Untersuchungen zur Haploinsuffizienz
im
Neurofibromatose Typ 2 Gen

Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)
an der Fakultät für Naturwissenschaften
der Universität Ulm

vorgelegt von

Ruth Diebold
aus Memmingen

2007
Amtierender Dekan der Fakultät für Naturwissenschaften:
Prof. Dr. Klaus-Dieter Spindler

Erstgutachter:
Prof. Dr. Harald Wolf, Neurobiologie, Universität Ulm

Zweitgutachter:
Prof. Dr. Klaus-Dieter Spindler

Tag der Promotion: 15.06.2007
INHALTSVERZEICHNIS

1. EINLEITUNG ... 1
 1.1 Neurofibromatose Typ 2 (NF2) ... 1
 1.1.1 Überblick und Diagnostik der NF2 ... 1
 1.1.2 Therapiemöglichkeiten der NF2 .. 4
 1.1.3 Das NF2 Gen und seine Mutationen .. 4
 1.1.4 Das Genprodukt Merlin und seine Homologen: die ERM Proteine .. 7
 1.1.4 Tiermodelle für die NF2 ... 9
 1.2 NF2 und Polyneuropathien .. 10
 1.3 RNA Interferenz .. 11
 1.3.1 Ein Überblick ... 11
 1.3.2 Vektorgestützte RNA Interferenz .. 12
 1.4 Fragestellung, Gegenstand und Ziele der Arbeit .. 13

2. MATERIAL .. 14
 2.1 DNA und Gewebe-Material .. 14
 2.2 Primäre Zellkulturen und Zelllinien .. 14
 2.3 Primer .. 15
 2.3.1 Primer für die DNA-Sequenzierung .. 16
 2.3.2 Primer für die Multiplex-PCR .. 19
 2.3.3 Oligonukleotide für die UPS-Multiplex-PCR zur Bestimmung der Gene Dosage an Zelllysateten ... 22
 2.3.4 Primer für die RT-PCR .. 24
 2.3.6 Primer für die Generierung der shRNA-Konstrukte .. 27
 2.4 Vektoren .. 30
 2.5 Bakterienstämmen ... 30
 2.6 Antibiotika und Zytostatika .. 30
 2.7 Nährmedien ... 30
 2.8 Antikörper ... 31
 2.9 Geräte und Software .. 32
 2.10 Sonstige Lösungen und Chemikalien ... 32

3. METHODEN .. 33
 3.1 Sequenzierungen ... 33
3.1.1 Sequenzierung genomischer DNA ... 33
3.1.2 Sequenzierung der short hairpin RNA (shRNA) Konstrukte 34
3.2 Nukleinsäurepräparationen .. 34
 3.2.1 Isolierung von genomischer DNA aus Blut ... 34
 3.2.2 Isolierung von genomischer DNA aus Zellkulturen ... 35
 3.2.3 Isolierung von Plasmid-DNA aus einer Bakterienkultur 35
 3.2.4 Isolierung von RNA aus Zellkulturen ... 35
3.3 PCR (Polymerase Chain Reaction) ... 37
 3.3.1 Gen Dosage PCR an genomischer DNA .. 37
 3.3.3 Modifizierte Gen Dosage PCR an Zelllysat ... 38
 3.3.3 cDNA Synthese (Reverse Transkription) ... 41
 3.3.4 Quantitative Expressionsanalyse am LightCycler ... 41
 3.3.4 Whole Genome Preamplifikation über I-PEP (Improved Primer Extension
 Preamplifikation) .. 44
3.4 Immunhistochemie ... 44
 3.4.1 Fixierung und Einbetten des Gewebes ... 44
 3.4.2 Anfertigung von Gewebeschnitten .. 44
 3.4.3 Aufarbeitung der Gewebeschnitte und Immunreaktion 45
3.5 Lasermikrodissektion ... 45
 3.5.1 Durchführung ... 47
 3.5.2 Extraktion der DNA ... 47
3.6 Herstellung der shRNA (short hairpin RNA) Konstrukte 48
3.7 Zellkultur .. 48
 3.7.1 Humane Schwann- und Schwannomzellkulturen .. 48
 3.7.2 S 100 Immunocytochemie .. 49
 3.7.3 Kultivierung von humanen Fibroblasten .. 50
 3.7.4 Kultur von humanen Neuroglioma- und Neuroblastomazellen 50
 3.7.5 Humane maligne Mesotheliomzelllinien (HMM) .. 50
3.8 Western Blotting ... 53
 3.8.1 Proteinisolierung .. 53
 3.8.2 Bestimmung der Proteinkonzentration ... 53
 3.8.3 Auftrennung der Proteine mittels SDS-PAGE (Polyacrylamid-Gelelektrophorese) . 54
 3.8.4 Färbung von Proteingelen mit Coomassie-Blau ... 54
 3.8.5 Proteintransfer .. 55
3.8.6 Immundetektion mit ECL ... 55
3.8.7 Strippen der Membran ... 55
3.8.8 Goldfärbung .. 56
3.8.9 Messung der optischen Dichte .. 56

4. ERGEBNISSE ... 57
4.1 Sequenzanalyse von NF2 Patienten mit PNP (Polyneuropathie) zur Identifikation der konstitutionellen Mutation ... 57
4.2.1 Etablierung der Gen Dosage PCR zur Detektion von Deletionen eines oder mehrerer Exons im NF2 Gene ... 60
4.2.2 Entwicklung und Optimierung .. 60
4.2.3 Überprüfung der Gen Dosage PCR an NF2 Patienten mit bekannten Deletionen 66
4.2.3 Untersuchung von NF2 Patienten mit unbekannter konstitutioneller Mutation........ 68
4.3 Modifikation der Gen Dosage PCR ... 74
4.3.1 Motivation: Gen Dosage PCR an mikrodissektierten Zellen 74
4.3.2 Entwicklung und Optimierung ... 75
4.3.2.2 Validierung der modifizierten nested-Gen Dosage PCR an Fibroblasten DNA 82
4.4 Untersuchung mikrodissektierter Zellen: modifizierte Gen Dosage PCR an Zelllysaten. 83
4.5 Quantitative Untersuchung der differentiellen Genexpression an humanen Schwann- und Schwannomzellen .. 88
4.6 Inaktivierung des NF2 Gens in humanen malignen Mesotheliomzellen (HMM) über RNA Interferenz .. 90
4.6.1 Vorarbeiten für die stabile Transfektion von HMM mit shRNA exprimierenden Konstrukten ... 90
4.6.2 Bestimmung der Antibiotika- und Effektor-Konzentrationen 92
4.6.3 Herstellung von shRNA Konstrukten .. 94
4.6.4 Transfektion der HMM Zelllinie Hib.. 97
4.6.3.3 Untersuchung von transfizierten Zelklonen auf konstitutive und induzierbare Inaktivierung des NF2 Gens und des Lamin A/C Gens 100
4.6.4 Untersuchung des transfizierten Zelklons auf differentielle Expression definierter Gene und Proteine ... 101

5. DISKUSSION ... 104
5.1 Identifikation der konstitutionellen Mutation in NF2 Patienten mit Polyneuropathie.... 106
5.2 Etablierung eines PCR-Verfahrens für den Nachweis von Deletionen eines oder mehrere Exons im NF2 Gen.. 109
1. EINLEITUNG

1.1 NEUROFIBROMATOSE TYP 2 (NF2)

1.1.1 ÜBERBLICK UND DIAGNOSTIK DER NF2

weiterhin minderbegabt sein und an epileptischen Anfällen leiden [Gutmann, 1997]. Eine weitere Bestätigung für das Vorliegen von zwei unterschiedlichen Erkrankungen lieferte auch die Identifikation der Genorte. So liegt das NF1 Gen auch Chromosom 17 und das der NF2 auf Chromosom 22. Die Inzidenz für die NF2 liegt bei 1 zu 33 000 bis 40 000 und ist damit sehr viel seltener als die NF1 mit einer Inzidenz von 1 zu 4 000 [Evans et al., 1992]. Für die Neurofibromatose Typ 2, mit der sich nachfolgende Arbeit beschäftigt, sind die Kriterien für die Diagnostik mit den seitdem gemachten Ergänzungen in Tabelle 1 zusammengefasst.

Diagnosekriterien für die Neurofibromatose 2 (nach NIH)

<table>
<thead>
<tr>
<th>Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilaterales vestibulares Schwannom (VS) oder eine familiäre Vorgeschichte für NF2 zusammen mit</td>
</tr>
<tr>
<td>(1) einem unilateralen vestibulären Schwannom oder</td>
</tr>
<tr>
<td>(2) zwei der folgenden Symptome: Meningeome, Gliome, Schwannome, Neurofibrome oder eine</td>
</tr>
<tr>
<td>Linsentrübung</td>
</tr>
<tr>
<td>weitere Kriterien sind:</td>
</tr>
<tr>
<td>ein unilateraler VS mit zusätzlich zwei der folgenden Symptome: Meningeome, Gliome, Schwannome, Neurofibrome oder eine Linsentrübung oder</td>
</tr>
<tr>
<td>zwei oder mehr Meningeome mit zusätzlich einem unilateralen VS oder beliebige zwei der folgenden Symptome: Meningeome, Gliome, Schwannome, Neurofibrome oder eine Linsentrübung</td>
</tr>
</tbody>
</table>

Tabelle 1: Diagnosekriterien für die Neurofibromatose Typ 2, nach Evans et al. [Evans et al., 2000]

Kennzeichnend für die NF2 ist die Ausbildung eines Schwannom am oberen Ast des 8ten Gehirnnerven (bei etwa 90% der Patienten) am Übergang des zentralen zum peripheren Myelin (Obersteiner-Redlich-Zone) im Bereich des *Porus acusticus internus*, etwa 1 cm entfernt vom Hirnstamm. Es tritt meist beidseitig auf und wird als vestibulares Schwannom bzw. als Akustikusschwannom bezeichnet. Bei etwa 50% der Patienten treten Schwannome an weiteren Hirnnerven oder Meningeome auf (Abb. 1). Spinale Tumore haben bei NF2 Patienten eine Häufigkeit von 90%, sie werden aber nur in etwa 30% der Fälle symptomatisch. Sie können intramedullär in der Gewebesubstanz des Rückenmarks liegen, vor allem als Astrozytome und Ependymome oder als Tumore im extramedullären Raum. Hier treten vor allem Schwannome und Meningeome auf. Weiterhin sind für die NF2 auch Augenveränderungen, wie die juvenilen subcapsulären Katarakte (eine Form der Linsentrübung) charakteristisch, die bei etwa 60-80% vorkommen, [Evans et al., 2000; Mautner et al., 1995].

Die Tumore führen zu einer Hörminderung bis hin zum kompletten Hörverlust, Gleichgewichtsstörungen bis hin zu Schwindelanfällen, Tinnitus, cerebellären Ataxien, Kopf-
schmerzen, Störungen des Cornealreflex, Nystagmen und Fazialparesen als Folge der Beeinträchtigung des 7ten Gehirnnervens, dem *Nervus facialis*. Die ersten Symptomen treten durchschnittlich im 22. Lebensjahr (± 1) auf und die Diagnose wird durchschnittlich im 27. Lebensjahr (± 1) gestellt [Baser et al., 2002b].

Abbildung 1:

A, B: Bilaterales vestibuläres Schwannom (Akustikusschwannom) eines NF2 Patienten im CT (A) und in einer Autopsie (B). C Multiple Meningeome auf der nach innen gerichteten Seite der *Dura mater* [Harkin and Reed, April 1990].

EINLEITUNG

auch von Tumoren, die bei NF2 Patienten nicht von Relevanz sind, wie der hoch malignen Mesotheliome, beteiligt [Gutmann, 2001].

1.1.2 THERAPIEMÖGLICHKEITEN DER NF2

1.1.3 DAS NF2 GEN UND SEINE MUTATIONEN

590 As einen um 11 As veränderten C-terminalen Bereich auf. Bei beiden sind die ersten 579 As identisch [Gutmann, 1997; Kang et al., 2002]. Daneben sind noch weitere Spliceformen bekannt, deren Bedeutung noch weitgehend unklar ist [Schmucker et al., 1999].

Abbildung 2: Two-Hit-Hypothese für die Tumorbildung nach Knudson (1971)

Bei den spontanen Tumoren finden in zwei Ereignissen die Mutationen der beiden Allele statt. Basierend hierauf verhältn sich das NF2 Gen als ein Tumorsuppressorgen (Abb. 2).

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Häufigkeit in %</th>
<th>Mutation</th>
<th>Häufigkeit in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsense</td>
<td>30,5</td>
<td>Große Deletionen</td>
<td>8,4</td>
</tr>
<tr>
<td>Frameshift Deletionen</td>
<td>17,5</td>
<td>Missense</td>
<td>5,8</td>
</tr>
<tr>
<td>Frameshift Insertionen</td>
<td>5,8</td>
<td>In-frame Deletionen</td>
<td>2,3</td>
</tr>
<tr>
<td>Insertionen/Deletionen</td>
<td>1,2</td>
<td>In-frame Insertionen</td>
<td>0,7</td>
</tr>
<tr>
<td>(von max. 5 Nukleotiden)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splice Donor Region</td>
<td>11,5</td>
<td>Chromosomale Translokation</td>
<td>0,5</td>
</tr>
<tr>
<td>Splice Akkzeptor Region</td>
<td>11,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2: Spektrum der konstitutionellen Mutationen mit deren Häufigkeiten im NF2-Gen. (Nach der NF2-Mutations-Datenbank: http://uwcmml1s.uwcm.ac.uk/uwcm/mg/nf2/)

Unter Verwendung und Kombination verschiedener Verfahren können die Mutationen in bis zu 66 % der Fälle mit der erblichen Form der Neurofibromatose vom Typ 2 detektiert werden. Trotz der Vielfalt und der ständig neu auftretenden Mutationen zeichnet sich eine Genotyp-Phänotyp-Korrelation ab. Mutationen, die zu einem verkürzten Protein führen, wie die *Nonsense* Mutationen oder Mutationen mit einer Verschiebung des Leserasters, führen zu einem Phänotyp mit einem schwereren und aggressiveren Verlauf (Wishart Typ), der sich im frühen Auftreten der Symptomen und vieler schnell wachsendender Tumore (mindestens drei), die auch zum Tode führen, äußert. *Missense* Mutationen korrelieren mit einem milder Phänotyp (Gardner Typ), für den ein später Ausbruch, ein langsang wachsendes vestibulares Schwannom und wenige weitere Tumore charakteristisch sind. Bei Mutationen in den Spleißstellen werden beide
Verlaufsformen beobachtet [Evans et al., 1998a; Kluwe et al., 1996; Kluwe and Mautner, 1998; Merel et al., 1995; Parry et al., 1996; Rutledge et al., 1996].

Abbildung 3: Verteilung der Mutationen im NF2 Protein Merlin. (Nach der NF2-Mutations-Datenbank: http://uwcmml1s.uwcm.ac.uk/uwcm/mg/nf2/)

1.1.4 Das Genprodukt Merlin und seine Homologen: Die ERM Proteine

FERM Domäne gelegen Bereich (Aminosäure 280-300) vermittelt. [Xu and Gutmann, 1998].

Abbildung 5: Modell für die FERM Domäne in Merlin
Drei Untereinheiten ordnen sich in einer kleeblattartigen Struktur an. Es sind jeweils die Sekundärstrukturen (β-Faltblattstruktur und α-Helixstruktur) nach Kang [Kang et al., 2002].

Krystallisationsexperimente ergaben für die FERM Domäne von Merlin drei sich klar voneinander unterschiedliche Subdomänen (A, B und C), die sich kleeblattartig anordnen. Die
Subdomäne A zeigt eine Faltung, die dem Protein Ubiquitin ähnelt, Subdomäne B hat eine Faltung ähnlich dem Acyl-CoA Bindungsprotein und Subdomäne C dem der Proteine PTH, PH und EVH1 (siehe Abb. 5) [Kang et al., 2002].

1.1.4 Tiermodelle für die NF2

Für die Neurofibromatose Typ 2 wurden Modelle an der Maus und an der Fruchtfliege *Drosophila melanogaster* entwickelt.

In Drosophila zeigen Zellen, denen ein funktionsfähiges Merlin fehlt, eine deutliche Überexpression im Vergleich zu den benachbarten Zellen [LaJeunesse et al., 1998].

1.2 NF2 UND POLYNEUROPATHIEN

1.3 RNA INTERFERENZ

1.3.1 EIN ÜBERBLICK

(Abb. 6 (2)). Ist die komplementäre Sequenz gefunden, wird diese nach der Bindung innerhalb der Sequenz der siRNA zersetzt und funktionsunfähig gemacht (Abb. 6 (3)). Zusätzlich zu der doppelsträngigen RNA, konnten auch andere endogene RNA Moleküle wie die miRNAs (micro RNA), die stRNAs (short temporal RNA) identifiziert werden, die auf eine ähnliche Weise die Geninaktivierung bewirken [Meister and Tuschl, 2004].

1.3.2 **VEKTORGESTÜTZTE RNA INTERFERENZ**

Die Verwendung von siRNA in Säugetierzellen zur RNA Interferenz Analyse stößt durch ihren transienten Charakter sehr schnell an ihre Grenzen. Etwa 72 h nach der Transfektion lassen sich die kurzen RNA Moleküle nachweisen. Um dies zu umgehen haben mehrere Gruppen auf Vektoren basierende Systeme entwickelt um stabil die sogenannte shRNAs (short hairpin RNAs) zu produzieren. Die shRNAs sind eine vereinfachte Form der miRNAs, können aber in den Zellen über den selben Mechanismus wie siRNA den sequenzspezifischen Abbau von RNA induzieren [Brummelkamp et al., 2002; McManus et al., 2002] (Abb 6).

Abbildung 6: Mechanismus der RNA Interferenz in Säugetierzellen. Nach internem Werbematerial zur Verfügung gestellt von der Firma Invitrogen (Karlsruhe), modifiziert.
1.4 FRAGESTELLUNG, GEGENSTAND UND ZIELE DER ARBEIT

Ein wichtiger Schwerpunkt der Arbeit sollte die Etablierung einer Mutationsanalyse für das NF2 Gen darstellen, um vor allem Deletionen im NF2 Gen zu identifizieren. Diese Methode sollte dabei so gewählt werden, dass sie das Spektrum an Techniken zur Auffindung von Mutationen bei der NF2 ergänzt und gleichzeitig an DNA isoliert aus mikrodissektiertem Gewebe durchgeführt werden kann.
2. Material

2.1 DNA und Gewebe-Material

Das DNA- und Gewebe-Material für diese Arbeit wurden aus folgenden Quellen bezogen:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutproben von Patienten mit diagnostizierter NF2 und PNP</td>
<td>Neurologische Ambulanz, Ulm</td>
</tr>
<tr>
<td>Blutproben von Probanden mit nicht feststellbarer NF2 und PNP</td>
<td>Zentrum für klinische Forschung, Ulm</td>
</tr>
<tr>
<td>DNA von NF2 Patienten mit partiell bekannten Deletionen innerhalb des NF2 Gens</td>
<td>Prof. Dr. Gareth D. Evans, Manchester, England</td>
</tr>
<tr>
<td>Gewebeschritte von Suralnervenbiopsate (Schnittdicke 8 µm) der NF2 Patienten mit PNP</td>
<td>Neuropathologie, Aachen</td>
</tr>
<tr>
<td>Peripheres Nervengewebe von Patienten ohne NF2 und PNP</td>
<td>Neurochirurgie, Günzburg</td>
</tr>
</tbody>
</table>

2.2 Primäre Zellkulturen und Zelllinien

<table>
<thead>
<tr>
<th>Material</th>
<th>Quelle/Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primäre Schwann- und Schwannomzellkulturen</td>
<td>Isoliert aus Material der Neurochirurgie, Günzburg</td>
</tr>
<tr>
<td>Primäre Fibroblastenkultur des NF2 Patienten</td>
<td>Isoliert aus der Schwannomzellkultur</td>
</tr>
<tr>
<td>Primäre Fibroblastenkultur</td>
<td>PD. Dr. Kaufmann, Humangenetik, Ulm</td>
</tr>
<tr>
<td>Humane Neuroblastomazelllinie SH-SY5Y</td>
<td>ecacc European Collection of Cell Culture, Salisbury, UK</td>
</tr>
<tr>
<td>Humane Glioblastoma- Astrocytomazelllinie U373 MG</td>
<td>ecacc European Collection of Cell Culture, Salisbury, UK</td>
</tr>
<tr>
<td>Humane maligne Mesotheliomzelllinien (HMM) HIB, TRA, BAR</td>
<td>Deguen et al., 1998</td>
</tr>
</tbody>
</table>
METHODEN

2.3 Primer

Für die Auswahl der Primer wurden die Kriterien aus Sambrook et al., 1989 berücksichtigt bzw. die Programme: Primer Select (DNA Star), BioToolKit 300 (Chang Bioscience) und Oligo 4.0 verwendet. Die Synthese wurde von den Firmen Thermo Hybaid (Ulm), biomers (Ulm) und Tib molbiol (Berlin) übernommen.
2.3.1 Primer für die DNA-sequenzierung

<table>
<thead>
<tr>
<th>Exon</th>
<th>Sequenz</th>
<th>Position</th>
<th>Fragmentlänge in bp</th>
<th>Für die Sequenzierung °C</th>
</tr>
</thead>
</table>
| 1 | Hin_1: 5'-UPS-ATGGTGCCCTGAGCCCTGTGCAG-3'
Rück_1: 5'-UPS-GAGAACCCTCTCGAGCTCTAC-3'
Hin_2: 5'-AGCCTCTCTAAGAGGAAGCAAC-3'
Rück_2: 5'-GAGAACCCTCTCGAGCTCTAC-3' | 1 (-230) - (-205)
114 (+42) – (+62)
1 (+34) - (+55)
114 (+42) – (+62) | 406
269 | 60
60 °C |
| 2 | Hin: 5'-TTGGAACCCTGAGGTGAGAGTGC-3'
Rück: 5'-CTATACAGCTACAGCGGCCAGTG-3' | 115 (-88) – (-64)
240 (+77) – (+101) | 315 | 66 °C |
| 3 | Hin: 5'-CTTCTTTGAGGGTGAGCAGCAGGAG-3'
Rück: 5'-CTCGAGGCAAATCTCGAACCAC-3' | 241 (-70) – (-46)
363 (+48) – (+69) | 256 | 65 °C |
| 4 | Hin: 5'-CTGGCAGCCCTCATTAGAAC-3'
Rück: 5'-AAACCCCAAGAAGAAAGATAGG-3' | 364 (-64) – (-83)
447 (+60) – (+83) | 271 | 58 °C |
| 6 | Hin: 5'-GTGAAGGCTGAGTCTGAGGAGCA-3'
Rück: 5'-ATAAAGGAATTAAACCAAC-3' | 517 (-280) – (-303)
599 (+16) – (+35) | 446 | 55 °C |
| 7 | Hin: 5'-CTAGAGGAATGCCAGGGTCAAGA-3'
Rück: 5'-AGAGTCTATCGCCTTGGAATGAA-3' | 600 (-56) – (-77)
675 (+78) – (+100) | 276 | 58 °C |
<table>
<thead>
<tr>
<th>Exon</th>
<th>Sequenz</th>
<th>Position</th>
<th>Fragmentlänge in bp</th>
<th>Für die Sequenz</th>
</tr>
</thead>
</table>
| 8 | Hin: 5’-TCTGTGGGACCTGCTGAAA-3’
 Rück: 5’-CTGGGAATTAAGGAACCTCTATGAA-3’ | 676 (-81) – (-100)
 810 (+93) – (+396) | 372 | 53°C |
| 9 | Hin: 5’-CCAGGACAAGGCATAACCTCA-3’
 Rück: 5’-AGTATGCAGCAGATGAGATAC-3’ | 811 (-82) – (-102)
 885 (+105) – (+125) | 320 | 52°C |
| 10 | Hin: 5’-CATCTTCACGTTTACTGCTACCTG -3’
 Rück: 5’-ATGCTCCACGAGCCAAAAGACTCCT-3’ | 886 (-69) – (-92)
 999 (+82) – (+104) | 332 | 60 |
| 11 | Hin: 5’-AAAGGAGAAGGGGAAAAGAGTC -3’
 Rück: 5’-AAAGGCAAGGAAAGTCCCCAAGTAG-3’ | 1000(-76) – (-99)
 1122 (+139) – (+162) | 409 | 56 |
| 12 | Hin: 5’-TGGCCGGAGACACAGCACA-3’
 Rück: 5’-CCCAGGCCCCAGAAGATG-3’ | 1123 (-18) – (-36)
 1340 (+105) – (+123) | 396 | 65 |
| 13 | Hin: 5’-CTCTGCAGGGGGAGGTGGTGCTG -3’
 Rück: 5’-GAACTGAAGGCGGAGGAAAGA-3’ | 1341 (-33) – (-55)
 1446 (+49) – (+72) | 328 | 65 |
<table>
<thead>
<tr>
<th>Exon</th>
<th>Sequenz</th>
<th>Position</th>
<th>Fragmentlänge in bp</th>
<th>Für die Sequenzierung der</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Hin: 5’-AGTTGTGCCCATGCTTGT -3’ Rück: 5’-AGCGACCTCTCACCTCTGC -3’</td>
<td>1447 (-67) – (-87) 1574 (+73) – (+91)</td>
<td>257</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>Hin: 5’-CTCAACCATGTCACACCA -3’ Rück: 5’-AGATGCCAACCACCTCTATCATA-3’</td>
<td>1575 (-60) – (-82) 1737 (+45) – (+68)</td>
<td>333</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>Hin: 5’-TGGCACTTATGCGATTGTGAT-3’ Rück: 5’-CCCTGGAGCTGCTCTGC-3’</td>
<td>1738 (-27) – (-48) 1782 (+102) – (+119)</td>
<td>312</td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>Hin: 5’-CCAAGTGGAGGACAGAG-A3’ Rück: 5’-CTGGGCGGTGGAGGTCA-3’</td>
<td>1783 (-41) – (-58) 2047 (+111) – (+127)</td>
<td>469</td>
<td>66</td>
</tr>
</tbody>
</table>
2.3.2 PRIMER FÜR DIE MULTIPLEX-PCR

