimalige TRIS-Puffer-Spülung für jeweils 2 min, um überschüssigen, nichtgebundenen Sekundärantikörper wieder zu entfernen.

2.5.6 Auswertung der histologischen Präparate

Zunächst wurden alle Schnittpräparate der beiden Untersuchungsgruppen deskriptiv analysiert. Im Falle der inflammatorischen Zellen wurde anschließend eine quantitative Auswertung der Schnitte durchgeführt.

Voraussetzung für die Auszählung der neutrophilen Granulozyten und der Makrophagen war die Definition der Region of Interest (ROI), also der Region besonderen Interesses. Dies gewährleistete eine einheitliche und möglichst standardisierte Auswertung der Präparate und ermöglichte eine direkte Vergleichbarkeit der beiden Versuchsgruppen. Der Ausgangspunkt für die Erstellung der ROI war die Einteilung Frakturkallus in vier Quadranten (A, B, C, D). Die Quadranten wurden definiert durch den Knochenschaft als horizontale Linie und eine senkrecht zur Knochenachse verlaufenden Linie durch die Mitte des Frakturspaltes. Die Auszählung erfolgte lichtmikroskopisch bei 200x Vergrößerung mit Hilfe eines Zählokulars.
Material und Methoden

Abbildung 7: Schema zur Bestimmung der Zellzahl in einer Region of interest (ROI)

Im Falle der quantitativen Auswertung der Makrophagen wurde eine ROI innerhalb des endostalen Kallus definiert. Hierfür identifizierten wir für jedes einzelne Präparat die Region mit der höchsten Dichte positiver Zellen im Bereich des an den Frakturspalt angrenzenden endostalen Kallus. Die Fläche der ROI betrug für jedes der ausgewerteten Präparate 0,305 mm². Innerhalb dieser ROI bestimmten wir die Anzahl der Makrophagen und interpolierten sie anschließend auf die Zellzahl pro mm².
2.6 Zellkultur

2.6.1 C3H10T1/2-Zellen

Die verwendeten Zellen der Zelllinie C3H10T1/2 wurden von der American Type Culture Collection (ATCC, Manassas, VA, USA) erworben. Diese pluripotente fibroblasten-ähnliche Zelllinie wurde ursprünglich aus C3H Maus-Embryozellen isoliert [101].

2.6.2 Versuchsaufbau Zellversuch

Die C3H10T1/2 Zellen wurden aufgetaut und in Zellkulturmedium kultiviert und ausgesät. Die Zellen wurden schließlich für 5, 14 bzw. 21 Tage differenziert. An Tag 5, 14 bzw. 21 der Differenzierung wurden die Zellen entweder für 1 Stunde (+1h MDK) oder für 6 Stunden (+6h MDK) mit rekombinantem Midkine stimuliert. Es wurde auch eine nichtstimulierte Kontrolle (- MDK) mitgeführt.

Tabelle 11: Versuchsaufbau zur Stimulation von C3H10T1/2-Zellkulturen mit rekombinantem Midkine (MDK)

<table>
<thead>
<tr>
<th>Zellen</th>
<th>Tag 5</th>
<th>Tag 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3H10T1/2</td>
<td>- MDK</td>
<td>- MDK</td>
</tr>
<tr>
<td></td>
<td>+ 1h MDK</td>
<td>+ 1h MDK</td>
</tr>
<tr>
<td></td>
<td>+ 6h MDK</td>
<td>+ 6h MDK</td>
</tr>
</tbody>
</table>

2.6.3 Aussaat und Kultivierung von C3H10T1/2-Zellen

Alle verwendeten Zellen wurden im Brutschrank bei 37°C, 5% CO₂ und gesättigter Luftfeuchtigkeit kultiviert. Die C3H10T1/2 Zellen wurden aufgetaut und im Zellkulturmedium in Zellkulturflaschen kultiviert. Nachdem sich ein dichter Zellrasen gebildet hatte, wurden die Zellen manuell gezählt und zu je 110.000 Zellen pro Well ausgesät. Es folgte eine Vorkultivierungsphase von 2 Tagen im Zellkulturmedium. Anschließend wurden die Zellen im Differenzierungsmedium für 4, 13 bzw. 20 Tage differenziert. Am Tag 4, 13 bzw. 20 erfolgte ein Mediumwechsel zu serumreduziertem Medium, bevor die Zellen schließlich am Tag 5, 14 bzw. 21 für jeweils 1 bzw. 6 h mit 100 ng/ml rekombinantem Midkine stimuliert wurden.
2.6.4 Bestimmung der Viabilität und Zellzahl

Anschließend wurden unter dem Lichtmikroskop 4 Quadrate der Zählkammer ausgezählt. Die Summe der Zellen (∑Q1–n) der gezählten Quadrate wurde durch deren Anzahl geteilt, um einen Durchschnittswert zu erhalten. Dieser Durchschnittswert wurde schließlich mit dem spezifischen Verdünnungsfaktor (VF) der Zählkammer und der Trypanlösung (10.000 VF_{Zählkammer} x 2 VF_{Trypan-Blau} = 20.000 VF_{insgesamt}) multipliziert. Durch dieses Verfahren konnte die durchschnittliche Zellzahl/ml ermittelt werden.

