Die tRNase Z-Enzymfamilie: in vivo- und in vitro-Studien

Dissertation

Zur Erlangung des akademischen Grades Dr. rer. nat.
der Fakultät für Naturwissenschaften der Universität Ulm

vorgelegt von

Dipl.-Biol. Bettina Späth

aus Münsingen

Ulm 2005
Universität Ulm
Abteilung Molekulare Botanik

Die tRNase Z-Enzymfamilie: in vivo- und in vitro-Studien

Dissertation
Zur Erlangung des akademischen Grades Dr. rer. nat.
der Fakultät für Naturwissenschaften der Universität Ulm

vorgelegt von
Dipl.-Biol. Bettina Späth
aus Münzingen
Ulm 2005

Betreuerin: HD Dr. Anita Marchfelder
Ulm 2005
Amtierender Dekan: Prof. Dr. Klaus-Dieter Spindler

1. Gutachter: HD Dr. Anita Marchfelder
2. Gutachter: Prof. Dr. Axel Brennicke

Tag der Promotion: 08.12.2005

Hiermit versichere ich, dass sowohl das experimentelle Arbeiten als auch das Anfertigen der vorgelegten Dissertation selbstständig und nur unter Verwendung der erwähnten Hilfsmittel erfolgte.

Ulm,_____________ Unterschrift:__________________________
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Einleitung</td>
<td>6</td>
</tr>
<tr>
<td>1.1</td>
<td>tRNA-Moleküle</td>
<td>6</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Struktur von tRNA-Molekülen</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Funktionen der tRNA-Moleküle</td>
<td>7</td>
</tr>
<tr>
<td>1.1.3</td>
<td>tRNA-Reifung</td>
<td>8</td>
</tr>
<tr>
<td>1.1.3.1</td>
<td>tRNA-5’-Prozessierung</td>
<td>8</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>tRNA-3’-Prozessierung</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>tRNase Z</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>tRNase Z-Substrate</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Metallo-β-Lactamase-Familie</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Physiologische Funktionen der tRNase Z-Enzyme</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Ziele der Arbeit</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Material</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>Stämme</td>
<td>19</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Bakterienstämme</td>
<td>19</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Hefestämme</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemikalien, Enzyme und Kits</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Radiochemikalien</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Chemikalien für Crosslinks</td>
<td>20</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Enzyme</td>
<td>21</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Kits</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Marker</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Nukleinsäuren</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Oligonukleotide</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Vektoren</td>
<td>24</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Nukleotide</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Nährmedien</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Escherichia coli-Medium</td>
<td>25</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Saccharomyces cerevisiae-Medien</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Puffer und Lösungen</td>
<td>27</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Chromatographie</td>
<td>27</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>----</td>
</tr>
<tr>
<td>2.6.2</td>
<td>DNA-Isolierung</td>
<td>27</td>
</tr>
<tr>
<td>2.6.3</td>
<td>DNA/RNA-Elektrophorese</td>
<td>28</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Sequenzierung</td>
<td>29</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Protein-Isolierung</td>
<td>29</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Protein-Elektrophorese</td>
<td>30</td>
</tr>
<tr>
<td>2.6.7</td>
<td>Western Blot und Detektion mit Vecta-Stain-Kit</td>
<td>31</td>
</tr>
<tr>
<td>2.6.8</td>
<td>Crosslinks</td>
<td>32</td>
</tr>
<tr>
<td>2.6.8.1</td>
<td>Glutaraldehyd-Crosslink (GA-X-Link)</td>
<td>32</td>
</tr>
<tr>
<td>2.6.8.2</td>
<td>NHS/EDC-Crosslink</td>
<td>32</td>
</tr>
<tr>
<td>2.6.9</td>
<td>Elektrophoretic Mobility Shift Assay (EMSA)</td>
<td>32</td>
</tr>
<tr>
<td>2.6.10</td>
<td>In vitro-Prozessierung</td>
<td>33</td>
</tr>
<tr>
<td>2.6.11</td>
<td>Substrattests</td>
<td>34</td>
</tr>
<tr>
<td>2.6.12</td>
<td>Hefetransformation</td>
<td>34</td>
</tr>
<tr>
<td>2.6.12.1</td>
<td>Elektroporation</td>
<td>34</td>
</tr>
<tr>
<td>2.6.12.2</td>
<td>Lithium-Acetat-Methode</td>
<td>34</td>
</tr>
<tr>
<td>2.6.13</td>
<td>Gesamt-RNA-Isolierung aus S. cerevisiae</td>
<td>35</td>
</tr>
</tbody>
</table>

2.7 Geräte und Ausstattung

2.8 Methoden

<table>
<thead>
<tr>
<th>3.1</th>
<th>Standardmethoden</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Erzeugung der SceTrz-Deletionsmutanten</td>
<td>38</td>
</tr>
<tr>
<td>3.2.1</td>
<td>PCR zur Erzeugung der SceTrz-Deletionsmutanten</td>
<td>38</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Klonierung der SceTrz-Deletionsmutanten</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Erzeugung der cptRNA-Klone</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1</td>
<td>PCR der cptRNA-Gene</td>
<td>40</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Klonierung in pUC18</td>
<td>42</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Aufreinigung der PCR-Produkte</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Überexpression und Proteinaufreinigung</td>
<td>42</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Überexpression des SceTrz-Proteins</td>
<td>42</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Überexpression des AthTrz{51}-Proteins</td>
<td>42</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Überexpression von AthTrz{51}-WT und Aufreinigung mit His-Bind-Resin</td>
<td>43</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Bestimmung der Proteinkonzentration mit UV</td>
<td>44</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Berechnung des Metallgehaltes im AthTrz{51}-Protein</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Chromatographie</td>
<td>46</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Anionenaustausch-Chromatographie</td>
<td>46</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Gelfiltration</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>In vitro-Transkription (ivt)</td>
<td>47</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis 3

3.7 In vitro-Prozessierung (ivp) ... 47
3.8 Schnittstellenbestimmung .. 48
3.9 5'-Endmarkierung von RNA ... 48
3.10 3'-Endmarkierung von RNA ... 48
3.11 EMSA .. 49
3.12 Crosslinks .. 50
 3.12.1 Glutaraldehyd-Crosslink (GA-X-Link) .. 50
 3.12.2 NHS/EDC-Crosslink .. 51
3.13 Weitere Substrate der tRNase Z-Proteine .. 51
 3.13.1 Bis(p-nitrophenyl)phosphat (bpNPP) .. 51
 3.13.2 Thymidin-5'-p-nitrophenylphosphat (TpNPP) .. 52
 3.13.3 3', 5' cyclisches Adeninmonophosphat (cAMP) 52
 3.13.4 SD-Lactoylglutathion (SLG) ... 53
3.14 Isolierung von Gesamt-RNA aus S. cerevisiae .. 53
3.15 Erstellung einer SceTrz-Mutantenbank .. 54
 3.15.1 Mutation des SceTrz-Gens ... 54
 3.15.2 Transformation der Hefezellen .. 57
 3.15.3 Selektion und Identifikation potentieller ts-Mutanten 58
4 Ergebnisse .. 60
 4.1 In vivo: SceTrz-Mutantenbank ... 60
 4.2 In vitro: SceTrz und SceTrz-Deletionsmutanten 70
 4.2.1 Überexpression und Aufreinigung von SceTrz .. 70
 4.2.2 Überexpression und Aufreinigung der SceTrz-Deletionsmutanten 72
 4.2.3 Crosslink mit SceTrz ... 74
 4.2.4 In vitro-Prozessierung mit SceTrz ... 75
 4.2.5 Schnittstellenbestimmung (Primerextension) 76
 4.3 AthTrzS1 .. 78
 4.3.1 Crosslinks ... 78
 4.3.2 Besetzung von GroEL .. 79
 4.3.3 Optimierung der AthTrzS1-Überexpression und Aufreinigung 80
 4.3.4 Metallanalyse .. 82
 4.3.5 Massenspektrometrie ... 88
 4.4 Substrattests .. 89
 4.4.1 Bis(p-nitrophenyl)phosphat (bpNPP) .. 89
4.4.2 Thymidin-5´-p-nitrophenylphosphat (TpNPP) .. 95
4.4.3 3´, 5´ cyclisches Adeninmonophosphat (cAMP) .. 96
4.4.4 SD-Lactoylglutathion (SLG) .. 99

4.5 cptRNA: Prozessierung der dicistronischen Met42-Transkripte 99
4.6 EcoTrz ... 103

5 Diskussion ... 106

5.1 Charakterisierung der tRNase Z aus S. cerevisiae .. 106
5.1.1 In vivo-Analyse von SceTrz .. 106
5.1.2 In vitro-Analyse von SceTrz .. 110

5.2 Charakterisierung von AthTrzS1 .. 112
5.2.1 AthTrzS1-Dimerisierungsmodul .. 113
5.2.2 Optimierung der AthTrzS1-Überexpression .. 114
5.2.3 Das potentielle Metallbindungsmotiv von AthTrzS1 ... 114
5.2.4 Metallanalyse von AthTrzS1 ... 117
5.2.5 Massenspektrometrie ... 118

5.3 Substrattests ... 119
5.3.1 Charakterisierung der Phosphodiesteraseaktivität der tRNase Z-Proteine 119
5.3.1.1 Charakterisierung der PDE-Aktivität bezüglich Bis(p-nitrophenyl)-phosphat (bpNPP) ... 119
5.3.1.2 Metallabhängige Phosphodiesteraseaktivität von AthTrzS1 121
5.3.1.3 Charakterisierung der PDE-Aktivität bezüglich TpNPP 123
5.3.1.4 Charakterisierung der PDE-Aktivität bezüglich des physiologischen Substrates cAMP .. 123
5.3.2 Charakterisierung der Glyoxalase-Aktivität der tRNase Z-Proteine 124

5.4 cptRNA: Prozessierung der dicistronischen Met42-Transkripte 124

5.5 Charakterisierung der EcoTrz-Exosite .. 125

5.6 Ausblick ... 127

6 Zusammenfassung .. 128

7 Summary ... 130

8 Literaturverzeichnis ... 132

9 Anhang .. 140

9.1 Verwendete Abkürzungen ... 140

9.2 Abbildungsverzeichnis .. 144

9.3 Tabellenverzeichnis .. 145
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Publikationen</td>
<td>147</td>
</tr>
<tr>
<td>11</td>
<td>Danksagung</td>
<td>149</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 tRNA-Moleküle

1.1.1 Struktur von tRNA-Molekülen

Transfer-RNA (tRNA)-Moleküle weisen meist eine Länge von 74 bis 95 Nukleotiden auf. Ein charakteristisches Merkmal der tRNA ist das Vorkommen von außergewöhnlichen Basen wie Pseudouridin (ψ), Dihydrouridin (D) oder Ribothymidin (T). In bestimmten Bereichen des tRNA-Moleküls können sich Basen über Wasserstoff-Brücken-Bindungen paaren, was zu Stamm-Schleife-Strukturen führt, die in zweidimensionaler Darstellung wie ein Kleeblatt aussehen (Bild 1).

Bild 1: Sekundär-Struktur der reifen tRNA: „Kleeblatt-Struktur“. (Erklärungen s. Text).

Bild 2: Tertiär-Struktur der reifen tRNA: L-Form.

Die „Blätter des Kleeblattes“, d.h. die Schleifen, werden nach ihrer jeweiligen Funktion und Struktur bezeichnet. Die tRNA besteht aus einem Akzeptorstamm, einem T-Arm, einem Anticodon-Arm, einem D-Arm und einem variablen Arm. Am 3’-CCA-Ende des
Akzeptorstamms, der durch Basenpaarung der 3´- und 5´-Enden der tRNA gebildet wird, erfolgt die spezifische Beladung der tRNA mit der passenden Aminosäure. Dieser Schritt wird von einer aminosäurespezifischen Aminoacyl-tRNA-Synthetase unter Energieverbrauch katalysiert. Das 5´ zur CCA-Sequenz liegende Diskriminatornukleotid (D) dient als Identifizierungselement bei vielen tRNAs und spielt eine wichtige Rolle bei der tRNA-Reifung (s. unten). Der T-Arm bzw. TψC-Arm wird deshalb so benannt, weil die Tripletsequenz Thymidin (T), Pseudouridin (ψ), Cytidin (C) für diesen Arm charakteristisch ist. Dieser Arm vermittelt die Bindung an die große Untereinheit des Ribosoms. Die Struktur, die für die Bindung der tRNA an die Messenger-RNA (mRNA) verantwortlich ist, liegt im Anticodon-Arm und wird als Anticodon bezeichnet. Das Anticodon besteht aus einem Basentriplett, das komplementär zum entsprechenden Codon der mRNA ist. Über komplementäre Basenpaarung zwischen Anticodon und Codon erfolgt eine spezifische Bindung der beladenen tRNA an die mRNA. Die Spezifität eines tRNA-Moleküls wird durch das Anticodon bestimmt. Der D-Arm erhielt seinen Namen aufgrund der für ihn charakteristischen Base Dihydrouridin (D), er dient als Bindestelle für die Aminoacyl-tRNA-Synthetase (Knippers, 2001). Abhängig von der Länge des variablen Arms werden die tRNAs in zwei Klassen eingeteilt. Die Klasse I tRNAs weisen einen variablen Arm mit 3-4 Nukleotiden auf, die Klasse II tRNAs zeichnen sich durch einen variablen Arm von 9-23 Nukleotiden aus.