am NF2 Gen und für die interne Kontrolle an Exon 5 des Fanconi anemia complementation group C (FANCC) Gens. Die Hinprimer sind am 5’ Ende mit dem Fluoreszenzfarbstoff Carboxytetramethylrhodamin (TAMRA) versehen. Exon 4 und 6 wurden nicht berücksichtigt.
<table>
<thead>
<tr>
<th>Exon</th>
<th>Sequenz</th>
<th>Position</th>
<th>Fragmentlänge in bp</th>
</tr>
</thead>
</table>
| 1 | Hin: 5’-AGCTCTCTCAAGAGGAAGCAAC-3’
Rück: 5’-GAGAACCTCTCGAGCTTCCAC-3’ | 1 (+34) - (+56)
114 (+42) – (+63) | 143 |
| 2 | Hin: 5’-TCCTTCCCCCATTGTTTGTATTG-3’
Rück: 5’-CAGGCACTGTGTCCCTTGATTG-3’ | 115 (+27) – (+51)
240 (-42) – (-19) | 134 |
| 3 | Hin: 5’-TGAGAGGATGACACAGGAGGAAG-3’
Rück: 5’-GGATAAAATTGCAAGAGTGA-3’ | 241 (-64) – - (-42)
363 (-83) – (-58) | 129 |
| 5 | Hin: 5’-TGAGCTGGGAGGGAATGAGAT-3’
Rück: 5’-CTTGTAACACTGGGTCGTAG-3’ | 448 (-95) – (-73)
516 (-61) – (-39) | 125 |
| 7 | Hin: 5’-GTCTTCCGTCTCCCAACAG-3’
Rück: 5’-TAGTTCACACGTACATCCAC-3’ | 600 (-20) – (+1)
675 (-36) – (-13) | 83 |
| 8 | Hin: 5’-CCACAGATATAAAAAGGGCAGAG-3’
Rück: 5’-AGGGGGCGACAGGGAAGAAG-3’ | 676 (-6) – (+18)
810 (+36) – (+57) | 198 |
| 9 | Hin: 5’-GTCTTCTTCATCTCAGGTTC-3’
Rück: 5’-TGCGCCAAGTGAGATACCATT-3’ | 811 (-20) – (+5)
885 (+101) – (+123) | 217 |
<table>
<thead>
<tr>
<th></th>
<th>Hin</th>
<th>Rück</th>
<th>1000 (±13) – (±39)</th>
<th>158</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5’-TGTATCGGGAACCATGATCTATTAT-3’</td>
<td>5’-CCAGGCCAGGACTGACCACAC-3’</td>
<td>886 (±13) – (±39)</td>
<td>999 (±36) – (±57)</td>
</tr>
<tr>
<td>11</td>
<td>5’-GCCCTTGTGATTCAATGACTGTTTT-3’</td>
<td>5’-TTGGCCATTGTTGCTTCTTCTTTC-3’</td>
<td>1000 (±40) – (±16)</td>
<td>153</td>
</tr>
<tr>
<td>12</td>
<td>5’-TCTGGCGGGAAGAAGCACA-3’</td>
<td>5’-ACCTCGGCTTCCAGCACCTTC-3’</td>
<td>1123 (±63) – (±42)</td>
<td>239</td>
</tr>
<tr>
<td>13</td>
<td>5’-GGAGACAGAGCCAAAGCAGAAG-3’</td>
<td>5’-CGGGAGAAAGGAACATACC-3’</td>
<td>1341 (±55) – (±33)</td>
<td>116</td>
</tr>
<tr>
<td>14</td>
<td>5’-CAAGTTGCTCCTGACATACC-3’</td>
<td>5’-GGGGCTACATCTTTTCTTTCTTCT-3’</td>
<td>1447 (±20) – (±42)</td>
<td>121</td>
</tr>
<tr>
<td>15</td>
<td>5’-CTGTCTGCCAAGCGCTGTGATG-3’</td>
<td>5’-CTGCCAACCCTGTCGGGTTC-3’</td>
<td>1575 (±43) – (±22)</td>
<td>181</td>
</tr>
<tr>
<td>16</td>
<td>5’-GATTTGAGGCTGATCCATCAGG-3’</td>
<td>5’-GAGGGCAGAAGCACCATCACC-3’</td>
<td>1738 (±100) – (±75)</td>
<td>191</td>
</tr>
<tr>
<td>17</td>
<td>5’-GGGAGCTGGCTGGGGTTTTC-3’</td>
<td>5’-AGGGGCTGGGCTTCTTCAAAC-3’</td>
<td>1783 (±137) – (±117)</td>
<td>68</td>
</tr>
<tr>
<td>Exon 5 FANCC</td>
<td>5’-CTGATGTAATCCTGTTTGCAAGCCTG-3’</td>
<td>5’-TCCTCTACAACCCAAACTGATACAC-3’</td>
<td>186</td>
<td></td>
</tr>
</tbody>
</table>
2.3.3 Oligonukleotide für die Multiplex-PCR zur Bestimmung der Gene

Alle Primer enthalten in der 5' Region das Sequenzmotiv UPS (universel primer sequence, GCGGTCCCAAAAGGGTCAGT) nach Shuber [Shuber et al., 1995].

Sequenz

<table>
<thead>
<tr>
<th>Exon</th>
<th>Position</th>
<th>Fragmentlänge in bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (+29) - (+52)</td>
<td>888 (+101) - (+123)</td>
</tr>
<tr>
<td>2</td>
<td>114 (+42) - (+63)</td>
<td>811 (-25) - (-1)</td>
</tr>
<tr>
<td>3</td>
<td>241 (-71) - (-49)</td>
<td>676 (-12) - (+12)</td>
</tr>
<tr>
<td>4</td>
<td>363 (-83) - (-58)</td>
<td>675 (-36) - (-13)</td>
</tr>
<tr>
<td>5</td>
<td>448 (-96) - (-77)</td>
<td>516 (-46) - (-39)</td>
</tr>
<tr>
<td>6</td>
<td>516 (-61) - (-49)</td>
<td>516 (-46) - (-39)</td>
</tr>
<tr>
<td>7</td>
<td>240 (-42) - (-19)</td>
<td>115 (-38) - (-13)</td>
</tr>
<tr>
<td>8</td>
<td>114 (+42) - (+63)</td>
<td>114 (+42) - (+63)</td>
</tr>
<tr>
<td>9</td>
<td>600 (-26) - (-5)</td>
<td>320 (+36) - (+57)</td>
</tr>
<tr>
<td>10</td>
<td>676 (-12) - (+12)</td>
<td>810 (+9) - (+12)</td>
</tr>
<tr>
<td>11</td>
<td>244</td>
<td>675 (-36) - (-13)</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>675 (-36) - (-13)</td>
</tr>
<tr>
<td>13</td>
<td>170</td>
<td>675 (-36) - (-13)</td>
</tr>
<tr>
<td>14</td>
<td>176</td>
<td>675 (-36) - (-13)</td>
</tr>
<tr>
<td>15</td>
<td>185</td>
<td>675 (-36) - (-13)</td>
</tr>
<tr>
<td>16</td>
<td>190</td>
<td>675 (-36) - (-13)</td>
</tr>
</tbody>
</table>

Dosage An Zeilenaufnahme

2.3.3 Oligonukleotide für die UPS-Multiplex-PCR zur Bestimmung der Gene
<table>
<thead>
<tr>
<th>Exon 5</th>
<th>Hin: 5'-UPS-ATAGAACTGATGTAATCTCTGTTTCG-3’</th>
<th>Rück: 5'-UPS-TCCTCTCAACACCAACTGATACA-3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Hin: 5'-UPS-CCAGCTATGTATCGGGAACCATGATC-3’</td>
<td>Rück: 5'-UPS-CCAGGCAGACCAGCTACAGAC-3’</td>
</tr>
<tr>
<td></td>
<td>886 (+6) – (+32)</td>
<td>999 (+36) – (+57)</td>
</tr>
<tr>
<td>11</td>
<td>Hin: 5'-UPS-GGTCTCGAGCCCTGTGATTCAATGA-3’</td>
<td>Rück: 5'-UPS-TGGGCCCTGTTCTCTCTTCTCT-3’</td>
</tr>
<tr>
<td></td>
<td>1000 (-48) – (-23)</td>
<td>1122 (-34) – (-10)</td>
</tr>
<tr>
<td>12</td>
<td>Hin: 5'-UPS-GGCAGATCTGGGGGCAGAAG-3’</td>
<td>Rück: 5'-UPS-ACCTCCAGCTCAGCACCT-3’</td>
</tr>
<tr>
<td></td>
<td>1123 (-69) – (-48)</td>
<td>1340 (-57) – (-38)</td>
</tr>
<tr>
<td>13</td>
<td>Hin: 5'-UPS-CGAGCGGAGCGAAGGAGAAGAAGACC-3’</td>
<td>Rück: 5'-UPS-CGGAGGAGGAGAAAGAACATCACC-3’</td>
</tr>
<tr>
<td></td>
<td>1341 (-61) – (-39)</td>
<td>1446 (+40) – (+62)</td>
</tr>
<tr>
<td>14</td>
<td>Hin: 5'-UPS-TCCTCCTTGCTTCTCTCT-3’</td>
<td>Rück: 5'-UPS-TGGGGCTCTACACTTTTTTCTCT-3’</td>
</tr>
<tr>
<td></td>
<td>1447 (+15) – (+37)</td>
<td>1574 (-12) – (+13)</td>
</tr>
<tr>
<td>15</td>
<td>Hin: 5'-UPS-GTCTCCTGTTGCGCCCAAGCC-3’</td>
<td>Rück: 5'-UPS-CTGCCACCCCTGTCGGAGGTC-3’</td>
</tr>
<tr>
<td></td>
<td>1575 (-49) – (-28)</td>
<td>1737 (-46) – (-25)</td>
</tr>
<tr>
<td>16</td>
<td>Hin: 5'-UPS-ATCACGATTTCAGGGCTATCCAAG-3’</td>
<td>Rück: 5'-UPS-GAGGGCAGCACCACATCACCAC-3’</td>
</tr>
<tr>
<td></td>
<td>1738 (-105) – (-81)</td>
<td>1782 (-44) – (-22)</td>
</tr>
<tr>
<td>17</td>
<td>Hin: 5'-UPS-ATAGGAGCTGGCTGGG-3’</td>
<td>Rück: 5'-UPS-AGGGGCTGGGCTCTTTACCTCA-3’</td>
</tr>
<tr>
<td></td>
<td>1783 (-135) – (-118)</td>
<td>2047 (-81) – (-60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aufgeführt sind sowohl Primer, die für die RT-PCR an Schwan- und Schwannomzellen, als auch für die Mesothelzellen und Fibroblasten verwendet wurden.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Sequenz</th>
<th>Fragmentgröße</th>
<th>verwendete Schmelztemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP (Amyloid Beta Precursor Protein)</td>
<td>Hin: 5’-CTCCCGCTGGTACTTTGATGTG-3’
Rück: 5’-GGGCAAGAGGTTCTGGGTAGT-3’</td>
<td>164</td>
<td>60</td>
</tr>
<tr>
<td>CBL-B (Ubiquitin Ligase)</td>
<td>Hin: 5’-CCACGATTATGGGCTCAGTT-3’
Rück: 5’-GAAATGGGGCTC ACTTTCTA-3’</td>
<td>178</td>
<td>60</td>
</tr>
<tr>
<td>CDKN1A (Cyclin Dependent Kinase Inhibitor 1A)</td>
<td>Hin: 5’-CAGGGGACAGCAGAGGAAGA-3’
Rück: 5’-GCTTCCTGTGGCGGATTA-3’</td>
<td>201</td>
<td>60</td>
</tr>
<tr>
<td>FLT1 (VEGFR1) (Vascular Endothelial Growth Factor)</td>
<td>Hin: 5’-CTTTAACCTTGACAGCAGTCA-3’
Rück: 5’-GTAACAGGTGATTTAGGTGACGTAA-3’</td>
<td>231</td>
<td>60</td>
</tr>
<tr>
<td>G6PDH [Radonic et al., 2004]</td>
<td>Hin: 5’-ATCGACCACCTACTGGCAA-3’
Rück: 5’-TTCTGCATACGTTCTGGGA-3’</td>
<td>191</td>
<td>55-62</td>
</tr>
<tr>
<td>HMGA (High Mobility Group Protein)</td>
<td>Hin: 5’-TGGTTCCACCTCTTCGTCCTG-3’
Rück: 5’-AACAGGAGGCTCCTCTGATG-3’</td>
<td>133</td>
<td>60</td>
</tr>
<tr>
<td>HPRT [Erovic et al., 2003]</td>
<td>Hin: 5’-CCCGAGCTTGTGGATTTT-3’
Rück: 5’-CTCTCATTTAGGCCTGGTAATTTG-3’</td>
<td>141</td>
<td>55-62</td>
</tr>
<tr>
<td>Lamin A/C (nukleäres Hüllprotein)</td>
<td>Hin: 5’-CGACCAAGAAGGAGGTTG-3’
Rück: 5’-CTGCCTCAAGCTTGCCACC -3’</td>
<td>167</td>
<td>60</td>
</tr>
</tbody>
</table>
| L-MAG (Myelin-Associated Glycoprotein precursors) | Hin: 5’-TGCCATAGTCTGCTACATTACCC-3’
Hin: 5’-CAGGCGCCTCTCGCTCTCG-3’ | 151 | 60 |
| MAP2K3 (Dual Specificity Amidogen-Activated Protein Kinase 3) | Hin: 5’-GACCTTCATCACCATTGGAG-3’
Rück: 5’-CGTACAAGGTGACAGTGTAG-3’ | 232 | 60 |
| MCP1 (Monocyte Chemotactic Protein 1 Precursor) | Hin: 5’-GTGTTCAAGTCTTCGGAGTT-3’
Rück: 5’-CAATAGGAAGATCTCAGTGC-3’ | 187 | 60 |
| MMP14 (Matrix Metalloproteinase 14 Precursor) | Hin: 5’-CACCTTCCTACGAGAGGAAGG-3’
Rück: 5’-TTGGGTACTCGCTATCCAC-3’ | 246 | 60 |
| NF2 | Hin: 5’-CACCGGTCCTCCTGACATACC-3’
Rück: 5’-CTGCCACCCCTGTCGGAGTTC-3’ | 60 |
| NF2 | E2_H: 5’-TGGACTGCAGTACACAATCAAG-3’
E11_R: 5’-CAGCCTCCTCTCCAACTCATCC-3’ | 874 | 55 |
| PRNP (Major Prior Protein Precursor) | Hin: 5’-TCCGAGCGTGCAGTACAAATCAAG-3’
Rück: 5’-CCTGAGGTGGTACGGGTTG-3’ | 225 | 60 |
| PTMA (Prothymosin Alpha) | Hin: 5’-CGGAATGCTAATGAGGAAA-3’
Rück: 5’-TCGGTCTCTGCTCTTGGT-3’ | 213 | 60 |
| RPII (RNA Polymerase II) [Radonic et al., 2004] | Hin: 5’-GCACCAGTCCAATGACAT-3’
Rück: 5’-GTAGCGGCTCTCCATTA-3’ | 156 | 60 |
| TBP (TATA-Box Binding Protein) [Bieche et al., 1999] | Hin: 5’-CACGAACCACGGCACCCTGTT-3’
Rück: 5’-TTTTCTTGCTGCCAGTCTGGAC-3’ | 89 | 55-62 |
|---|---|---|---|
| TIMP1 (Metalloproteinase Inhibitor 1 Precursor) | Hin: 5’-CACCCACAGACGGCCTTCT-3’
Rück: 5’-AGGCTTGGAACCCTTTATACATCTT-3’ | 136 | 60 |
2.3.6 Primer für die Generierung der shRNA-Konstrukte

Die Primer enthalten neben der Zielsequenz des Gens, das inaktiviert werden soll, ein vier Basen umfassendes Sequenzmotiv an der 5’ Position für die direkte Klonierung in das Zielplasmid und zentral eine Sequenzregion von vier Basen für die Ausbildung der Haarnadelstruktur (Loop-Struktur). Beide Regionen wurden in Anlehnung an die Empfehlungen des Plasmidherstellers Invitrogen ausgewählt und sind jeweils durch Kursivdruck hervorgehoben.
<table>
<thead>
<tr>
<th>Konstrukt</th>
<th>Sequenz</th>
<th>Quelle/Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF2_iso1&2_1 shRNA</td>
<td>Sense: 5’-CACCGCGGAGCGAAGCCAAGCCGAAGCTTGGCTCTTCGGCTCCGC-3’
Antisense: 5’-AAAAACGGAGCGAAGCGACAAGCTTGGCTTGGCTCCGC-3’</td>
<td>Sequenz zur Verfügung gestellt von Kissil, modifiziert</td>
</tr>
<tr>
<td>NF2_iso1&2_2 shRNA</td>
<td>Sense: 5’-CACCGGACCTCTTTGATTTGGTGCGAACAACCAATC
AAAGAGGTCC-3’
Antisense: 5’-AAAAAGGACCTCTTTGATTTGGTGTTCGACACAAATCAAA
GAGGTCC-3’</td>
<td>dsRNA Sequenz nach Ambion</td>
</tr>
<tr>
<td>Negativ shRNA</td>
<td>Sense: 5’-CACCGTCTCCGAACGTCACGTCAACGACACACG
TTCGGAGAAG-3’
Antisense: 5’-AAAAATCTCCGAACGTCACGTCAACGACACACG<br(CGGAAGAAC-3’</td>
<td>dsRNA Sequenz nach Qiagen</td>
</tr>
<tr>
<td>LaminA/C shRNA</td>
<td>Sense: 5’-CACCGGGAATTGGGCAATCAAGCGCGAAGCGTTTGATCTGGCAACGTGCCC-3’
Antisense: 5’-AAAAAGGGAATTGGCAGATCAAGCGCGTCTGGATCTGCCCAACGGAAATGGCTTTGGATCTGGCC-3’</td>
<td>dsRNA Sequenz nach Sui et al. [Sui et al., 2002]</td>
</tr>
</tbody>
</table>
Reagenzien die Sequenzierung und die PCR:

1st Strand cDNA Synthese Kit for RT-PCR, Roche, Mannheim
Big Dye Terminator Cycle Sequence Kit, Version 3.1., Applied Biosystems, Foster City, USA
Block-iTTM Inducible H1 RNAi Entry Vector Kit, Invitrogen, Karlsruhe
DNase I, RNase-frei, Roche, Penzberg
GFX PCR DNA and Gel Band Purification Kit, Amersham Pharmacia Biotech, Freiburg
HiDi Formamid, Applied Biosystems, Foster City, USA
High Fidelity Taq Polymerase, Roche, Mannheim
Light Cycler-Fast Start DNA Master SYBR Green I, Roche, Mannheim
Multiplex Kit, Qiagen, Hilden
NucleoSpin Extract II, Machery-Nagel, Düren
Pico Pure™ DNA Extraction Kit, Arcturus, Mörfelden
QIAquick PCR Purification Kit, Qiagen, Hilden
Q-Solution, Qiagen, Hilden
RNase H, Invitrogen, Karlsruhe
Taq Polymerase, Sigma, München
METHODEN

2.4 Vektoren

<table>
<thead>
<tr>
<th>Vektor</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>pENTRH1/TO</td>
<td>Invitrogen, Paisley, England</td>
</tr>
<tr>
<td>pcDNA6/TR</td>
<td>Invitrogen, Paisley, England</td>
</tr>
<tr>
<td>pEGFP-C1</td>
<td>Becton Dickenson, Heidelberg</td>
</tr>
</tbody>
</table>

2.5 Bakterienstämmé

One Shot® TOP10 chemisch kompetente *E.coli*, Invitrogen

2.6 Antibiotika und Zytostatika

Ampicillin, Sigma, Mannheim
Kanamycin, Sigma, Mannheim
Penicillin/Streptomycin, Gibco, Karlsruhe
Zeocin: Invitrogen, Karlsruhe
Blasticidin: Invitrogen, Karlsruhe
Tetracyclin: Invitrogen, Karlsruhe

2.7 Nährmedien

Inkubationsmedium für humane Nervenfazikel und Tumore
90% DEMEM, 10% FCS, 500 U/ml Penicillin/Streptomycin, 2 µM Forskolin

Verdaumedium für humane Nervenfazikel
90% DEMEM, 10% FCS, 500 U/ml Penicillin/Streptomycin, 160 U/ml Collagenase, 0,8 U/ml Dispase

Verdaumedium für Tumore
90% DEMEM, 10% FCS, 500 U/ml Penicillin/Streptomycin, 160 U/ml Collagenase, 1,25 U/ml Dispase

*Proliferationsmedium für humane Schwannzellen:
90 % DEMEM, 10 % FCS, 500 U/ml Penicillin/Streptomycin, 0,5 mM IBMX, 2,5 µg/ml Amphotericin B, 10 nM β-Heregulin, 0,5 µM Forskolin, 2,5 µg/ml Insulin*
2.8 Antikörper

Primäre und sekundäre Antikörper

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Herkunft</th>
<th>Klonalität</th>
<th>Anwendung</th>
<th>Verwendete Verdünnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-NF2 (A-19)</td>
<td>Kaninchen</td>
<td>polyklonal</td>
<td>Western Blot</td>
<td>1:500</td>
<td>Santa Cruz Biotechnologie, Santa Cruz, Kalifornien</td>
</tr>
<tr>
<td>Anti-Lamin A/C</td>
<td>Kaninchen</td>
<td>polyklonal</td>
<td>Western Blot</td>
<td>1:1000</td>
<td>Cell Signaling, Danvers, USA</td>
</tr>
<tr>
<td>Anti-Pak2</td>
<td>Kaninchen</td>
<td>polyklonal</td>
<td>Western Blot</td>
<td>1:500</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Anti-Phospho-Pak2 (Ser20)</td>
<td>Kaninchen</td>
<td>polyklonal</td>
<td>Western Blot</td>
<td>1:500</td>
<td>Chemicon, Sigle Oak Drive, USA</td>
</tr>
<tr>
<td>Anti-Integrin B4 (H101)</td>
<td>Kaninchen</td>
<td>polyklonal</td>
<td>Western Blot</td>
<td>1:500</td>
<td>Santa Cruz Biotechnologie</td>
</tr>
<tr>
<td>Anti-Integrin α6</td>
<td>Ziege</td>
<td>polyklonal</td>
<td>Western Blot</td>
<td>1:100</td>
<td>Santa Cruz Biotechnologie</td>
</tr>
<tr>
<td>Anti-Actin</td>
<td>Maus</td>
<td>Polyklonal</td>
<td>Western Blot</td>
<td>1:20000</td>
<td>Calbiochem, San Diego, USA</td>
</tr>
<tr>
<td>Anti-Rac 1</td>
<td>Maus</td>
<td>Polyklonal</td>
<td>Western Blot</td>
<td>1:500</td>
<td>Transduction Laboratories, Cerdanyola del Vallés, Spain</td>
</tr>
<tr>
<td>Anti-cow S100</td>
<td>Kaninchen</td>
<td>Polyklonal</td>
<td>Immunzytologie</td>
<td>1:80000</td>
<td>Dako, Glostrup, Dänemark</td>
</tr>
<tr>
<td>biot. Anti-Maus-IgG</td>
<td>Ziege</td>
<td>Polyklonal</td>
<td>Western Blot</td>
<td>1:3000</td>
<td>Vector Laboratories, Burlinggame, Australien</td>
</tr>
<tr>
<td>biot. Anti-Kaninchen-IgG</td>
<td>Ziege</td>
<td>Polyklonal</td>
<td>Western Blot</td>
<td>1:5000</td>
<td>Vector Laboratories,</td>
</tr>
<tr>
<td>Anti-Kaninchen-IgG (Cy3 markiert)</td>
<td>Ziege</td>
<td>Polyklonal</td>
<td>Immunzytologie</td>
<td>1:5000</td>
<td>Vector Laboratories,</td>
</tr>
<tr>
<td>Anti-Tet Repressor</td>
<td>Kaninchen</td>
<td>Polyklonal</td>
<td>Western Blot</td>
<td>1:1000</td>
<td>MoBiTec, Göttingen</td>
</tr>
<tr>
<td>Anti-Tet Repressor</td>
<td>Kaninchen</td>
<td>Polyklonal</td>
<td>Western Blot</td>
<td>1:250</td>
<td>QED, San Diego, USA</td>
</tr>
</tbody>
</table>
METHODEN

Kontrollprotein:
Tet-Repressor Protein, MoBiTec, Göttingen

2.9 GERÄTE UND SOFTWARE

Lasermikrodissektionsmikroskop PixCell II, Arcturus, Mörfelden
ABI Prism 3100, Applied Biosystems, Foster City, USA
Elisa-Platten-Lesegerät: Molecular Devices, Union City, USA
Nanodrop ND-10000: Nano Drop, Wilmington, USA
Light Cycler 3, Roche, Penzberg
Nukleotransfektor: Amaxa, Köln

verwendete Software
LinReg PCR
GeNorm
SoftMax Pro 5.0: Molecular Devices, Union City, USA
ABI Prism Analysing Software Version 3.0

2.10 SONSTIGE LÖSUNGEN UND CHEMIKALIEN

3. METHODEN

3.1 SEQUENZIERUNGEN

3.1.1 SEQUENZIERUNG GENOMISCHER DNA

3.1.2 Sequenzierung der short hairpin RNA (shRNA) Konstrukte

Die Sequenzierung der Konstrukte für die endogene Synthese der short hairpin RNAs (shRNAs) wurden direkt an der Plasmid-DNA (siehe auch 3.2.4) durchgeführt. Wegen der Haarnadelstruktur des klonierten DNA Bereiches mussten die Bedingungen im Vergleich zu den unter 3.1.1. Beschriebenen modifiziert werden. Als Template wurden 500 ng mit einer Primerkonzentration von 5µM und 3 µl des Sequenzierreaktionsskits (Applied Biosystems) in einem Gesamtvolumen von 10 µl eingesetzt. Die verwendeten Primer waren H1 forward und M13 reverse (beide Invitrogen). Der PCR-Verlauf umfasste hier 5 Schritte und fand als Hot-Start PCR statt. Der Sequenzierreaktionsskit wurde nach einer Erwärmung auf 98°C für 5 min hinzugegeben. Es schloss sich eine weitere Denaturierung bei 98°C für 20 sec an. Primer-Annealing und -Extension wurden in drei Temperaturschritten beginnend bei 65°C, gefolgt von 60°C und 55°C für jeweils eine Minute zusammengefasst. Sequenziert wurde auch hier Hin- und Rückstrang in je drei unabhängigen Experimenten. Für das Konstrukt pENTRH1/T0 NF2_iso1&2_1 shRNA erfolgte die Überprüfung der Sequenz nach vorangegangener Linearisierung durch die nur in der Loop-Struktur gelegene Restriktionschnittstelle HindIII (CGAAGC) (MoBiTec, Ettlingen). Für jede Sequenzierungsreaktion wurden 1 µg DNA nach den vom Hersteller mitgelieferten Daten verdaut, und das Ergebnis über die Auftrennung auf einem 0,8% Gel kontrolliert. Nach der Aufreinigung mit Hilfe des PCR Purification Kits (Qiagen), erfolgte die Sequenzierungsreaktion wie zuvor beschrieben.