2.6.5 Stimulation von C3H10T1/2-Zellen durch rekombinantes Midkine

Material und Methoden

2.7 Molekularbiologische Methoden

2.7.1 Genexpressionsanalyse

2.7.2 Isolation und Konzentrationsbestimmung der Gesamt-RNA

Zur Isolierung der mRNA aus den Zellkulturen wurden die Zellpellets zunächst mit 350 µl des Lyse-Puffers (RLT Buffer) versetzt und auf den Filtereinsatz (QIAshredder) im Zentrifugengefäß pipettiert. Nach 2 min in der Zentrifuge bei 20.000 x g wurde dem erhaltenen Lysat ein Volumen 70% Ethanol zugesetzt und mehrmals mit der Pipette aufgesaugt. Danach wurde das Eluat auf eine RNeasy-Säule pipettiert und bei 8.000 x g für 15 sec zentrifugiert. Der Durchfluss wurde verworfen. Es folgte ein weiterer Waschschritt mit 500 µl Pufferlösungen (Buffer RW1), bei wiederum 8.000 x g für 15 sec. Der Durchfluss wurde abermals verworfen. Das Retentat im Filter wurde schließlich mit 80 µl DNase-Lösung (10 µl DNAse Stammlösung + 70 µl RDD Buffer) für 15 min bei Raumtemperatur inkubiert. Daraufhin wurde wieder mit 500 µl Pufferlösung (Buffer RW1) gewaschen und das Eluat verworfen. Nach Überführung der Säulen in ein neues Sammelgefäß wurde zweimal mit 500 µl Waschpuffer (Buffer RPE) zentrifugiert und der Durchfluss verworfen. Im letzten Schritt wurden die Säulen wiederum in ein neues Eppendorfgefäß überführt und mit 50 µl RNase-freiem Wasser bei 20.000 x g für 1 min zentrifugiert. Im anschließenden Schritt konnte die Qualität und Konzentration der gewonnen RNA bestimmt werden.

2.7.3 Reverse Transkription (cDNA-Synthese)

Die Reverse Transkription beschreibt die Synthese von cDNA aus RNA, d.h. dass RNA als Matrise für die Transkription von cDNA genutzt wird. Hierfür benötigt man ein spezielles Enzym, die sogenannte Reverse Transkriptase. Dieses Enzym ist in vielen Retroviren zu finden, z.B. im HIV (*human immunodeficiency virus*). Das hier verwendete rekombinante Enzym Omniscript (Qiagen) hat drei verschiedene Aktivitäten: eine RNA-abhängige DNA-Polymerase, eine RNA-DNA-Hybrid-abhängige Exoribonuklease (RNase H) und eine DNA-abhängige DNA-Polymerase.

Für die Synthese von cDNA aus mRNA wurde zunächst die mRNA aufgetaut und mit RNase-freiem Wasser verdünnt, sodass jede Probe 1 µg mRNA auf 12 µl Volumen enthielt. Danach wurden die RNA-Lösungen bei 65°C für 5 min denaturiert und anschließend sofort auf 4°C abgekühlt um eine Renaturierung zu verhindern. In der Zwischenzeit konnte der Mastermix nach dem Protokoll angesetzt werden.

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>pro 20 µl-Ansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionspuffer RT (10x)</td>
<td>2 µl</td>
</tr>
<tr>
<td>dNTPs (0,5 mM)</td>
<td>2 µl</td>
</tr>
<tr>
<td>RNase Inhibitor (10 U/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Oligo-dT-Primer (5mM)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Random-Hexamer-Primer (50 mM)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Omniscript (4 U)</td>
<td>1 µl</td>
</tr>
<tr>
<td>mRNA (1 µg in 12µl RNase freiem H₂O)</td>
<td>12 µl</td>
</tr>
</tbody>
</table>

Die anschließende Transkription erfolgte zunächst während einer Inkubation bei 37°C für 60 min und danach bei 42°C für weitere 60 min. Direkt im Anschluss konnten die Proben bei -20°C tiefgefroren werden.
2.7.4 Standard-PCR

Für die PCR-Reaktion wurde 1 µl der cDNA, 5 µl des Primer-Mix (0,5 µM) und 10 µl PCR-Mix mit 4 µl A. dest. auf ein Gesamtvolumen von 20 µl aufgefüllt. Das PCR-Protokoll des Thermocyclers startete mit einer initialen Enzymaktivierung von 15 min bei 95 °C, darauf folgten 32 Zyklen mit den Schritten Denaturierung 1 min, 95 °C, Primer-Annealing 45 sec, 60 °C und Elongation 1 min, 72 °C. Abschließend wurde eine finale Extension für 15 min bei 72 °C durchgeführt. Im Anschluss wurden die Proben auf ein 2% Agarose-Gel aufgetragen.

2.7.5 Quantitative Real-Time-PCR

Das Prinzip der quantitativen Real-Time-PCR (qPCR) beruht auf der Quantifizierung des PCR-Produktes über die mit der Menge des PCR-Produktes proportionale Zunahme des DNA-bindenden Fluoreszenzfarbstoffs (SYBR Green) während der einzelnen PCR-Zyklen. Um die relative Expression der Zielgene in den Proben zu bestimmen, wurde diese stets auf das Housekeeping-Gen β-Actin normiert.

In der folgenden Tabelle sind die zur Detektion der Zielgene verwendeten Primersequenzen gelistet.

Tabelle 13: Primersequenzen der quantitativen Real-Time-PCR

<table>
<thead>
<tr>
<th>Zielgen</th>
<th>Sequenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Actin</td>
<td>5’-tga agt gtg aag ttg aca tcc-3’</td>
</tr>
<tr>
<td></td>
<td>5’-ctt ctg cat cct gtc aca aa-3’</td>
</tr>
<tr>
<td>Alpl</td>
<td>5’-gtc cat tac cct ggg ttt-3’</td>
</tr>
<tr>
<td></td>
<td>5’-gag cca gac caa aga tgg ag-3’</td>
</tr>
<tr>
<td>Dmp-1</td>
<td>5’-agt gaa gag gag aac ctc aa-3’</td>
</tr>
<tr>
<td></td>
<td>5’-ctg agg ctc ttc ttg gac tc-3’</td>
</tr>
<tr>
<td>Protein</td>
<td>5′-Sequence</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>c-Fos</td>
<td>5′-cca gtc aag agc atc agc aa</td>
</tr>
<tr>
<td>cMyc</td>
<td>5′-ccc caa ggt agt gat cct ca</td>
</tr>
<tr>
<td>Syndecan-3</td>
<td>5′-ata ctg gag cgg aag gag gt</td>
</tr>
<tr>
<td>Ptprζ</td>
<td>5′-aga ctg gaa cta acc tgc cac cac</td>
</tr>
<tr>
<td>Lrp1</td>
<td>5′-cga gct ctg tga cca gtt tt</td>
</tr>
<tr>
<td>α4-Integrin</td>
<td>5′-agc aac agc ttt tcc aga gc</td>
</tr>
<tr>
<td>α6-Integrin</td>
<td>5′-cgt tct tcg ttc cag gtt gt</td>
</tr>
<tr>
<td>β1-Integrin</td>
<td>5′-cct act ggt ccc gac atc at</td>
</tr>
<tr>
<td>Lrp6</td>
<td>5′-tca ctg agt gcg aag acc ac</td>
</tr>
</tbody>
</table>
Alle verwendeten Primer wurden standardmäßig in folgendem Reaktionsansatz mit 25 µl Gesamtvolumen verwendet:

Tabelle 14: Zusammensetzung des Reaktionsansatzes für die quantitative Real-Time-PCR

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>pro 25 µl-Ansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x SYBR-Green® Mastermix</td>
<td>12,5 µl</td>
</tr>
<tr>
<td>ROX® Dye</td>
<td>0,25 µl</td>
</tr>
<tr>
<td>Primer (5µM) Forward</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer (5µM) Reverse</td>
<td>1 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>8,25 µl</td>
</tr>
<tr>
<td>cDNA</td>
<td>2 µl</td>
</tr>
</tbody>
</table>

Zur Durchführung der qPCR wurden 25µl Reaktionsansatz in 96-Well Platten pipettiert. Das Programm des Thermocyclers sah dabei wie folgt aus:

Tabelle 15: PCR-Programm des Thermocyclers für die quantitative Real-Time-PCR

<table>
<thead>
<tr>
<th>Zyklus</th>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding Stage</td>
<td>50°C</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>95°C</td>
<td>2 min</td>
</tr>
<tr>
<td>Cycling Stage</td>
<td>95°C</td>
<td>15 sec</td>
</tr>
<tr>
<td>40 Zyklen</td>
<td>60°C</td>
<td>1 min</td>
</tr>
<tr>
<td>Melt curve Stage</td>
<td>95°C</td>
<td>15 sec</td>
</tr>
<tr>
<td></td>
<td>60°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td>+ 0,3°C Schritte bis 95°C</td>
<td>15 sec</td>
</tr>
</tbody>
</table>

2.7.6 Auswertung der quantitativen Real-Time-PCR

Die Auswertung der qPCR erfolgte mittels Effizienz-korrigierter delta-delta-CT Methode. Als Referenzgen wurde das Haushaltsgen β-Actin verwendet. Die Software des Thermocyclers (StepOne™ Software, Applied Biosystems) lieferte hierfür die CT-Werte. Daraufhin wurde mit Hilfe der Software LinRegPCR die
mittlere Effizienz der PCR für jedes einzelne Gen bestimmt [93]. Die durchschnittliche Effizienz der qPCR wurde später für die Korrektur der delta-delta-CT-Werte verwendet. Dabei wurde die folgende Formel verwendet:

\[
\text{Rel. Änderung der Genexpression} = \frac{E^{\Delta CT(\text{Zielgen})}_{(\text{Kontrolle-Stimuliert})}}{E^{\Delta CT(\text{Referenzgen})}_{(\text{Kontrolle-Stimuliert})}}
\]

Abbildung 8: Formel zur Berechnung der Effizienz-korrigierten relativen Genexpression [90]

2.7.7 Agarose-Gelelektrophorese

2.8 Statistische Methoden

Zur statistischen Auswertung der erhobenen Ergebnisse wurde zur Abschätzung der zentralen Tendenz ob sich zwei Stichproben voneinander signifikant unterscheiden der Mann-Whitney-U Test verwendet. Hierbei handelt es sich um einen nichtparametrischen Test zur Überprüfung unabhängige Stichproben. Die abhängige Variable muss dabei nicht normalverteilt, aber mindestens ordinalskaliert sein [70].

Die Berechnung erfolgte mit Hilfe des Statistikprogramms SPSS.
3 Ergebnisse

3.1 Deskriptive Histologie des Frakturheilungsmodells

Zur Beurteilung der Gewebe des Frakturkallus am Tag 4, Tag 10 und Tag 21 der Knochenheilung wurden die Präparate mit Safranin O/Fast Green gefärbt.

(A,B) Wildtyp-Maus; (C,D) Midkine-defiziente Maus;
(A,C) Übersichtsaufnahme in 12,5x Vergrößerung; (B,D) Aufnahme in 200x Vergrößerung.

Am Tag 10 der Knochenheilung konnten wir in allen Präparaten einen definierten Frakturkallus beschreiben. Dieser war in der Mehrheit der Versuchstiere auf einer

Abbildung 10: Safranin O Färbung des Frakturkallus eines murinen Femurs am Tag 10 nach Osteotomie. Knorpelgewebe je nach Proteoglykangehalt orange bis rot, Zytoplasma grünlich und Zellkerne schwarz gefärbt. (A,B) Wildtyp-Maus; (C,D) Midkine-defiziente Maus; (A,C) Übersichtsaufnahme in 12,5x Vergrößerung; (B,D) Aufnahme in 200x Vergrößerung.

Am Tag 21 der Frakturheilung war der Frakturkallus bei allen Versuchstieren bereits größtenteils verknöchert und zeigte nur noch einen minimalen Knorpelanteil. Lediglich im Frakturspalt und der osteochondrogenen Übergangszone des Frakturkallus ließ sich noch Knorpelgewebe nachweisen.

(A,B) Wildtyp-Maus; (C,D) Midkine-defizierte Maus;
(A,C) Übersichtsaufnahme in 12,5x Vergrößerung; (B,D) Aufnahme in 200x Vergrößerung.

3.2 Immunhistologischer Nachweis von Midkine in der Frakturheilung

Für die deskriptiven Analysen der immunhistologischen Färbungen von MDK gingen alle 12 Wildtyp-Tiere in die Auswertung ein. Der verwendete polyklonale Antikörper erkennt ein Epitop des C-terminalen Endes von murinem MDK. Die mit nichtbindendem Immunglobulin behandelten Negativkontrollen zeigten in keinem der untersuchten Präparate eine positive Färbung (siehe Abbildung 12).

Abbildung 12: Negativkontrolle der immunhistologischen Färbung mit Midkine-Antikörper des Frakturkallus eines murinen Femurs am Tag 10 nach Osteotomie. Gegenfärbung mit Hämatoxylin. (A) 12,5x Vergrößerung; (B) 50x Vergrößerung.