Die Tertiärstruktur der tRNA weist die Form eines umgekehrten „L“ auf (Bild 2). Diese Struktur wurde mittels Röntgenbeugung an Kristallen der tRNAPhe und der tRNAAsp aus Hefe nachgewiesen (Kim et al, 1974; Moras et al., 1980). Aufgrund ihrer konservierten Primär-, Sekundär- und Tertiärstruktur handelt es sich bei tRNAs um sehr stabile Moleküle.

1.1.2 Funktionen der tRNA-Moleküle

Transfer-RNAs spielen eine bedeutende Rolle in der Proteinbiosynthese. Damit die genetische Information in eine entsprechende Aminosäuresequenz übersetzt werden kann, fungieren die tRNAs als Adapter zwischen Aminosäure und Messenger-RNA (mRNA). Die tRNA-Moleküle werden mit „ihrer“ spezifischen Aminosäure beladen (s. oben). Die tRNA transportiert die Aminosäure zum Ribosom, dem Ort der Translation. Hier bindet die mit der Aminosäure beladenene tRNA mit dem Anticodon an das komplementäre Codon der mRNA. Nun können die benachbarten Aminosäuren mittels Peptidbindungen miteinander verknüpft werden, so dass nach und nach eine Polypeptidkette bzw. ein Protein entsteht. Der hier sehr
Einleitung

8

1.1.3 tRNA-Reifung

1.1.3.1 tRNA-5´-Prozessierung

Das endonukleolytische Enzym, das die Reifung der tRNA am 5´-Ende katalysiert, wird als RNase P bezeichnet. Bei der RNase P handelt es sich um ein ubiquitäres Ribozym, das aus einer Protein- und einer katalytischen RNA-Einheit zusammengesetzt ist (für einen Überblick s.: Frank & Pace, 1998). Die bakterielle RNase P besteht aus einer einzigen Proteinuntereinheit und einer einzigen RNA-Untereinheit. Im Gegensatz dazu ist die RNase P

In *in vitro*-Untersuchungen konnte gezeigt werden, dass der RNA-Anteil der RNase P von *E. coli* und von einigen Archaea allein in der Lage ist, die 5´-Reifung durchzuführen (Guerrier-Takada et al., 1983; Pannucci et al., 1999). Der RNA-Anteil der eukaryotischen RNase P ist notwendig, um ein funktionsfähiges Protein zu bilden, obwohl die RNA selbst nicht katalytisch aktiv ist (Christian et al., 2000; Pfeiffer et al., 2000; Thomas et al., 2000). Eine bereits erforschte Funktion des Proteinanteils in der RNase P ist die Stabilisierung der katalytisch aktiven RNA-Struktur (Hshieh et al., 2004).

1.1.3.2 tRNA-3´-Prozessierung

Ein reifes tRNA 3´-Ende ist eine wichtige Voraussetzung für eine erfolgreiche Proteinbiosynthese. An das reife tRNA-3´-Ende kann mit Hilfe des CCA-addierenden Enzyms die Tripletsequenz CCA angefügt werden, wenn es nicht schon genetisch codiert ist. Erst danach kann die tRNA mit einer Aminosäure beladen werden. Im Gegensatz zu der 5´-tRNA-Reifung, die in allen bisher untersuchten Organismen gleich abläuft, unterscheidet sich die tRNA-3´-Prozessierung von Reich zu Reich, auch innerhalb der Reiche von Organismus zu Organismus.

tRNA-3´-Reifung in Archaea und Eukaryoten

In Archaea und in den meisten Eukaryoten erfolgt die Reifung des 3´-Endes endonukleolytisch durch die tRNase Z (Schiffer et al., 2002; Schierling et al., 2002; Dubrovsky et al., 2004). Die tRNase Z schneidet die Vorläufer-tRNA direkt 3´ zum Diskriminator (Bild 3). Die endonukleolytische 3´-tRNA-Reifung kann aber auch durch einen exonukleolytischen Abbau des 3´-Trailers ersetzt werden. Diese Situation wurde z.B. bei *S. cerevisiae* nachgewiesen (Papadimitriou & Gross, 1996) (s. unten). Das CCA-Triplett wird mit Hilfe der ATP(CTP):tRNA-Nukleotidyltransferase, die auch als CCA-addierendes Enzym bezeichnet wird, angefügt. Die tRNA wird am A dieser CCA-Sequenz mittels einer hochspezifischen Aminoacyl-tRNA-Synthetase mit der passenden Aminosäure beladen (Schürer et al., 2001). Manche tRNAs enthalten Introns, die ebenfalls entfernt werden...
müssen, um funktionelle tRNAs zu erhalten. Das Herausschneiden dieser nicht-codierenden Sequenzen wird durch Spleiß-Endonukleasen katalysiert. In welcher Reihenfolge die hier beschriebenen Reifungsschritte durchgeführt werden, ist noch nicht eindeutig geklärt.

tRNA-3´-Reifung in *S. cerevisiae*

Bei *S. cerevisiae* konnte mit Hilfe einer ausgedehnten *in vitro*-Studie mit Zellextrakten nachgewiesen werden, dass drei Exonukleasen und zwei Endonukleasen Vorläufer-tRNAs am 3´-Ende reifen können (Papadimitriou & Gross, 1996). Es wurde gezeigt, dass in Hefe das Protein Lhp1p für die endonukleolytische Prozessierung notwendig ist (Yoo & Wolin, 1997). Lhp1p selbst hat keine Endonuklease-Aktivität, aber Stämme ohne dieses Protein erzielen ihre reifen tRNA-3´-Enden ausschließlich mit Hilfe von Exonukleasen, während Wildtyp-Zellen den endonukleolytischen Weg beschreiten. Lhp1p scheint die tRNA-Struktur zu stabilisieren, wodurch die endonukleolytische Prozessierung ermöglicht wird (Yoo & Wolin, 1997).

tRNA-Reifung in Prokaryoten

Die tRNA-3´-Prozessierung in *E. coli* ist besonders gut untersucht. Die tRNA-Reifung in *E. coli* ist ein mehrstufiger Prozess, bei dem sowohl Exo- als auch Endonukleasen beteiligt sind (Deutscher, 1995) (Bild 4). Da die *E. coli* tRNA-Gene alle für das CCA-Triplett codieren (Deutscher et al., 1977), können sie nach der tRNA-3´-Reifung sofort mit der entsprechenden Aminosäure beladen werden.
Bild 4: tRNA-3´-Reifung in *E. coli*. Alle tRNA-Gene von *E. coli* codieren für das CCA-Motiv am 3´-Ende. Die tRNA-3´-Prozessierung beginnt mit einem endonukleolytischen Schnitt (RNase E) einige Nukleotide stromabwärts vom 3´-Ende der Vorläufer-tRNA, bevor der letzte Schritt in der 3´-tRNA-Reifung durch Exonukleasen (RNase T und PH) durchgeführt wird. Die RNase E ist grün, die 3´-Verlängerung grau und die reife tRNA schwarz dargestellt. Die Exonukleasen sind in gelb abgebildet. D: Diskriminator.

Bild 5: tRNA-3´-Reifung in *T. maritima*. Die tRNA-Gene aus *T. maritima*, die für CCA codieren, werden durch die tRNase Z direkt 3´ zur CCA-Sequenz geschnitten. Die so erhaltene reife tRNA kann direkt mit einer Aminosäure beladen werden. D: Diskriminator. Die reife tRNA ist in schwarz abgebildet, die tRNase Z in grün und die tRNA 3´-Verlängerung in grau.

Wie bereits erwähnt, besitzt *B. subtilis* tRNA-Gene sowohl mit als auch ohne CCA. Die tRNA-Vorläufer ohne CCA werden mit Hilfe der Endonuklease tRNase Z direkt 3´ zum Diskriminator geschnitten (Pellegrini et al., 2003) (Bild 3). Vorläufer, die das CCA-Triplett enthalten, werden nicht von der tRNase Z prozessiert.

Eine besondere Situation wurde für die tRNase Z aus *T. maritima* (TmaTrz) entdeckt, bei der 45 von 46 tRNA-Genen das CCA-Triplett codiert haben (Minagawa et al., 2004). Die Vorläufer-tRNAs, die CCA enthalten, werden mit Hilfe der tRNase Z direkt 3´ zum CCA-Triplett geschnitten, so dass eine reife tRNA mit CCA am 3´-Ende entsteht, die anschließend direkt mit einer Aminosäure beladen werden kann (Bild 5). Im Gegensatz dazu schneidet TmaTrz die einzige tRNA, die nicht für CCA codiert, direkt 3´ zum Diskriminator. Offensichtlich unterscheidet die tRNase Z aus *T. maritima* zwischen Vorläufern mit bzw.
ohne CCA. Der Mechanismus dieser besonderen Eigenschaft von TmaTrz ist bis jetzt noch nicht verstanden.

1.2 tRNase Z

Die Bezeichnung der tRNase Z-Enzyme erfolgt in dieser Arbeit wie in Vogel et al. beschrieben (Vogel et al., 2005). Die tRNase Z-Enzyme gehören zu der Familie der Metallo-β-Lactamasen (Aravind, 1999) und kommen in zwei Versionen vor. Es gibt eine kurze Form mit einer Länge von 280-360 Aminosäuren und eine lange Form, die mit 750-930 Aminosäuren etwa zwei bis drei Mal so lang ist wie die kurze (Bild 6). Der N-terminale Anteil der langen tRNase Z-Enzyme weist nur eine schwache Sequenzähnlichkeit zu den kurzen tRNase Z-Proteinen auf, wohingegen der C-Terminus der langen tRNase Z-Versionen eine hohe Sequenzähnlichkeit zu den kurzen tRNase Z-Enzymen aufweist (Tavtigian et al., 2001). Das hochkonservierte His-Motiv (HxHxDH) (Aravind, 1999), das ein charakteristisches Merkmal der Metallo-β-Lactamasen ist, ist nur intakt im C-terminalen Teil der langen tRNase Z-Enzyme, im N-Terminus existiert nur ein degeneriertes Pseudo-His-Motiv (Bild 6). Während die kurzen tRNase Z-Enzyme in allen drei Reichen zu finden sind, gibt es die langen tRNase Z-Enzyme nur bei den Eukaryoten. Eukaryotische Organismen besitzen generell mindestens eine lange tRNase Z. *S. cerevisiae*, *D. melanogaster* und *C. elegans* besitzen nur eine einzige lange tRNase Z und haben keine zusätzliche kurze Version dieses Enzmys. *A. thaliana* hat zwei kurze und zwei lange Versionen der tRNase Z. Da sowohl der N-terminale als auch der C-terminale Teil der langen tRNase Z Ähnlichkeit zu den kurzen tRNase Z-Enzymen zeigt, wurde angenommen, dass die langen tRNase Z-Enzyme aus einer Gen-Duplikation des kurzen tRNase Z-Gens hervorgegangen sein könnten (Tavtigian et al., 2001). Zu Beginn dieser Arbeit war bereits bekannt, dass EcoTrz (Vogel et al., 2002) und AthTrzS1 als Homodimer vorliegen (Späth, 2002).
Einleitung

1.3 tRNase Z-Substrate

Als diese Arbeit begonnen wurde, waren die beiden kurzen tRNase Z-Enzyme aus A. thaliana (AthTrzS1) und M. janaschii (MjaTrz) die einzigen rekombinanten Trz-Enzyme, für die in
Einleitung 14

vitro gezeigt werden konnte, dass sie Vorläufer-tRNAs am 3´-Ende prozessieren (Schiffer et al., 2002). Parallel zu der hier vorgelegten Arbeit, wurde die tRNA-3´-Prozessierungsaktivität für eine Reihe von rekombinannten tRNase Z-Enzymen gezeigt. (Schilling et al., 2005b; Dubrovsky et al., 2004; Minagawa et al., 2004; Pellegrini et al., 2003) (s. auch 1.1.3). Seit Beginn dieser Arbeit wurden weitere Substrate der tRNase Z-Enzyme entdeckt (Bild 7). Ein minimales tRNase Z-Substrat wurde definiert (Schiffer et al., 2003; Takaku et al., 2004) und ein EGS (external guide sequence: externe Führungsssequenz)-gelenkter Schnitt (Shibata et al., 2005) wurde entdeckt. Schließlich wurde nachgewiesen, dass die tRNase Z aus E. coli die Phosphodiester Bis(p-nitrophenyl)phosphat und Thymidin-5´-p-nitrophenylphosphat (TpNPP) als Substrate umsetzen kann (Vogel et al., 2002).