3.2 Nukleinsäurepräparationen

3.2.1 Isolierung von genomischer DNA aus Blut

Für die Gewinnung von genomischer DNA aus Leukozyten wurde ein modifiziertes Protokoll der nach Miller et al. [Miller et al., 1988] etablierten Methode angewendet. Diese basiert auf der selektiven Aussalzung zellulärer Proteine durch Dehydrierung und Präzipitation mit Hilfe einer saturierten Natrium-Chlorid Lösung. In 10 ml Blut wurden in Gegenwart eines Ammonium-Chlorid haltigen Lysis-Puffer (155 mM NH₄Cl, 10 mM KHCO₃, 0,1 mM EDTA, pH 7,4) die Erythrozyten lysisiert und durch Zentrifugation bei 4000 rpm für 10 min und 4°C vom kernhaltigen Zell pellet entfernt. Dieser Vorgang wurde gegebenenfalls solange wiederholt, bis das weiße Zell pellet frei von nicht lysierten und pelletierten Erythrozyten vorlag. Es wurde in 5 ml SE-Puffer (75 mM NaCl, 25 mM EDTA, pH 8.0) zusammen mit 25 µl Proteinase K (10
mg/ml, Sigma) und 250 µl einer 20% SDS-Lösung bei 55°C für 10 h inkubiert. Nach der Proteolyse erfolgte die Zugabe von 1,4 ml der saturierten Natrium-Chlorid Lösung (etwa 6 M), ein kräftiges Schütteln für 15 sec und das Abtrennen der Proteine durch Zentrifugation bei 4000 rpm für 15min bei Raumtemperatur, um ein gleichzeitiges Ausfällen des SDS zu verhindern. Die im Überstand gelöste DNA wurde durch die Zugabe von Isopropanol (1 Volumen) und vorsichtiges Invertieren ausgefällt. Die als Knäuel sichtbar werdende DNA wurde mit einer sterilen Pipettenspitze aus dem Ansatz entfernt und mit 70% Ethanol mehrmals gewaschen. Nach kurzem Trocknen des Pellets bei Raumtemperatur wurde es in 500 µl TE-Puffer (10 mM Tris-HCl, 1 mM EDTA, pH 8,0) gelöst. Die Konzentrationsbestimmung erfolgte mit Hilfe eines Fluoreszenz-Spektrometers (AmershamPharmaciaBiotech, Freiburg) bei einer Wellenlänge von 260 nm.

3.2.2 Isolierung von genomischer DNA aus Zellkulturen
Die Isolierung von DNA aus Zellkulturen erfolgte mit Hilfe des QiaQuick Mini Kits (Qiagen) gemäß den Vorschriften des Herstellers. Die Konzentrationsbestimmung erfolgte auch hier photometrisch. Neben dem bereits unter 3.3.1 beschriebenen Gerätes kam weiterhin das Gerät NanoDrop (Wilmington, USA) zum Einsatz.

3.2.3 Isolierung von Plasmid-DNA aus einer Bakterienkultur

3.2.4 Isolierung von RNA aus Zellkulturen
Gesamt-RNA wurde ausschließlich aus subkonfluenten Kulturen isoliert, im Falle der primären Schwannzellen aus den Passagen zwei bis fünf. Es wurde weiterhin darauf geachtet, dass die miteinander zu vergleichenden Zellen eine annähernd identische Zelldichte aufwiesen. Wurde die RNA an unterschiedlichen Tagen präpariert, wurde die Konfluenz durch eine Aufnahme am Lichtmikroskop dokumentiert. Die Isolierung fand mit Hilfe des RNeasy Mini Kits (Qiagen, Hilden) nach Anweisung des Herstellers statt bzw. nach einem modifizierten Protokoll der

Für beide Präparationsarten bildete ein sehr wichtiger Bestandteil zur Feststellung der Güte der isolierten RNA die Auftrennung auf einem nicht denaturierenden TBE-Agarosegel, um bei auftretenden Problemen bei den anschließenden Reaktionen, eine ineffektive und bereits stark degradierte RNA auszuschließen. Auch hier wurden alle verwendeten Pufferlösungen mit DEPC behandeltem Wasser angesetzt, außerdem wurde auf absolute Reinheit der verwendeten Geräte wie zum Beispiel der Gelelektrophoresekammern besonders geachtet. Als Gütekriterien
für die RNA wurden die Banden der 28S- und 18S-ribosomalen RNA Moleküle, die ca. 95% an der gesamten cytoplasmatischen RNA eukaryontischer Zellen ausmachen, herangezogen. Hier gilt: bei einer guten RNA-Präparation sind die beiden in zwei scharfen, definierten Banden zu erkennen und dürfen kaum degradiert sein (als „Schmier“ zu erkennen), wobei die Intensität der 28S Bande etwa doppelt so stark sein sollte wie die der 18S.

Die RNA wurde entweder sofort für die nachfolgende cDNA Synthese (siehe 3.2.3) eingesetzt oder in Aliquots bei –80°C gelagert.

3.3 PCR (POLYMERASE CHAIN REACTION)

3.3.1 GEN DOSAGE PCR AN GENOMISCHER DNA

3.3.1.1 Multiplex PCR

Die verwendeten Primer sind unter 2.3.2 aufgeführt. Sie wurden für die 15 Exons des NF2 Gens und für Exon 5 des FANCC Gens so gewählt, dass sie entweder innerhalb des Exons oder in den direkt flankierenden intronischen Bereichen liegen und Produkte liefern, die sich exakt nach ihrer Größe unterscheiden ließen. Die maximale Produktgröße lag hierbei bei 239 bp für das Exon 12 des NF2 Gens. Entsprechend der unterschiedlichen Annealing-Temperaturen und der Produktlängen wurden die Primer-Paare in zwei Multiplex-Mixe kombiniert mit je 7 bzw. 8 NF2 Primer-Paaren. Mix 1 enthielt die Primer für die NF2 Exons 2, 11, 12, 13, 14, 15 und 16 und Mix 2 für die NF2 Exons 1, 3, 5, 7, 8, 9, 10 und 17. In beiden Mixen enthalten waren außerdem die Primer für Exon 5 des FANCC Gens. Die Mixe wurden jeweils mit einer äquimolaren Konzentration von 2 µM angesetzt. Für die PCR Reaktionen wurde der Qiagen Multiplex PCR Kit verwendet. Es wurden hierzu 100 ng DNA in sterilem DNase freiem Wasser (Invitrogen) bis zu einem Volumen von maximal 10 µl verdünnt. Das Gesamtvolumen der Ansätze betrug 50 µl, darin enthalten der 1x Qiagen Multiplex PCR Master Mix und die Primer-Mixe mit einer Endkonzentration von 0,2 µM. Nach einer anfänglichen Denaturierung bei 95°C für 15 min, folgten 25 PCR-Zyklen, bestehend jeweils aus einer Denaturierung (94°C, 30 sec), dem Primer-Annealing (60°C, 1 min 30 sec) und der Primer-Extension (72°C, 1 min 30 sec) gefolgt von einer finalen Primer-Extension (72°C, 1 h). Für Primer-Mix 2 wurde zusätzlich der PCR-Reaktionszusatz Q-Solution (Endkonzentration 1x, Qiagen) verwendet und eine Annealing-Temperatur von 58°C gewählt.

Für die Bestimmung der exponentiellen Phase der PCR Amplifikation wurde für jedes Primer-Paar die erzielte Peak-Fläche gegen die Zyklen-Anzahl aufgetragen.
Die nachfolgende Menge des Multiplex-Reaktionsansatzes, die über das Sequenziergerät analysiert wurde, wurde so festgelegt, dass die dargestellten Peak-Höhen in einem optimal darstellbaren Bereich lag, sich jeder eindeutig darstellen ließ und nur ein unwesentlicher Teil von Nebenprodukten auftrat.

3.3.1.2 Quantifikation der PCR Produkte und Kalkulation der Gen Dosage
Ausnahme hiervon bildete die Bestimmung der Gen Dosage an DNA aus der Schwannomzellkultur (NF2/6 Tumor 1), die aufgrund von sehr geringen Mengen nur zweimal unter den oben beschriebenen Bedingungen wiederholt wurden.

3.3.3 MODIFIZIERTE GEN DOSAGE PCR AN ZELLLYSATEN
Zur Bestimmung der Gen Dosage an DNA, gewonnen aus mikrodissekierten Zellen, wurde eine verschachtelte (Nested-) PCR durchgeführt. Bestehend aus zwei aufeinander folgenden Reaktionen mit einem äußeren und mit einem inneren Primer-Paar. Die Primer-Sequenzen sind in Tabelle 2.3.3 aufgeführt. Die Sequenzen der inneren Primer-Paare entsprechen den Primern, die für die Gen Dosage PCR an genomischer DNA aus Leukozyten oder aus einer Zellkultur benutzt wurden (siehe 3.2.1). Sie tragen jedoch keine 5’ Fluoreszenzmarkierung. Die Sequenz der äußeren Primer-Paare enthalten jeweils am 5’ Ende das einheitliche Motiv UPS (universal primer sequence) und liegen so, dass sie die inneren Primer-Paare um einige Nukleotide in 5’ bzw. 3’ Position einschließen. Für die erste PCR Rektion wurden die Primer analog zu 3.2.1.1 in
METHODEN

die beiden Multiplex-Mixe 1 und 2 zusammengefasst. Für beide Mixe wurden die identischen Bedingungen gewählt. Für die 1.PCR (mit dem äußeren Primer-Paar) wurden zu 5 µl des voramplifizierten (Whole Genome Preamplifikation, siehe 3.3.4) Zelllysates (siehe 3.5.2) 25 µl des Qiagen Multiplex PCR Master Mixes (1x) mit 0,1 µM des Primer-Gemisches zu einem Gesamtvolumen von 50 µl gegeben. Das Temperatur/Zeitprofil war wie folgt: nach einer Denaturierung bei 95°C für 15 min, folgten 13-17 Zyklen je mit einer Denaturierung bei 95°C für 30 sec, dem Primer-Annealing bei 60 °C für 1 min 30 sec und der Primer-Extension bei 72°C für 1 min 30 sec. Die Amplifikation schloss eine finale Primer-Extension bei 72°C für 1 h ab.

Nach Beendigung des Reaktionslaufs wurden die Schmelzpunkte kontrolliert, und zur Feststellung der Gene Dosage die Crossing Points und der Verlauf der gemessenen

\(^1\) 20,00 °C/sec
Fluoreszenzmenge gegenüber der Zyklenzahl festgehalten. Die Crossing Points wurden automatisch durch die Programme LightCycler3 Run, Version 5.32, und LightCycler 3 Data Analysis (Version 3.5.28) ermittelt. Auf die Ermittlung der PCR-Effizienz anhand des Fluoreszenzverlaufes wird in Abschnitt 3.2.4.3 ausführlich eingegangen. Die rechnerische Auswertung soll hier wegen der Komplexität anhand eines Beispiels beschrieben und die damit durchgeführte Berechnung anhand der Gen Dosage erläutert werden. Ausgangspunkt sind die Crossing Points der PCR an der DNA aus Probe A (Template 1) und aus der Probe B (Template 2) eines Hauskeeping Gens (hier spezielle das FANCC Gen) und der Gene, für die die relativen Mengen hierzu verglichen werden sollten (Gen 1 entspricht hier z.B. Exon 1 und Gen 2 Exon 5 des NF2 Gens) und außerdem die Steigungen der linearen Regression.

Zahlenbeispiel:

<table>
<thead>
<tr>
<th></th>
<th>Steigung der linearen Regression</th>
<th>Crossing Point CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Template 1</td>
<td>Template 2</td>
</tr>
<tr>
<td>Housekeeping Gen</td>
<td>-5,93</td>
<td>25,79</td>
</tr>
<tr>
<td>Gen 1</td>
<td>-4,83</td>
<td>26,50</td>
</tr>
<tr>
<td>Gen 2</td>
<td>-3,76</td>
<td>21,33</td>
</tr>
</tbody>
</table>

Template 1 = DNA gewonnen aus Probe A, Template 2 = DNA gewonnen aus Probe B

\[(25,79 - 26,58) : (-5,93) = 0,13 \text{ (NoFa)}\]

Für das spezifische Gen wird nun unter Berücksichtigung der Steigung der linearen Regression und dem NoFa anhand des CP von Template 1 errechnet welchen Wert der CP von Template 2 erreichen müsste, unter der Annahme, dass Template 1 und Template 2 zu gleichen Mengen in die Reaktion eingesetzt worden wären (theoretischer CP für Template 2). Vom Crossing Point von Template 1 wird das Produkt aus der Steigung und dem NoFa subtrahiert (Beachtung der Vorzeichen).

Gen 1:

\[26,50 - (0,13 * (-4,83)) = 27,13\]

Gen 2:

\[21,33 - (0,13 * (-3,76)) = 23,00\]

Abschließend wird der theoretische CP von Template 2 mit dem tatsächlichen verglichen und der Faktor der Regulation berechnet. Der theoretische CP wird hierbei vom tatsächlichen subtrahiert und durch den Zahlenwert der Steigung der linearen Regression geteilt. Mit dem Absolutbetrag dieses Wertes wird über die Potenzierung der Zahl 10 der Faktor der Regulation errechnet. Ist der tatsächliche CP als Zahlenwert kleiner als der Theoretische liegt eine Erhöhung der Expression und damit der Gen Dosage vor. (Ein nach
dem Zahlenwert kleinerer CP bedeutet eine größere Templatemenge). Analoges gilt für den umgekehrten Fall.

Gen 1: Faktor 1,08, dieser ergibt eine Gen Dosage von 108%

Gen 2: Faktor 2,09, dieser ergibt eine Gen Dosage von 48%.

3.3.3 cDNA Synthese (Reverse Transkription)

Die cDNA Erstrangsynthese wurde mit dem First Strand cDNA Synthesis Kit für die RT-PCR der Firma Roche nach dessen Anleitung durchgeführt. Anfangs wurden sowohl Oligo-(dT) als auch random-Primer (Hexanukleotide mit zufälliger Sequenz) eingesetzt. Im Laufe der Arbeit erwies es sich jedoch als effizienter nur die random-Primer zu verwenden. Die synthetisierte cDNA wurde mit 2 U der RNase H (Invitrogen) für 20 min bei 34 °C inkubiert. Die in die Reaktion eingesetzte Menge an RNA entsprach einer Ausgangsmenge von ungefähr 4 x 10⁵ Zellen. Für alle folgenden PCR-Analysen wurden die Ansätze 1:5 mit steriles Wasser verdünnt. Je nachdem zu untersuchenden Gen wurden 3-6 µl der cDNA für die weiteren Reaktionen eingesetzt.

3.3.4 Quantitative Expressionanalyse am LightCycler

3.3.4.1 Prinzip und Durchführung der quantitativen PCR

von Nebenprodukten. Sie ersetzt bzw. ergänzt somit die herkömmliche Auftrennung der PCR-Ansätze auf einem mit Ethidiumbromid gefärbten Agarosegel.

Für alle Reaktionen wurden entweder der LightCycler DNA Master SYBR Green I (Roche) oder der QuantiTect SYBR Green PCR Kit (Qiagen) nach den Anweisungen der Hersteller verwendet.

3.3.4.2 Primeretablierung

Ein sehr wichtiger Teil für die Durchführung der quantitativen Analyse ist das Etablieren von Gen spezifischen Primer-Paaren. Die Kriterien für die Auswahl und die verwendeten Programme sind unter 2.3 aufgeführt. Pro Gen wurden 5 Primer-Paare ausgewählt, dabei wurde darauf geachtet, dass sie eine Exon-Intron Grenze überspannen, um eine parallele Amplifikation der genomischen DNA, die trotz DNase Verdau in einem geringem Prozentsatz in jeder RNA-Präparation und damit auch in dem cDNA-Ansatz vorhanden sein kann, auszuschließen. Weiterhin wurden die Primer so gewählt, dass die Größe des Amplifikats in etwa zwischen 100-350 bp lag. Eine effiziente Vermehrung wurde dadurch sichergestellt.

Bei Verwendung des Kits LightCycler DNA Master SYBR Green I (Roche) wurden die Primer mit der Endkonzentration 0,15 und 0,3 µM getestet, für den QuantiTect SYBR Green PCR Kit (Qiagen) mit 0,25 µM. Als Template für die Amplifikation dienten je nach Expression der zu untersuchenden Gens bzw. in Abhängigkeit der Fragestellung cDNA aus dem menschlichen Gehirn bzw. cDNA der beiden Zelllinien U373 MG und SH-SY5Y (ECACC european Collection of Cell Cultures, Salisbury, Wiltshire, UK) (für die Untersuchung der differentiellen Genexpression an Schwann- und Schwannomzellen, siehe 4.5), cDNA der primären Fibroblasten (für modifizierte Gene Dosage PCR, siehe 3.3.2) und cDNA der Mesotheliomzelllinien (für die Quantifizierungen an den shRNA Expressionsklonen, siehe 4.6.4). Die Kriterien für ein geeignetes Primer-Paar waren: ein spezifisches Produkt ohne Nebenprodukte und Primerdimere (Kontrolle der Schmelzpunkte und Auftrennung auf einem mit Ethidiumbromid gefärbten Agarosegel) und eine PCR-Effizienz innerhalb des Bereiches von 1,85 – 2,15. Für die Bestimmung der PCR-Effizienz wurde mit einer Verdünnungsreihe der verwendeten cDNA (siehe hierzu auch 3.2.4.3) eine Eichkurve erstellt. Die Steigung der Eichkurve lieferte über die Formel E = 10 \(-1/\text{Steigung}\) die die Effizienz E. Alternativ wurde in einigen Fällen die Effizienzbestimmung mit Hilfe des Programms LinRegPCR durchgeführt (siehe hierzu 3.2.4.3)
3.3.4.3 Auswertung

Die Auswertung der Ergebnisse der LightCycler-PCR erfolgte auf drei verschiedene Methoden wieder in Abhängigkeit der Fragestellung und dem zur Verfügung stehenden Material. Sie basieren jedoch alle auf dem selben Prinzip: die eingesetzten Mengen an cDNA sollen zueinander in Verhältnis gesetzt werden. Dabei wurden bei allen drei Methoden folgende Werte herangezogen: die Crossing Points (Erläuterung unter 3.3.4), die Steigung der Eichgeraden bzw. die sich daraus abgeleitete PCR-Effizienz. Außerdem notwendig war das Mitführen von einem oder von mehreren Housekeeping Genen, mit denen die Werte für das zu untersuchende Gen normalisiert wurden. Als Housekeeping Gene wurden HPRT (Hypoxanthin Guanin Phosphoribosyltransferase), TBP (TATA-box bindendes Protein), G6PDH (Glucose-6-Phosphat Dehydrogenase), RP II (RNA Polymerase II) und Exon 5 des FANCC Gens verwendet.

Bei der ersten Methode wurden in jedem Lauf und für jedes Primer-Paar inkl. des Paars für das Housekeeping Gen HPRT eine Eichkurve mitgeführt. Dazu wurde eine externe Kontroll-cDNA mit den Verdünnungen von 1:10, 1:25, 1:50 und 1:100 amplifiziert. Die Crossing Points wurden automatisch von der Software des Gerätes nach der Second Derivate Maximum Methode bestimmt. Diese Werte wurden gegenüber der Verdünnungsschritte in logarithmischer Darstellung beginnend mit der kleinsten Verdünnung (0, 0,4, 0,7 und 1) aufgetragen und die lineare Regressionsgerade bestimmt. Anhand der Geradengleichung konnten die relative Konzentrationen der zu vergleichenden unbekannten cDNAs nach der Normalisierung mit dem Housekeeping Gen berechnet werden.

Die zweite Methode, um die relativen Mengen an cDNAs zu bestimmen, erfolgte nach dem von Ramakers et al. [Ramakers et al., 2003] beschriebenen Ansatz. Die PCR-Effizienz wurde direkt anhand des linearen Bereiches der Aufzeichnung der absoluten Fluoreszenzmengen zur Zyklenanzahl durch lineare Regression bestimmt. Die Ableitung der Mengen an eingesetztem Template erfolgte analog zu der oben beschriebenen Methode anhand der Crossing Points und der Geradengleichung. Alle diese beschriebenen Schritte wurden mit Hilfe des Programms LinRegPCR durchgeführt (auf Nachfrage beziehbar, Email an bioinfo@amc.uva.nl.). Für die Normalisierung der Daten wurde das Anwendungsprogramm für Microsoft Excel GeNorm ([Vandesompele et al., 2002]; erhältlich unter http://medgen.ugent.be/%7Ejvdesomp/genorm/) verwendet. Es bestimmt aus einer Anzahl von mindestens vier Housekeeping Genen, die drei Stabilsten. Für diese berechnet das Programm einen Normalisierungsfaktor basierend auf dem geometrischen Mittel den drei Genen, der dann für die Normalisierung jeder Probe benutzt wurde.
Der dritte gewählte Ansatz ist bereits unter 3.2.4 ausführlich beschrieben.

3.3.4 **WHOLE GENOME PREAMPLIFIKATION ÜBER I-PEP (IMPROVED PRIMER EXTENSION PREAMPLIFIKATION)**

Der PCR-Ansatz und das Programm wurde wie in Heinmöller et al. [Heinmoller et al., 2002] beschrieben durchgeführt. Als Template dienten mikrodissekierte und lysierte Zellen (siehe 3.5.2)

3.4 **IMMUNHISTOCHEMIE**

3.4.1 **FIXIERUNG UND EINBETTEN DES GEWEBES**

Die peripheren Nerven (siehe 2.1) von Spendern ohne NF2 und PNP wurden am selben Tag der Entnahme für 12 h in einer 10% in PBS gepufferten wässrigen Formaldehydlösung (entspricht einer 4% Formalinlösung) bei Raumtemperatur fixiert und nach der Entwässerung über eine aufsteigende Alkoholreihe in Paraffin eingebettet.