Abbildung 13: Immunhistologische Färbung mit Midkine-Antikörper des Frakturkallus eines murinen Femurs am Tag 4 nach Osteotomie. Gegenfärbung mit Hämatoxylin. Midkine-positive Zellen bräunlich gefärbt. (A) 12,5x Vergrößerung; (B) 200x Vergrößerung.

Abbildung 14: Immunhistologische Färbung mit Midkine-Antikörper des Frakturkallus eines murinen Femurs am Tag 10 nach Osteotomie. Gegenfärbung mit Hämatoxylin. Midkine-positive Zellen bräunlich gefärbt. (A) 12,5x Vergrößerung; (B) 200x Vergrößerung.

Im weiteren Verlauf der Frakturheilung konnte ein Rückgang der Expression von Mdk beobachtet werden. So reduzierte sich die Zahl der positiven Chondrozyten am Tag 21 aufgrund der fortgeschrittenen Ossifikation des Frakturkallus. In dieser Phase befanden sich nur noch vereinzelt positive Chondrozyten zwischen den neuen Knochentrabekeln der osteochondrogenen Übergangszone des Kallus bzw. des Frakturspalts (siehe Abbildung 15).
(A) 12,5x Vergrößerung; (B) 200x Vergrößerung.

Es bleibt festzuhalten, dass *Mdk* während aller Phasen der Frakturheilung nachzuweisen war. Die stärkste Expression beobachteten wir während der Phase der enchondralen Ossifikation. Dabei wurde *Mdk* insbesondere von hypertrophen Chondrozyten exprimiert.
3.3 Immunhistologischer Nachweis von Mineralisationsproteinen im Frakturheilungsmodell

3.3.1 Deskriptive Immunhistologie der Dmp1-Expression in der Frakturheilung von Midkine-defizienten Mäusen und Wildtyp-Mäusen

Untersucht wurde die Expression des Mineralisationsproteins DMP1 an Tag 10 und Tag 21 der Frakturheilung. In die deskriptive Auswertung der immunhistologischen Färbungen gingen an beiden Tagen insgesamt 8 Mdk +/+ Tiere bzw. 8 Mdk -/- Tieren ein. Die mit nichtbindendem Immunglobulin behandelten Negativkontrollen zeigten in keinem der Fälle eine positive Färbung.

Abbildung 16: Negativkontrolle der immunhistologischen Färbung von Dentin-Matrix-Protein 1 des Frakturkallus eines murinen Femurs am Tag 21 nach Osteotomie. Gegenfärbung mit Hämatoxylin. (A) 12,5x Vergrößerung; (B) 50x Vergrößerung.

Ergebnisse

(A,B) Wildtyp-Maus; (C,D) Midkine-defizierte Maus.
(A,C) 12,5x Vergrößerung; (B,D) 200x Vergrößerung.

(A,B) Wildtyp-Maus; (C,D) Midkine-defiziente Maus.
(A,C) 12,5x Vergrößerung; (B,D) 200x Vergrößerung.

Zusammenfassend ließ sich aus der reinen Betrachtung der Präparate zu keinem Zeitpunkt der Frakturheilung eine Aussage hinsichtlich der unterschiedlichen Expression von Dmp1 zwischen den beiden Genotypen treffen. Ein Einfluss der Mdk-Defizienz auf die Expression von Dmp1 während der Frakturheilung erscheint somit wenig wahrscheinlich. Allerdings machte das beobachtete Expressionsmuster von Dmp1 die Bedeutung des Proteins für die Mineralisation von neuem Knochengebe we während der Frakturheilung deutlich.
3.3.2 Deskriptive Immunhistologie der Enpp1-Expression in der Frakturheilung von Midkine-defizienten Mäusen und Wildtyp-Mäusen

Abbildung 19: Negativkontrolle der immunhistologischen Färbung von ectonucleotide pyrophosphatase phosphodiesterase 1 des Frakturkallus eines murinen Femurs am Tag 10 nach Osteotomie. (A) 12,5x Vergrößerung; (B) 50x Vergrößerung. Gegenfärbung mit Hämatoxylin.

Am Tag 10 der Knochenheilung zeigten vor allem proliferierende osteoblastäre und chondrogene Zellen in den Randbereichen des entstandenen Knorpelgewebes eine starke extrazelluläre Enpp1-Expression im Bereich der Zellmembran. Die differenzierten und hypertrophen Chondrozyten waren hingegen nur selten positiv für ENPP1. Im Gegensatz zur Färbung von DMP1 zeigten die Osteozyten und ihre EZM im kortikalen Knochen keine Expression von Enpp1 (siehe Abbildung 20).
Ergebnisse

Am Tag 21 der Frakturheilung war das Knorpelgewebe des periostalen Kallus fast vollständig durch Geflechtknochen ersetzt worden, sodass positive Zellen vor allem entlang der neuen Knochentrabekel beobachtet werden konnten. Damit war eine *Enpp1*-Expression zu diesem Zeitpunkt vor allem in Bereichen des appositionellen Knochenwachstums zu finden. Weiterhin negativ für ENPP1 stellte sich das mineralisierte Knochengewebe des kortikalen und trabekulären Knochens dar (siehe Abbildung 21).

In der Zusammenschau konnte bei der Betrachtung der *Enpp1*-Expression in allen Präparaten kein Unterschied zwischen den beiden Genotypen (*Mdk*+/+ und *Mdk*−/−) festgestellt werden. Es ist demnach davon auszugehen, dass die *Mdk*-Defizienz keinen Einfluss auf die Expression von *Enpp1* in der Frakturheilung hat. Dennoch lässt das beobachtete spatio-temporaleExpressionsmuster auf die Bedeutung von ENPP1 in der Ossifikation des Frakturkallus schließen.
3.4 Immunhistologischer Nachweis neutrophiler Granulozyten im Frakturheilungsmodell

Abbildung 22: Negativkontrolle der immunhistologischen Färbung neutrophiler Granulozyten des Frakturkallus eines murinen Femurs am Tag 4 nach Osteotomie. (A) 12,5x Vergrößerung; (B) 50x Vergrößerung. Gegenfärbung mit Hämatoxylin.