A) B) C)

Bild 7: Substrate der tRNase Z (Quelle: Vogel et al., 2005). A) Das minimale tRNase Z Substrat. Takaku et al. (Takaku et al., 2004) zeigten, dass das Minimalsubstrat für die langen tRNase Z-Enzyme eine Mikrovorläufer-tRNA ist, die aus dem T-Arm, dem Akzeptorstamm und einer 3´-Trailersequenz besteht. B) EGS gelenkter tRNase Z-Schnitt. Das lange tRNase Z-Enzym kann Hybrid-RNAs prozessieren, die aus einer Target-RNA und einer EGS (external guide sequence) zusammengesetzt sind und einen Stamm von mindestens sechs Basenpaaren ausbilden (Shibata et al., 2005). C) Die beiden Phosphodiester Thymidin-5´-p-nitrophenylphosphat (TpNPP, oben) und Bis(p-nitrophenyl)phosphat (bpNPP, unten). Für EcoTrz wurde gezeigt, dass es die beiden nicht-physiologischen Substrate bpNPP und TpNPP umsetzen kann (Vogel et al., 2002). Die Schnittstelle der tRNase Z ist jeweils mit einer geschwungenen Linie gekennzeichnet.

1.4 Metallo-β-Lactamase-Familie

Wie bereits oben erwähnt (s. 1.3), gehören die tRNase Z-Enzyme zur Familie der Metallo-β-Lactamasen (MBL). Diese Familie wird durch eine Faltung klassifiziert, die zuerst für Metall enthaltende Beta-Lactamasen beschrieben wurde (Carfi et al., 1995). Das His-Motiv HxHxDH (Aravind, 1999), ein charakteristisches Sequenzmotiv der Metallo-β-Lactamasen, stellt das Metallbindungszentrum dieser Enzyme dar. Charakteristisch für die 3D-Struktur sind zwei β-Faltblätter, die von jeder Seite von α-Helices umgeben werden. Die Vielseitigkeit der MBL-Strukturdome wird einerseits durch ihren Gebrauch als Modul gezeigt, an das
andere funktionelle Domänen fusionieren können, andererseits durch ihre Fähigkeit eingefügte Elemente einzupassen (Daiyasu et al., 2001; Frazao et al., 2000; Garau et al., 2005). Das aktive Zentrum liegt am Rand der β-Faltblätter und umfasst eine Metallbindungsstelle, die bis zu zwei Metalle - darunter Zink, Eisen und Mangan - binden kann. Es konnte gezeigt werden, dass neben den Metallo-β-Lactamasen und tRNase Z-Enzymen andere funktionell komplett verschiedene Enzyme die gleiche grundlegende 3D-Struktur aufweisen. Zu diesen Enzymen gehören die Glyoxalase II (GlxII) (Cameron et al., 1999), das Redoxenzym Rubredoxin: Oxygen Oxidoreduktase (ROO) (Frazao et al., 2000) und die Phosphorcholinesterase-Domäne (PCE) des Cholin-bindenden Proteins E (Garau et al., 2005).

Einige Vertreter der MBL-Familie sind am Nukleinsäure-Metabolismus beteiligt wie z.B. der Polyadenylationsfaktor CPSF, der vermutlich eine Enduklease ist, die mRNAs am 3´-Ende prozessiert (Ryan et al., 2004) oder das menschliche Artemis-Enzym (Moshous et al., 2003), das an der Reparatur von DNA-Doppelstrangbrüchen beteiligt ist (Ma et al., 2005). Zusätzlich wurde innerhalb der MBL-Familie cAMP- und cGMP-Phosphodiesteraseaktivität identifiziert (Meima et al., 2002; Nikawa et al., 1987).

1.5 Physiologische Funktionen der tRNase Z-Enzyme

Während der Erstellung dieser Arbeit wurden in anderen Studien die physiologische Funktion einiger tRNase Z-Enzyme untersucht. Die Unterdrückung der Expression der tRNase Z in B. subtilis führte zu einer Anhäufung von Vorläufer-tRNAs, die nicht für CCA codieren, wohingegen die CCA-enthaltenden prä-tRNAs nicht beeinflusst wurden (Pellegrini et al., 2003). Diese Ergebnisse zeigen, dass zwei verschiedene Wege für die tRNA-3´-Prozessierung in B. subtilis existieren, einer für CCA-lose Vorläufer-tRNAs (tRNase Z) und für CCA-enthaltende prä-tRNAs (eine andere Endonuklease oder Exonukleasen). Erst kürzlich publizierten Wen et al. (Wen et al., 2005), dass die RNase PH eine der Exonukleasen zu sein scheint, die an der 3´-Prozessierung der CCA-enthaltenen tRNAs beteiligt ist. RNAi wurde verwendet, um das lange tRNase Z-Gen in C. elegans „herunterzufahren“ (Smith & Levitan, 2004), was in langsam wachsenden und sterilen Würmern endete. Die drastische Reduktion in der Keimzell-Proliferation und der Stillstand des Zellzyklus in den Zellkernen der Keimzellen führten zu der Sterilität (Smith & Levitan, 2004). Die Auswirkungen auf die tRNA-Reifung wurden im Rahmen dieser Studie nicht analysiert.

Das lange tRNase Z-Gen in D. melanogaster wurde ebenfalls mittels RNAi „gedrosselt“. Das hatte eine Anhäufung von nukleären und mitochondrialen prä-tRNAs zur Folge (Dubrovsksy
1.6 Ziele der Arbeit

Ein Schwerpunkt dieser Arbeit war die *in vivo*- und *in vitro*-Analyse der tRNase Z aus *S. cerevisiae*. Zu Beginn war bekannt, dass die tRNA-3’-Prozessierung der Hefe-tRNase Z (SceTrz) nicht die essentielle Aufgabe sein kann. Für die nukleären Vorläufer-tRNAs existiert ein exonukleolytisches Backup-System (Yoo & Wolin, 1997), die Prozessierung der mitochondrialen tRNAs ist nicht lebenswichtig, solange die Hefezelle eine vergärbare Kohlenstoffquelle zur Verfügung hat. Im Rahmen dieser Arbeit sollte eine SceTrz-Mutantenbank erstellt werden, um die essentielle, physiologische Funktion von SceTrz mit Hilfe von temperatursensitiven Mutanten zu identifizieren.

In der *in vitro*-Analyse sollte die tRNA-3’-Prozessierungsaktivität des rekombinanten SceTrz-Enyzms überprüft werden, denn zu Beginn dieser Arbeit gab es keine Publikation über die tRNA-3’-Prozessierungsaktivität eines langen rekombinanten tRNase Z-Proteins. Außerdem sollte aufgrund der Sequenzähnlichkeit zum kurzen tRNase Z-Enzym untersucht werden, ob jeweils ein N- oder C-terminaler Teil des langen SceTrz-Proteins ausreicht, um Vorläufer-tRNAs zu prozessieren. Dazu wurden verschiedene N- und C-terminale SceTrz-Varianten kloniert und überexprimiert. Die Überexpression und die *in vitro*-Prozessierungstests wurden parallel von S. Kirchner im Rahmen ihrer Diplomarbeit (Kirchner, 2004) durchgeführt.

Ein weiterer Fokus dieser Arbeit lag auf der Analyse funktionaler Module des AthTrzS1-Proteins aus *A. thaliana*. Die molekularbiologische Modellpflanze *A. thaliana* besitzt insgesamt vier tRNase Z-Proteine, zwei lange und zwei kurze Formen. In parallelen Arbeiten wurden Mutanten von AthTrzS1 hergestellt. Die Lage der Mutationen ist in Zusammenhang mit einem Sequenzvergleich mit anderen tRNase Z-Proteinen in Bild 8 dargestellt.

Aus einer früheren Arbeit (Späth, 2002) war bereits bekannt, dass das Wildtyp-Protein AthTrzS1 als Homodimer existiert, deshalb sollte in dieser Arbeit das Dimerisierungsmodul von AthTrzS1 charakterisiert werden. Die für die Dimerisierung wichtigen Aminosäuren sollten identifiziert werden, indem die verschiedenen AthTrzS1-Mutanten mittels Crosslink-Analysen miteinander vernetzt wurden. Ein Teil der Mutanten wurde bereits mit Hilfe von Crosslinks auf ihre Dimerisierungsfähigkeit untersucht (Freund, 2002; Kirchner, 2004).
Einleitung

Zu Beginn der Arbeit wurde bekannt, dass die kurze tRNase Z aus E. coli (EcoTrz) die beiden Phosphodiester Bis(p-nitrophenyl)phosphat (bpNPP) und Thymidin-5’-p-nitrophenylphosphat (TpNPP) umsetzen kann (Vogel et al., 2002). Da alle tRNase Z-Proteine ein konserviertes Phosphodiesterase (PDE)-Motiv aufweisen (Schiffer et al., 2002), sollten das AthTrz⁴¹-Wildtypprotein, alle AthTrz⁴¹-Versionen und gegebenenfalls eine Reihe weiterer tRNase Z-Proteine ebenso auf Phosphodiesteraseaktivität untersucht werden. Vogel et al. (Vogel et al., 2002) zeigten, dass die Phosphodiesteraseaktivität von EcoTrz zinkabhängig ist. Das wiederum gab den Anstoß, erstens die Metallabhängigkeit der AthTrz⁴¹-Aktivität zu untersuchen und zweitens das Protein einer Metallanalyse unterziehen zu lassen. In einem weiteren Ansatz sollte das AthTrz⁴¹-Protein massenspektrometrisch und kristallographisch untersucht werden. Zu Beginn dieser Arbeit war weder bekannt, ob einzelne Aminosäuren der tRNase Z-Proteine Modifikationen tragen noch war eine Kristallstruktur verfügbar. Voraussetzung für diese oben genannten Analysen ist jedoch eine ausreichende Menge an Protein, weshalb die Optimierung der Überexpression und Aufreinigung ein wichtiges Ziel dieser Arbeit darstellte.
In einem Teilprojekt sollte in Kooperation mit A. Hüttenhofer untersucht werden, ob das chloroplastidäre dicistronische Transkript, das aus der tRNAMet und einer small non messenger (snm) RNA besteht, von der tRNase Z als Substrat erkannt und prozessiert wird.

In Zusammenarbeit mit A. Vogel und O. Schilling sollte überprüft werden, welche Funktion ein sequenzspezifisches Insertionsmodul (Exosite) (s. auch Bild 6) hat. Für diese Arbeit wurde von A. Vogel eine EcoTrz-Mutante ohne diese Exosite kloniert und überexprimiert. Dieses Protein sollte im Rahmen dieser Arbeit im Vergleich zum Wildtyp-EcoTrz auf tRNA-Bindungsaktivität und tRNA-3´-Prozessierungsaktivität untersucht werden.
2 Material

2.1 Stämme

2.1.1 Bakterienstämme

Vermehrungs- und Selektionsstämme:

E. coli DH5α Stratagene
E. coli XL1-Blue Stratagene

E. coli-Mutator-Stamm:

E. coli XL1-Red Stratagene

Überexpressionsstämme:

E. coli BL21(DE3) Novagen
E. coli BL21CodonPlus-RP Stratagene
E. coli BL21(DE3)pLys Novagen
E. coli AD494(DE3)pLysS Novagen
E. coli Rosetta (DE3)pLysS Novagen
E. coli BL21-AI Invitrogen
2.1.2 Hefe-Stämme

In Tabelle 1 werden die *Saccharomyces cerevisiae*-Stämme aufgeführt, die in dieser Arbeit verwendet werden.