3.4.2 **ANFERTIGUNG VON GEWEBESCHNITTEN**

Schnitte wurden mit einer Dicke von 5-10 µm am Microtom (RM 2165) der Firma Leica (Jena) angefertigt.

Das Gewebe der NF2 Patienten mit PNP wurden für diese Arbeit von der Neurochirurgie in Aachen fixiert und in 8 µm dicken Querschnitten bereitgestellt.
METHODEN

3.4.3 AUFARBEITUNG DER GEWEBESCHNITTE UND IMMUNREAKTION

Alle Schnitte wurden zum Trocknen und für die Entparaffinierung über Nacht bei Temperaturen von 42°C bis 60°C bzw. für 30 min bei 70°C inkubiert. Zur Steigerung der Antigenität wurden eine Inkubation in einem 10 mM Citratpuffer (pH 6,0) für 30 min in einem auf 85°C erhitzten Wasserbad und eine Proteasevorbehandlung mit Proteinase K und 0,1 % Pronase E (Sigma) durchgeführt; außerdem für die Inhibition von endogen vorhandenen Peroxidasen eine Inkubation in einer 40%Methanol und 1% H₂O₂ haltigen Lösung für 10 min bei Raumtemperatur. Alle weiteren Schritten entstammen den immunhistochemischen Standardmethoden unter Benutzung des Avidin-Biotin Systems (Vectastain ABC Kit Elite und Vectastain ABC Kit Alkaline Phosphatase Standard, Vector Laboratories, Burlingame, USA). Als farbgebende Substrate dienten 3,3’ Diaminobenzidin (DAB, FASTDAB Kit, Sigma), der Peroxidase Substrat Kit oder der Alkalische Phosphatase Substrat Kit III (Vektor). Eine Zellkernfärbung wurde mit der MAYERS Hämalaunlösung durchgeführt. Immundetektiert wurden das Protein S-100 (Verdünnung von 1:80 000 in 1,5 % Serum/TBS, DAKO, Glostrup, Dänemark) und Merlin (Verdünnung von 1:80 000 in 1,5 % Serum/TBS, Santa Cruz, Heidelberg). Die Zweiantikörper (GAR Biotin, RAG biotin (Vector)) wurden 1: 200 in 5% Serum/TBS verdünnt eingesetzt. Nach der Dehydrierung in einer aufsteigenden Alkoholreihe, die mit einer dreimaligen Inkubation für jeweils 5 min in Xylol abschloss, wurden die Schnitte 30 min getrocknet und in einem luftdichten Gefäß mit Silicatgranulat (Sigma) Raumtemperatur bis zur Mikrodissektion aufbewahrt.

3.5 LASERMIKRODISSEKTION

Die Zellen sind fest in die Folie integriert, können jedoch durch Inkubation in wässrigen Lösungen, die für die Extraktion von DNA, RNA bzw. Proteine verwendet werden, leicht abgelöst werden. Ein Abstandsring auf dem Plastik-Cap ermöglicht eine Fokussierung des Laserstrahls bis zu einer minimalen Größe von 3 µm. Auch werden zu Kontaminationen führende Bestandteile auf dem Schnitt zurückgehalten.

Abbildung 7: Schematische Darstellung der Lasermikrodissektion (Laser Capture Mikrodissektion, LCM)
A Aufbau einer LCM Apparatur nach Bonner et al. [Bonner et al., 1997]
B Prinzip der Laser Capture Mikrodissektion

Das LCM System verfügt über sehr milde Bedingungen. Der Laserstrahl trifft nicht direkt auf das Gewebe, sondern wird schon vorher absorbiert. Ein Cross-Linking der Moleküle im Gewebe und die daraus folgenden Veränderungen treten hier deshalb nicht auf. Auch bleiben sehr nahe dem isolierten Gewebe liegenden Bereiche komplett intakt und stehen so ebenfalls für eine
Mikrodissektion zur Verfügung. Die Bilddokumentation und die Einstellung der Parameter der Laserdiode werden über die mitgelieferte Software (Arcturus) gesteuert.

3.5.1 DURCHFÜHRUNG

Der Objektträger wurde fest auf dem Objekttsisch fixiert (durch Anlegen eines Vakuums). Das Gewebe wurde mit Xylol befeuchtet und die S100 bzw. Merlin positiven Zellen mit dem 20x Objektiv identifiziert und dokumentiert. Vor dem Aufsetzen des Plastik-Caps musste der Schnitt erneut für 30 min gut getrocknet werden. Es wurde ein 7,5 µm großer Laserspot verwendet. Die Leistung betrug 45 - 100 mW mit einer Pulsdauer von 3,0–7,5 ms. Nach der Mikrodissektion wurde das restliche Gewebe, sowie die auf der Folie fixierten Bereiche erneut dokumentiert. Aus den mikrodissektierten Zellen wurde unmittelbar im Anschluss die DNA isoliert und für die nachfolgenden Reaktionen eingesetzt.

3.5.2 EXTRAKTION DER DNA

Abbildung 8: Zellyse der mikrodissektierten Zellen (aus Manual PixCell II, Arcturus Engineering, Mountain View, USA)
Bedingungen der Zelllyse [Dietmaier et al., 1999; Heinmoller et al., 2002]:
Für die Zelllyse wurden folgende Bedingungen gewählt:

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x PCR-Puffer</td>
<td>1 x PCR-Puffer</td>
<td>1 x PCR-Puffer</td>
</tr>
<tr>
<td>1 mg/ml Proteinase K</td>
<td>1 mg/ml Proteinase K</td>
<td>4 mg/ml Proteinase K</td>
</tr>
<tr>
<td>3% Tween 20</td>
<td>2% Tween 20</td>
<td>0,5 % Tween 20</td>
</tr>
<tr>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O</td>
</tr>
</tbody>
</table>

3.6 HERstellung der shRNA (short hairpin RNA) Konstrukte

Für die Herstellung der shRNA Konstrukte wurde der BLOCK-iT™ Inducible H1 RNAi Entry Vector Kit von Invitrogen verwendet. Alle Arbeitsschritte erfolgten nach den vom Hersteller gemachten Angaben. Die Primer-Sequenzen, die für die Klonierung benötigt wurden sind unter 2.3.6 aufgeführt. Die mit Sense bezeichnete Sequenz codiert für die shRNA, die Antisense-Sequenz für das Komplement. Die Sequenzierung der klonierten Konstrukte ist unter 3.1.2 beschrieben.

3.7 Zellkultur

3.7.1 Humane Schwann- und Schwannomzellkulturen

Die Präparation und die Kultivierung fanden wie in der Literatur beschrieben statt [Hanemann et al., 1998; Kupfer, 1996; Rosenbaum et al., 1998].

3.7.1.1 Präparation

Das Ausgangsgewebe für die Schwann- und Schwannomzellkulturen, das mit der Einwilligung der Spender zur Verfügung gestellt wurde, wurde für maximal 24 h in DMEM/10% FCS mit Penicillin (50U/ml) und Streptomycin (50 µg/ml) gelagert.

Für die Schwannzellkulturen wurden die peripheren Nervenstücke in frisches Medium überführt, unter dem Binokular und sterilen Bedingungen von Resten an Bindegewebe befreit und in etwa 1 cm lange Stücke geschnitten. Anschließend wurden die Faszikel gezogen und in
einer Kulturschale in 10 ml Medium für 14 Tage unter Standardbedingungen\(^1\) kultiviert. Das Medium wurde nach 7 Tagen gewechselt. Die Schwannome wurden von dem umgebenden Gewebe, wie Fettgewebe und Blutgefäße, befreit, entfernt und für 3-7 Tagen unter denselben Bedingungen gehalten. Für den proteolytischen Verdau wurden das Gewebe jeweils in 10 ml Verdaunmedium überführt und in ca. 1 mm lange Stücke geschnitten. Nach einer Inkubation bei 37°C für 18 h für die Nervenfaszikel und nach 24 h für die Schwannome, wurde das angedauten Gewebematerial mit Hilfe von Pasteurpipetten mit unterschiedlicher Öffnungsweite trituiert, bis eine homogene Zellsuspension entstand. Durch einen Zentriﬁgationsschritt für 5 min bei 1500 rpm wurden die Zellen pelletiert und je nach Größe des Zellpellet in Proliferationsmedium resuspendiert.

3.7.1.2 Kultivierung der Zellen
Um den Zellen ein Anheften und die Proliferation auf den Kulturgefäßen zu erleichtern wurden diese mit 1 mg/ml Poly-L-Lysin (Sigma) und mit 4 µg/ml Maus-Laminin (Gibco) beschichtet. Die Zellen wurden auf 6-well Platten bzw. auf 8-well Chamberslides (Nunc, Rochester, USA) mit einer Zelldichte von 10000 Zellen/cm\(^2\) ausgesät. Die Nummerierung der Passagen fängt hier bei Null an. Das Medium wurde alle 3-4 Tage gewechselt. Erreichen die Zellen einen konfluenten Zellrasen oder nach maximal 8 Tagen wurden sie von den Kulturschalen mit 0,05% Trypsin/EDTA (Gibco) abgelöst und in der bereits beschriebenen Zelldichte erneut auf die Kulturgefäße verteilt.

3.7.2 S\(^{100}\) IMMUNCYTOCHEMIE
Bei jeder Präparation von Schwann- bzw. Schwannomzellen wird ein gewisser Anteil an Fibroblasten mit in die Kultur übernommen. Die jedoch von Passage zu Passage durch die verwendeten Zusätze im Proliferationsmedium zurückgedrängt werden. Um die Reinheit zu bestimmen wurden in den Passagen 0-2 eine immuncytochemische Detektion des Proteins S-

\(^1\) 37°C, 10% CO\(_2\)
100 (Antikörper von DAKO) wie in Rosenbaum et al. [Rosenbaum et al., 1998] durchgeführt und damit der prozentuale Anteil an Fibroblasten bestimmt.

3.7.3 KULTIVIERUNG VON HUMANEN FIBROBLASTEN

3.7.4 KULTUR VON HUMANEN NEUROGLOIOMA- UND NEUROBLASTOMAZELLEN

RNA aus den beiden Zelllinien U373 MG (Glioblastoma- und Astrocytomazellen) und SHY-5Y (Neurobalstomazellen) wurden für die Primeretablierung und als Template für die Erstellung der Eichgerade in den LightCycler Experimenten verwendet. Sie wurde nach den Angaben ECCAC kultiviert. Bei Erreichen der Konfluenz wurden sie von den Kulturgefäßen abgelöst (mit 0,5% Trypsin/EDTA, Gibco) und mit einer Zelldichte von 5000/cm² erneut ausgesät.

3.7.5 HUMANE MALIGNE MESOTHELIOZELLLINIEN (HMM)

Für nachfolgende Arbeit wurden die drei verschiedene humanen Mesotheliozelllinien HIB, TRA und BAR verwendet. Diese sind in der Veröffentlichung von Deguen et al. [Deguen et al., 1998] beschrieben. Die beiden Zelllinien TRA und BAR exprimieren das NF2 Gen nur zu einem sehr geringen Prozentsatz (nur über RT-PCR nachweisbar, nicht aber über Northern Blot Analyse), das Protein Merlin ist nicht nachweisbar. Ein NF2 Allel ist komplett deletiert, während sich auf dem zweiten eine Mutation befindet. Die Kultur HIB besitzt zwei nicht mutierte NF2 Allele und exprimiert Merlin in normalem Maße (Tab. 3).

3.7.5.1 Kulturbedingungen

Die Kulturbedingungen basieren auf den von Zeng et al. [Zeng et al., 1994] beschriebenen Bedingungen. Die Zellen wurden nach Erreichen der Konfluenz mit 0,05%Trypsin/EDTA abgelöst und mit einer Zelldichte von 5000-10000 Zellen/cm² ausgesät und bei 37°C und 5% CO₂ kultiviert. Alle 3-5 Tage fand ein Mediumwechsel statt.
Methoden

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>NF2 Allele</th>
<th>NF2 Transkript</th>
<th>Mutationen im NF2 Gen</th>
<th>Merlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIB</td>
<td>2</td>
<td>+++</td>
<td>keine</td>
<td>+</td>
</tr>
<tr>
<td>TRA</td>
<td>1</td>
<td>+/-</td>
<td>Nonsense: Exon 8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGA → TGA (262)</td>
<td></td>
</tr>
<tr>
<td>BAR</td>
<td>1</td>
<td>+/-</td>
<td>IF Deletion Exon 2-4</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 3: Mutationen im NF2 Gen und Merlin Expression in den humanen malignen Mesotheliomzellen nach Deguen et al. (1998).

+++ normale Expression des NF2 Transkripts, +/- sehr geringe Expression des NF2 Transkripts, IF in Frame

3.7.5.2 Chemosensitivitätstest

1 Blasticidin 10 mg/ml; Tetracyclin 1 mg/ml
2 Zeocin 100 mg/ml
einen Bioassay bestimmt. Der Bioassay\(^3\) (verwendet von Promega, Mannheim) basiert auf einer
kolorimetrischen Bestimmung der Zahl an lebenden Zellen. Dabei wird die zugegebene
Tetrazolium-Verbindung MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium) von den lebenden Zellen in die lösliche Substanz Formazan
umgesetzt. Formazan löst sich im Kulturmedium und kann photometrisch über die Absorption
bei einer Wellenlänge von 490 nm bestimmt werden. Dabei ist die Menge an Formazan direkt
proportional zu der Anzahl an lebenden Zellen in der Kultur.
Für die Durchführung wurden 2 ml der MTS-Lösung (2 mg/ml gelöst in DPBS\(^4\)) mit 100 µl
PMS (Phenazine Methosulfat) gemischt, 20 µl zu 100 µl Kulturvolumen pro Vertiefung
gegeben und vorsichtig gemischt. Nach einer Inkubation von 2 h bei 37°C erfolgte die
Absorptionsbestimmung bei 490 nm per ELISA-Platten Lesegerät. Für die Bestimmung der
Chemosensitivität gegenüber Tetracyclin wurden Zellen verwendet, die in Anwesenheit von
Zeocin und Balasticidin kultiviert wurden.

3.7.5.3 Transfektion
Die Zelllinie HIB sollte mit den verschiedenen Konstrukten transfiziert werden. Für die
Transfektion wurden die beiden Transfektionsreagenzien TransFectin (Biorad, München) und
Lipofectamine\(^TM\) 2000 (Invitrogen, Hilden) und der Nukleotransfektor der Firma Amaxa\(^1\)
(Köln) nach den Angaben der Hersteller verwendet.
Nach der Transfektion wurden die Zellen für mindestens zwei Wochen mit den entsprechenden
Antibiotika selektioniert.

3.7.5.4 Zellklonierung
Nach der stabilen Transfektion mit den verschiedenen Konstrukten ist es wichtig die Zellen zu
klonieren, um für die nachfolgenden Auswertungen einen genetisch einheitlichen Zellpool zu
bekommen. Die Kulturen wurden auf zwei Arten kloniert. Nach der Transfektion wurden die
Zellen auf 10 cm Kulturschalen in Anwesenheit des entsprechenden Selektionsmittels
ausgesetzt. Man ließ die Zellen sich so lange vermehren bis unter dem Mikroskop deutliche
Zellklone, sichtbar als klar abgegrenzte Zellanhäufungen, identifizieren ließen (durchschnittlich
nach einer Zeit von 4 Wochen). Das Proliferationsmedium wurde entfernt und unter sterilen
Bedingungen Metallringe mit verschiedenen Durchmessern (von 2,5 mm bis 5 mm), die auf der
Unterseite mit einer dünnen Silikonschicht benetzten, auf die Klone gesetzt. Das Ablösen

\(^3\) CellTiter 96\(^\text{®}\) Aqueous Non-Radioactive Cell Proliferation Assay
\(^4\) Dulbecco’s phosphate buffered saline
\(^1\) Nucleofektor Optimierungskit für Zelllinien
METHODEN

Parallel hierzu wurden die Zellen, nach Erreichen der Konfluenz abtrypsiniert, die Zellzahl durch Auszählen mit einer Zählkammer (Neubauer) bestimmt und so verdünnt, dass beim Aussäen auf eine 96-well-Loch-Platte pro Vertiefung eine Zelle befinde. Der Medienwechsel fand einmal pro Woche statt. Nach einer Zeit von etwa 4-6 Wochen wurden in einzelnen Wells Zellklone sichtbar, die dann analog zu zuvor beschriebenen Prozedere weiter bis zur Präparation von RNA und Protein kultiviert wurden.

3.8 WESTERN BLOTTING

3.8.1 PROTEINISOLIERUNG

Für die Proteinisolierung aus den humanen Mesotheliomzelllinien und den transfizierten Zellen der Zelllinie HIB wurden diese wie unter 3.7.5.1 beschrieben kultiviert. Bildeten die Zellen eine subkonfluente Zellschicht wurde das Medium entfernt, zweimal mit eiskaltem PBS gewaschen und die Zellen mit 100 µl des kochenden Lysispuffers (20 mM Tris pH 7,4; 2 % SDS; 1% Phosphatase Inhibitor Cocktail 1 und 2 (Sigma, München); 5% Complete Proetin Inhibitor (Roche, Penzberg) mit 100 µl pro 4 * 10^5 Zellen und Abkratzen lysiert. Nach dem Erhitzen bei 98°C für 5min, wurden die Ansätze auf Eis gekühlt und zum Scheren der DNA mit Ultraschall behandelt. Ein Zentrifugationsschritt für 30 min, bei 4°C und 4500 rpm, pelletiert die Zelltrümmer. Das im Überstand gelöste Protein wurde aliquotiert und bei –80°C gelagert.

3.8.2 BESTIMMUNG DER PROTEINKONZENTRATION

1 Verdünnt in Lysispuffer
Methoden

(bovine serum albumin)-Standards, eingesetzt in den Konzentrationen von 0,05 bis 50 mg/ml, durchgeführt. Die Absorption wurde im ELISA-Platten Lesegerät bei einer Wellenlänge von 650 nm bestimmt. Mit der Eichgerade der BSA-Standards wurde von jedem Proteinlysat die Konzentration in mg/ml errechnet.

3.8.3 Auftrennung der Proteine mittels SDS-PAGE (Polyacrylamid-Gelelektrophorese)

Die Proteine wurden in Abhängigkeit der Größe des zu detektierenden Proteins auf 8 bis 12 % Polyacrylamidgele aufgetrennt. Die Polyacrylamid-Konzentration des Sammelgels betrug 4%. Die Proteinlysate wurden je nach Anwendung mit einem reduzierenden (3x: 65 mM Tris, 4% SDS, 20 % Glycerin, 10% β-Mercaptoethanol, 0,1% Bromphenolblau) bzw. einem nicht reduzierenden (4x: 200 mM Tris-HCl pH 6,8, 8% SDS, 40% Glycerol, 0,1 % Bromphenol-Blau) Probenpuffer versetzt und für 5 min bei 98°C erhitzt. Es folgte rasches Abkühlen für 5 min auf Eis. Von jedem Protein wurden 6 bis 15 µg Protein geladen. Die über den Proteinassay bestimmte Konzentration wurde zuvor wie unter 3.8.4 beschrieben über eine Coomassie-Blau Färbung verifiziert. Zusätzlich wurde auf jedes Gel ein gebrauchsfertiger Proteinmarker (Precisison Protein Marker, Biorad) geladen. Die elektrophoretische Auftrennung erfolgte in einer mit SDS-PAGE Laufpuffer (25 mM Tris, 200 mM Glycin, 0,1 % SDS) gefüllten Kammer bei 100 V und 45 mA. Der Gellauf wurde beendet sobald die Bromphenol-Blau Bande die gesamte Trennstrecke passiert hatte.

3.8.4 Färbung von Proteingelen mit Coomassie-Blau

Es gelten folgende Richtwerte für die Auftrennung von Proteinen:
8% Polyacrylamidgel trennt Proteine der Größe: 40-200 kDa
10 % Polyacrylamidgel trennt Proteine der Größe: 30-150 kDa
12 % Polyacrylamidgel trennt Proteine der Größe: 20-120 kDa
3.8.5 PROTEINTRANSFER

Für den Transfer der aufgetrennten Proteine auf eine ECL\(^1\)-kompatible Nitrocellulosemembran (Amersham) wurde das Elektroblotting in einer mit Puffer gefüllten Kammer gewählt. Gel und Membran (kurz in demineralisiertes Wasser befeuchtet) wurden für 15 min in Transferpuffer (25 mM Tris, 0,2 M Glycin, 20 % Methanol) inkubiert. Das im Puffer enthaltene Methanol, lasst das Gel schrumpfen und verhindert damit eine Größenveränderung während des Blot Vorgangs. Die Blotting Apparatur wurde so zusammengesetzt, dass sich das Gel auf der zur Anode gerichteten Seite bzw. die Membran auf die der Kathode befindet. Das Blotting fand bei 4 °C, 85 V und 175 mA für 12 bis 15h statt. Um dem Erwärmen der Apparatur zusätzliche entgegenzuwirken, befand sich in der mit Puffer gefüllten Kammer ein Eisblock.

3.8.6 IMMUNDETEKTION MIT ECL

Für die Immundetektion wurden die Membranen nach dem Blotting in TBS mit 0,1% Tween20 (TTBS) und 5% Milchpulver oder 2 % BSA bzw. eine Kombination beider Bestandteile für eine Stunde inkubiert um alle unspezifischen Bindungsstellen mit Protein abzusättigen (Blocking). Es folgte die Zugabe der Antikörper, die in der Blocking Lösung wie unter 2.8 beschrieben, verdünnt wurden. Die Inkubation wurde über Nacht bei 4°C durchgeführt oder für die Antikörper Anti-Pak2 und Anti-Actin für 2h bei Raumtemperatur. Vor der Inkubation mit den entsprechenden HRP\(^2\)-konjugierten Zweitantikörper, verdünnt in Blocking Lösung (goat anti-rabbit-HRP 1:5000; rabbit anti-goat-HRP 1:2500; goat anti-mouse-HRP 1:3000) wurde die Membran dreimal für je 5 min gewaschen. Auch der Zugabe des ECL Reagenz gingen drei Waschritte in TTBS für je 5 min und ein Waschschnitt in TBS für 10 min voran. Die ECL-Substrat-Lösung (Amersham) wurde nach Anleitung des Herstellers auf die Membran gegeben. Die Signale wurden durch die Exposition mit Licht sensitiven Filmen (ECL kompatible Filme, Amersham) für unterschiedliche Zeitpunkte visualisiert. Alle Inkubations- und Waschschritte wurden wenn nicht anders angegeben bei Raumtemperatur und auf einem Schüttler durchgeführt.

3.8.7 STRIPPE N DER MEMBRAN

Würden auf einer Membran verschiedene Proteine detektiert, wurden die Signale zwischen den einzelnen Immunreaktionen durch Inkubation für 2 h und Raumtemperatur in einem Stripping-
METHODEN

Puffer (0,2 M Glycin, 0,1 % SDS, 0,1 % Tween, pH 2,0) abgelöst gefolgt von zwei Waschschritten für je 5 min in TBS. Die zweite Immunreaktion begann hier wieder mit dem Blocken. Eine Membran wurde maximal zweimal mit der *Stripping*-Lösung behandelt.

3.8.8 GOLDFÄRBUNG

Jede Membran wurde nach den Immunreaktionen mit einer Lösung (*Colloidal Gold Total Protein staining*, Biorad), die spezifisch Proteine anfärbt, inkubiert. Dazu wurde die Membran 3 mal in demineralisiertem Wasser für 20 min und 1 mal in bidestilliertem Wasser für 10 min gewaschen. Daran anschließend folgte die Zugabe der Färbelösung. Die Inkubation erfolgte bei Raumtemperatur solange, bis sich deutliche Banden auf der Membran zeigten. Der Vergleich der Intensitäten der Banden stellte ein gleichmäßiges Beladen der Proteinlysate sicher.

3.8.9 MESSUNG DER OPTISCHEN DICHTE

Die Ergebnisse des Western-Blottings wurden durch Quantifizierung der Signale mit Hilfe der Gel-Pro Analyzer 4.0® Software nach den Angaben des Herstellers ausgewertet.
4. ERGEBNISSE

4.1 SEQUENZANALYSE VON NF2 PATIENTEN MIT PNP (POLYNEUROPATHIE) ZUR IDENTIFIKATION DER KONSTITUTIONELLEN MUTATION

Am Beginn der Arbeit stand die Mutationsanalyse von NF2 Patienten\(^1\) mit einer zusätzlich diagnostizierten Polyneuropathie (PNP)\(^2\). Ziel war hier die konstitutionelle Mutation im NF2 Locus zu identifizieren, die als krankheitsverursachend anzusehen ist. Die NF2 Patienten weisen, die auch als *first hit* bezeichnete Mutation, in jeder ihrer Zellen auf und können diese an ihre Nachkommen weitergeben. Ihre Detektion stellte eine wichtige Voraussetzung für die nachfolgenden Untersuchungen an mikrodisseziertem Material dar. Es konnten nur die Patienten in die zu untersuchende Fragestellung miteinbezogen werden, von denen die konstitutionelle Mutation analysiert werden konnte.