Da neutrophile Granulozyten vor allem zu Beginn der Inflammationsphase zu erwarten sind und im Anschluss sehr bald wieder eliminiert werden, untersuchten wir ausschließlich die am Tag 4 der Frakturheilung angefertigten Präparate.
Ergebnisse

Zu diesem Zeitpunkt konnten wir in unseren mit Ly6G-Antikörper behandelten Präparaten eine starke, positive Immunreaktion im Bereich des Frakturhämatoms und des Knochenmarks beobachten. Neben den intramedullären positiven Zellen, konzentrierte sich eine große Anzahl neutrophiler Zellen auf Bereiche des Periosts in unmittelbarer Nähe zum Osteotomiespalt sowie auf das umliegende Muskel- und Bindegewebe (siehe Abbildung 23). Da aufgrund schnittbedingter Artefakte die sonst übliche Region des Osteotomiespalts nicht für die Auswertung geeignet erschien, definierten wir für die Auszählung der Präparate eine ROI in der periostalen Region der Frakturzone (siehe Kapitel 2.5.6).

Bestimmt wurde die Anzahl der neutrophilen Granulozyten pro mm² periostalen Gewebes. Dabei zählten wir in den Wildtyp-Tieren durchschnittlich weniger Zellen pro mm² (75 Zellen pro mm²) als in den Mdk-defizienten Tieren (142 Zellen pro mm²).

In der statistischen Auswertung konnten wir damit zwar keinen signifikanten Unterschied zwischen den beiden Genotypen nachweisen, jedoch lässt sich ein
Trend erkennen, dass in den Gewebeschnitten der Mdk-defizienten Tiere am Tag 4 tendenziell häufiger neutrophile Granulozyten im Periost des Frakturkallus zu finden waren.

Abbildung 24: Anzahl neutrophiler Granulozyten pro mm² periostalen Gewebes eines murinen Femurs am Tag 4 nach Osteotomie. Mdk⁺/⁺ (Wildtyp): Mittelwert 75 Zellen/mm², Standardabweichung 47; Zahl der Tiere n=5. Mdk⁻/⁻ (Midkine-Defizienz): Mittelwert 142 Zellen/mm², Standardabweichung 43; Zahl der Tiere n=4. Signifikanzwert p=0,065
3.5 Immunhistologischer Nachweis von Makrophagen im Frakturheilungsmodell

Parallel zur Untersuchung der neutrophilen Granulozyten wurden die Präparate von insgesamt zehn Versuchstieren (5 Mdk $^{+/+}$ und 5 Mdk $^{-/-}$) hinsichtlich des Verteilungsmusters von Gewebsmakrophagen untersucht. Dabei musste das Präparat (Mdk $^{-/-}$, Nr. 1125) aufgrund schnittbedingter Artefakte von der weiteren Auswertung ausgeschlossen werden.

Die mit Immunglobulin als Negativkontrolle mitgeführten Schnitte zeigten in keinem der ausgewerteten Schnitte eine positive Färbung.

Abbildung 25: Negativkontrolle der immunhistologischen Färbung von Makrophagen des Frakturkallus eines murinen Femurs am Tag 4 nach Osteotomie. (A) 12,5x Vergrößerung; (B) 50x Vergrößerung. Gegenfärbung mit Hämatoxylin.

Da vorhergehende Arbeiten Makrophagen auch während späterer Phasen der Frakturheilung nachweisen konnten, untersuchten wir die zur Verfügung stehenden Präparate an Tag 4 und Tag 10 der Frakturheilung.

Auch im Falle der Makrophagen wurde eine Quantifizierung zur besseren Vergleichbarkeit der beiden Untersuchungsgruppen angestrebt. Dabei zählten wir am Tag 4 der Frakturheilung in den Wildtyp-Tieren durchschnittlich mehr Zellen pro mm² als in den Mdk-defizienten Tieren.

Abbildung 27: Anzahl an Makrophagen pro mm² endostalen Gewebes eines murinen Femurs am Tag 4 nach Osteotomie.
Mdk⁺/⁺ (Wildtyp): Mittelwert 374 Zellen/mm², Standardabweichung 104; Zahl der Tiere n=5.
Mdk⁻/⁻ (Mdk-Defizienz): Mittelwert 116 Zellen/mm², Standardabweichung 86; Zahl der Tiere n=4.
* Signifikanzwert p<0,05

Abbildung 29: Anzahl an Makrophagen pro mm² endostalen Gewebes eines murinen Femurs am Tag 10 nach Osteotomie.

\(\text{Mdk}^{+/+} \) (Wildtyp): Mittelwert 167 Zellen/mm², Standardabweichung 37; Zahl der Tiere \(n=5 \).

\(\text{Mdk}^{-/-} \) (Mdk-Defizienz): Mittelwert 359 Zellen/mm², Standardabweichung 55; Zahl der Tiere \(n=4 \).

* Signifikanzwert \(p<0,05 \)
3.6 Expression möglicher MDK-Rezeptoren während der Differenzierung mesenchymaler Stammzellen

In vorausgegangenen in-vitro Studien konnten bereits verschiedene Rezeptormoleküle für MDK identifiziert werden [69, 77]. Daher war es ein Ziel dieser Arbeit mesenchymale Zellen während ihrer Differenzierung auf die Veränderung der Expression der Rezeptoren PTPRC, LRP6, LRP1, Integrine α4, Integrine α6, Integrine β1, Syndecan-3 und ALK zu analysieren.

Abbildung 30: Darstellung der relativen Genexpression der Rezeptoren Protein-Tyrosin-Phosphatase-Rezeptor Typ ζ (PTPRζ), *lipoprotein receptor-related protein 6* (LRP6), *lipoprotein receptor-related protein 1* (LRP1), Integrine α4, Integrine α6, Integrine β1, Syndecan-3 und *anaplastic lymphoma kinase* (ALK) am Tag 5 und Tag 14 der Differenzierung mesenchymaler Zellen (C3H10T1/2) normiert auf das Kontrollgen β-Actin.
3.7 Einfluss von rekombinanten Midkine auf die Genexpression von mesenchymalen Stammzellen

Abbildung 31: Relative Expression von cMyc in mesenchymalen Zellen der Linie C3H10T1/2 nach Stimulation mit rekombinantem Midkine (MDK) für 1 Stunde bzw. 6 Stunden an Tag 5 und Tag 14 der Differenzierung. * Signifikanzwert p<0,05
Im Vergleich der beiden unstimulierten Kontrollen an Tag 5 und Tag 14 der Differenzierung konnten wir eine signifikant reduzierte Expression von cMyc am Tag 14 feststellen. Weiterhin konnten wir am Tag 5 der Differenzierung sowohl nach 1 Stunde also auch nach 6 Stunden Stimulation mit rekombinantem MDK eine signifikante Verminderung der relativen Expression von cMyc beobachten. Dieser Effekt von exogenem MDK auf die cMyc-Expression war am Tag 14 der Differenzierung jedoch nicht mehr festzustellen.