<table>
<thead>
<tr>
<th>Hefeklon</th>
<th>Relevante Eigenschaften</th>
<th>Herkunft/Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>YL03-47</td>
<td>Deletion von SceTrz, transformiert mit p426</td>
<td>Y. Chen, Myriad</td>
</tr>
<tr>
<td>YL03-47-pSE358-SceTrz(+)</td>
<td>transformiert mit pSE358-SceTrz(+), „+“: mit Original-Promotor</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>YL03-47-pSE358-leer</td>
<td>transformiert mit leerem pSE358-Vektor</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>YL03-47-pSE358-mut-Z</td>
<td>transformiert mit mutiertem pSE358-SceTrz(+) Plasmid</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>WT(Leu)</td>
<td>SceTrz-Wildtyp</td>
<td>Y. Chen, Myriad</td>
</tr>
<tr>
<td>537(Leu)</td>
<td>SceTrz-ts-Mutante</td>
<td>Y. Chen, Myriad</td>
</tr>
<tr>
<td>538(Leu)</td>
<td>SceTrz-ts-Mutante</td>
<td>Y. Chen, Myriad</td>
</tr>
</tbody>
</table>

Tabelle 1: Verwendete Hefe-Stämme

2.2 Chemikalien, Enzyme und Kits

Soweit nicht anders erwähnt, wurden alle Chemikalien und Enzyme bei MBI-Fermentas, Sigma, Merck, Roth und Duchefa bestellt.

2.2.1 Radiochemikalien

- α^{-32}P-UTP 20 µCi/µl 25 nm/µl General Electrics
- α^{-32}P-pCp 10 µCi/µl 3,3 nmol/µl General Electrics
- γ^{-32}P-ATP 10 µCi/µl 2 nmol/µl General Electrics

2.2.2 Chemikalien für Crosslinks

- 1-Ethyl-3-(dimethylaminopropyl)-carbodiimidhydrochlorid (EDC) Sigma
- N-Hydroxysuccinimid (NHS) Pierce Biotechnology
2.2.3 Enzyme

EcoRI MBI Fermentas
XhoI MBI Fermentas
SacI MBI Fermentas
SalI MBI Fermentas
SmaI MBI Fermentas
RNase A Sigma
Pfu-DNA-Polymerase MBI Fermentas
Taq Polymerase (1 U/µl) Roche
Advantage HF2 Polymerase Clontech (Hifi-Taq)
T4 DNA Ligase (5 U/µl) MBI Fermentas
T4-RNA-Ligase Roche
T7-RNA-Polymerase MBI Fermentas
Ribonuklease Inhibitor MBI Fermentas
Phosphodiesterase (PDE) Sigma

2.2.4 Kits

GFX DNA & Gel Band Purification Kit General Electrics
T7 Sequencing Kit General Electrics
Thermo Sequenase™ Primer Cycle Sequencing Kit General Electrics
Thermo Sequenase Cy™ 5 Dye Terminator Kit General Electrics
ALF Express™ AutoRead™ Sequencing Kit General Electrics
Nucleospin Plasmid Macherey-Nagel
Nucleobond PC500 Macherey-Nagel
NucleotraPCR Macherey-Nagel
Recombinant Enterokinase Kit Novagen
S-Tag Thrombin Purification Kit Novagen
S-Tag HRP LumiBlot Kit Novagen
Rapid Translation System RTS500 ProteoMaster E. coli HY Kit Roche
Roti-Nanoquant Roth
Ampli Scribe™T7 Transcription Kit Epicentre Technologies
Vectastain ABC Kit Vector
2.3 Marker

1 kb Leiter Invitrogen
pGem DNA Marker Promega
Prestained Proteinladder MBI Fermentas

2.4 Nukleinsäuren

2.4.1 Oligonukleotide

Die hier aufgeführten Oligonukleotide wurden bei den Firmen MWG Biotech GMBH, Ebersberg, oder biomers.net, Ulm, bestellt. Mit bidestilliertem Wasser wurden die Primer auf 500 ng/µl verdünnt. Die folgenden Oligonukleotide sind in 5´-3´-Richtung angegeben.

Vektorspezifische Primer zur Sequenzierung der Gene:

pBlueSkriptII KS (Stratagene) und pUC18 (New England Biolabs):

US: CGA CGT TGT AAA ACG ACG GCC AGT
RS: CAG GAA ACA GCT ATG AC

pET-Primer für die Vektoren pET32a, pET30a und pET29a (Novagen):

Petsense: CCGCTGCTGCTAAATTCG
Petantisense: GCTAGTTATTGCTCAGCGG

Gen-spezifische Primer zur Herstellung und Sequenzierung der SceTrz und der SceTrz-Konstrukte:

Y2Xho: ATATACTCGAGATTTTTTCTTTGTGTTTCTTAAGTTT
Y4: CGGAATAGACTTTGAACG
Y5: GTGGAGGAAGCTATTTGAGG
Y7: CGAAGACCCGATGAAATGC
Y8: GCTGGTGAAAATACTTTAGGT
Y9: GCTGGTGAAAATTTGATG
Y10: CCCTCGAAATAGGCTAT
Y11: CTAATTGGGGCAATTTGGG
Y12: CTGCAAGTTTGAAAATATTCT
Y13: CTCGTTTCATCATTGCTAGCTG
Y14: CGTGTTTCTTCTTTCTGCTG
Y15: GGTGTATCGAATCTGCGG
Y16: CAAATAGGTCATCTGGG
Y17: CGGTGGGTGCATGTTTGGGG
Y18: TATATCTGACCAGTTAATTC
Y19A: ACTATTGCTGATCAAGGGAAAAG
Y19B: CAATGTGGTCAATGCAGAACCG

Für SeeTrz (Vollänge):
Y1Eco: TATATAGAATCCATGTTCACATTTATACCCATCACCCATCC
Y2XStop: ATATACTCGAGCTAATTTTTCTTGTGTTTCTTAAGGTTTGAC

Für SeeTrz-C:
Y3Eco: TATATAGAATTCATGCTAGATGCTGGTGAAAATACTTTAGG

Für SeeTrz-Konstrukte:
YN2XStop: ATATACTCGAGCTAATTTTTCTTGTGTTTCTTAAGGTTTGAC
YN3XStop: ATATACTCGAGCTACTTGACTGCTAGCTGAGAAACCATCC (Kirchner, 2004)
YC2Eco: TATATAGAATTCATGCTAGATGCTGGTGAAAATACTTTAGG
YC3Eco: TATATAGAATTCATGCTAGATGCTGGTGAAAATACTTTAGG

Primer für die Schnittstellenbestimmung (Primerextension):
ScSer2: ATAGGATTCCTGTGACTGCAGTGAATAGGATTG
Y1C: CTAACATAGGATACAATTTCACGGC

Gen-spezifische Primer zur Herstellung der dicistronischen Met42-Transkripte aus *Nicotiana tabacum* bzw. *Nicotiana rustica* und eines weiteren cptRNA-Templates:
Die fett gedruckten Nukleotide codieren für den T7-Polymerase Promotor.
cpMet1: TTAATACGACTCACTATAACCTACTTAACCTACTCAGTGGTTAGAG
cpMet1G: TTAATACGACTCACTATAACCTACTTAACCTACTCAGGTTAGAG
cpMet2: AAACCTTATTAGATACCATTGACTCTGGTATCTAATAAGTTT
cpSer1: TTAATACGACTCACTATAAGAGAGATGGCTGATGGACTAAAGC
cpSer2: CAACACATTTAATCAGAATAAGAAC
2.4.2 Vektoren

In Tabelle 2 sind die in dieser Arbeit verwendeten Vektoren aufgelistet.

<table>
<thead>
<tr>
<th>Vektor</th>
<th>Größe</th>
<th>Merkmale</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pET29a</td>
<td>5,4 kb</td>
<td>f1 ori, Amp<sup>R</sup>, S-Tao</td>
<td>Novagen</td>
</tr>
<tr>
<td>pET30a</td>
<td>5,4 kb</td>
<td>f1 ori, Amp, His-Tag, S-Tag</td>
<td>Novagen</td>
</tr>
<tr>
<td>pET32a</td>
<td>5,9 kb</td>
<td>f1 ori, Amp<sup>R</sup>, Trx-Tag, His-Tag, S-Tag</td>
<td>Novagen</td>
</tr>
<tr>
<td>pBlueScript</td>
<td>2,9 kb</td>
<td>f1 ori, Amp<sup>R</sup>, lacZ</td>
<td>Stratagene</td>
</tr>
<tr>
<td>KS II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pUC18</td>
<td>2,686 kb</td>
<td>pMB1 ori, Amp<sup>R</sup>, lacZ</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>p426 (pRS426/TRZ1)</td>
<td>9,4 kb</td>
<td>pRS426-Vektor (5,7 kb): 2μ, URA3, Amp<sup>R</sup>, lacZ Insert (SceTrz (+)): 1,1 kb SceTrz-Promotor (5´-UTR); SceTrz (2,5 kb); 108 bp der Sequenz des SceTrz-Stopcodons (3´-UTR)</td>
<td>Chen et al., 2005</td>
</tr>
<tr>
<td>pSE358</td>
<td>4,17 kb</td>
<td>CEN4, TRP1, Amp<sup>R</sup>, lacZ</td>
<td>Elledge & Davis, 1988</td>
</tr>
</tbody>
</table>

Tabelle 2: Verwendete Vektoren

2.4.3 Nukleotide

- dNTP-Set General Electrics
- NTP-Set MBI Fermentas
- ATP Sigma
- 5´ AMP Sigma
- 3´, 5´ cAMP Sigma
2.5 **Nährmedien**

2.5.1 *Escherichia coli*-Medium

2YT-Medium:
- Trypton: 16 g
- Bacto-Yeast Extract: 10 g
- NaCl: 5 g
- Microagar: 15 g
- Bidest: ad 1000 ml

2.5.2 *Saccharomyces cerevisiae*-Medien

Aminosäurestammlösungen

Die Aminosäurestammlösungen werden steril filtriert oder 15 min bei 121 °C autoklaviert.

<table>
<thead>
<tr>
<th>Aminosäure (Lagerung)</th>
<th>Stammlösung pro 100 ml</th>
<th>Endkonzentration (mg/Liter)</th>
<th>ml Stocklösung/Liter Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adeninsulfat (RT)</td>
<td>200 mg</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Adenin (RT)</td>
<td>200 mg</td>
<td>20</td>
<td>37,5</td>
</tr>
<tr>
<td>Uracil (RT)</td>
<td>200 mg</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>L-Tryptophan (4 °C)</td>
<td>1 g</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>L-Histidin (4 °C)</td>
<td>1 g</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>L-Leucin (4 °C)</td>
<td>1 g</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>L-Lysin-HCl (4 °C)</td>
<td>1 g</td>
<td>30</td>
<td>3</td>
</tr>
</tbody>
</table>

Platten

YPD:
- Bacto-Yeast Extract: 10 g
- Bacto-Pepton: 20 g
- Glucose: 20 g
- Microagar: 20 g
- Bidest: ad 1000 ml

YPAD:
- Bacto-Yeast Extract: 10 g
- Bacto-Pepton: 20 g
- Glucose: 20 g
- 0,003 % Adeninsulfat: 40 mg
- Microagar: 20 g
- Bidest: ad 1000 ml
YPG:
Bacto-Yeast Extract 10 g
Bacto-Pepton 20 g
Glycerol 30 ml
Microagar 20 g
Bidest ad 970 ml

SD:
Yeast Nitrogen Base w/o amino acids 6,7 g
Glucose 20 g
Microagar 20 g
Bidest ad 1000 ml

5-FOA (250 ml):
Lösung 1:
Yeast Nitrogen Base w/o amino acids 1,675 g
Bidest ad 18,2 ml
Nach dem Autoklavieren in einer 100 ml Schraubflasche wird die Lösung 1 mit folgenden Aminosäurelösungen (s. oben) versetzt:
Uracil 6,25 ml
Adinin 9,4 ml
L-Leucin 1,875 ml
L-Tryptophan 0,5 ml
L-Lysin-HCl 0,75 ml
L-Histidin 0,5 ml

Lösung 2:
Glucose-Monohydrat 5,5 g
Microagar 5,0 g
Bidest ad 212,5 ml

Lösung 2 wird mit Rührfisch autoklaviert.

Entsprechende Flüssigmedien werden ohne Agar hergestellt.
2.6 Puffer und Lösungen

2.6.1 Chromatographie

Aufreinigung von SceTrz mittels Mini-Q-Säule (SMART-Anlage):

Puffer A1: 40 mM Tris-HCl pH 7,0
5 mM MgCl₂
5 % Glycerin

Puffer B1: 40 mM Tris HCl pH 7,0
5 mM MgCl₂
5 % Glycerin
2 M KCl

Kurz vor Gebrauch werden die Puffer mit DTT (Endkonzentration 2 mM) und PMSF (Endkonzentration 0,5 mM) versetzt.