Gegenstand der Arbeit waren acht NF2 Patienten (NF2_1 bis NF2_8) davon sechs mit einer PNP. Die beiden Patienten ohne PNP wurden ebenfalls in die Analyse des *first hits* miteinbezogen. An diesen wurde auch die Gen Dosage PCR zur Aufdeckung von Deletionen im NF2 Gen (siehe 3.2.1 und 4.2.3) durchgeführt.

Für die Analyse wurde die direkte Sequenzierung aller codierenden Bereiche des NF2 Gens, die 5' - und 3' -Spleißstellen (Spleißakzeptor und Spleißdonator) sowie Bereiche der 5' und 3' UTR\(^3\) durchgeführt. Es lassen sich so sowohl *Nonsense* und *Missense* Mutationen, als auch Insertionen und Deletionen von einer Länge von bis etwa 20 Nukleotiden nachweisen. Ein zunächst durchgeführtes Mutationsscreening über z.B. SSCP/HA\(^4\) und DGGE\(^5\) wurde wegen der geringen Anzahl an Patienten nicht durchgeführt. Für das Exon 1 wurden zwei PCR-Produkte amplifiziert. Das Amplikon 1 umfasste den Bereich von 55 Nukleotiden *downstream* des Translationsstartcodons ATG bis in den Bereich der 3'-Spleißstelle. Aufgrund des vorliegenden hohen GC-Gehaltes der Sequenz *upstream* des Startcodons, wurden hier für die Generierung des PCR-Fragmentes Primer mit dem nicht NF2 spezifischen Sequenzmotiv UPS (*universal primer sequenz*) gewählt, die auch für die modifizierte Gen Dosage PCR verwendet wurden (siehe 3.3.3).

\(^1\) nach Diagnosekriterien der NIH
\(^2\) nach ICD-10 G62.8
\(^3\) Untranslationierter Bereich
\(^4\) single strand conformation polymorphism
\(^5\) Denaturierende Gradienten Gel Elektrophorese
ERGEBNISSE

Von einigen Patienten (NF2_1, NF2_2, NF2_5, NF2_6) lagen bereits zu Beginn der Arbeit Ergebnisse von durchgeführten Analysen vor mit Befunden bei zwei der Patienten (NF2_2, NF2_4, NF2_5) und bei einem weiteren Patient mit dem Verdacht auf einen LOH1 im Tumorgewebe. Die Ergebnisse sind in Tabelle 4 zusammengefasst. In den Patienten NF2_2, NF2_4 und NF2_5 konnten die Mutationen bestätigt werden. Bei dem ersten Patienten eine Punktmutation im Splicingakzeptor zwei Nukleotide \textit{upstream} von Exon 14. Hier fand ein Austausch der Base A durch die Base G statt. Bei Patient NF2_5 wurde die Deletion in Exon 15 mit der Sequenz AGCAA und die Insertion von CAT an der selben Position (1594) identifiziert. Diese resultiert in einer Leserasterverschiebung mit einem vorzeitigen Abbruch der Translation und mit einem dadurch stark verkürzten Protein. Mutationen für die anderen Patienten konnten nicht identifiziert werden. Bei den Patienten NF2_1, NF2_3, NF2_5 und NF2_6 wurden mehrere für das \textit{Neurofibromatose Typ 2} Gen beschriebene Polymorphismen gefunden. Bei NF2_3, NF2_7 und NF2_8 wurde der Nukleotidaustausch C durch A im 5’ nicht translatierten Bereich an Position (-204) über die Sequenzanalyse festgestellt. Da sich dieser Austausch auch bei der Untersuchung von Probanden ohne NF2 auffinden ließe, handelt es sich hier eventuell um eine weiteren Polymorphismus, und ist damit nicht als krankheitsverursachend anzusehen. Er ist in der Literatur bisher nicht beschrieben. Von den insgesamt acht NF2 Patienten konnten in drei Fällen durch eine PCR-Amplifikation und einer anschließenden Sequenzanalyse aller \textit{NF2} Exons mit den flankierenden Intronbereichen und Teile der 5’UTRs die konstitutionelle Mutation nachgewiesen werden (Tab. 4).

1 Loss of heterozygosity
ERGEBNISSE

<table>
<thead>
<tr>
<th>Patient</th>
<th>Polyneuropathie (PNP)</th>
<th>vorliegende Ergebnisse einer Mutationsanalyse</th>
<th>Mutationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF2_1</td>
<td>nein</td>
<td>keine Mutation auffindbar¹</td>
<td>Polymorphismen: 364 (-40) C/A: Homozygot; 517 (-150) C/T: Heterozygot; 1122 (+129) T/A: Homozygot</td>
</tr>
<tr>
<td>NF2_2</td>
<td>ja</td>
<td>Punktmutation im Splicensakzeptor von Exon 14: 1447 (-2): A/G¹</td>
<td>Punktmutation im Splicensakzeptor von Exon 14: 1447 (-2): A/G</td>
</tr>
<tr>
<td>NF2_3</td>
<td>ja</td>
<td>keine</td>
<td>Polymorphismen: 1 (-204) C/A: homozygot²; 1122 (+129) T/A: Heterozygot; 1782 (+160) T/C: Heterozygot</td>
</tr>
<tr>
<td>NF2_4</td>
<td>ja</td>
<td>Familienangehöriger von Patient NF 2_2 ersten Grades</td>
<td>Punktmutation im Splicensakzeptor von Exon 14: 1447 (-2): A/G</td>
</tr>
<tr>
<td>NF2_6</td>
<td>ja</td>
<td>keine Mutation auffindbar¹ Verdacht auf LOH im Tumorgewebe¹</td>
<td>Polymorphismen: 364 (-40) C/A: Homozygot; 517 (-150) C/T: Heterozygot; 1122 (+129) T/A: Homozygot; 1782 (+160) T/C: Heterozygot</td>
</tr>
<tr>
<td>NF2_7</td>
<td>ja</td>
<td>keine</td>
<td>Polymorphismus: 1 (-204) C/A: homozygot²</td>
</tr>
<tr>
<td>NF2_8</td>
<td>nein</td>
<td>keine</td>
<td>Polymorphismus: 1 (-204) C/A: homozygot²</td>
</tr>
</tbody>
</table>

Tabelle 4: Ergebnisse der Mutationsanalyse der NF2 Patienten mit (6/8) / und ohne (2/8) PNP

¹ durch Sequenzierung von den NF2 Exons 1 bis 17, sowie der flankierenden Intronbereiche (Dr. Bettina Prager, Dr. Annelore Junge: Zytogenetisches und Molekulargenetisches Labor, Dresden)
² bisher nicht beschriebener Polymorphismus
ERGEBNISSE

Die Positionsangabe der Mutationen bzw. der Polymorphismen ist auf das Nukleotid A des Transkriptionsstartcodons ATG bezogen. In Klammern ist die Entfernung von der nächstgelegenen Exon-Grenze angegeben. Mit - wird die Lage in upstream mit + in downstream Richtung bezeichnet. Mit z.B. T/A wird der Austausch des Nukleotids T im nicht mutierten NF2 Gen durch das Nukleotid A beschrieben, der entweder auf beiden Allelen und damit homozygot oder nur auf einem Allel (heterozygot) vorliegen kann.

4.2. ETABLIERUNG DER GEN DOSAGE PCR ZUR DETEKTION VON DELETIONEN EINES ODER MEHRERER EXONS IM NF2 GENE

Um Deletionen und Insertionen, die ein bzw. mehrere Exons des NF2 Gens umfassen, zu identifizieren, wurde eine Gen Dosage PCR entwickelt, die das vorhandene Spektrum an Mutationsanalysemethoden ergänzt. Sie sollte außerdem so ausgerichtet werden, dass sie sowohl zum Auffinden der konstitutionellen Mutation an DNA aus Leukozyten als auch für die Analyse von Tumormaterial verwendet werden kann. Für die Entwicklung war weiterhin die Anwendung für sehr geringe DNA Mengen, wie sie beispielsweise aus mikrodissektierten Zellen aus einem Gewebe vorliegen, entscheidend. Neben der eingeschränkten Menge stellt auch die Güte der DNA Qualität besondere Anforderungen an die Analysemethode.

4.2.1 ENTWICKLUNG UND OPTIMIERUNG

Die Gen Dosage PCR basierte auf einer Multiplex-PCR, bei der in einem Reaktionsschritt mehrere Fragmente mit spezifischen Primer-Paaren amplifiziert wurden. Einer der Primer trug eine Fluoreszenzmarkierung. Die PCR-Fragmente wurden quantifiziert und die Gen Dosage in Bezug auf eine interne Kontrolle und externen Kontrollen bestimmt.

ERGEBNISSE

Auch war die Menge an Template sehr entscheidend für die Optimierung. Es wurden 20 ng, 40 ng, 60 ng, 80 ng, 100 ng und 300 ng genomischer DNA getestet. Die Kriterien waren dieselben wie zuvor beschrieben. Nur für die Mengen 100 ng und 300 ng konnten die Amplifikate eindeutig identifiziert und von Nebenprodukten unterschieden werden. Bei einer Template-Menge von weniger als 100 ng, erreichte die Fluoreszenzintensität der Nebenprodukte oft die der spezifischen Produkte bzw. die Peaks begannen sich abzuflachen und spalteten sich in mehrere Peaks auf, was die Qualität für die Quantifizierung entscheidend minderte. Für alle weiteren Reaktionsansätze wurde deshalb 100 ng als eingesetzte Menge an Template gewählt. Grundlage für eine Quantifizierung ist die Amplifikation innerhalb des logarithmischen Bereiches der Reaktion, in dem in etwa eine Verdopplung der Template-Menge für jeden Amplifikationsschritt angenommen werden kann.

ergebnisse

beispielhaft die Elektropherogramme beider Multiplex-PCR-Ansätze an der DNA einer Kontrollperson gezeigt.

Die Peak-Flächen jedes \(NF2 \) Fragmentes wurde mit dem \(FANCC \) Amplikon verglichen. Die Gen Dosage für dieses interne Kontroll-Amplikon wurde als 100 % definiert und damit die Gen Dosage für die \(NF2 \) Exons berechnet. Die Multiplex-PCRs an den sechs Kontrollen führte zu dem gleichen Peakhkuster. Die Standardabweichung betrug maximal 6,6 (siehe Abb. 11). In Tabelle 5 sind die Unterschiede von drei Kontrollen als Zahlenwerte dargestellt. Die maximale Abweichung betrug weniger als 17%. Nach der Normalisierung der Peak-Flächen auf das \(FANCC \) Amplifikat, wurde die Gen Dosage von Kontrolle 1 als 100% festgelegt und die Variation der anderen beiden hierzu gezeigt. In jedem der nachfolgend durchgeführten Gen Dosage Assay zur Bestimmung von Deletionen bei NF2 Patienten wurden drei Kontrollen mitgeführt und daran das Maß der Reduktion bestimmt. Nach den so erzielten Ergebnissen wurden die Kriterien für eine Deletion folgendermaßen festgelegt: bei einer Reduktion von mindestens 30% konnte von einer Deletion auf einem Allel ausgeschieden werden.
Abbildung 9:

A Kombination der Primer-Paare in Multiplex-Mix 1 (grau unterlegt) und in Multiplex-Mix 2 (schwarz unterlegt) und Übersicht über die Position der einzelnen Primer-Paare innerhalb der NF2 Exons. In beiden Mixen enthalten war das Primer-Paar für das Amplikon für Exon 5 des FANCC Gens.

Multiplex-PCR an einer Kontrollperson (A, B)
Abbildung 11: Gen Dosage für das NF2 Gen an DNA aus Kontrollpersonen

Die Gen Dosage PCR wurde an der DNA von 6 Kontrollpersonen ohne NF2 durchgeführt und auf Bezug des interen Kontrollfragments FANCC, für das die Gen Dosage mit 100% definiert wurde, bestimmt. Als Zahlenwert ist die Standardabweichung angegeben.
ERGEBNISSE

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle 1</th>
<th>Kontrolle 2</th>
<th>Kontrolle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>100%</td>
<td>+0,2%</td>
<td>-7%</td>
</tr>
<tr>
<td>Exon 2</td>
<td>100%</td>
<td>-9%</td>
<td>-12%</td>
</tr>
<tr>
<td>Exon 3</td>
<td>100%</td>
<td>-5%</td>
<td>-7%</td>
</tr>
<tr>
<td>Exon 5</td>
<td>100%</td>
<td>+1%</td>
<td>-6%</td>
</tr>
<tr>
<td>Exon 7</td>
<td>100%</td>
<td>+0,9%</td>
<td>-12%</td>
</tr>
<tr>
<td>Exon 8</td>
<td>100%</td>
<td>-5%</td>
<td>-9%</td>
</tr>
<tr>
<td>Exon 9</td>
<td>100%</td>
<td>-2%</td>
<td>-14%</td>
</tr>
<tr>
<td>Exon 10</td>
<td>100%</td>
<td>+2%</td>
<td>-11%</td>
</tr>
<tr>
<td>Exon 11</td>
<td>100%</td>
<td>-15%</td>
<td>-16%</td>
</tr>
<tr>
<td>Exon 12</td>
<td>100%</td>
<td>-11%</td>
<td>-10%</td>
</tr>
<tr>
<td>Exon 13</td>
<td>100%</td>
<td>-7%</td>
<td>-14%</td>
</tr>
<tr>
<td>Exon 14</td>
<td>100%</td>
<td>-14%</td>
<td>-12%</td>
</tr>
<tr>
<td>Exon 15</td>
<td>100%</td>
<td>-16%</td>
<td>-12%</td>
</tr>
<tr>
<td>Exon 16</td>
<td>100%</td>
<td>-4%</td>
<td>-6%</td>
</tr>
<tr>
<td>Exon 17</td>
<td>100%</td>
<td>+1%</td>
<td>-12%</td>
</tr>
</tbody>
</table>

Tabelle 5: Variation der Gen Dosage innerhalb von drei Kontrollen: exemplarisch

Die Peak-Fläche wurde zuerst über das FANCC Amplikon normalisiert, die Gen Dosage von Kontrolle 1 wurde dann als 100 definiert. Von Kontrolle 2 und 3 ist jeweils die Variation zu Kontrolle 1 dargestellt. Die maximale Abweichung betrug 16%.

4.2.2 ÜBERPRÜFUNG DER GEN DOSAGE PCR AN NF2 PATIENTEN MIT BEKANNTEN DELETIONEN

Zur Überprüfung und Beurteilung der entwickelten Methode wurde die Gen Dosage PCR an acht DNA-Proben isoliert aus Leukozyten von NF2 Patienten getestet. An diesen wurden bereits mit Hilfe eines andersartigen semiquantitativen Assays von Prof. DG Evans und seinen Mitarbeitern auf die Deletion von vier der NF2 Exons (Exon 1, 4, 8 und 15) auf einem Allel getestet [Moyhuddin et al., 2003]. Die Ergebnisse dieses Assays sind in Tabelle 6 zusammengefasst. Die Gen Dosage PCR wurde wie beschrieben mindestens dreimal in unabhängigen Experimenten durchgeführt. In allen Proben zeigte sich für die bereits getesteten Exons eine Reduktion der Gen Dosage auf 50% bis 67%. Der Mittelwert lag hier bei 58%.

Über die Deletion in Exon 4 konnte keine Aussage gemacht werden, da dieses in dem hier entwickelten Gen Dosage PCR Assay nicht miteinbezogen war.

<table>
<thead>
<tr>
<th>NF2 Patient</th>
<th>94/0380</th>
<th>02/3886</th>
<th>02/2890</th>
<th>94/1899</th>
<th>03/2771</th>
<th>03/2772</th>
<th>03/2773</th>
<th>03/2774</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exon 4</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exon 8</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exon 15</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 7: Ergebnisse der Gen Dosage PCR an acht NF2 Patienten mit bekannten partiellen heterozygoten Deletionen (siehe Tab. 6).
Die Reduktion der Peak-Flächen ist in Prozent und in Bezug zu drei externen Kontrollen angegeben. Die Werte stellen die Mittelwerte von mindestens drei unabhängigen Experimenten dar. In allen Patienten wurden eine Reduktion in den bereits untersuchten Exons (bis auf Exon 4, das im Assay nicht enthalten

<table>
<thead>
<tr>
<th>NF2 Patient</th>
<th>94/0380</th>
<th>02/3886</th>
<th>02/2890</th>
<th>94/1899</th>
<th>03/2771</th>
<th>03/2772</th>
<th>03/2773</th>
<th>03/2774</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>51%</td>
<td>53%</td>
<td>55%</td>
<td>53%</td>
<td>56%</td>
<td>55%</td>
<td>56%</td>
<td>59%</td>
</tr>
<tr>
<td>Exon 2</td>
<td>91% +</td>
<td>98% +</td>
<td>65% -</td>
<td>94% +</td>
<td>63% -</td>
<td>62% -</td>
<td>62% -</td>
<td>56% -</td>
</tr>
<tr>
<td>Exon 3</td>
<td>99% +</td>
<td>103%+</td>
<td>59% -</td>
<td>102%+</td>
<td>55% -</td>
<td>55% -</td>
<td>58% -</td>
<td>57% -</td>
</tr>
<tr>
<td>Exon 5</td>
<td>99% +</td>
<td>104%+</td>
<td>57% -</td>
<td>103%+</td>
<td>54% -</td>
<td>55% -</td>
<td>59% -</td>
<td>61% -</td>
</tr>
<tr>
<td>Exon 7</td>
<td>96% +</td>
<td>98% +</td>
<td>58% -</td>
<td>97% +</td>
<td>54% -</td>
<td>54% -</td>
<td>57% -</td>
<td>60% -</td>
</tr>
<tr>
<td>Exon 8</td>
<td>97% +</td>
<td>99% +</td>
<td>58% -</td>
<td>98% +</td>
<td>60% -</td>
<td>60% -</td>
<td>61% -</td>
<td>52% -</td>
</tr>
<tr>
<td>Exon 9</td>
<td>96% +</td>
<td>100% +</td>
<td>54% -</td>
<td>100% +</td>
<td>55% -</td>
<td>54% -</td>
<td>56% -</td>
<td>50% -</td>
</tr>
<tr>
<td>Exon 10</td>
<td>93% +</td>
<td>100% +</td>
<td>59% -</td>
<td>100% +</td>
<td>58% -</td>
<td>54% -</td>
<td>59% -</td>
<td>61% -</td>
</tr>
<tr>
<td>Exon 11</td>
<td>91% +</td>
<td>95% +</td>
<td>67% -</td>
<td>95% +</td>
<td>63% -</td>
<td>65% -</td>
<td>66% -</td>
<td>61% -</td>
</tr>
<tr>
<td>Exon 12</td>
<td>92% +</td>
<td>97% +</td>
<td>63% -</td>
<td>98% +</td>
<td>59% -</td>
<td>58% -</td>
<td>56% -</td>
<td>60% -</td>
</tr>
<tr>
<td>Exon 13</td>
<td>93% +</td>
<td>96% +</td>
<td>63% -</td>
<td>97% +</td>
<td>57% -</td>
<td>58% -</td>
<td>58% -</td>
<td>58% -</td>
</tr>
<tr>
<td>Exon 14</td>
<td>92% +</td>
<td>94% +</td>
<td>65% -</td>
<td>95% +</td>
<td>62% -</td>
<td>62% -</td>
<td>64% -</td>
<td>58% -</td>
</tr>
<tr>
<td>Exon 15</td>
<td>93% +</td>
<td>96% +</td>
<td>60% -</td>
<td>96% +</td>
<td>59% -</td>
<td>60% -</td>
<td>60% -</td>
<td>59% -</td>
</tr>
<tr>
<td>Exon 16</td>
<td>95% +</td>
<td>98% +</td>
<td>55% -</td>
<td>98% +</td>
<td>55% -</td>
<td>57% -</td>
<td>55% -</td>
<td>60% -</td>
</tr>
<tr>
<td>Exon 17</td>
<td>95% +</td>
<td>96% +</td>
<td>67% -</td>
<td>97% +</td>
<td>58% -</td>
<td>58% -</td>
<td>59% -</td>
<td>53% -</td>
</tr>
</tbody>
</table>
ERGEBNISSE

war) auf 50% bis 68% festgestellt. Da weitere 12 Exons untersucht wurden, konnten zusätzlich deletierte Exons nachgewiesen werden. + Exon ist nicht deletiert/ - Exon ist heterozygot deletiert.

Für die 12 zusätzlich über die Gen Dosage PCR analysierten Exons konnten weitere Deletionen nachgewiesen werden. So waren nach den Ergebnissen in zwei Patienten (94/0380 und 02/3886) nur Exon 1 deletiert, während in allen anderen von dem Verlust des gesamten NF2 Gens ausgegangen werden musste. Die Ergebnisse sind in Tabelle 7 zusammengefasst.

4.2.3 UNTERSUCHUNG VON NF2 PATIENTEN MIT UNBEKANNTER KONSTITUTIONELLER
MUTATION
In nur drei Fällen konnten bei den acht NF2 Patienten, die Gegenstand dieser Arbeit waren, über die Sequenzierung der Exons mit den flankierenden Bereichen und Teilen der 5’ und 3’ UTR die konstitutionellen Mutationen gefunden werden. Da bereits Deletionen, die einzelne Exons umfassen, nicht mehr über eine Sequenzanalyse erfasst werden können, wurden an allen diesen Patienten zur weiteren Klärung des first hits die entwickelte Gen Dosage PCR durchgeführt.

4.2.3.1 Detektion von Deletionen
ERGEBNISSE

den Tumorkulturen eine Reduktion auf etwa 50% aufwiesen, konnte außerdem von einer Deletion des kompletten NF2 Gens auf dem verbleibenden Allel ausgegangen werden. Insgesamt konnte über die Gen Dosage PCR eine Deletion von mindestens zwei Exons als konstitutionelle Mutation und noch zusätzliche die Deletion des NF2 Gens als *second hit* identifiziert werden. Bei der Deletion von Exon 5 und 7 handelte es sich um eine bis dahin neue Mutation.