Abbildung 32: Relative Expression von *human alkaline phosphatase gene* (*Alpl*) mesenchymaler Zellen der Linie C3H10T1/2 nach Stimulation mit rekombinantem Midkine (MDK) für 1 Stunde bzw. 6 Stunden an Tag 5 und Tag 14 der Differenzierung. * Signifikanzwert p<0,05.

Die Daten der Expressionsanalysen des Gens *Alpl* zeigten zwischen Tag 5 und Tag 14 der Differenzierung der mesenchymalen Zelllinie einen signifikanten Anstieg der relativen Expression. Während wir am Tag 5 in Abhängigkeit der
Dauer der Stimulation mit rekombinantem MDK keine Veränderung der Alpl-Expression beobachten konnten, stellten wir am Tag 14 der Differenzierung nach 6 Stunden Stimulation mit rekombinantem MDK eine statistisch signifikante Reduktion der Genexpression fest.
4 Diskussion

Der Wachstumsfaktor MDK greift in die Regulation unterschiedlichster Prozesse ein, so wird u.a. ein Einfluss auf die Migration von inflammatorischen Zellen, die Regulation der Gefäßneubildung und die Regulation apoptotischer Vorgänge beschrieben [80, 106]. In anderen Studien konnte ein Einfluss des Wachstumsfaktors auf die Regeneration von Skelettmuskulatur nachgewiesen werden [42]. Bezüglich des Knochengerüstes konnte gezeigt werden, dass der Mangel des Wachstumsfaktors Mdk in-vivo zu einer erhöhten trabekulären Knochenmasse in 12 und 18 Monate alten Mdk-defizienten Mäusen führt [84]. Weiterhin hatte die Mdk-Defizienz in-vivo einen anabolen Effekt auf das mechanisch induzierte kortikale Knochenremodeling [61]. Darüber hinaus ließ sich eine Expression von Mdk in-vivo auch während der Frakturheilung von Wildtyp-Mäusen nachweisen [86].

jedoch keinen Einfluss auf die spätere Phase (Tag 28) der Frakturheilung, in der wir keine Unterschiede bzgl. der Histomorphometrie und Biegesteifigkeit des Kallusgewebes mehr zwischen den beiden Genotypen feststellen konnten [32]. Damit deuten diese Beobachtungen darauf hin, dass sich die Mdk-Defizienz in unserem Frakturheilungsmodell möglicherweise weniger auf die osteogenen als auf die chondrogenen Prozesse während der Knochenheilung auswirkt.

4.1 Ergebnisse des immunhistologischen Nachweises von Midkine im Frakturheilungsmodell

Dabei beobachteten wir am Tag 4 der Frakturheilung in wenigen Versuchstieren eine positive MDK-Immunreaktion. Der schwach positive Nachweis beschränkte sich dabei auf spindelförmige Zellen, vermutlich mesenchymalen Ursprungs, im periostalen Gewebe in näherer Umgebung des Frakturspaltes. Im Verlauf der Frakturheilung konnte eine deutliche Zunahme an MDK-positiven Zellen beobachtet werden. So zeigten am Tag 10 der Frakturheilung vor allem die reifen bzw. hypertrophen Chondrozyten in dem sich ausbildenden Kallus eine starke Mdk-Expression. Mit zunehmender Ossifikation des knorpeligen Kallus reduzierte sich die Anzahl der MDK-positiven chondrozytären Zellen. Am Tag 21 der Frakturheilung fanden sich dementprechend nur noch vereinzelt MDK-positive Chondrozyten in den Bereichen, in denen die Ossifikation noch nicht vollständig abgeschlossen war.

Damit konnten wir die Ergebnisse einer Frakturheilungsstudie der Arbeitsgruppe um Ohta et al. an 10 Wochen alten Mäusen mit einer intramedullär versorgten Tibiafraktur bestätigen. Denn auch Ohta et al. konnten eine starke Mdk-Expression in Chondrozyten am Tag 7 der Frakturheilung feststellen, die sich an Tag 14 deutlich reduzierte bis sie am Tag 28 schließlich kaum noch nachzuweisen war. Auch während der frühen Phase der Knochenheilung (Tag 4) konnten Ohta et al. MDK immunhistologisch nur in einigen spindelförmigen Zellen nachweisen [86]. Insbesondere durch die Beobachtung des Expressionsmusters von Mdk in differenzierten und hypertrophen Chondrozyten konnten beide Arbeiten zeigen,
Diskussion

Dass MDK eine wichtige Rolle in der Chondrogenese während der Frakturheilung spielt.

4.2 Ergebnisse der Expression von Mineralisationsproteinen im Frakturheilungsmodell

In vorangegangen Studien konnte bereits ein anaboler Effekt der Mdk-Defizienz auf den kortikalen Knochen nachgewiesen werden. Eine wichtige Rolle für die gesteigerte Osteoblastenfunktion der Mdk-defizienten Zellen könnte dabei die Beeinflussung des ß-Catenin-abhängigen Wnt-Signalwegs spielen [61]. Andere Studien konnten osteoblastäre Mineralisationsproteine, wie z.B. Enpp1, Dmp1 und Ank, durch genomweite Expressionsanalysen an primären Osteoblasten aus Mauskalvarien als MDK-induzierte Gene identifizieren. Weiterhin wurde festgestellt, dass Mdk-defiziente mesenchymale Zellen während der Differenzierung eine geringere Expression von Ank und Enpp1 aufwiesen [84]. Daher war es ein Ziel dieser Studie den Einfluss der Mdk-Defizienz auf die Expression wichtiger Mineralisationsproteine in-vivo während der Frakturheilung zu analysieren.