Aufreinigung von AthTrzS¹ mittels Mini-Q-Säule (SMART-Anlage):

Puffer A2: 40 mM Tris-HCl pH 8,0

Puffer B2: 40 mM Tris-HCl pH 8,0
1 M KCl

Aufreinigung von AthTrzS¹ mittels Gelfiltration (Superdex 200-Säule, SMART-Anlage):

Puffer A: 40 mM Tris pH 8,0
150 mM KCl

Analyse auf cAMP-Umsetzung (Resource Q, Äkta):

Puffer A-cAMP: 10 mM K₂HPO₄ pH 8,0
Puffer B-cAMP: 50 mM K₂HPO₄ pH 8,0
0,25 M NaCl

2.6.2 DNA-Isolierung

1 x TE-Puffer: 10 mM Tris-HCl pH 8,0
1 mM EDTA pH 8,0
2.6.3 DNA/RNA-Elektrophorese

5 x Agaroseladepuffer: 50 % Glycerin (v/v)
1 x TAE
jeweils 1 Spatelspitze Xylencyanol, Bromphenolblau
(für ca. 50 ml)

3 x PAA-Ladepuffer: 9,8 ml deionisiertes Formamid
0,2 ml 10 mM EDTA pH 8,0
jeweils 1 Spatelspitze Xylencyanol, Bromphenolblau

Gelelutionspuffer: 500 mM NH₄OAc
0,1 mM EDTA
0,1 % SDS (w/v)
Der Puffer wird auf einen pH-Wert von 5 eingestellt.

10 x Sequenzpuffer: 500 mM Tris-Base
500 mM Borsäure
10 mM EDTA
Der Puffer wird auf einen pH-Wert von 8,5 eingestellt.

50 x TAE: 2 M Tris-Base
5,71 % Essigsäure (v/v)
50 mM EDTA pH 8,0

8 % PAA-SL: 20 % Rotiphorese Gel 40-Lösung (v/v)
10 % 10 x Sequenzpuffer (v/v)
8,4 M Harnstoff
0,03-0,07 % (v/v) 10 % APS in H₂O (Zugabe kurz vor Gebrauch)
0,007 % (v/v) TEMED (Zugabe kurz vor Gebrauch)
2.6.4 Sequenzierung

Hydrolink-Long-Ranger:
- Harnstoff 119,6 g
- Long-Ranger 36,3 ml
- 10 x TBE-Puffer 49,5 ml
 ad 330 ml Bidest, anschließend Vakuumfiltration

ALF-Gel (0,3 mm Gel):
- Hydrolink-Long-Ranger 40 ml
- TEMED 20 µl
- APS (10 %) 200 µl

10 x TBE-Puffer für ALF:
- Tris 121,14 g
- Borsäure 51,3 g
- Na₂EDTA·2H₂O 3,72 g
- Bidest ad 1000 ml

Alfexpress Sequenzpuffer:
- TBE-Puffer 0,5 x

2.6.5 Protein-Isolierung

10 x Bindevaschpuffer: 200 mM Tris-HCl pH 7,5
- 1,5 M NaCl
- 1 % Triton X-100 (w/v)

Protein-Aufreinigung mit His-Bind-Resin

Bindepuffer: 150 mM NaCl
- 20 mM Tris-HCl pH 7,5

Waschpuffer: 5 mM bzw. 10 mM Imidazol
- 100 mM NaCl
- 20 mM Tris-HCl pH 7,5

Elupuffer 50: 50 mM Imidazol
- 100 mM NaCl
- 20 mM Tris-HCl pH 7,5
Elupuffer100:
100 mM Imidazol
100 mM NaCl
20 mM Tris-HCl pH 7,5

Elupuffer250:
250 mM Imidazol
100 mM NaCl
20 mM Tris-HCl pH 7,5

10 x cleavage/capture Puffer:
200 mM Tris-HCl pH 7,4
500 mM NaCl
20 mM CaCl₂

2.6.6 Protein-Elektrophorese

10 x Laufpuffer:
250 mM Tris-Base pH 8,3
1 % SDS (w/v)
1,92 M Glycin

LT₂₅-Puffer:
1,5 M Tris-Base pH 8,85
0,2 % SDS (w/v)

UT₄₅-Puffer:
0,5 M Tris-Base pH 6,8
0,4 % SDS (w/v)

2 x Probenpuffer:
25 % UT₄₅-Puffer (v/v)
4 % SDS (w/v)
20 % Glycerin (v/v)
10 % DTT (SL 1 M in H₂O)
0,5 % Bromphenolblau (w/v)
Material

Trenngel:
10 ml Rotiphorese Gel 40 (für 10 %iges Gel)
20 ml LT_{2x}-Puffer
ad 40 ml mit H₂O
0,02 % (v/v) 10 % APS in H₂O (Zugabe kurz vor Gebrauch)
0,0075 % (v/v) TEMED (Zugabe kurz vor Gebrauch)

Sammelgel:
2 ml Rotiphorese Gel 40 (für 4 %iges Gel)
10 ml UT_{4x}-Puffer
ad 20 ml mit H₂O
0,02 % (v/v) 10 % APS in H₂O (Zugabe kurz vor Gebrauch)
0,0075 % (v/v) TEMED (Zugabe kurz vor Gebrauch)

2.6.7 Western Blot und Detektion mit Vecta-Stain-Kit

Transferpuffer:
2 Liter: 20 mM Tris 4,84 g
150 mM Glycin 22,32 g
20 % Methanol 400 ml
Bdest ad 2 Liter

TTBS:
2 Liter: 2 M Tris-HCl, pH 7,5 100 ml
10 % Tween 20 20 ml
5 M NaCl 62 ml
Bdest ad 2 Liter

DAB: 1 g DAB in 25 ml Bdest lösen und in 500 µl Aliquots einfrrieren, bei -20 °C lagern
2.6.8 Crosslinks

2.6.8.1 Glutaraldehyd-Crosslink (GA-X-Link)

10 x GA-Puffer: 500 mM Tris-HCl pH 8,0
200 mM KCl
L-Lysin-HCl: 1 M
Glutaraldehydlösung (25 %) Abteilung Elektronenmikroskopie der Universität Ulm

2.6.8.2 NHS/EDC-Crosslink

Verdünnungspuffer: 90 mM NaCl
10 mM KCl
5 mM MgCl₂
35 mM Tris-HCl pH 7,9

EDC-Stammlösung: 300 mM EDC
in Verdünnungspuffer

NHS-Stammlösung: 40 mM NHS
in Verdünnungspuffer

2.6.9 Elektrophoretic Mobility Shift Assay (EMSA)

10 x Bindepuffer: 500 mM Tris-HCl pH 7,0
50 mM MgCl₂
50 mM KCl
100 µg/µl BSA
50 % Glycerin (w/v)
5 x TG-Puffer: 50 mM Tris-HCl pH 8,0
290 mM Glycin

8%iges natives Gel: 4 ml 40 %ige Acrylamid/Bisacrylamid (30:1) Lösung
4 ml 5 x TG-Puffer
12 ml Bidest
20 µl TEMED
200 µl 10 % APS

PMSF-Stammlösung: 100 mM in Bidest
1 µl 1:10 verdünnt pro EMSA-Ansatz
(entspricht 0,5 mM Endkonzentration)

DTT-Stammlösung: 1 M in Bidest
2 µl 1: 100 verdünnt pro EMSA-Ansatz
(entspricht 1 mM Endkonzentration)

EMSA-Ladepuffer: 50 % Glycerin (w/v)
ein wenig Bromphenolblau

2.6.10 In vitro-Prozessierung

10 x ivp-Puffer: 500 mM Tris-HCl pH 7,1
200 mM KCl
50 mM MgCl₂
20 mM DTT

10 x ivp-cyto-Puffer: 400 mM Tris-HCl pH 8,4
200 mM KCl
20 mM MgCl₂
20 mM DTT
2.6.11 Substrattests

Bis(p-nitrophenyl)phosphat (bpNPP):
Reaktionspuffer: 20 mM Tris-HCl pH 7,4
1-16 mM bpNPP (Sigma)

Thymidin-5′-p-nitrophenylphosphat (TpNPP):
Reaktionspuffer: 20 mM Tris-HCl pH 7,4
1 Spatelspitze TpNPP (Sigma)

SD-Lactoylglutathion (SLG):
10 x MOPS: 200 mM (N-Morpholino)-Propansulfonsäure
50 mM Natriumacetat
10 mM EDTA
mit NaOH auf pH 7,5 einstellen
Reaktionspuffer: 1 x MOPS pH 7,5
1 Spatelspitze SLG (Sigma)

2.6.12 Hefetransformation

2.6.12.1 Elektroporation
1 M Sorbitol, 20 mM HEPES
1 M Sorbitol

2.6.12.2 Lithium-Acetat-Methode
Die Chemikalien für die folgenden Lösungen werden von Sigma bezogen:
1 M Lithiumacetat
50 % Polyethylenglycol 3350 (w/v)
Single-Stranded-Carrier-DNA (Lachssperma-DNA), 2 mg/ml:
200 mg Lachssperma-DNA in 100 ml 1 x TE über Nacht bei 4° C mittels eines
Magnetrührers lösen, aliquotieren, bei –20 °C lagern
2.6.13 **Gesamt-RNA-Isolierung aus *S. cerevisiae***

25 % SDS

AE-Puffer: 50 mM Natriumacetat pH 5,2
10 mM EDTA

saures Phenol (Roth)
Chloroform (Roth)
3 M Natriumacetat pH 5,2-5,6

2.7 **Geräte und Ausstattung**

Autoradiographie

Szintillationszähler: Liquid Scintillation System LS 5000 CE Beckman
Filmentwicklung: Hyperprocessor General Electrics
Filmmaterial: Hyperfilm MP General Electrics

Bakterientransformation

Pulser: *E. coli*-Pulser BioRad
Küvetten: Peqlab

Blot

Western Blot: MiniVE Complete Hoefer
MiniVE Blotter Hoefer
Membran Hybond-C General Electrics

Gelblottingpapier: 3 MM Papier Schleicher & Schüll

Hefetransformation: Lithium-Acetat-Methode

Gerät: Thermocycler 60 bio-med

Dialyse und Filtration

Dialysierschläuche: Zellu Trans 8 bis 10 kDa Roth
Sterilfilter: Rotilabo Spritzenfilter Roth
0,22 µm und 0,45 µm
Membranfilter: ME 25 0,22 µm und 0,45 µm Schleicher & Schüll
Elektrophorese
Netzgeräte:
 EPS 3500 General Electrics
 EPS 600 General Electrics
PAGE mit Proteinen:
 Mighty Small II SE 250 Cell Hoefer
 Platten 10 x 10,5 cm Hoefer

Hefe-Elektroporation
Pulser: Gene PulserII BioRad
Küvetten: Peqlab

Konzentration von Lösungen
SpeedVac: Univapo 100H Uniequip
Vakuumpumpe: Uniequip
Kühlfalle: Unicryo MC 2L -60 °C Uniequip
Konzentratoren:
 Centriplus YM10 (10 kDa) Millipore
 Centricon YM10 (10 kDa) Millipore
 Centricon YM30 (30 kDa) Millipore
 Microcon YM10 (10 kDa) Millipore

Photometer
Geräte: DU-62 Spektrophotometer Beckman
 Ultrospec3100pro General Electrics
 Genesis 10 UV Thermo Electron
 Coorporation

Polymerasekettenreaktion
Geräte:
 Thermocycler 60 Biomed
 Robocycler Gradient 40 Stratagene

Ultraschall
Gerät: Sonifier 250 Branson
Sequenzierung
Gerät: Alf-Express General Electrics
Software: ALFwin Sequence Analyser 2.00 General Electrics

Zentrifugation
Zentrifugen: Biofuge 13 Heraeus
J2-MC Centrifuge Beckman
GS-15R Centrifuge Beckman
Rotoren: JA10, JA14, JA20 Beckman
Gefäße: div. Zentrifugenbecher Beckman

Chromatographie
Säulen: Mini Q General Electrics
Resource Q (1 ml) General Electrics
Superdex 200 PC 3.2/30 General Electrics
HPLC-Geräte: SMART General Electrics
Äkta General Electrics
3 Methoden

3.1 Standardmethoden

Separation von Nukleinsäuren in Agarose- und Polyacrylamidgelen
Fällung, Reinigung und Quantifizierung von Nukleinsäuren
Polymerasekettenreaktion (polymerase chain reaction, PCR)
Aufarbeitung PCR-amplifzierter DNA
Klonierung
Ligation
Kolonie-PCR (Mini-PCR)
DNA-Sequenzierung
Gewinnung von Plasmid-DNA
Konzentrationsbestimmung von Proteinen
SDS-PAGE nach Laemmli
Silberfärbung von SDS-Gelen
Western Blot