<table>
<thead>
<tr>
<th>NF2 Patient</th>
<th>NF2_1</th>
<th>NF2_2</th>
<th>NF2_3</th>
<th>NF2_4</th>
<th>NF2_5</th>
<th>NF2_6</th>
<th>NF2_7</th>
<th>NF2_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>94% +</td>
<td>98% +</td>
<td>98% +</td>
<td>94% +</td>
<td>91% +</td>
<td>96% +</td>
<td>92% +</td>
<td>93% +</td>
</tr>
<tr>
<td>Exon 2</td>
<td>102% +</td>
<td>87% +</td>
<td>96% +</td>
<td>97% +</td>
<td>100% +</td>
<td>91% +</td>
<td>94% +</td>
<td>97% +</td>
</tr>
<tr>
<td>Exon 3</td>
<td>95% +</td>
<td>102% +</td>
<td>95% +</td>
<td>88% +</td>
<td>95% +</td>
<td>102% +</td>
<td>98% +</td>
<td>108% +</td>
</tr>
<tr>
<td>Exon 5</td>
<td>93% +</td>
<td>105% +</td>
<td>97% +</td>
<td>93% +</td>
<td>92% +</td>
<td>52% -</td>
<td>90% +</td>
<td>112% +</td>
</tr>
<tr>
<td>Exon 7</td>
<td>94% +</td>
<td>99% +</td>
<td>97% +</td>
<td>91% +</td>
<td>93% +</td>
<td>51% -</td>
<td>89% +</td>
<td>109% +</td>
</tr>
<tr>
<td>Exon 8</td>
<td>91% +</td>
<td>97% +</td>
<td>101% +</td>
<td>92% +</td>
<td>104% +</td>
<td>91% +</td>
<td>92% +</td>
<td>88% +</td>
</tr>
<tr>
<td>Exon 9</td>
<td>92% +</td>
<td>86% +</td>
<td>102% +</td>
<td>94% +</td>
<td>102% +</td>
<td>96% +</td>
<td>89% +</td>
<td>95% +</td>
</tr>
<tr>
<td>Exon 10</td>
<td>87% +</td>
<td>91% +</td>
<td>91% +</td>
<td>91% +</td>
<td>85% +</td>
<td>97% +</td>
<td>101% +</td>
<td>102% +</td>
</tr>
<tr>
<td>Exon 11</td>
<td>96% +</td>
<td>91% +</td>
<td>92% +</td>
<td>94% +</td>
<td>96% +</td>
<td>93% +</td>
<td>93% +</td>
<td>90% +</td>
</tr>
<tr>
<td>Exon 12</td>
<td>106% +</td>
<td>108% +</td>
<td>100% +</td>
<td>100% +</td>
<td>100% +</td>
<td>93% +</td>
<td>88% +</td>
<td>94% +</td>
</tr>
<tr>
<td>Exon 13</td>
<td>92% +</td>
<td>95% +</td>
<td>94% +</td>
<td>98% +</td>
<td>96% +</td>
<td>96% +</td>
<td>94% +</td>
<td>92% +</td>
</tr>
<tr>
<td>Exon 14</td>
<td>97% +</td>
<td>88% +</td>
<td>99% +</td>
<td>100% +</td>
<td>97% +</td>
<td>93% +</td>
<td>96% +</td>
<td>91% +</td>
</tr>
<tr>
<td>Exon 15</td>
<td>97% +</td>
<td>96% +</td>
<td>93% +</td>
<td>97% +</td>
<td>96% +</td>
<td>97% +</td>
<td>90% +</td>
<td>91% +</td>
</tr>
<tr>
<td>Exon 16</td>
<td>97% +</td>
<td>87% +</td>
<td>98% +</td>
<td>100% +</td>
<td>100% +</td>
<td>100% +</td>
<td>90% +</td>
<td>98% +</td>
</tr>
<tr>
<td>Exon 17</td>
<td>90% +</td>
<td>85% +</td>
<td>95% +</td>
<td>88% +</td>
<td>88% +</td>
<td>90% +</td>
<td>86% +</td>
<td>104% +</td>
</tr>
</tbody>
</table>

Abbildung 12: Multiplex-PCR an Patient NF2_6
ERGEBNISSE

<table>
<thead>
<tr>
<th>Exon</th>
<th>NF2_6: Leukozyten-DNA</th>
<th>NF2_6 Tumor 1</th>
<th>NF2_6 Tumor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>96% +/+</td>
<td>59% +/-</td>
<td>55% +/-</td>
</tr>
<tr>
<td>Exon 2</td>
<td>91% +/+</td>
<td>63% +/-</td>
<td>53% +/-</td>
</tr>
<tr>
<td>Exon 3</td>
<td>102% +/+</td>
<td>66% +/-</td>
<td>54% +/-</td>
</tr>
<tr>
<td>Exon 5</td>
<td>52% +/-</td>
<td>11% +/-</td>
<td>0% +/-</td>
</tr>
<tr>
<td>Exon 7</td>
<td>51% +/-</td>
<td>13% +/-</td>
<td>0% +/-</td>
</tr>
<tr>
<td>Exon 8</td>
<td>91% +/+</td>
<td>69% +/-</td>
<td>66% +/-</td>
</tr>
<tr>
<td>Exon 9</td>
<td>96% +/+</td>
<td>63% +/-</td>
<td>59% +/-</td>
</tr>
<tr>
<td>Exon 10</td>
<td>97% +/+</td>
<td>60% +/-</td>
<td>63% +/-</td>
</tr>
<tr>
<td>Exon 11</td>
<td>93% +/+</td>
<td>57% +/-</td>
<td>64% +/-</td>
</tr>
<tr>
<td>Exon 12</td>
<td>93% +/+</td>
<td>59% +/-</td>
<td>51% +/-</td>
</tr>
<tr>
<td>Exon 13</td>
<td>96% +/+</td>
<td>55% +/-</td>
<td>56% +/-</td>
</tr>
<tr>
<td>Exon 14</td>
<td>93% +/+</td>
<td>58% +/-</td>
<td>63% +/-</td>
</tr>
<tr>
<td>Exon 15</td>
<td>97% +/+</td>
<td>57% +/-</td>
<td>54% +/-</td>
</tr>
<tr>
<td>Exon 16</td>
<td>100% +/+</td>
<td>57% +/-</td>
<td>51% +/-</td>
</tr>
<tr>
<td>Exon 17</td>
<td>90% +/+</td>
<td>57% +/-</td>
<td>51% +/-</td>
</tr>
</tbody>
</table>

Tabelle 9: Reduktion der Exon Peaks in dem Patienten NF2_6 in Bezug auf die Kontrollen. Die Gen Dosage wurde anhand der genomischen DNA aus Leukozyten, sowie an DNA, isoliert aus zwei Schwannzellkulturen zweier verschiedener Tumore, bestimmt. Die angegebenen Zahlenwerte entstammen aus mindestens drei unabhängig durchgeführten Experimenten. Die Versuche an der Kultur isoliert aus Tumor 3 wurden wegen sehr geringer Zell- und DNA-Mengen nur zweimal durchgeführt. In der DNA aus Leukozyten waren Exon 5 und 7 heterozygot deletiert mit einer Reduktion auf 52% und 51% (konstitutionelle Mutation, *first hit*). Diese beiden Exon waren in den DNA aus den Tumoren homozygot deletiert. Weiterhin schien das verbleibende Wild-Typ Allel komplett zu fehlen, da alle weiteren Exons eine Reduktion auf 50% bis 69% zeigten (*second hit*). ++ Exon ist nicht deletiert, +/- heterozygote und -/- homozygote Deletion

4.2.3.2 Validierung über RT-PCR

Um die in Patient NF2_6 gefundene Mutation nochmals zu überprüfen wurde eine RT-PCR an der RNA isoliert aus der Kultur von Tumor 1 im Vergleich zu der RNA isoliert aus einer Kultur eines gesunden Spenders durchgeführt. Die Primer wurden so gewählt, dass sie den zu untersuchenden Bereich umfassten. Sie lagen in Exon 2 und 11, so dass am NF2 Gen ohne Deletionen ein Fragment der Länge von 874 bp (Abb. 13, A) entstand. An der RNA aus der
ERGEBNISSE

ERGEBNISSE

Abbildung 13: RT-PCR zur Überprüfung der Deletion der NF2 Exons 5 und 7 an Patient NF2_6.

A Die Primer lagen in Exon 2 und 11, daraus sollte ohne Deletion in diesem Abschnitt im NF2 Gen ein Produkt der Länge von 874 bp entstehen.

B, C Es wurde RNA isoliert aus der Schwannzellkultur einer gesunden Kontrollperson (K), aus der Tumorkultur 1 (NF2_6 T1) und aus einer Fibroblastenkultur (Fb) verwendet. Die Fibroblastenkultur wurde aus der kontaminierten Tumorkultur 1 angereichert. Im Vergleich zu dem ca. 900 bp langen Fragment in der Kontrolle wurde in den Tumorzellen ein auf etwa 700 bp verkürztes Fragment als Hauptprodukt und das der Kontrolle entsprechende Produkt in sehr schwacher Intensität erhalten. Dies bestätigte sowohl die Annahme einer Deletion als auch der Kontamination der Kultur mit Fibroblasten. An der RNA aus den Fibroblasten entstanden zwei PCR-Produkte mit ungefähr gleicher Intensität, das dem Wildtyp-Fragment (wt) entsprechende und das verkürzte (del) Fragment.

ERGEBNISSE

4.3 MODIFIKATION DER GEN DOSAGE PCR

4.3.1 MOTIVATION: GEN DOSAGE PCR AN MIKRODISSEKTIERTEN ZELLEN

Da die Produktgröße nicht verantwortlich für die erzielten Resultate sind, war die Motivation die Spezifität der Reaktion zu erhöhen.
ERGEBNISSE

4.3.2 ENTWICKLUNG UND OPTIMIERUNG

Abbildung 14: Multiplex-PCR mit Primer-Mix 1 an DNA isoliert aus mikrodissezierten Zellen.

Abbildung 15: PCR-Fragment bei Verwendung von Primer-Paaren, an die UPS Sequenz aus dem Bakteriophagen M13mp18 angeheftet wurde. UPS (universal primer sequenz)

Abbildung 16: Auftrennung der Multiplex-PCRs mit den UPS-Primern auf einem Ethidiumbromid gefärbten Agarosegel.

Nicht möglich war die Fluoreszenzmarkierung der Primer. Die Auftrennung und die Analyse über das automatische Sequenziergerät analog zu der entwickelten Gen Dosage PCR war nicht möglich. Es wurden verschiedene Farbstoffe (TAMRA, FAM und Cy3) verwendet, jedoch mit keinem konnten Ergebnisse erzielt werden, die für eine Quantifizierung geeignet waren. In
Abbildung 17 ist das Elektropherogramm der UPS-Multiplex-PCR für Primer-Mix 1, die an ihrem 5’ Ende eine Markierung mit dem Farbstoff TAMRA trugen, gezeigt.

Abbildung 17: Elektropherogramm der Multiplex-PCR mit den UPS-Primern. Die Hinprimer tragen an ihrem 5’ Ende den Fluoreszenzfarbstoff TAMRA. Je größer die Fragmente werden, desto mehr flachen die Peaks ab.

Zusätzlich zu den modifizierten Primern, sollte deshalb die Durchführung einer nested-PCR (verschachtelte PCR) eine genaue Quantifizierung ermöglichen. Auch hiermit steigt die Sensitivität für die Amplifikation von hoch spezifischen PCR-Produkten an. Bei der nested-PCR wird die Ausgangs-DNA in zwei voneinander unabhängigen Reaktionen sukzessive amplifiziert. Durch ein äußeres Primer-Paar wird zunächst ein etwas größeres Amplikon synthetisiert, das dann in der zweiten Reaktion mit einem inneren Primer-Paar weiter
ERGEBNISSE

Beide Ansätze wurden für die modifizierte Gen Dosage PCR getestet. Für die one-tube-nested-PCR wurden die UPS-Primer in einer Endkonzentration von 0,1 µM und die Primer für die Amplifikation des inneren kleineren Amplikons von 0,2 µM dem Reaktionsansatz hinzugefügt. Es wurden 12-19 Zyklen bei 65°C für die Amplifikation mit den äußeren Primer-Paaren, gefolgt von 18-25 Zyklen bei 58°C für die inneren Primer-Paare durchgeführt. Die Zyklen und Temperaturprofile für die nested-PCR als zwei getrennte Ansätze waren identisch. Nach der ersten Reaktion wurde ein Aufreinigungsschritt mit verschiedenen Methoden (siehe hierzu 3.3.3) durchgeführt. Als Template diente 25 ng, 70 ng und 100 ng genomische DNA aus den Leukozyten der Kontrollpersonen. Alle Ansätze wurden anschließend auf dem ABI aufgetrennt und analysiert.

In Abbildung 19 sind exemplarisch die Elektropherogramme je eines nested-Multiplex-Mixes dargestellt. Die Identifikation der spezifischen Produkte war sehr schwierig. Es traten zahlreiche Nebenprodukte auf, viele mit identischer Intensität wie die Hauptprodukte. Finden beide Runden in zwei getrennten Ansätzen und mit einem Reinigungsschritt nach der ersten Amplifikation statt, lassen sich die Nebenprodukte zwar deutlich reduzieren, bleiben jedoch weiterhin mit einer Menge z.T. ähnlich der Hauptprodukte erhalten. Die one-tube-nested PCR war somit für eine Quantifizierung zur Feststellung der Gen Dosage ungeeignet. Für die Ansätze in den zwei Reaktionen zeigte sich eine deutliche Verbesserung, für eine verlässliche

Für die one-tube-nested Multiplex-PCR wurden 25 ng DNA aus Leukozyten von Kontrollpersonen zusammen mit dem UPS-Primer-Mix 1 in einer Endkonzentration von 0,1 µM und Primer-Mix 1 (entsprachen dem Primer-Mix 1 der unter 4.2 beschriebenen PCR bzw. Abb. xx) in einer Endkonzentration von 0,2 µM in einem Reaktionsansatz amplifiziert. Das Temperatur-Profil der PCR wurde so gewählt, dass während der ersten 18 Zyklen bei einer Temperatur von 65°C die größeren Produkte und anschließend bei 58°C für 23 Zyklen die kleineren Produkte entstanden. Da die sogenannten inneren Primer-Paare eine Fluoreszenzmarkierung trugen, konnten diese Produkte über den ABI Prism 3100 aufgetrennt und analysiert werden.

Für die two-tube-nested Multiplex-PCR wurden analog 25 ng DNA isoliert aus Leukozyten zuerst mit dem UPS-Primer-Mix 1 (Endkonzentration 0,1 µM) bei 60°C in 18 Zyklen amplifiziert und über den NukleoSpin Extract Kit II (Machery- Nagel) aufgereinigt. Mit dem 1/20 Volumen des Eluats wurde die zweite PCR mit Promer-Mix 1 (Endkonzentration 0,2 µM) bei 60°C für 25 Zyklen durchgeführt und die entstandenen Produkte analog wie bei der one-tube-nested Multiplex-PCR analysiert.

Abbildung 19: Elektropherogramme der one-tube-nested (A) und two-tube-nested (B) Multiplex-PCR für Primer-Mix 1.
Alle Fragmente ließen sich vervielfältigen. Die Fragmente wurden aus dem Gel isoliert und mit den Primern der zweiten nested-PCR sequenziert. Die gewonnene Sequenz für das Fragment von Exon 1 ist in Abbildung 20 angegeben.

Abbildung 20: Sequenzanalyse des Fragmentes für Exon 1 der modifizierten nested-Gen Dosage durchgeführt an mikrodissektierten Zellen nach whole genome preamplifikation.

Für die Quantifizierung der Produkte wurde die zweite PCR auf dem LightCycler durchgeführt.

Abbildung 21: modifizierte nested-Gen Dosage PCR für die Anwendung auf mikrodissektiertem Material

Der Assay beruhte auf einer nested-PCR (verschachtelte PCR). Das äußere Primer-Paar, das ein zunächst größere Fragmente amplifiziert, trägt an den 5' Enden ein Sequenzmotiv aus dem Bakteriophagen M13mp18 (UPS = universal primer sequenz). Wie bei der bereits beschrieben Gen Dosage PCR sind die Primer in der identischen Kombination in zwei Mixe von je 8 bzw. 9 zusammengefasst. Nach einem
Aufreinigungsschritt wurde in einer zweiten PCR unter Verwendung der LightCycler Technologie jedes Fragment in separaten Ansätzen amplifiziert und in Bezug auf die interne (das FANCC-Amplikon) und externen Kontrollen quantifiziert.

Eine Bestimmung des logarithmischen Bereiches für diesen Teil der modifizierten nested-Gen Dosage PCR war hier deshalb nicht notwendig. Über die Software wurden die Crossing Points bestimmt, die den Übergang der Amplifikation in die logarithmische Phase angeben. Damit konnte direkt wie unter 3.3.4 beschrieben eine Quantifizierung bzgl. der internen Kontrolle (FANCC) und externen Kontrollen die Bestimmung der Gen Dosage durchgeführt werden. In Abbildung 21 ist das Prinzip schematisch erläutert.

4.3.2 VALIDIERUNG DER MODIFIZIERTEN NESTED-GEN DOSAGE PCR AN FIBROBLASTEN DNA

Für die Amplifikation und Quantifizierung von DNA isoliert aus Zellen eines mit Formalin fixierten Gewebes, waren zwei Amplifikationschritte und eine Aufreinigung zwischen diesen notwendig. Außerdem wurden die DNA bereits über die whole genome Preamplifikation im Vorfeld vervielfältigt. Um über die Gen Dosage eine verlässliche Aussage über eine Deletion machen zu können, musste bevor die Methode an DNA, isoliert aus Zellen von Gewebeschnitten, angewendet werden konnte, sichergestellt werden, dass bei keinem der Amplifikationsschritte eines der Allele bevorzugt amplifiziert wurde, und es zu einer Verschiebung der Gen Dosage kommt. Dadurch könnten vorhandene Deletionen nicht erkannt werden. Für die einzelnen Schritte bzw. für die Gesamtreaktion musste der Erhalt der Gen Dosage nachgewiesen werden. Für die whole genome Preamplifikation wurde die Amplifikation beider Allele ohne Präferenz für eines der beiden bereits in den Arbeiten von Dietmaier et al. gezeigt [Dietmaier et al., 1999]. Gleiches sollte nun für die gesamte Reaktion gemacht werden.

Die DNA für die Etablierung wurde aus der Fibroblastenkultur des Patienten NF2_6 gewonnen, in der bereits die Deletion von Exon 5 und 7 nachgewiesen wurde, und mit der DNA einer Fibroblastenkultur eines Probanden ohne NF2 verglichen. Die genomische DNA wurde schrittweise so verdünnst, dass sie der DNA-Mengen, die in etwa der DNA Menge aus 8-33 Zellkernen entspricht, simulierte. Für alle Template-Mengen konnte die Reduktion der Gen Dosage am Beispiel für Exon 5 auf 44% - 67% nachgewiesen werden. Für Exon 1 und 9 war die Gen Dosage nicht verringert und damit nicht deletiert (Tab. 10). Auch mit der modifizierte Gen Dosage Multiplex PCR lassen sich Deletionen verlässlich auch auf sehr geringen DNA Mengen nachweisen.
Ergebnisse

<table>
<thead>
<tr>
<th>NF2_6: Fb</th>
<th>PCR-Zyklen für die Multiplex-PCR</th>
<th>Exon 1</th>
<th>Exon 5</th>
<th>Exon 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 pg</td>
<td>23</td>
<td>112%</td>
<td>67 %</td>
<td>118%</td>
</tr>
<tr>
<td>75 pg</td>
<td>23</td>
<td>112%</td>
<td>58,5 %</td>
<td>99 %</td>
</tr>
<tr>
<td>100 pg</td>
<td>20</td>
<td>113%</td>
<td>60 %</td>
<td>96%</td>
</tr>
<tr>
<td>130 pg</td>
<td>18</td>
<td>118%</td>
<td>52%</td>
<td>108%</td>
</tr>
<tr>
<td>200 pg</td>
<td>15</td>
<td>122 %</td>
<td>44%</td>
<td>nicht getestet</td>
</tr>
</tbody>
</table>

Tabelle 10: Bestimmung der Gen Dosage an DNA aus der Fibroblastenkultur des Patienten NF2_6 nach whole genome Preamplifikation und der modifizierten nested-Multiplex-PCR. Getestet wurde ab einer Template Menge von 50 pg. Diese Menge entspricht in etwas einer DNA Menge aus 10 mikroskopierte Zellkernen. Für die Multiplex-PCR mit den UPS-Primern war die Anzahl der PCR-Zyklen limitiert. Für alle Template-Mengen war die Gen Dosage von Exon 5 auf 44%-67% (MW 56,3) reduziert. Fb=Fibroblastenkultur

4.4 Untersuchung mikroskopierte Zellen: modifizierte Gen Dosage PCR an Zelllysaten

ERGEBNISSE

ERGEBNISSE
Abbildung 22:
Ergebnisse der Gen Dosage PCR an mikrodissezierten Zellen isoliert aus Suralnervenbiopsaten

Die Analysen der Proben von Patient NF2_5 und NF2_6 lieferten auswertbare Ergebnisse (NF2_5, A und B; NF2_6 A und D_1). In letzterem Patient konnte die zuvor als konstitutive Mutation bestimmte Deletion gefunden werden. Die Gen Dosage von Exon 5 und 7 ist in diesen Ansätzen auf ca. 50% reduziert (A: 50% und 54%; D_1 je 58%). Bei beiden Patienten konnte jedoch kein Hinweis auf einen LOH oder den Verlust weiterer Exons nachgewiesen werden. nA nicht auswertbar

1 Mittelwert zweier Experimente

<table>
<thead>
<tr>
<th>NF2_2</th>
<th>Exon</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>NF2_5</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>NF2_6</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D_1</th>
<th>D_2</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Exon 1</td>
<td>74 %</td>
<td>nA</td>
<td>118 %</td>
<td>62 %</td>
<td>108 %</td>
<td>73 %</td>
<td>17 %</td>
<td>133 %</td>
<td>nA</td>
<td>nA</td>
<td>118 %</td>
<td>24 %</td>
<td>17 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 2</td>
<td>172 %</td>
<td>nA</td>
<td>333 %</td>
<td>69 %</td>
<td>101 %</td>
<td>82 %</td>
<td>19 %</td>
<td>107 %</td>
<td>nA</td>
<td>nA</td>
<td>95 %</td>
<td>19 %</td>
<td>17 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 3</td>
<td>158 %</td>
<td>nA</td>
<td>197 %</td>
<td>119 %</td>
<td>96 %</td>
<td>82 %</td>
<td>13 %</td>
<td>101 %</td>
<td>nA</td>
<td>nA</td>
<td>129 %</td>
<td>19 %</td>
<td>16 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 5</td>
<td>185 %</td>
<td>nA</td>
<td>95 %</td>
<td>53 %</td>
<td>92 %</td>
<td>80 %</td>
<td>14 %</td>
<td>50 %</td>
<td>nA</td>
<td>nA</td>
<td>58 %</td>
<td>12 %</td>
<td>7 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 7</td>
<td>115 %</td>
<td>nA</td>
<td>64 %</td>
<td>45 %</td>
<td>97 %</td>
<td>84 %</td>
<td>19 %</td>
<td>54 %</td>
<td>nA</td>
<td>nA</td>
<td>58 %</td>
<td>9 %</td>
<td>6 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 8</td>
<td>119 %</td>
<td>nA</td>
<td>210 %</td>
<td>40 %</td>
<td>95 %</td>
<td>83 %</td>
<td>15 %</td>
<td>107 %</td>
<td>nA</td>
<td>nA</td>
<td>126 %</td>
<td>17 %</td>
<td>10 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 9</td>
<td>200 %</td>
<td>nA</td>
<td>230 %</td>
<td>41 %</td>
<td>103 %</td>
<td>73 %</td>
<td>14 %</td>
<td>105 %</td>
<td>nA</td>
<td>nA</td>
<td>98 %</td>
<td>18 %</td>
<td>9 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 10</td>
<td>334 %</td>
<td>nA</td>
<td>236 %</td>
<td>107 %</td>
<td>100 %</td>
<td>77 %</td>
<td>15 %</td>
<td>117 %</td>
<td>nA</td>
<td>nA</td>
<td>109 %</td>
<td>26 %</td>
<td>13 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 11</td>
<td>96 %</td>
<td>nA</td>
<td>248 %</td>
<td>50 %</td>
<td>105 %</td>
<td>95 %</td>
<td>13 %</td>
<td>121 %</td>
<td>nA</td>
<td>nA</td>
<td>120 %</td>
<td>19 %</td>
<td>%</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 12</td>
<td>65 %</td>
<td>nA</td>
<td>255 %</td>
<td>38 %</td>
<td>98 %</td>
<td>73 %</td>
<td>13 %</td>
<td>103 %</td>
<td>nA</td>
<td>nA</td>
<td>120 %</td>
<td>18 %</td>
<td>12 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 13</td>
<td>158 %</td>
<td>nA</td>
<td>315 %</td>
<td>42 %</td>
<td>92 %</td>
<td>79 %</td>
<td>17 %</td>
<td>89 %</td>
<td>nA</td>
<td>nA</td>
<td>118 %</td>
<td>19 %</td>
<td>7 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 14</td>
<td>147 %</td>
<td>nA</td>
<td>199 %</td>
<td>36 %</td>
<td>93 %</td>
<td>79 %</td>
<td>15 %</td>
<td>90 %</td>
<td>nA</td>
<td>nA</td>
<td>102 %</td>
<td>17 %</td>
<td>8 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 15</td>
<td>179 %</td>
<td>nA</td>
<td>244 %</td>
<td>33 %</td>
<td>95 %</td>
<td>74 %</td>
<td>9 %</td>
<td>93 %</td>
<td>nA</td>
<td>nA</td>
<td>111 %</td>
<td>10 %</td>
<td>6 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 16</td>
<td>94 %</td>
<td>nA</td>
<td>246 %</td>
<td>40 %</td>
<td>95 %</td>
<td>70 %</td>
<td>27 %</td>
<td>86 %</td>
<td>nA</td>
<td>nA</td>
<td>109 %</td>
<td>23 %</td>
<td>19 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 17</td>
<td>124 %</td>
<td>nA</td>
<td>170 %</td>
<td>49 %</td>
<td>98 %</td>
<td>84 %</td>
<td>3 %</td>
<td>92 %</td>
<td>nA</td>
<td>nA</td>
<td>114 %</td>
<td>3 %</td>
<td>1 %</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERGEBNISSE

4.5 Quantitative Untersuchung der differenziellen Genexpression an humanen Schwann- und Schwannomzellen

Im Rahmen der vorliegenden Arbeit sollten ausgewählte Gene auf die Expression in Schwannomzellen im Vergleich zu normalen Schwannzellen untersucht werden. In einer weiteren Doktorarbeit innerhalb der Arbeitsgruppe wurde anhand eines cDNA Arrays (Altas Human 1.2 cDNA Array, BD Biosciences, San Jose, CA, USA), auf dem sich eine Gesamtzahl von 1176 Gene befanden, 41 Gene identifiziert, die um mindestens den Faktor zwei hochreguliert waren oder deren Expression um diesen Wert verringert war. Es befanden sich darunter Adhäsionsmoleküle, Transkriptions- und Wachstumsfaktoren sowie Moleküle, die an Signalkaskaden beteiligt sind [Hanemann et al., 2006; Utermark, 2002].