Untersucht wurde hierfür das örtliche und zeitliche Verteilungsmuster der DMP1-bzw. ENPP1-Expression in diaphysären Femurfrakturen im Mausmodell von Wildtyp-Tieren und Mdk-defizienten Tieren.

Wir konnten in unseren immunhistologischen Untersuchungen DMP1 ebenfalls in Osteozyten und ihrer umliegenden EZM nachweisen. Dabei zeigte sich eine besonders starke Expression des Proteins in den Osteozyten des neugebildeten Geflechtknochens, der sich damit deutlich stärker positiv färbten als das Gewebe der Femurkortikalis. Daneben färbten sich auch vereinzelt osteoblastäre Zellen und Chondroblasten an. Damit bestätigten wir im Wesentlichen die Ergebnisse einer weiteren Frakturheilungsstudie von Toyosawa et al., die das

Auch wir konnten in unserer Frakturheilungsstudie die Expression von *Enpp1* im Bereich der Zellmembranen von Osteoblasten und Chondrozyten und in ihrer EZM nachweisen. Dabei zeigte sich eine besonders starke Färbung im Bereich osteoblastärer Zellen am Rande der neugebildeten Knochenmatrix am Tag 10 und 21 der Frakturheilung. Dagegen konnte in der kortikalen Matrix des Femurschaftes unserer Versuchstiere keine Expression von *Enpp1* nachgewiesen werden. Im Gegensatz zu *Dmp1*, das hauptsächlich durch Osteozyten exprimiert wird, lässt sich ENPP1 jedoch vor allem in der Umgebung von Osteoblasten und Chondrozyten nachweisen. Hier könnte es u.a. für die geregelte Bildung von HA in der EZM verantwortlich sein. Dafür spricht, dass sich ENPP1 vor allem in der EZM an der Oberfläche der neuen Knochentrabekel wiederfindet, die sich durch appositionelles Wachstum auszeichnen.
Inwieweit MDK einen Einfluss auf die Expression von \(Dmp1 \) und \(Enpp1 \) hat, untersuchten Neunaber et al. in ihren Experimenten. So zeigten primäre Osteoblasten aus Mauskalvarien eine signifikant höhere Expression von \(Dmp1 \) und \(Enpp1 \) bei gleichzeitiger Reduktion der \(Alpl \)-Expression nach Stimulierung der Zellen mit rekombinantem MDK [84]. In weiteren Genexpressionsanalysen untersuchten Neunaber et al. primäre, osteoblastäre Knochenmarksvorläuferzellen aus \(Mdk \)-defizienten Mäusen. Diese \(Mdk \)-defizienten Zellen zeigten im Laufe ihrer Differenzierung eine signifikant höhere Expression von \(Alpl \) bei unveränderter \(Dmp1 \)- und \(Enpp1 \)-Expression und sogar verminderter \(Ank \)-Expression. Neunaber et al. sehen in der reduzierten Expression der korrespondierenden Proteine in den \(Mdk \)-defizienten Osteoblasten eine mögliche Erklärung für den Knochenphänotyp der \(Mdk \)-defizienten Mäuse [84].

Aufgrund dieser Erkenntnisse aus \emph{in-vitro} Experimenten, untersuchten wir in dieser \emph{in-vivo} Frakturheilungsstudie \(Mdk \)-defiziente Mäuse hinsichtlich des \(Dmp1 \)-bzw. \(Enpp1 \)-Expressionsmusters. Dabei konnten wir jedoch im Vergleich zu den untersuchten Wildtypen in den immunhistologischen Färbungen zu keinem Zeitpunkt einen Unterschied in der Expression der beiden Proteine feststellen. Damit ließ sich keine Schlüsselrolle von MDK in der komplexen Regulation dieser Mineralisationsproteine in unserem Frakturheilungsmodell nachweisen. Jedoch muss man berücksichtigen, dass der immunhistologische Nachweis der Proteine nur eine begrenzte Aussage über die quantitativen Unterschiede bezüglich der Expression der untersuchten Proteine zulässt.

Zusammenfassend bleibt festzuhalten, dass während der Frakturheilung eine starke Expression der Mineralisationsproteine DMP1 und ENPP1 festzustellen ist. Der in dieser Frakturheilungsstudie durchgeführte immunhistologische Nachweis der beiden Mineralisationsproteine war besonders während der Phase der Kallusbildung und der frühen Phase des Knochenremodelings stark positiv. Dabei beobachteten wir die Expression von DMP1 in unserem Frakturmodell vor allem in Osteozyten und ihrer umliegenden EZM, während ENPP1 hauptsächlich von osteoblastären und chondrogenen Zellen exprimiert wurde. Beide Mineralisationsproteine scheinen auf Grund des beobachteten spatio-temporalen Expressionsmusters in der Frakturheilung eine wichtige Rolle zu spielen, jedoch konnten wir keinen Einfluss der \(Mdk \)-Defizienz auf die Expression dieser beiden Mineralisationsproteine in unserem murinen Frakturheilungsmodell feststellen.
4.3 Ergebnisse des Nachweises inflammatorischer Zellen im Frakturheilungsmodell

Weiterhin von Interesse für diese Studie war der Einfluss der Mdk-Defizienz auf die Zellen der inflammatorischen Phase der Knochenheilung, wie z.B. Makrophagen und neutrophilen Granulozyten. Sie sind die ersten Zellen, die innerhalb der frühen Stunden nach Fraktur in großer Zahl in das Frakturhämatom einwandern [14]. Zum einen initiieren und verstärken sie die lokale Entzündungsreaktion, u.a. durch die Sezernierung proinflammatorischer Zytokine und Chemokine, zum anderen fördern sie die Migration von osteoblastären und chondrozytären Zellen [16].