3.2 Erzeugung der SceTrz-Deletionsmutanten

3.2.1 PCR zur Erzeugung der SceTrz-Deletionsmutanten

Als Template für die Amplifikation der verschiedenen Deletionsmutanten wird jeweils der Vektor pET32a, der als Insert das SceTrz-Gen enthält, verwendet. Die Oligonukleotide sind so konstruiert, dass der „forward“-Primer eine EcoRI-Schnittstelle trägt und der „reverse“-Primer eine XhoI-Schnittstelle und ein Stopcodon.
Für die Erzeugung folgender Mutanten werden die verwendeten Primerpaare aufgeführt:

SceTrz-N2: Y1Eco/YN2XStop
SceTrz-C2: YC2Eco/Y2XStop
SceTrz-C3: YC3Eco/Y2XStop
SceTrz-N3: Kirchner, 2004
SceTrz-M1: Kirchner, 2004

PCR-Ansatz:
20 ng template (pET32a-SceTrz)
500 ng Primer 1
500 ng Primer 2
5 µl 10 x Puffer (Clontech)
5 µl dNTPs (Clontech)
1 µl HiFi-Taq-Polymerase (Advantage HF2 Polymerase, Clontech)
ad 50 µl Bidest

PCR-Programm:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>1 min</td>
<td>95 °C</td>
</tr>
<tr>
<td></td>
<td>1 min</td>
<td>50 °C</td>
</tr>
<tr>
<td></td>
<td>2 min</td>
<td>68 °C</td>
</tr>
<tr>
<td>1</td>
<td>5 min</td>
<td>68 °C</td>
</tr>
</tbody>
</table>

3.2.2 Klonierung der SceTrz-Deletionsmutanten

Die jeweiligen PCR-Produkte werden nacheinander mit EcoRI und XhoI verdaut und auf einem 0,8 %igen Agarosegel aufgetrennt. Die verdauten PCR-Produkte werden ausgeschnitten und mit der „freeze and squeeze“-Methode aus dem Agarosegel eluiert und anschließend einer Ethanolfällung unterzogen. Das DNA-Pellet wird in 14 µl Bidest resuspendiert, 7 µl davon werden in den mit EcoRI und XhoI verdauten Überexpressionsvektor pET30a (Novagen) ligiert.
Ligationsansatz:
7 µl SceTrz-PCR-Produkt (EcoRI/XhoI)
1 µl pET30 a (EcoRI/XhoI)
1 µl 10 x Ligasepuffer
1 µl T4 DNA Ligase

Die Ligationen werden über Nacht bei 14 °C im Wasserbad inkubiert. Die Ligationen werden jeweils in *E. coli* BL21(DE3) transformiert und mittels Kolonie-PCR überprüft. Klone, die das gewünschte Konstrukt enthalten, werden sequenziert und anschließend zur Überexpression eingesetzt.

Umklonierung der SceTrz-Deletionsmutanten in pET29a:
Die durch Sequenzierung überprüften pET30a-ScezTrz-Deletionsmutanten werden mit EcoRI und XhoI ausgeschnitten und in den Überexpressionsvektor pET29a (EcoRI/XhoI; Novagen), ligiert. Diese pET29a-Konstrukte werden ebenfalls mittels Ansequenzierung überprüft und für die Überexpression verwendet.

3.3 Erzeugung der cptRNA-Klone

Dazu werden mehrere Transskripte hergestellt:
- cptRNA-Met
- cptRNA-MetG
- cptRNA-Ser (als Kontrolle)

3.3.1 PCR der cptRNA-Gene

Als Template dient die genomische DNA aus *N. rustica* und *N. tabacum.*

Für die PCRs wird der HF-Kit von Clontech eingesetzt.
PCR für cpSer (1 x Ansatz):
2 µl (~ 100 ng) genomische DNA (*N. tabacum* bzw. *N. rustica*)
1 µl cpSer1 (500 ng)
1 µl cpSer2 (500 ng)
5 µl 10 x Advantage Puffer
1 µl dNTPs
2,2 µl MgOAc
1 µl HiFi-Taq-Polymerase
ad 50 µl Bidest

Die PCR-Ansätze für cpMet und cpMetG sind bis auf die verwendeten Primer gleich wie bei dem PCR-Ansatz für cpSer (s. oben).

Für die Erzeugung der folgenden cptRNA-Templates werden die verwendeten Primerpaare aufgeführt:
cpMet: cpMet1/cpMet2
cpMetG: cpMet1G/cpMet2
Das cptRNA-MetG-Template wird zusätzlich hergestellt, weil es später in eine *in vitro*-Transkription eingesetzt wird (s. unten) und für die T7-Polymerase gezeigt wurde, dass sie am besten transkribiert, wenn das erste Nukleotid ein „G“ ist.

PCR-Programm für cptRNA-Templates:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 min</td>
<td>95 °C</td>
</tr>
<tr>
<td>38</td>
<td>0,5 min</td>
<td>95 °C</td>
</tr>
<tr>
<td></td>
<td>0,5 min</td>
<td>57 °C (cpSer: 54 °C)</td>
</tr>
<tr>
<td></td>
<td>0,5 min</td>
<td>68 °C</td>
</tr>
<tr>
<td>1</td>
<td>3 min</td>
<td>68 °C</td>
</tr>
</tbody>
</table>

Die PCR-Ansätze werden 6-8 x angesetzt, um genügend Template für die *in vitro*-Transkription (ivt) und für die Ligation in pUC18 zu haben.
Nach der PCR werden die Ansätze vereinigt und ein Aliquot auf ein 1,5 %iges Agarosegel aufgetragen. Der Rest wird mit Pfu-Polymerase behandelt. Ein Großteil davon wird später aufgereinigt (s. unten). Der andere Teil, 50 µl, wird Phenol/Chloroform extrahiert, mit Ethanol gefällt, gewaschen und in 15 µl Bidest resuspendiert. Jeweils 7 µl der PCR-Produkte wird „blunt“ in einen Smal verdauten pUC18-Vektor ligiert (s. unten).

3.3.2 Klonierung in pUC18

Ligationsansatz:
1 µl (20 ng) pUC18 (SmaI)
1 µl 10 x Ligasepuffer
1 µl T4 DNA-Ligase
7 µl cptRNA-PCR-Produkt (Pfu behandelt)
Die Ligationen werden über Nacht bei 14 °C im Wasserbad inkubiert.

Die Ligationen werden in DH5α transformiert. Die daraus resultierenden Klone werden mit Mini-PCR überprüft und sequenziert.

3.3.3 Aufreinigung der PCR-Produkte

Der Großteil der mit Pfu-Polymerase behandelten PCR-Produkte wird mit dem NucleotraPCR-Kit laut Vorschrift aufgereinigt und nach DNA-Konzentrationsbestimmung direkt als Template für die in vitro-Transkription eingesetzt.

3.4 Überexpression und Proteinaufreinigung

3.4.1 Überexpression des Scetrtz-Proteins

Die Überexpression und Aufreinigung der Scetrtz-Proteine wird so durchgeführt wie bereits beschrieben (Kirchner, 2004).

3.4.2 Überexpression des Athtrz^{S1}-Proteins

Die Anzucht der Zellen wird für diese Proteine im Vergleich zum Standardprotokoll, wie bei S. Freund (Freund, 2002) beschrieben, variiert, um die Proteinausbeute zu erhöhen.

In dieser Arbeit ist es das Ziel, Proteine für Crosslinks, Substrattests und Metallanalyse zu gewinnen. Der Athtrz^{S1}-Wildtyp bzw. dessen Mutanten liegen aus früheren Arbeiten (Schiffer et al. 2002; Freund, 2002; Kirchner, 2004) bereits in Überexpressionsvektoren (pET32a oder pET29a, Novagen) kloniert vor.
Zur Anzucht der Zellen wird das gewünschte Plasmid mit Insert in einen Überexpressionsstamm (BL21(DE3) CodonPlus-RP oder BL21-AI) transformiert. Nach einer Stunde Inkubation bei 37 °C werden 50 µl der Zellen dazu verwendet, um eine 3 ml-2YT-Kultur (mit entsprechenden Antibiotika) anzuimpfen. Diese Vorkultur wird über Nacht bei 37 °C inkubiert. Am nächsten Morgen werden 500 µl der Vorkultur verwendet, um eine 5 ml-2YT-Kultur (mit entsprechenden Antibiotika) anzuimpfen. Diese Kultur wird bei 37 °C inkubiert bis eine OD_{600} von 0,4-0,6 erreicht ist, was in der Regel etwa drei Stunden dauert. Mit der gesamten 5 ml Kultur wird ein Liter 2YT-Medium nach Zugabe entsprechender Antibiotika inokuliert und bis zu einer OD_{600} von 0,6-0,8 wachsen gelassen. Durch Zugabe von 30 ml Ethanol (100%) sollen die Zellen in ihrem Wachstum gebremst werden, um sie für die Überexpression vorzubereiten. Die Zellen werden für weitere 30–60 Minuten bei 37 °C geschüttelt, danach mit 1mM IPTG induziert. Die Zellen werden bei 16 °C über Nacht inkubiert und am anderen Morgen abzentrifugiert. Die anschließende Proteinaufreinigung mit S-Protein-Agarose wird, wie bei S. Freund (Freund, 2002) beschrieben, durchgeführt. Eine Ausnahme bilden Mutanten, die in pET29a kloniert vorliegen. Sie werden, wie bei S. Kirchner (Kirchner, 2004) aufgeführt, mit 3 M Magnesiumchlorid von der S-Protein-Agarose eluiert, gegen 1 x Bindewaschpuffer oder 40 mM Tris pH 8 dialysiert und anschließend eingeengt. Zum Abschluss wird der S-Tag mittels Thrombin entfernt. Nach der Aufreinigung werden die Proteine durch eine SDS-PAGE und einer anschließenden Silberfärbung überprüft.

3.4.3 Überexpression von AthTrz^{S1}-WT und Aufreinigung mit His-Bind-Resin

Für das Wildtyp (WT)-Protein, das in pET32a kloniert vorliegt, wird neben der S-Tag-Aufreinigung auch eine His-Tag-Aufreinigung durchgeführt, da die Bindekapazität des mit Nickel beladenen His-Resins höher ist als die der S-Agarose. Das pET32a-WT-Konstrukt wird in den E. coli-Stamm BL21-AI transformiert. Dieser Stamm ist für die Überexpression von Proteinen, die für E. coli toxisch sind, besonders geeignet. Nach einer Stunde bei 37 °C werden 25 µl der Transformation zum Animpfen einer 100 ml-2YT-Kultur (mit entsprechenden Antibiotika) genommen. Diese wird bei 37 °C über Nacht inkubiert. Am Morgen wird die Übernacht-Kultur verwendet, um eine neue 1l-Kultur mit einer OD_{600} = 0,1 anzupumpen. Die Induktion der Zellen mit 1mM IPTG und 2 g Arabinose (pro 1 Medium) erfolgt bei OD_{600} = 0,5-0,6. Die Zellen werden für die Überexpression bei
Raumtemperatur geschüttelt. Nach 3-4 Stunden werden die Zellen abzentrifugiert und bei -20 °C gelagert oder sofort aufgereinigt.

Die Zellen werden in 20 ml 1 x Bindepuffer resuspendiert und mittels Ultraschall aufgeschlossen. Anschließend folgt ein 20-minütiger Zentrifugationsschritt im JA20 bei 18000 rpm. Der Überstand wird durch einen 0,45 µm-Filter filtriert und mit 400 µl His-Resin versetzt, das laut Standardprotokoll (Novagen) vorbereitet wurde. Nach einer Inkubationszeit von 30 Minuten wird das Resin abzentrifugiert. (Der Überstand kann ein weiteres Mal mit 400 µl His-Resin inkubiert und - wie im Folgenden beschrieben - aufgearbeitet werden). Anschließend wird das Resin zwei Mal mit 1 x Bindepuffer gewaschen. Weitere Waschschriften folgen mit 5 mM-Imidazolpuffer und 10 mM-Imidazolpuffer. Mit 100 mM Imidazolpuffer wird das Protein eluiert. Mit 250 mM Imidazolpuffer wird das restliche Protein eluiert. Die Wasch- bzw. Elutions-Volumina betragen jeweils 1,2 ml.