Da die Analyse über einen cDNA Array semiquantitative Ergebnisse liefert, sollten die Ergebnisse für 36 Gene über eine RT-PCR unter Benutzung der LightCycler Technologie überprüft werden. Für die hierin ausgeschlossenen 4 Gene konnten bereits in anderen Arbeiten Ergebnisse erzielt werden oder für 2 war es nicht möglich ein reproduzierbares RT-PCR Produkt zu generieren. Für insgesamt 12 Gene der verbleibenden 37 Gene wurden die quantitativen PCRs im Rahmen dieser Arbeit durchgeführt. Davon konnten für vier eine deutliche Regulation (mit dem Faktor >2) betätigt werden (Tab. 12). Darunter waren das Protein MAG, ein Vorläufer des mit Myelin assoziierten Glycoproteins, dessen Expression in Schwannomzellen reduziert war (0,18+/- 0,02²). Ebenfalls eine verringerte Expression konnte für die Protein Kinase MAP2K3 (0,29 +/- 0,17) und für die Matrixmetalloproteinase MMP14 (0,32 +/- 0,08) bestätigt werden. MMP14 ist an der Strukturierung der extrazellulären Matrix beteiligt. Das Prion PRNP war im Vergleich zu normalen Schwannzellen in erhöhter Menge vorhanden (2,84 +/- 0,25). Die quantitative RT-PCR wurde für jedes Gen an mindestens 3 Paarchen bestehend aus einer Schwannom- und Schwannzellkultur in unabhängigen Experimenten untersucht. Die Expression dieser 4 Gene entsprach den Ergebnissen des cDNA Arrays. Für das Gen FLT1 (VEGFR1 vaskuläre Wachstumsfaktorrezeptor 1) ergaben sich in 8 Bestimmungen sehr unterschiedliche Werte und es konnte keine eindeutige Richtung für eine Regulation bestimmt werden. Für weitere 10 Gene konnten ebenfalls in der Arbeitsgruppe eine reproduzierbare Regulation über die Real Time PCR durchgeführt werden [Hanemann et al., 2006].

¹ Mittelwert
² SEM = standard error of the mean
<table>
<thead>
<tr>
<th>Genname</th>
<th>Expression in Schwannomzellen nach cDNA Array</th>
<th>Expression in Schwannomzellen nach LightCycler Daten*</th>
<th>Regulation in Schwannomzellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP (Alzheimer’s disease amyloid A4 protein precursor)</td>
<td>erhöht</td>
<td>0,74 ± 0</td>
<td>keine Regulation</td>
</tr>
<tr>
<td>CBL-B (Ubiquitin Ligase)</td>
<td>erniedrigt</td>
<td>0,87 ± 0,15</td>
<td>keine Regulation</td>
</tr>
<tr>
<td>CDKN1A (Cyclin dependent kinase inhibitor 1A)</td>
<td>erhöht</td>
<td>1,55 ± 0,22</td>
<td>keine Regulation</td>
</tr>
<tr>
<td>FLT1 (VEGFR1; Vascular endothelial growth factor receptor 1)</td>
<td>erniedrigt</td>
<td>nB</td>
<td>nB</td>
</tr>
<tr>
<td>HMGA (High mobility group protein)</td>
<td>erniedrigt</td>
<td>1,01 ± 0,20</td>
<td>keine Regulation</td>
</tr>
<tr>
<td>L-MAG (Myelin-associated glycoprotein precursors)</td>
<td>erniedrigt</td>
<td>0,18 ± 0,20</td>
<td>bestätigt</td>
</tr>
<tr>
<td>MAP2K3 (Dual specificity mitogen-activated protein kinase 3)</td>
<td>erniedrigt</td>
<td>0,29 ± 0,17</td>
<td>bestätigt</td>
</tr>
<tr>
<td>MCP1 (Monocyte chemotactic protein 1 precursor)</td>
<td>erhöht</td>
<td>1,62 ± 0,17</td>
<td>keine Regulation</td>
</tr>
<tr>
<td>MMP14 (Matrix metalloproteinase 14 precursor)</td>
<td>erniedrigt</td>
<td>0,32 ± 0,08</td>
<td>bestätigt</td>
</tr>
<tr>
<td>PRNP (Major prior protein precursor)</td>
<td>erhöht</td>
<td>2,84 ± 0,25</td>
<td>bestätigt</td>
</tr>
<tr>
<td>PTMA (Prothymosin alpha)</td>
<td>erhöht</td>
<td>1,29 ± 0,30</td>
<td>keine Regulation</td>
</tr>
<tr>
<td>TIMP1 (Metalloproteinase inhibitor 1 precursor)</td>
<td>erniedrigt</td>
<td>0,89 ± 0,13</td>
<td>keine Regulation</td>
</tr>
</tbody>
</table>

Tabelle 12: Gene mit unterschiedlicher Regulation in Schwannomzellen im Vergleich zu Schwannzellen. Ergebnisse eines cDNA Arrays (Altas Human 1.2 cDNA Array, BD Biosciences, San Jose, CA, USA) und der Real Time PCR Analyse. * Mittelwert ± SEM (standard mean of the error); nB nicht eindeutig bestimmbare
ÜBER RNA INTERFERENZ

Abbildung 23: Detektion des Proteins Merlin über eine Western Blot Analyse

Das Merlin (70 kDa) konnte nur in der HMM Zelllinie Hib, nicht jedoch in den HMM Zelllinien Tra und Bar nachgewiesen werden. Letztere verfügen über eine Mutation im NF2 Gen.

Die Zelllinie zeigt keine Mutation im NF2 Locus und das Protein Merlin wird exprimiert (Abb. 23). Eine Durchführung an primären humanen Zellen, wie den Schwannzellen, war aus technischen Gründen nicht möglich.

4.6.1 VORARBEITEN FÜR DIE STABILE TRANSFEKTION VON HMM MIT shRNA EXPRIMIERENDEN KONSTRUKTEN

4.6.1.1 Transiente Transfektion der HMM Zelllinie HIB

exprimierte EGFP (pEGFP-C1, Becton Dickenson, Heidelberg) verwendet, das in unterschiedlichen Konzentrationsverhältnissen zum Transfektionsagens eingesetzt wurde. Die Zugabe erfolgte einen Tag nach der Aussat der Zellen auf 24-well Platten bei einer Konfluenz von 90%-95% bei 500 µl Medium. 12 h nach der Transfektion wurde das Medium gewechselt. Entgegen der Empfehlungen des Herstellers für TransFectin wurde auch hier das Medium nach demselben Zeitraum gewechselt.

Konzentrationsverhältnisse von DNA zu Transfektionsreagenz

<table>
<thead>
<tr>
<th>LipofectAmine 2000</th>
<th>DNA [µg]</th>
<th>0,5 (A)</th>
<th>0,5 (B)</th>
<th>0,8</th>
<th>0,8 (C)</th>
<th>0,8</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agens [µl]</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TransFectin</th>
<th>DNA [µg]</th>
<th>0,5 (D)</th>
<th>0,5 (E)</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agens [µl]</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Abbildung 24: Transfektion der HMM Zelllinie Hib mit LipofectAmine2000 und TransFectin

4.6.2 BESTIMMUNG DER ANTIBIOTIKA- UND EFFEKTOR-KONZENTRATIONEN

ERGEBNISSE

ERGEBNISSE

Abbildung 25: MTS Test für Antibiotika- und Effektormolekül

Die HMM Zelllinie Hib wurden in Gegenwart von unterschiedlichen Konzentrationen an Zeocin, Blasticidin und Tetracyclin kultiviert. Nach einer Inkubationszeit von 7 (Zeo, Bla) bzw. 5 (Tet) wurde ein MTS-Test zur Bestimmung der Anzahl an metabolisch aktiven Zellen durchgeführt. Alle Messwerte wurden nach Abzug des Leerwerks (= Medium ohne Zellen) gegenüber der gemessenen Konzentration aufgetragen. In A und B ist eine Referenzlinie dargestellt, die in den kritischen Konzentration erreichten OD₄₉₀-Wert (=0,035) markiert.

4.6.3 **HERSTELLUNG VON shRNA KONSTRUKTEN**

Für die Inaktivierung des NF2 Gens wurden zwei shRNA Konstrukte ausgewählt. Eine Unterscheidung der beiden dominierenden Isoformen (NF2 1-15, 17 und NF2 1-16) war nicht möglich. Der Bereich, in dem sich die Isoformen unterscheiden beschränkt sich auf den 3’ Bereich. Nach dem momentan Wissensstand sollte die Sequenz für die shRNA, die für die Geninaktivierung verwendet wird, mindestens 150 bp entfernt vom dem 5’ bzw. 3’ Bereich liegen. Die Sequenz für die shRNA NF2_iso1&2_1shRNA wurde nach einer dsRNA Sequenz der Ratten für die Inaktivierung des NF2 Gens konstruiert (Kissil, nicht veröffentlicht). Diese enthält an der 3’ Position ein Adenin an Stelle eines Guanins der humanen NF2 Sequenz. Um eine vollständige Komplementarität zur humanen mRNA zu erreichen wurde diese Position korrigiert. Die Auswahl der Sequenz für die shRNA NF2_iso1&2_2shRNA erfolgte nach Ambion und wurde so ergänzt, dass eine Klonierung der Oligonukleotide in den Vektor pENTR/H1/TO möglich war.

Zusätzlich wurde ein doppelsträngiges Oligonukleotid, das keine Inaktivierung bewirkt (Negativ shRNA) als Negativkontrolle und ein Konstrukt zur Inaktivierung des nukleären Hullproteins
ERGEBNISSE

Abbildung 26: Herstellung der beiden NF2 shRNA Konstrukte
ERGEBNISSE

4.6.4 TRANSFEKTION DER HMM ZELLLINIE HIB

![Diagramm]

Abbildung 27: Konstitutive Expression der NF2 short hairpin RNA (shRNA)

Bei Verwendung des induzierbaren Systems zusammen mit dem Konstrukt für die Lamin A/C shRNA war die Transfektionsrate nicht ausreichend hoch, so dass die Zellen nach einem Zeitraum von 6 Wochen weitgehendst abgestorben waren und sich nicht weiter Vermehren ließen. Vor der Zellklonierung wurden in den Lysaten erneut das Tet Repressor Protein über eine Western Blot Analyse detektiert (Abb. 29; B).
Abbildung 28: Tetracyclin-regulierte Expression der short hairpin NF2 RNA
Abbildung 29: Detektion des Tetracyclin Repressor Proteins (25 kDa) in Hib Zellklonen nach Transfektion mit dem Plasmid pcDNA6/TR

+ T-Rex-293 Zelllinie (Tet Repressor exprimierende Zellen, Invitrogen)
++ Tet Repressor Kontroll Protein (7 µg, MoBiTec)

Insgesamt wurden 7 verschiedene Zellpopulationen mit den shRNA Konstrukten generiert. Vier Populationen, die die shRNAs (Hib_NF2_iso1&2_1shRNA, Hib_NF2_iso1&2_2 shRNA, HibNegativ shRNA, Hib_Lamin A/C shRNA) konstitutiv exprimierten und drei Zellpopulationen, bei denen die Expression durch die Gabe von Tetracyclin induziert werden konnte (NF2_iso1&2_1shRNA, NF2_iso1&2_2shRNA, Negativ shRNA). Von allen wurden 20-30 Klone isoliert und auf eine Reduktion der zugrundeliegenden Gene hin untersucht.

4.6.3 Untersuchung von transfizierten Zellklonen auf konstitutive und induzierbare Inaktivierung des NF2 Gens und des Lamin A/C Gens

Wie in 3.2.4 und 3.8.1 beschrieben wurden von allen Zellklonen RNA und Protein isoliert. Für die Zellklone, mit dem induzierbaren Systemen, erfolgte die Präparation 72 h nach Zugabe von Tetracyclin in einer Endkonzentration von 1 µg/ml. Über die quantitative Analyse mit Hilfe des Light Cyclers wurden die einzelnen Klone auf die Reduktion der Expression der NF2 mRNA und als positiv Kontrolle der Lamin A/C mRNA untersucht. Lag eine Reduktion der NF2 mRNA vor, die in einem Bereich zwischen 30% und 70% lag, wurden die Reduktion ebenfalls auf Proteinebene weiter untersucht. Es konnte nur ein Klon mit dem konstitutiven Konstrukt NF2_iso1&2_1shRNA (Klon 16) identifiziert werden, bei dem die Inaktivierung des NF2 Gens sowohl auf RNA als auch auf Protein Ebene nachweisbar war (siehe Abb. 30). Auf RNA Ebene lag eine Reduktion auf 44,32 % vor im Vergleich zu der NF2 Expression in den Zellen mit dem konstitutiven Negativ shRNA. Es stellt somit ein geeignetes System dar, um eine Haploinsuffizienz im NF2 Gen weiter untersuchen zu können. Es konnten zwar weitere Zellklone mit einer reduzierten NF2 mRNA Expression (sowohl konstitutiv als auch im induzierbaren System, siehe Abb. 30) gefunden werden, jedoch war in keinem von diesen auch die Menge an dem Protein Merlin verringert.

1 Durchschnitt von drei unabhängigen Experimenten und drei verschiedenen RNA Präparationen der Zellklone
ERGEBNISSE

Abbildung 30: Untersuchung von shRNA exprimierenden Zellklonen auf die Expression der NF2 mRNA und dem Protein Merlin

4.6.4 UNTERSUCHUNG DES TRANSFIZIERTEN ZELLLKONS AUF DIFFERENTIELLE EXPRESSION DEFINIERTER GENE UND PROTEINE

Um den Verdacht auf die Haploinsuffizienz zu verifizieren, sollten an dem Zellklon Hib NF2_iso1&2_1_shRNA Klon 16 die Auswirkungen, die diese Veränderung auf die Expression von ausgewählten Proteinen und Genen hat, untersucht werden. Analysiert wurde die
Expression der Proteine der kleinen Rho-GTPase Rac1, die direkte Auswirkungen auf das Cytoskelett hat [Kaempchen et al., 2003], Integrin β 4 [Utermark et al., 2003], Pak 2 (durch p21 aktiviertes Protein) P-Pak 1-3 [Kämpchen und Bibel, nicht veröffentlichte Daten] und die Expression des Hitzeschockproteins HSP27 [Utermark et al., 2005a]. Alle diese Proteine zeigten eine deutlich erhöhte Expression in Schwannomzellen im Vergleich zu Schwannzellen. Weiterhin wurden L-MAG (Myelin assoziiertes Protein), das Prion Protein PRNP, VEGF (der vaskuläre Endothelwachstumsfaktor), die mitogen aktivierte Proteinkinase MAP2K3 und die Matrixmetalloproteinase MMP14 auf die Expression der mRNA untersucht. Eine reduzierte Genexpression wurde für MAG, MMP14 und MAP2K3 in den Zellen des Zellklons gefunden (26%, 32% und 23%, Tab. 13), bei dem die Expression von Merlin auf 50% reduziert war. Zellen mit intakter Merlin Expression zeigten hier keine Veränderungen. Alle weiteren Proteine oder Gene zeigten keine Veränderung.

Diese Ergebnisse unterstützen den Verdacht aus den Analysen der Surahnervenbiopsaten, dass eine Haploinsuffizienz von Merlin zu einen veränderten zellulären Phänotyp führt.
<table>
<thead>
<tr>
<th>A</th>
<th>Proteinname</th>
<th>Ergebnis: Protein-Expression</th>
<th>B</th>
<th>Genname</th>
<th>Ergebnis: RNA Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pak 2 (p21 activatad protein)</td>
<td>keine Regulation</td>
<td>L-MAG (Myelin-associated glycoprotein precursors)</td>
<td>erniedrigt</td>
<td>(26 %)</td>
<td></td>
</tr>
<tr>
<td>P-Pak 1, 2, 3 (phosphoryliertes Pak)</td>
<td>keine Regulation</td>
<td>PRNP (Major prior protein precursor)</td>
<td>keine Regulation</td>
<td>(104 %)</td>
<td></td>
</tr>
<tr>
<td>Rac 1 (small Rho GTPase)</td>
<td>keine Regulation</td>
<td>VEGF (Vascular endothelial growth factor)</td>
<td>keine Regulation</td>
<td>(98 %)</td>
<td></td>
</tr>
<tr>
<td>Integrin ß4/Integrin ß6 (Adhäsionsmoleküle)</td>
<td>keine Regulation</td>
<td>MAP2K3 (Dual specificity mitogen-activated protein kinase 3)</td>
<td>erniedrigt</td>
<td>(32 %)</td>
<td></td>
</tr>
<tr>
<td>HSP 27 (27 kDa heat-shock protein)</td>
<td>keine Regulation</td>
<td>HSP 27 (27 kDa heat-shock protein)</td>
<td>keine Regulation</td>
<td>(107 %)</td>
<td></td>
</tr>
<tr>
<td>MMP14 (Matrix metalloproteinase 14 precursor)</td>
<td>keine Regulation</td>
<td>MMP14 (Matrix metalloproteinase 14 precursor)</td>
<td>erniedrigt</td>
<td>(23%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 13: Untersuchung der Expression verschiedener Proteine (A) und mRNA Moleküle (B) in dem transfizierten Zellklon Hib_NF2iso1&2_1shRNA (Klon 16) im Vergleich zu Hib_NegativshRNA und Hib_LaminA/CshRNA (Klon 9). Eine verringerte Expression zeigte sich für die Gene L-MAG, MAP2K3 und MMP14.
5. Diskussion

Das Protein Merlin fungiert als Bindungsglied zwischen Membranproteinen und dem Cytoskeletts und ist an den verschiedensten Signalkaskaden beteiligt. Es hat Auswirkungen auf die Zelladhäsion und die Zellmotilität und reguliert die Zellproliferation [Keely et al., 1997; Lutchman and Rouleau, 1995; Tikoo et al., 1994].

Dikussion

[Hagel et al., 2002; Sperfeld et al., 2002]. Daneben fand man in einem konditionalen knockout-NF2-Mausmodell zusätzlich zu den Schwannomen, die mit einer Häufigkeit von nur 24% auftraten, sehr viel häufiger Schwannzellhypertrophien/Hyperplasien und Myelinisierungsstörungen an peripheren Nerven. Genotypisch liegen in diesen Schwannzellen in beiden Allelen des NF2 Gens eine Mutation vor. Ein second hit hat hier bereits stattgefunden. Es wird deshalb vermutet, dass diese Schwannzelldysmorphien eine Art Vorstufe für die Schwannome darstellen könnten [Giovannini et al., 2000; Gutmann and Giovannini, 2002].

Dazu sollten folgende Schritte durchgeführt werden:

1. Identifikation der konstitutionellen Mutation in den Leukozyten bei den NF2 Patienten mit PNP
2. Etablierung geeigneter Methoden zur Mutationsdetektion an DNA aus mit Formalin fixiertem Gewebe
3. Immunhistochemische Identifikation der Schwannzellen, Charakterisierung von Auffälligkeiten, Mikrodissektion und die Mutationsanalyse an dem Gewebematerial
4. Generierung eines Zellkulturmodells: spezifische Inaktivierung des NF2 Gens auf eine Dosis von 50% mit Hilfe der RNA Interferenz Technologie und die Untersuchung auf eine dadurch hervorgerufene Veränderung geeigneten Zielparameter.

5.1 Identifikation der konstitutionellen Mutation in NF2 Patienten mit Polyneuropathie

Um eine Aussage über das Auftreten eines second hits zu machen, die im kompletten Fehlen des Proteins resultiert, konnten nur die Patienten in die Untersuchungen eingeschlossen werden, bei denen die konstitutionelle Mutation zuvor gefunden wurde. Dazu wurden die codierenden Bereichen und die flankierenden intronischen Bereichen mit den Spleißstellen sequenziert. Für
DIEUTSCHUNG

die Untersuchung von Exon 1 und Teilen des 5’ untranslatierten Bereiches (Position 1 (-230)) wurde aufgrund des hohen GC-Gehalts der Sequenz ein chimäriser Primer verwendet, der ein 20 Nukleotid langes Sequenzmotiv (universal primer sequence: UPS) [Shuber et al., 1995] enthielt, um die komplette Sequenz zu untersuchen. Hierzu wird in Abschnitt 5.3 genauer eingegangen. Mit den in der Literatur beschriebenen Primersequenzen für das komplette Exon 1 konnte kein PCR-Produkt generiert werden [Jacoby et al., 1994; Merel et al., 1995; Mohyuddin et al., 2002; Ruttledge et al., 1996]. Die Patienten mit den Nummern NF 2_1 und NF 2_8 zeigten keine Polyneuropathie, wurde aber wegen der noch unbekannten Mutationen und dem Verdacht auf ein Mosaik für den ersten der beiden Patienten (Ergebnisse nicht gezeigt) in die Sequenzanalyse mit eingeschlossen. In drei Patienten konnte eine Mutation gefunden werden, die als krankheitsverursachend angesehen werden kann. In Patient NF 2_2 und NF 2_4 wurden eine Punktmutation im Spießakzeptor von Exon 14 und in Patient NF 2_5 eine Deletion in Exon 15 von 5 Basen mit einer gleichzeitigen Insertion an derselben Stelle von 3 Basenpaaren gefunden. Letztere führt zu einer Leserasterverschiebung mit einem vorzeitigen Abbruch der Translation und damit zu einem verkürzten Protein. Bei den Patienten NF 2_2 und NF 2_4 handelt es sich um Familienangehörigen ersten Grades und es erklärt sich damit das Auftreten des identischen Hits. Bei beiden Mutationen handelte es sich um neue, noch nicht in bisherigen Veröffentlichung bzw. in der NF2 Datenbank aufgeführte Mutationen [Baser, 2006; MacCollin et al., 1994; Merel et al., 1995; Mohyuddin et al., 2002]. Es sind somit de-novo Mutationen, die bei etwa 50% der NF2 Patienten gefunden werden [Evans et al., 1992]. Beide Mutationen umfassen den C-terminalen Bereich des Proteins Merlin (Aminosäure 479-595). Der C-terminalen Bereich ist bei Merlin einzigartig und es fehlt ihm die Bindungsdomäne für Actin der ERM Poteinen. Dennoch kommt dem C-terminalen Bereich eine hohe Bedeutung zu. Wie bei den ERM Proteinen wird die wachstumshemmende Eigenschaft von Merlin durch eine intramolekulare Bindung zwischen dem N- und C-Terminus bzw. über Interaktionen innerhalb des N-Terminus vermittelt [Gutmann et al., 1999a; Sherman et al., 1997]. Bei einem verkürzten Protein in diesem Bereich durch inkorrektzes Splicen (Patient NF2_5) oder bei einem verkürzten Protein (Patienten NF2_2 und NF2_4) können diese intramolekularen Bindungen gestört werden und die Mutationen können als krankheitsverursachend angesehen werden. Die N-terminalen Domäne ist hoch konserviert zu Mitgliedern der Gruppe der Proteine 4.1 Familie und insbesondere zu der Gruppe der ERM Proteine [Rouleau et al., 1993; Trofatter et al., 1993]. Man vermutet, dass diese Domäne unter anderem an der Bindung zu Zelloberflächenproteinen wie zum Beispiel dem Glycophorin Protein C oder CD44 beteiligt ist. [Gutmann et al., 1999a; Sherman et al., 1997; Tsukita et al., 1994]. In einer funktionellen Analyse von NF2 spezifischen
Mutationen in den verschiedenen Domänen des Proteins konnte in einer Schwannomzelllinie der Ratte gezeigt werden, dass Mutationen im N-terminalen und im C-terminalen Bereich die Funktionen von Merlin beeinflussen [Gutmann et al., 2001a; Gutmann et al., 1999b].

Zusätzlich zu den Mutationen konnten bei 4 Patienten Polymorphismen nachgewiesen werden, die bereits teilweise in der Literatur beschrieben sind [Ehlers and Fahsold, 1998; MacCollin et al., 1996]. Ein bisher noch nicht identifizierter Austausch der Base C durch A fand sich im 5’ untranslatierten Bereich. Da er auch bei gesunden Probanden auftrat, handelt es sich sehr wahrscheinlich nicht um eine mit der NF2 assoziierte Mutation, sondern um einen bislang noch unbekannten Polymorphismus.
5.2 Etablierung eines PCR-Verfahrens für den Nachweis von Deletionen eines
oder mehrere Exons im NF2 Gen

Zu den oben genannten Ursachen, dass sich nur in einem Teil der Patienten mit klinisch
gesicherter NF2 eine Mutation finden lässt, trägt auch das verwendete Methodenspektrum bei.
Um Punktmutationen oder kleine Deletionen oder Insertionen zu erkennen, werden Verfahren
wie SSCP [Evans et al., 1998b; Jacoby et al., 1994; MacCollin et al., 1994; Mohyuddin et al.,
2002] der codierenden Sequenzen und der Introngen Übergänge, DGGE [Merel et al., 1995]
und das anschließenden Sequenzieren der auffälligen PCR Fragmente angewendet. Größere
Deletionen/Insertionen oder ganze Chromosom-Aberrationen lassen sich mit CGH und FISH
erkennen. Bruder und Mitarbeiter [Bruder et al., 2001] entwickelten einen hochauflösenden
Micro-Array GCH, der 90% der Region des NF2 Gens abdeckt. Heterozygote und homozygote
Deletionen mit einer Größe bis zu 40 kb lassen sich damit erkennen. Bis zum Zeitpunkt des
Erstellens dieser Arbeit fehlte jedoch eine Methode um Deletionen/Insertionen von nur
einzelnen Exons nachzuweisen. Über die Häufigkeit dieser kleinen Deletionen im NF2 Gen gibt
es noch keine Daten, weder über das Vorkommen als konstitutive noch als somatische
Mutation. Eine Arbeitsgruppe hatte bisher eine Gen Dosage PCR entwickelt, um Allelverluste
oder eine LOH Analyse für das Tumorgewebe nachzuweisen [Mohyuddin et al., 2003]. In dieser
Arbeit sind die Exons 1, 4, 8 und 15 des NF2 Gens enthalten, die zusammen mit
Kontrollamplikons in einer Multiplex Reaktion amplifiziert werden. Der Verlust oder eine
Duplikation eines der 4 Exons lässt sich damit nachweisen. Dennoch würde der Verlust weiterer
Exons nicht entdeckt werden.