Neben den neutrophilen Granulozyten spielen auch die Makrophagen eine entscheidende Rolle in der Frakturheilung. So zeigte eine Frakturheilungsstudie an Mäusen mit einer Defizienz des Chemokinrezeptor Typ 2, der für die Rekrutierung von Makrophagen verantwortlich ist, eine verzögerte Frakturheilung [120]. Welchen Einfluss schließlich MDK auf die Migration von Makrophagen haben könnte, zeigte eine weitere Studie. Untersucht wurde die Degeneration und Regeneration nach Traumata der Skelettmuskulatur. Dabei scheint die Mdk-Defizienz nicht nur eine verzögerte Regeneration des Muskelgewebes sondern auch eine verzögerte Migration von Makrophagen zur Folge zu haben [42]. So beobachteten Ikutomo et al. an Tag 3 nach Trauma eine signifikant geringer
Anzahl von Makrophagen im Bereich der Verletzung in der Gruppe der Mdk-defizienten Tiere gegenüber der Kontrollgruppe [42].

Möglicherweise ist die verspätete Rekrutierung der inflammatorischen Zellen auch eine Erklärung für die in dieser Studie beobachtete verzögerte frühe
Diskussion

Zusammengefasst beobachteten wir eine durch die Mdk-Defizienz bedingte verzögerte Migration inflammatorischer Zellen während der frühen Phase der Frakturheilung.

4.4 Ergebnisse der in-vitro Untersuchungen mesenchymaler Zellen

In anderen Experimenten zeigte die Stimulation von osteoblastären Zellen mit exogenem MDK einen negativen Einfluss auf die Expression von Wnt-Zielgenen. So konnte eine reduzierte Expression von *Alpl* und *c-Fos* in MC3T3-Zellen nach Stimulation mit rekombinantem MDK nachgewiesen werden [61]. Diese modulierende Wirkung auf die Expression von osteoblastären Zielgenen wird in Zusammenhang mit dem Rezeptorkomplex LRP6 und PTPRζ gebracht [56, 61]. In unseren Experimenten konnten wir ähnliche Effekte auch in unseren mesenchymalen Zellen nachweisen. So beobachteten wir eine Abnahme der Expression von *cMyc* am Tag 5 und von *Alpl* am Tag 14 der Differenzierung der Zellline C3H10T1/2 nach Stimulation mit rekombinantem MDK.

Es bleibt festzuhalten, dass auch mesenchymale Vorläuferzellen Rezeptormoleküle exprimieren, die in Zusammenhang mit MDK gebracht werden. Insbesondere LRP1 könnte hier eine wichtige Rolle spielen. Weiterhin scheint rekombinantes MDK ebenso wie in osteoblastären Zellen auch in mesenchymalen Zellen eine negativen Einfluss auf Zielgene des Wnt/β-Catenin-Signalwegs zu haben.
4.5 Schlussfolgerung und Ausblick

Wir konnten in unserer Arbeit zeigen, dass der Wachstumsfaktor MDK eine wichtige Rolle in der Frakturheilung spielt. So zeigen Mdk-defiziente Mäuse neben ihrem veränderten Knochenphänotyp eine verzögerte frühe Phase der Frakturheilung, die sich vor allem durch eine verzögerte Chondrogenese und eine verzögerte inflammatorische Antwort auszeichnet. Demgegenüber konnte zum späteren Zeitpunkt der Frakturheilung kein Unterschied mehr zwischen den beiden Versuchsgruppen festgestellt werden.

Andere Studien zeigten bereits, dass die Mdk-Defizienz einen positiven Einfluss auf das Knochenremodeling und auf den Knochenphänotyp hat [61, 84]. In dieser Arbeit ergaben sich Hinweise auf einen negativen Einfluss der Mdk-Defizienz auf die Chondrogenese und die Inflammation während der frühe Phase der Frakturheilung [32]. Diese verschiedene Wirkungsweise könnte dabei auf unterschiedlichen Expression von Rezeptoren in den Zelltypen beruhen. Dabei scheint es auch eine Rolle zu spielen, ob sich MDK im extrazellulären oder im intrazellulären Kompartiment befindet.

5 Zusammenfassung

In unseren in-vitro Versuchen an mesenchymalen Zellen konnten wir vorausgegangene Experimente an osteoblastären Zellreihen bestätigen. Darüber hinaus ergaben sich weitere Hinweise, dass spezifische Expressionsmuster der Rezeptoren auf den verschiedenen Zelltypen für die Vermittlung der intrazellulären bzw. extrazellulären Wirkung von Midkine verantwortlich sein könnten.

Es bleibt festzuhalten, dass Midkine eine wichtige Rolle während der inflammatorischen Phase der Frakturheilung spielt. Weitere Frakturheilungsstudien z.B. mit spezifischen Antikörpern werden zeigen, ob sich der Wachstumsfaktor
Zusammenfassung

Midkine als therapeutischer Ansatzpunkt zur Verbesserung der Knochenheilung eignen wird.
6 Literaturverzeichnis

is associated with bone formation and mechanical loading. *Bone* 44: 785-794 (2009)

Danksagung

An dieser Stelle möchte ich Frau Prof. Dr. Anita Ignatius, Leiterin des Instituts für Unfallchirurgische Forschung und Biomechanik der Universität Ulm, für die Überlassung des Themas und für die Möglichkeit diese experimentelle Arbeit anzufertigen, danken. Ebenso möchte ich mich bei meiner Betreuerin Frau Dr. rer. nat. Astrid Liedert für ihre geduldige Betreuung und ihre vielen Ratschläge bedanken.

Mein ganz besonderer Dank gilt Melanie Haffner-Luntzer für die Überlassung der zahlreichen Schnittpräparate und die Einführung in die Thematik und die vielen hilfreichen Erklärungen. An dieser Stelle möchte ich mich auch bei Robin Rößler für die vielen gemeinsamen Stunden und die gute Zusammenarbeit im Labor bedanken.

Schließlich möchte ich auch meiner Partnerin Bianca für ihre Motivationsarbeit und das geduldige Zuhören bei größeren und kleineren Problemen danken. Dieser Dank gilt schließlich auch meinen Eltern und meiner gesamten Familie, die mich während meines gesamten Lebens stets bei allen Entscheidungen unterstützt haben und so diese Arbeit ermöglicht haben.

Vielen Dank auch an alle, die hier nicht namentlich erwähnt sind und mir während der Entstehung dieser Arbeit geholfen haben.
Lebenslauf

Der Inhalt dieser Seite wurde aus Gründen des Datenschutzes entfernt.