Die 100 mM-Elution bzw. 250 mM-Elution wird anschließend mit etwa 10 U rekombinanter Enterokinase (rEK) bei Raumtemperatur über Nacht verdaut.

Ansatz:

1,2 ml Eluat
130 µl 10 x rEK-Cleavage Buffer
3 µl rEK (~10 U)

Das rEK verdaute Protein wird auf ein SDS-Gel aufgetragen und silbergefärbt. Anschließend wird die Proteindrückung auf 400-500 µl mit Centricon 30 eingeengt und mittels Anionenaustausch-Chromatographie aufgereinigt. Eine weitere Möglichkeit der Aufreinigung besteht darin, die Lösung auf 50 µl einzuengen und über Gelfiltration zu reinigen.

3.4.4 Bestimmung der Proteinkonzentration mit UV

Allgemeine Formel: \[c = \frac{E \cdot M_{Protein}}{\varepsilon \cdot d} \]

Die Konzentration für AthTrzS₁ wird folgendermaßen berechnet:

\[c = \text{OD}_{280} \cdot 31,06 \cdot 10^3 \, [\mu g]/11580 \, [\mu l] \]
3.4.5 Berechnung des Metallgehaltes im AthTrzS1-Protein

Mittels ICP-MS- und TXRF-Analyse wird der Metallgehalt am ISAS (Dortmund) bestimmt, wobei nicht alle Metalle mit beiden Methoden gemessen werden wurden. Grundlage für alle Berechnungen ist die Kenntnis der molekularen Masse der jeweiligen Metalle. Für die Berechnung des Metallgehaltes mittels ICP-MS-Analyse ist die Kenntnis der molekularen Masse des Proteins erforderlich. AthTrzS1 liegt als Homodimer vor (Späth, 2002), das rekombinante Protein hat als Dimer eine molekulare Masse von 62,12 kDa.

TXRF-Analyse

Da die TXRF-Analyse relative Anteile (y) der Metalle am Protein liefert, können mit Hilfe der bekannten Anzahl an Schwefelatomen im Protein die anderen Anteile berechnet werden. Das rekombinante AthTrzS1-Protein hat 18 Schwefelatome/Dimer. Der Anteil (x Atome/Dimer) des jeweiligen Metalls wird wie folgt berechnet:

\[
x = \frac{18 \times MW_{Schwefel}}{y \times MW_{Metall}} \quad [\text{Atome/Dimer}],
\]

wobei MW = molekulare Masse

ICP-MS-Analyse

Die Berechnung der Metallatome/Dimer mittels ICP-MS setzt die Kenntnis der eingesetzten Proteinmenge voraus, sofern parallel kein Referenzwert vermessen wurde. Bei der hier durchgeführten ICP-MS-Analyse wurde im Gegensatz zu der TXRF-Analyse Schwefel nicht vermessen, somit stand kein Referenzwert zur Verfügung.

Die Konzentration des Metallions pro ml Messlösung wird umgerechnet auf den Metallgehalt pro µg Protein. Anschließend kann mit diesem Ergebnis das Stoffmengenverhältnis (Metallatome/Protein) ermittelt werden.

In dieser Arbeit wird mit Hilfe der ICP-MS-Analyse der Magnesiumgehalt ermittelt, da die Magnesiumbestimmung zum Zeitpunkt der Analyse aus technischen Gründen mittels TXRF (s. oben) nicht bestimmt werden konnte. Das Ergebnis der ICP-MS-Analyse für Magnesium wird an die TXRF-Analysewerte angepasst, weil diese Werte mit Hilfe des Referenzwertes für Schwefel direkt bestimmt werden können (s. oben). Dazu werden die Atomverhältnisse der einzelnen Elemente zu Magnesium berechnet (y = Anzahl der Atome$_{\text{Element}}$/Anzahl der Atome$_{\text{Mg}}$). Die Anzahl der Magnesiumatome/Dimer angepasst an die TXRF-Werte ergibt sich aus dem Verhältnis der Anzahl der Atome$_{\text{Element}}$ zu y. Aus diesen Werten kann der Mittelwert und die Standardabweichung berechnet werden.
3.5 Chromatographie

3.5.1 Anionenaustausch-Chromatographie

Bei der säulenchromatographischen Aufreinigung des SceTrz-WT-Proteins und der AthTrzS1-Proteine wird die SMART-Anlage (General Electrics) eingesetzt. Als Anionenaustauscher-Säule wird die Mini Q-Säule verwendet. Die säulenchromatographischen Trennungen werden bei Temperaturen von 2,5 °C durchgeführt, um eine Denaturierung der Proben zu verhindern. Die verwendeten Puffer werden autoklaviert und vor Gebrauch mit einem 0,22 µm Filter filtriert und entgast. Die Puffer A1 und B1 für die SceTrz-Aufreinigung werden vor dem Säulenlauf mit DTT (2 mM) und PMSF (0,5 mM) versetzt. Die Puffer A2 und B2 für die Aufreinigung der AthTrzS1-Proteine werden ohne DTT und PMSF verwendet. Unter den Bedingungen, die der Hersteller für das verwendete Säulenmaterial empfiehlt, finden die Säulenläufe statt. Bei SceTrz wird ein linearer Gradient gefahren, bei den AthTrzS1-Proteinen liefert der Stufengradient reproduzierbare Ergebnisse. Als Probenschleife wird bei Verwendung der Mini Q die 500 µl-Schleife verwendet. Die AthTrzS1-Proben werden in 100 µl-Fraktionen gesammelt (bei SceTrz: 105 µl). Anhand des Chromatogramms werden die Fraktionen vereinigt und in Centricon 10 eingeengt. Teilweise werden vor dem Vereinigen je 10 µl der 100 µl-Fraktionen auf ein SDS-Gel aufgetragen und silbergefärbt, um die sauberen Proteinfraktionen erst danach zu vereinigen und einzuengen. Die Proben werden nach dem Einengen auf eine Glycerinkonzentration von 10 % (v/v) gebracht, Stickstoff gefroren und bis zur weiteren Verwendung bei -80 °C oder -20 °C gelagert.

3.5.2 Gelfiltration

3.6 **In vitro-Transkription (ivt)**

Transkriptionsansatz:
- 4 µl 5 x Transkriptionspuffer (MBI)
- 2 µl NTP-Mix (ATP, CTP, GTP je 5 mM; UTP 1 mM)
- 1 µl RNase-Inhibitor
- \(x\) µl DNA-Template (40-200 fmol bzw. 100-200 ng)
- 1 µl \(\alpha\)-\(^{32}\)P-UTP (20 µCi/µl)
- 1 µl T7-RNA-Polymerase
- ad 20 µl Bidest

3.7 **In vitro-Prozessierung (ivp)**

Die *in vitro*-Prozessierungsreaktion wird mit allen SceTrz-Konstrukten (s. auch Kirchner, 2004), mit EcoTrz, AthTrz\(^{S1}\) und AthTrz\(^{S2}\) durchgeführt, um sie auf ihre endonukleolytische tRNA-3´-Prozessierungsaktivität zu testen. Für die *in vitro*-Prozessierungen werden hauptsächlich intern markierte Vorläufer (s. 3.6) verwendet. Bei den cptRNA-Transkripten werden auch 5´- und 3´-endmarkierte tRNAs eingesetzt. Zu den ivp-Reaktionen mit Protein wird parallel eine Nullkontrolle ohne Proteinzugabe durchgeführt.

Standardreaktionsansatz:
- 10 µl 10 x ivp-Puffer
- \(x\) µl Enzym (ca. 100 ng)
- 1 µl tRNA-Vorläufer (ca. 5000-10000 cpm)
- ad 100 µl Bidest

ivp mit EcoTrz
Bei der in vitro-Prozessierungsreaktion mit EcoTrz wird der Reaktionspuffer zusätzlich mit Zinkchlorid versetzt. 100 ng Protein werden in 50 mM Tris pH 7,1, 5 mM KCl, 5 mM MgCl2, 1 µM ZnCl2 zusammen mit radioaktiv markierter Vorläufer-tRNA für 60 Minuten bei 37 °C inkubiert. Das weitere Vorgehen ist beim Standardreaktionsansatz beschrieben (s. oben).

3.8 Schnittstellenbestimmung
Die einzelnen Arbeitsschritte für die Schnittstellenbestimmung (Primer-Extensions-Reaktion) der Hefe tRNase Z (SceTrz) werden wie beschrieben durchgeführt (Kunzmann et al., 1998).

3.9 5´-Endmarkierung von RNA
Vorläufer-tRNAs können für in vitro-Prozessierungsreaktionen auch am 5´-Ende radioaktiv markiert werden. Autoradiographisch detektierbar sind in diesem Fall die Vorläufer-tRNA und die reife tRNA. Erst nach der Dephosphorylierung der tRNA kann die Phosphorylierung mit γ-32P-ATP erfolgen. Die Reaktionen werden wie beschrieben durchgeführt (Kunzmann et al., 1998).

3.10 3´-Endmarkierung von RNA
Für die EMSA-Reaktion wird radioaktiv markierte tRNA benötigt. Für in vitro-Prozessierungsreaktionen kann ebenfalls das 3´-Ende der Vorläufer-tRNA radioaktiv markiert werden. In diesem Fall ist aber nur das 3´-Ende und die Vorläufer-tRNA autoradiographisch detektierbar. Bei dieser Methode wird mit Hilfe der RNA-Ligase am 3´-Ende der RNA ein radioaktiv markiertes Cytidin-3´, 5´-bis-Phosphat (α-32P) angefügt. 10 µg RNA wird in 22 µl (Endvolumen) RNase freiem Bidest für 5 Minuten bei 80 °C denaturiert. Der Ansatz wird anschließend auf Eis gehalten.
Folgende Lösungen werden hinzupipettiert:

4 µl 10 x T4-RNA-Ligationspuffer
4 µl DMSO
1 µl RNasin
5 µl α-32P-pCp (50 µCi)
3 µl T4-RNA-Ligase (30 U)

Der Ansatz wird über Nacht bei 4 °C inkubiert und anschließend mit Ethanol gefällt. Die RNA wird in 15 µl 1 x PAA aufgenommen und auf einem 8 %igen PAA-Gel aufgetrennt. Die RNA wird aus dem Gel ausgeschnitten, eluiert, mit Ethanol gefällt und in 20 µl frischem Bidest resuspendiert (vgl. ivt, 3.6).

3.11 EMSA

Im folgenden Reaktionsansatz werden 0,1-1 µg Protein mit radioaktiv markierter tRNA aus *Triticum aestivum* (Weizen) inkubiert, um zu testen, ob das Protein an reife tRNAs bindet:

2 µl 10 x Bindepuffer (bei EcoTrz: mit 10 µM Zn)
1 µl 3´-32P-pCp-markierte tRNA (10000 cpm)
so viel Bidest, dass später ein Gesamtvolumen von 20 µl erzielt wird

Denaturierungsschritt: Inkubation bei 80 °C für 5 Minuten
Abkühlung: Inkubation bei Raumtemperatur für 20 Minuten
Zugabe von:
100 ng bis 1 µg Protein
1 µl 1:10 verdünnte PMSF-Lösung (100 mM) (Endkonzentration: 0,5 mM)
2 µl 1:100 verdünnte DTT-Lösung (1M) (Endkonzentration: 1 mM)

Bindung von Protein an tRNA: Inkubation bei 37 °C für 20 Minuten
Zugabe von 1 µl EMSA-Ladepuffer
Parallel wird als Nullkontrolle ein Ansatz ohne Proteinzusatz durchgeführt. Alle Reaktionen werden auf einem 8 %igem nativen Polyacrylamidgel aufgetrennt, das schon 30 Minuten bei 60 V mit 4 °C-Kühlung vorgelaufen ist. Begonnen wird die Elektrophorese bei 30 V für 30 Minuten, was das Einlaufen der Proben ins Gel ermöglicht. Danach wird die Spannung auf 100 V erhöht und das Gel für weitere 3 Stunden laufen gelassen. Anschließend wird das Gel auf einem Röntgenfilm bei -80 °C exponiert.

3.12 Crosslinks

3.12.1 Glutaraldehyd-Crosslink (GA-X-Link)

Glutaraldehyd (GA)-Crosslinking wird angewendet, um die Anzahl der Monomere zu bestimmen, aus denen ein Oligomer aufgebaut ist. Mit dieser Methode lässt sich beispielsweise zeigen, ob ein Protein als Monomer, Dimer oder Multimer vorliegt.