Ein in dieser Arbeit entwickeltes semiquantitatives Gen Dosage PCR Verfahren sollte die
existierenden Methoden ergänzen. In zwei Multiplex Reaktionen wurden sieben bzw. acht
verschiedene Fragmente von 15 der insgesamt 17 Exons zusammen mit einer internen
Kontrolle, einem Teil von Exon 5 des FANCC Gens, amplifiziert. Jedes Primerpaar
vervielfältigte Teile der Exons bis auf die Paare für Exon 8 und 9, die die gesamte Gensequenz
enthielten. Die Lage der Primer wurde so optimiert, dass sie in nur zwei Reaktionsansätzen
kombiniert werden konnten und eine Unterscheidung der PCR-Produkte möglich war.
Zusätzlich wurden die Fragmentlängen so gewählt, dass sie zum einen kurz genug waren um
möglichst Unterschiede in der Amplifikationseffizienz zu reduzieren und um sie auf eine DNA-
Qualität aus mit Formalin fixiertem Gewebe anwenden zu können, andererseits sollten sie lange
genug sein, um kleine Deletionen in den Exons nicht zu verpassen. Die Gen Dosage PCR wurde
auf eine DNA Menge von 100 ng optimiert. Geringere Mengen resultierten in vielen
Nebenprodukten, die zum Teil die identische Intensität wie die erwünschten Produkte

109

Der Varianzbereich der Reduktion von den theoretisch zu erwartenden 50% auf einen Bereich von 50% bis zu 69% liegt vermutlich an kleinen Abweichungen in der DNA Konzentration.

Da die Anzahl der Mutationen die im NF2 Gen mit den gängigen Methoden, optimiert auf den Nachweis von Punktmutationen, Deletionen weniger Basenpaare oder größerer Deletionen,
immer noch gering ist, kann vermutet werden, dass kleinere Deletionen, die nur ein oder wenige Exons umfassen, häufig sein könnten. Ähnliche dem hier entwickelten Verfahren wurden für eine Reihe von Genen wie zum Beispiel das MLH1, das MSH6 [Charbonnier et al., 2002; Charbonnier et al., 2000], das Dystrophin [Yau et al., 1996] und das SMN Gen [Saugier-Veber et al., 2001] Gen Dosage PCRs zum Auffinden von Deletionen durchgeführt und das Prinzip erwies sich als sehr sicher und reproduzierbar.

Kurze Zeit nach Abschluss der Entwicklung der Methode wurde von der Firma MRC-Holland (Amsterdam, Niederlande) ein Kitsystem der MLPA Analyse (multiplex ligation-dependent probe amplifikation) des NF2 Gens angeboten. Dieses Verfahren wurde erstmals von Schouten und Mitarbeiter beschrieben [Schouten et al., 2002]. Mit der Methode lassen sich Deletionen von einem oder mehrere der 17 Exons des NF2 Gens nachweisen. Identisch mit dem hier entwickelten Verfahren werden für die Durchführung sehr wenig Geräte benötigt: ein Thermocyler und ein auf der Elektrophorese basierendes Sequenziergerät. Der Vorteil dieses Verfahrens liegen in der Analyse von allen NF2 Exons, und der Analyse eines sehr großen Bereichs in der 5° Promoter Region und in der 3° Region. Vom Hersteller wurde eine Anwendung für DNA Mengen von bereits 20 ng zugesichert, es zeigte sich jedoch in Arbeiten mit diesem System oder mit Systemen für andere Gene, dass ein reproduzierbares Ergebnis erst mit 100 ng erreicht werden kann [Benito-Sanz et al., 2006; Griffiths et al., 2006; Kluwe et al., 2005; Moerland et al., 2006; Pankratz et al., 2006]. Nachteile an diesem Verfahren sind, dass bereits Mutationen und Polymorphismen in der Nähe des Ligationsstelle zu einer Verringerung der Peak-Fläche des Amplikons führen und damit in einer falschen Aussage resultieren. Eine Überprüfung der so aufgefundenen Deletionen/Duplikationen ist deshalb obligat (MRC Holland, Amsterdam Niederlande). Insgesamt sind die MLPA und die hier entwickelte Gen Dosage PCR äquivalente Verfahren mit einer gleichen Reproduzierbarkeit. Da jedoch die Methoden auch an DNA mit geringer Qualität, wie man sie aus mit Formalin fixiertem Gewebe vorfindet, angewendet werden sollte, muss die Größe der zu amplifizierenden Fragmente konsequent kleiner oder gleich 250 bp betragen. Die Fragmentgröße für die MLPA reicht von 130 bp bis zu 418 bp und ist deshalb eher ungeeignet für die Verwendung an obiger DNA.

5.3 WEITERE MODIFIKATION DER GENE DOSAGE PCR AUF DNA AUS GEWEBE

Für einen der beiden Reaktionsansätze (Mix 1) konnten an der DNA aus etwa 10 mikrodissektierten Zellen alle zu erwartenden Fragmente gewonnen werden, jedoch erwies sich dieses Ergebnis nur als sehr gering reproduzierbar. Auch eine Erhöhung der Zellzahl und der

Mit diesen Modifikation der Primer für das NF2 Gen ließ sich auch die Spezifität der zuvor entwickelten Gen Dosage PCR deutlich erhöhen. Es zeigte sich im Vergleich der gelektrophoretischen Auftrennung über ein mit Ethidiumbromid angefärbten Agarosegel eine Spezifitätserhöhung um mindestens das 5-fache (Ergebnisse nicht im Vergleich gezeigt). Es gelang für Exon 1 ein Primerpaar zu etablieren, das die gesamte codierende Sequenz und Teile des 5’ untranslatierten Bereiches amplifizierte (siehe Abschnitt 5.1). Mit Primern ohne diese Modifikation war das nicht möglich. Auch für eine Sequenzanalyse der DNA isoliert aus Gewebe konnte eine nested-Multiplex-PCR entwickelt werden. Die Primer der ersten Amplifikationsreaktion enthielten das UPS Motiv.

Für die Quantifizierung war es jedoch nicht möglich die Primer mit einem Fluoreszenzfarbstoff zu markieren. Zwar ließen sich verschiedenste Farbstoffe an die DNA-Primer binden (durchgeführt und überprüft von der Firma biomers GmbH, Ulm), aber die Signalstärke verlor sich bei der elektrophoretischen Auftrennung. Es könnte sich dabei um einen Quenching Effekt
handeln [Nazarenko et al., 2002]. Für die Quantifizierung der Gen Dosage wurde daher eine weitere PCR als nested-PCR durchgeführt. In zwei aufeinanderfolgenden Reaktionen werden die Produkte amplifiziert. Dabei sind die Primer-Sequenzen so gewählt, dass das erste Paar das zweite umfasst. Die Ergebnisse der zweiten PCR wurde als Real Time PCR mit der Light Cycler Technologie ausgewertet.

Es war möglich bereits an einer sehr geringen DNA Menge, isoliert aus etwa 10 mikrodissektierten Zellen, alle Exons zu amplifizieren und diese über eine Sequenzierung zu bestätigen.

Um die Funktionalität und den Erhalt der Gen Dosage für die sehr komplexe Reaktionsfolge nachzuweisen, wurde sie an DNA aus der Fibroblastenkultur von Patient NF2_6 mit der bekannten und bestätigten Deletion von Exon 5 bis Exon 7 getestet. Dazu wurde die DNA auf eine Menge von 50 pg bis zu 200 pg verdünnt (entspricht einer Zellzahl ab ca. 10 Zellen) und nach der Voramplifikation die modifizierte Gen Dosage PCR durchgeführt. Für diese Voramplifikation wurden bereits eine zuverlässige Amplifikation ohne dass eines der beiden Allele bevorzugt amplifiziert wurde ab etwa 50 pg nachgewiesen [Dietmaier et al., 1999]. Die bekannte Deletion von Exon 5 konnte über den kompletten Bereich von 50 pg bis 200 pg bestätigt werden. Die Methode scheint damit sehr verlässlich und anwendbar auf sehr geringe Mengen an DNA zu sein, gleichzeitig zeigt sie ein hohes Maß an Spezifität.

5.4 VERDACHT AUF HAPLOINSUFFIZIENZ IM NF2 GEN

Patient NF2_6 konnten Regionen mit unterschiedlichen abnormen Schwannzellen gefunden werden. Es fanden sich eine diffuse Verteilung von Schwannzellen (Abb. 22 NF2_6 B), eine Anhäufung von Kernen (Abb. 22 NF2_6 D) und Zwiebelschalenformationen ohne zentrales Axon (coreless onion-bulb structures) (Abb. 22 NF2_6 D) aber auch Bereiche mit unauffällig myelinisierende Schwannzellen. Bei den Patienten 2_2 und 2_5 konnten mit den verwendeten Methoden keine Veränderungen gefunden werden. Da das Mikroskop nur über ein 20-faches Objektiv verfügte, kann nicht ausgeschlossen werden, dass auch bei diesen Patienten ebenfalls abnorme Schwannzellen auftauchen. Die Gewebeproben der Patienten (wurde bereits geschnitten zur Verfügung gestellt) hafteten im Vergleich zu den selbst hergestellten Kontroll-Schnitt vom nicht NF2 betroffenen Patienten sehr stark auf den Objekträgern, so dass eine maximale Voltzahl und eine lange Pulsdauer benötigt wurden, um die Zellen zu lösen. Die isolierten Bereiche umfassten deshalb größere Regionen. Um eine Kontamination mit nicht Schwannzellen zu verhindern, wurden jeweils zentrale Bereich innerhalb des Gewebes gewählt. Auf die Fragestellung haben diese Bedingungen keinen Einfluss, da in erster Linie der Verdacht auf eine Haploinsuffizienz bei der eher generalisierten symmetrischen Polyneuropathie untersucht werden sollte, und deshalb der Genotyp auch von noch nicht veränderten Schwannzellen aussagekräftig ist. In jeweils zwei Ansätzen von Patient NF2_6 (A und D_1) konnte die konstitutionelle Mutation, die Deletion von Exon 5 bis 7 (angezeigt als reduzierte relative Expression auf 50%/54% und 58%/58%) bestätigt werden. Weitere Deletionen einzelner Exons oder des kompletten verbleibenden Wild-Typ Allels wurden nicht gefunden. Bei Patient NF2_5 zeigten sich keine Hinweise auf eine Deletion im NF2 Gen. Bei den anderen Ansätzen gelang es nicht auswertbare Ergebnisse über die Gen Dosage zu bekommen, was wahrscheinlich in der Methode begründet liegt, die zwar hoch spezifisch ist, jedoch von der Qualität der DNA abhängt. Auf eine zusätzliche Sequenzanalyse, um Punktmutationen oder sehr kleine Deletionen aufzufinden, musste, trotzdem eine dafür geeignete Methode etabliert wurde, verzichtet werden. Die DNA Menge, die aus den isolierten Zellen gewonnen wurden, wurden vollständig für die Bestimmung der Gen Dosage benötigt. Die somatischen Mutation sind meist ein Verlust des gesamten Gens, und somit ist das nicht Überprüfen auf Punktmutationen eher vernachlässigung [Warren et al., 2003]. Es kann zwar nicht ganz ausgeschlossen werden, dass aufgrund der schlechten DNA Qualität ein bereits stattgefundenener second hit übersehen wurde, es müsste sich jedoch dann eher um eine hypermorphe als um eine Null Mutation handeln, die in den Schwannomen und zumindest in einem der Patienten gefunden hätte werden müssen. Das wäre jedoch sehr ungewöhnlich. Es gibt nur einzelne wenige Hinweise auf eine dominant-negative Wirkung von Merlin an Arbeiten an VA13
Dikussion

5.5 Haploinsuffizienz im NF2 Gen führt in humanen malignen Mesotheliomzellen (HMM) zu einer veränderten Genexpression

Als weitere Überprüfung der Hinweise auf eine Haploinsuffizienz wurde ein Zellkulturmodell erstellt. Die Auswirkungen, die eine Reduzierung der Genexpression von Merlin auf etwa 50% hat und die damit einer künstlich hergestellten Haploinsuffizienz entspricht, sollte durch die
spezifische Inaktivierung des Gens mit der RNA Interferenz Technologie auf die Expression einzelner Proteine hin, überprüft werden. Da die primären humanen Schwannzellen, die in der Arbeitsgruppe für zahlreiche Untersuchungen verwendet wurden, sehr langsam proliferieren und schnell eine Seneszenz eintritt, waren sie für dieses Experiment nicht geeignet. Es wurde deshalb eine humane Mesotheliomzelllinie (Hib, [Deguen et al., 1998]), in der Merlin exprimiert wird, benutzt. Zwei verschiedene Konstrukte wurden über ein Vektorsystem in die Zellen transfiziert, mit dem die short interfering RNAs (siRNAs) stabil exprimiert wurden. Dabei wurden sowohl Klone generiert, die die siRNAs konstitutionell exprimieren und Zellklone mit einem über Tetrazyklin induzierbaren System. Hier kann die Bildung der siRNAs durch Zugabe von Tetracyclin oder Doxycyclin an- oder abgeschaltet werden. Zur Untersuchung der Auswirkungen dieser Inaktivierung wurden beispielhaft Proteine und Gene gewählt, die sich in humanen Merlin defizienten Schwannomzellen im Vergleich zu Schwannzellen als überexprimiert zeigten oder deren Expression erniedrigt war. Einige dieser Gene wurden vorab über eine Real Time PCR auf die Expression in humanen Schwannomen im Vergleich zu Schwannzellen untersucht, die daraufhin bereits unabhängig von dieser Arbeit in einem cDNA Array enthalten waren und sich als reguliert zeigten [Hanemann et al., 2006].

Es konnte ein Zellklon Hib_NF2iso1&2_1shRNA (Klon 16) identifiziert werden, bei dem die NF2 mRNA als auch Merlin auf ca. 50% reduziert war (44%/50%). Als Negativkontrolle diente ein Zellklon, der eine funktionslose siRNA exprimierte (Negativ_shRNA). Bei den Untersuchungen der Expression der ausgewählten Proteine und Gene zeigte sich, dass die mRNA Expression von L-MAG, einem Vorläufer für das Myelin assoziiertes Protein, deutlich erniedrigt war. Dies entsprach der erniedrigten Expression in Schwannomzellen im Vergleich zu Schwannzellen. L-Mag ist ein Membranprotein, das bei der Myelinisierung beteiligt ist. Ebenso war die Expression von MAP2K3 (eine spezifische durch Mitogen aktivierte Protein Kinase 3) und von MMP14 (Vorläuferprotein der Matrix Metalloproteinase) deutlich und in einem ähnlichen Ausmaß wie in Schwannomzellen reduziert.

Hingegen waren das Prion Protein PRNP und das Hitzeschock Protein HSP27, die in Schwannomzellen deutlich überexprimiert werden [Utermark et al., 2005b], in dem NF2⁺/- HMM Zellklon nicht reguliert. Auch die auf Proteinebene untersuchten Gene zeigten keine Veränderung der Regulation. Dennoch scheint der Genotyp mit der um 50% reduzierten Merlin Aktivität in den HMM einen Effekt auf die Expression von einigen Genen zu haben. Damit ist ein weiterer Hinweis für die Haploinsuffizienz des NF2 Gens erbracht. Es ist jedoch nicht weiter verwunderlich, dass das Expressionsmuster nicht dem der Schwannome zu 100% entspricht. Es ist zum einen ein verschiedenes Zellkulturmodell, und außerdem kann die

Es ist somit sehr wahrscheinlich, dass auch für das Tumorsuppressorgen NF2 eine Haploinsuffizienz vorliegt, die zu einer generalisierten meist distalen symmetrischen Polyneuropathie führen kann. Weitere Identifikationen von HMM Zellklonen mit einer auf 50% reduzierten Merlinexpression könnten weitere Bestätigung liefern. Außerdem wäre zu überlegen, wie sich dieses Zellkulturmodell auf die humanen Schwannzellen übertragen ließe.
6. ZUSAMMENFASSUNG

ZUSAMMENFASSUNG
Neurofibromatosis type 2 (NF2) is a highly penetrant, autosomal dominantly inherited disorder. The affected individuals show a predisposition for tumors in the central and the peripheral nervous system. The classical hallmarks are bilateral vestibular schwannomas. Additionally meningiomas, ependymomas as well as ocular abnormalities can be found. The NF2 is caused by inactivating mutations in a gene on the chromosome 22q11, which is coding for the protein merlin or schwannomin. Mutations are also found in the sporadic schwannomas and in 50%-70% of all meningiomas and in a subset of human malignant mesotheliomas. The majority of germline mutations detected up to present are nonsense, frame shift deletions/insertions, splice-site and missense types, mostly resulting in a truncated protein. Merlin shares sequence and function similarity to the ERM proteins and also acts as a molecular linker between the cytoskeleton and the plasma membrane. But only merlin can function as a negative growth regulator, and only merlin is absent in the schwannoma, while the ERM proteins are still expressed. Therefore merlin is thought to be a tumor suppressor protein and tumor formation follows the two-hit model of Knudson et al. Subsequent all tumor suppressor genes are recessive, requiring mutations in both alleles for malignancy to occur. This model is difficult to reconcile with the low mutation rate in cells without having a selective advantage with the loss of one the tumor suppressor allele. Additional there is increasing evidence, that some of the tumor suppressor genes are less recessive and the mutation of one allele can have a haploinsufficient phenotype. The term haploinsufficiency means that one allele is insufficient to confer the full functionality produced from two wild-type alleles. Up to now, there is no information for the NF2 gene also to be haploinsufficient. The hypothesis of haploinsufficiency should be tested in this thesis. Partial of the NF2 patient ranging from 6% up to 44,6% also show polyneuropathy in addition to the typical tumors mentioned above. This phenotype can be a burder of spinal tumors or tumourlets around peripheral nerves at sites of bonal foramina. Since most of the patients have a more generalised distal symmetric neuropathy, the tumors are unlikely to explain the peripheral neuropathy. In addition in nerve biopsies of these patients abnormalities of the Schwann cells can be found. In a conditional NF2 knockout mouse model only 24% show schwannoma but more often they develop Schwann cell hyperplasia. In these cells the second hit already occurred. To find out, if the second hit has already took place or merlin shows haploinsufficiency in these cells, the gene dosage in peripheral nerve biopsies of patients with neuropathy should be analyses. Therefore a multiplex dosage-PCR assay was
established to screen the $\textit{NF2}$ gene for the deletion of one or more exons in DNA extracted from formalin-fixed paraffin sections. This gene dosage assay also was used to identify the germline mutation, which was absolutely necessary prior the analyses of the gene dosage in DNA isolated from microdissected cells. It was possible to find a deletion of 3 three exons in one of the patient, where the mutation was missed using the existing methods for the $\textit{NF2}$ gene. With some modifications the method was then used to measure the gene dosage in DNA from microdissected cells of three NF2 patients with known germline mutation. No evidence of loss of heterozygosity could found in two of the patients nor the evidence for any deletions of the 15 analysed exons. This suggests a haploinsufficiency in the affected nerves in NF2 polyneuropathy.

To verify this finding a cell culture model was established. In a mesothelioma cell line, expressing merlin, the expression of the $\textit{NF2}$ gen was reduced to a dosage of approximately 50% using shRNA expressing constructs and the expression of several selected proteins and genes, which have been previously shown to be up- or down regulated in schwannoma versus Schwann cell. One cell clone could be found showing a reduction of the $\textit{NF2}$ expression of 44% on RNA level and 50% on the protein level. Analysing the chosen genes and proteins in the shRNA transfected clone three of the genes (\textit{MAG}, \textit{MMP} 14 and $\textit{MAP2K3}$) showed a reduced RNA expression similar to the reduced expression in schwannoma cells versus a null siRNA control cell clone and a clone with an siRNA targeting the Lamin A/C gene. This findings supports the finding in the nerve biopsies and this all suggests that haploinusssfficiency of merlin causes a clinical relevant pathological phenotype.
8. REFERENZEN

leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019-29.

Harkin JC, Reed RJ (April 1990): "Atlas of the Tumor Pathology: Tumors of the Peripheral Nervous System "

8. ANHANG

8.1 CURRICULUM VITAE

8.3. WISSENSCHAFTLICHE VERANSTALTUNGEN

8.2 PUBLIKATIONEN

Hanemann CO, **Diebold R**, Kaufmann D (eingereicht 2006): Haploinsufficiency in NF2 Polyneuropathy.
8.4 ABKÜRZUNGEN

° Zellpassage
As Aminosäure
bp Basenpaare
biot. biotyniliert
BSA bovine serum albumin
cDNA complementary DNA
CT Computertomographie
Cy3 Carboxcyan
DAB Diaminobenzidin
DEMEM Dulbecco’s Modified Eagle Medium
DEPC Diethylpyrocarbonat
DMSO Dimethylsulfoxid
DNA Desoxyribonukleinsäure
ECL enhanced chemiluminescence
EDTA Ethylendiamintetraessigsäure
eGFP enhanced green fluorescence protein
ELISA enzyme-linked immunosorbent assay
ERM ezrin, radixin, moesin
FANCC Fancconi Anemia
FCS fetal calf serum
FERM four-point one, ezrin, radixin, moesin
h Stunde
HMM human malignant mesothelioma
IgG Immunoglobulin G
I-PEP Improved Primer Extension Preamplifikation
kb Kilobase
kDa Kilodalton
LCM laser capture microdissection
M Molar
m Milli
min Minute
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>MTS</td>
<td>3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2%-tetrazolium</td>
</tr>
<tr>
<td>NF1</td>
<td>Neurofibromatose Typ 1</td>
</tr>
<tr>
<td>NF2</td>
<td>Neurofibromatose Typ 2</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>p</td>
<td>Pico</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamid Gel Elektrophorese</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered bovine</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Kettenreaktion</td>
</tr>
<tr>
<td>PNP</td>
<td>Polyneuropathie</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transkriptase</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>TAMRA</td>
<td>Tetramethylrhodamine</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris-(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>UPS</td>
<td>Universal Primer Sequenz</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated Region</td>
</tr>
</tbody>
</table>
8.5. DANKSAGUNG

Mein Dank gilt allen, die mich während dieser Arbeit unterstützt haben.
Meinen besonderen Dank gilt Herrn Prof. Dr. C.O. Hanemann und Herrn PD Dr. Dieter Kaufmann für die Überlassung des Themas, die Möglichkeit dieses bearbeiten zu können, die allzeit bereite Diskussionsbereitschaft und die Anregung zu und Unterstützung von neuen Ideen.

Herrn Prof. Dr. H. Wolf und Herrn Prof. Dr. K.-D. Spindler möchte ich für die Bereitschaft danken trotz der erheblichen Mehrarbeit die Betreuung und die Begutachtung dieser Arbeit zu übernehmen.

Ich möchte allen Mitarbeiten der Arbeitsgruppe AG Hanemann danken, ganz besonders Dr. Britta Bartelt-Kirbach für die unermüdliche Einarbeitung in die Welt der PCRs und Unterstützung wann immer sie notwendig war, Dr. Tamara Utermark für die Einarbeitung in die Primärzellkulturen und für das stete Bereitstellen der raren und kostbaren Schwannzellen, Dr. Katherine Kämpchen, Simone Schubert, Christine Flaiz, Thomas Winkle, Anja Biebl, Christian Schön und „meinem“ Praktikanten Marco Cali.

Mein ganz besonderer Dank geht vor allem auch an Iris Holzheu, die mich in vielen nicht so angenehm und erfolglosen Stunden im Labor gezeigt hat, dass es doch immer wieder weiter geht.

Auch für die Unterstützung durch die Mitarbeiter der Medizinischen Genetik vor allem der Arbeitsgruppe von Dieter Kaufmann und Marion und Petra, ohne die diese Arbeit nicht entstehen hätte können, möchte ich danken.
Der Abteilung Pathologie, die mir das Lasermikrodissektionsmikroskop zur Verfügung gestellt haben, möchte ich danken. Hier ganz besonders Frau Emcke und Herr Kunert.

Mein besonderer Dank geht auch an alle die mich während der anstrengenden Zeit des Zusammenschreibens unterstützt haben.
Zuletzt möchte ich meinen Eltern Renate und Hugo, meiner Schwester Sonja und André für die Unterstützung danken.
Die vorliegende Arbeit wurde in der Abteilung Experimtelle Neurologie des Universitätsklinikums Ulm unter der Leitung von Herrn Prof. Dr. C. Oliver Hanemann angefertigt. Außerdem bestand eine Kooperation mit der Arbeitsgruppe von Herrn PD. Dr. Dieter H. Kaufmann der Medizinischen Genetik der Universität Ulm, der die Arbeit mit betreute.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die verwendeten Quellen und Hilfsmittel verwendet habe.

Ulm, den 15. März 2006

..
Ruth Diebold