Glutaraldehyd (GA) ist der Trivialname für Pentan-1,5-dial, d.h. GA weist zwei Aldehydgruppen auf. Eine Aldehydgruppe befindet sich am C1-Atom, die andere am C5-Atom. Mit dieser Chemikalie lassen sich Proteine, die sich in räumlicher Nähe befinden, miteinander vernetzen.

Reaktionsansatz:
1 µg Protein
1 µl 10 x GA-Puffer*
1 µl 0,5 %ige Glutaraldehydlösung (entspricht 0,05 % Endkonzentration)
ad 10 µl Bidest

* Der Pufferanteil kann auch durch einen 10 x ivp-Puffer (Protein spezifisch) oder durch Bidest ersetzt werden.

3.12.2 NHS/EDC-Crosslink

Bei dieser Methode der chemischen Quervernetzung von Proteinen wirkt 1-Ethyl-3-(dimethylaminopropyl)-carbodiimidhydrochlorid (EDC) als Quervernetzungsreagenz und N-Hydroxysuccinimid als Katalysator. Für SceTrz und die AthTrzSn-Mutanten wird der folgende Reaktionsansatz verwendet:

2 µg Protein
1,5 µl EDC-Stammlösung (Endkonzentration: 30 mM)
1,5 µl NHS-Stammlösung (Endkonzentration: 4 mM)
ad 15 µl Bidest

Bidest und Protein werden vorgelegt, nacheinander werden EDC und NHS zugegeben. Der Ansatz wird 30 Minuten bei Raumtemperatur inkubiert. Nach Zugabe von 15 µl 2 x SDS-Ladepuffer wird die Probe für 5 Minuten bei 90 °C gekocht und anschließend auf einem SDS-Gel separiert. Mittels Western Blot werden die Proteine auf eine Membran überführt und durch Antikörper-Detektion nachgewiesen.

3.13 Weitere Substrate der tRNase Z-Proteine

Alle tRNase Z-Proteine gehören zur Familie der Metallo-β-Lactamasen, die eine konservierte Phosphodiesterasedomäne besitzen. Mit Hilfe der folgenden Substrattests (bpNPP, TpNPP, cAMP) sollen die Proteine auf Phosphodiesteraseaktivität untersucht werden. Zusätzlich werden die Proteine auf Glyoxalase-Aktivität (Substrat: SLG) getestet, da Glyoxalasen ebenfalls zur Familie der Metallo-β-Lactamasen gehören.

3.13.1 Bis(p-nitrophenyl)phosphat (bpNPP)

Sämtliche verfügbaren tRNase Z-Proteine aus dem Marchfelder Labor werden auf bpNPP-Aktivität getestet. Handelt es sich bei dem getesteten Protein um eine Phosphodiesterase, färbt sich durch das Freiwerden von p-Nitrophenol die Reaktionslösung gelb. Die Farbveränderung kann bei OD405 gemessen werden. Als Positivkontrolle dient EcoTrz, dessen Phosphodiesteraseaktivität von Vogel et al. (Vogel et al, 2002) bereits nachgewiesen wurde. Für den Phosphodiesterase-Aktivitätstest wird 5-14 mM bpNPP in 20 mM Tris pH 7,4-Puffer gelöst. 100 ng Protein werden in 200 µl dieses bpNPP-haltigen Puffers inkubiert. Die Reaktion läuft für 30 Minuten bis 1 Stunde bei 37 °C ab. Die Inkubationszeit ist proteinabhängig.
Von dem AthTrzSt-Wildtyp und den Mutanten, die eine positive Reaktion zeigen, werden Kinetiken gemacht. Dazu wird 14 mM bzw. 16 mM bpNPP in 20 mM Tris pH 7,4 gelöst. Mit der jeweiligen bpNPP-Stammlösung werden mit dem 20 mM Tris pH 7,4-Puffer verschiedene Verdünnungen hergestellt. Diese bpNPP-Lösungen (Reaktionsvolumen 200 µl) werden mit 100-200 ng Protein versetzt und photometrisch für 3 Minuten bei 37 °C verfolgt. Am Photometer ausgegeben wird die Extinktionsänderung pro Minute. Als Extinktionskoeffizient wird ε_{pNP} (pH 7,4) = 11500 M$^{-1}$ cm$^{-1}$ verwendet. Mit diesen Werten können die Units/mg Protein berechnet werden. Eine Unit Aktivität entspricht dem Freiwerden von 1 µmol p-Nitrophenol/Minute.

3.13.2 Thymidin-5´-p-nitrophenylphosphat (TpNPP)

Der TpNPP-Test beruht auf dem gleichen Reaktionsprinzip wie der bpNPP-Test (s. 3.13.1). Auch hier handelt es sich um einen photometrisch bestimmmbaren Farbtest, mit dessen Hilfe Proteine auf Phosphodiesteraseaktivität untersucht werden können.

In diesem Versuchsansatz werden ebenfalls die im Labor verfügbaren tRNase Z-Proteine auf TpNPP-Aktivität getestet. Dazu wird eine Spatelspitze TpNPP in 20 mM Tris pH 7,4 gelöst und jeweils 200 µl davon werden mit 100 ng Protein versetzt und mehrere Stunden bei 37 °C inkubiert. Als Positivkontrolle dient EcoTrz, dessen TpNPP-Aktivität bereits nachgewiesen wurde (Vogel et al., 2002).

3.13.3 3´, 5´ cyclisches Adeninmonophosphat (cAMP)

In diesem Versuch soll getestet werden, ob tRNase Z-Proteine in der Lage sind, 3´, 5´ cAMP umzusetzen. Hier wird ein chromatographischer Ansatz gewählt. Als Positivkontrolle wird die kommerziell erwerbbare und aus Rinderhirn gewonnene Phosphodiesterase, die für 3´, 5´ cyclische Nukleotide spezifisch ist, verwendet.

Ansatz:

25-50 µg	3´, 5´ cAMP
500 ng	tRNase Z-Protein
5 µl	10 x ivp-cyto-Puffer
ad 50 µl	Bidest

Die Inkubationszeiten werden variert von ½-1 Stunde bzw. über Nacht. Die Inkubationstemperatur beträgt 37 °C.

3.13.4 SD-Lactoylglutathion (SLG)

Die Glyoxalase-Aktivität eines Proteins lässt sich durch den Umsatz von SD-Lactoylglutathion nachweisen. Die Reaktion lässt sich photometrisch bei OD\textsubscript{240} verfolgen. Weist das Protein Glyoxalase-Aktivität auf, ist eine Abnahme der OD\textsubscript{240} zu beobachten. Bei dem Reaktionspuffer handelt es sich um einen 1 x MOPS-Puffer (pH 7,5), der mit ein paar Krümeln SLG versetzt wird. Zu einem Reaktionsvolumen von 200 µl werden ~ 3 µg Protein zugegeben und die Extinktion für 1-2 Minuten verfolgt.

3.14 Isolierung von Gesamt-RNA aus S. cerevisiae

Die RNA wird bei OD\textsubscript{260} und OD\textsubscript{280} vermessen. Das Verhältnis von OD\textsubscript{260}/OD\textsubscript{280} gibt die Reinheit der isolierten RNA an. Liegt der Quotient bei etwa 2, handelt es sich um saubere RNA. Zur Kontrolle wird 1 µg RNA auf ein 1 %iges Agarosegel aufgetragen.

3.15 Erstellung einer SceTrz-Mutantenbank

Klonierung der Positivkontrolle pSE358-SceTrz (+):

3.15.1 Mutation des SceTrz-Gens

Es gibt verschiedene Möglichkeiten, ein Gen zu mutieren. In diesem Fall werden zwei unterschiedliche Möglichkeiten getestet.

Genmutation durch Mutations-PCR und Klonierung in pSE358

Durch Zugabe von Manganchlorid in den PCR-Ansatz soll die Fehlerrate der Taq-Polymerase erhöht werden. Zusätzlich wird der Anteil eines Desoxynukleotids, z.B. dGTP, gesenkt. Diese Maßnahmen sollen dazu führen, dass zufällig falsche Nukleotide in das PCR-Produkt eingebaut werden. Im Folgenden wird ein Beispielansatz angeführt:
Ansatz “-dGTP“ (Mastermix für 17 Ansätze zu je 50 µl):

<table>
<thead>
<tr>
<th>Volume</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,5 µl</td>
<td>Template p426-SceTrz (10 ng/µl)</td>
</tr>
<tr>
<td>51 µl</td>
<td>dNTPs (5 mM)</td>
</tr>
<tr>
<td>17 µl</td>
<td>RS (200 ng/µl)</td>
</tr>
<tr>
<td>17 µl</td>
<td>US (200 ng/µl)</td>
</tr>
<tr>
<td>85 µl</td>
<td>10 x Puffer (Roche)</td>
</tr>
<tr>
<td>17 µl</td>
<td>MnCl₂ (25 mM)</td>
</tr>
<tr>
<td>34 µl</td>
<td>Taq-Polymerase (Roche)</td>
</tr>
<tr>
<td>552,5 µl</td>
<td>Bidest</td>
</tr>
<tr>
<td>17 µl</td>
<td>dATP (2 mM)</td>
</tr>
<tr>
<td>17 µl</td>
<td>dCTP (2 mM)</td>
</tr>
<tr>
<td>17 µl</td>
<td>dTTP (2 mM)</td>
</tr>
</tbody>
</table>

PCR-Programm für Mutations-PCR von SceTrz:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 min</td>
<td>95 °C</td>
</tr>
<tr>
<td>38</td>
<td>1 min</td>
<td>95 °C</td>
</tr>
<tr>
<td></td>
<td>1 min</td>
<td>55 °C</td>
</tr>
<tr>
<td></td>
<td>3,5 min</td>
<td>72 °C</td>
</tr>
<tr>
<td>1</td>
<td>3 min</td>
<td>72 °C</td>
</tr>
</tbody>
</table>

Das PCR-Produkt wird Ethanol gefällt, in Bidest aufgenommen und anschließend nacheinander mit SacI und Xhol verdaut. Der Verdau wird wieder Ethanol gefällt und anschließend auf ein 0,8 %iges Agarosegel aufgetragen und mit Hilfe der „freeze and squeeze“- Methode aus dem Gel eluiert. Die Elution wird erneut einer Ethanolfällung unterzogen und in 20 µl Bidest aufgenommen. 5 µl davon werden als Aliquot auf ein 0,8 %iges Agarosegel aufgetragen. 15 µl bleiben übrig für die Ligation in den mit SacI und Sall geschnittenen pSE358-Vektor.

Ligationsansatz:
1 µl (~ 20 ng) pSE358 (SacI/Sall)
1 µl 10 x Ligasepuffer
1 µl T4 DNA-Ligase
7 µl PCR-Produkt (SacI/Xhol)
Die Ligation wird über Nacht bei 14 °C im Wasserbad inkubiert.

Außerdem wird eine „blunt“-Ligation in pBlueSkript durchgeführt. Für die „blunt“-Ligation werden 50 µl des Mutations-PCR-Produktes (s. oben) mit Pfu-Polymerase behandelt, Phenol-Chloroform-extrahiert, mit Ethanol gefällt und in 15 µl Bidest aufgenommen. 7 µl davon werden für die Ligation verwendet.

Ligationsansatz:
1 µl (~ 20 ng) pBlueSkript (SmaI))
1 µl 10 x Ligasepuffer
1 µl T4 DNA-Ligase
7 µl PCR-Produkt (Pfu behandelt)

Die Ligation wird über Nacht bei 14 °C im Wasserbad inkubiert.

Die Ligationen werden jeweils in DH5α-Zellen transformiert und auf 2YT-Platten mit Ampicillin ausplattiert (2YT-3K-Platten), um die transformierten Plasmide selektionieren zu können. Die Klone werden anschließend mittels Mini-PCR überprüft. Einige positive Klone werden sequenziert, um den Anteil der mutierten Nukleotide zu kontrollieren.

Mutation durch den *E. coli*-Mutator-Stamm XL1-Red (Stratagene)

Das Transformationsprotokoll wird laut Vorschrift (Stratagene) durchgeführt. 240 Kolonien werden nach der Transformation gepickt, um voneinander unabhängige Flüssigkulturen (4 ml) anzuziehen. Die Kolonien werden 24 Stunden bei 37 °C inkubiert. Nach Vereinigen aller Flüssigkulturen werden die Zellen in zwei 500 ml-Beckman-Gefäßen abzentrifugiert. Das Pellet wird über Nacht bei -20 °C gelagert, um am nächsten Tag eine Plasmid-Präparation (Maxi-Präparation) durchzuführen.

Von der Maxi-Präparation mit den mutierten pSE358-SecTrz (+)-Plasmiden werden 10 ng und 50 ng für die Trafo in XL1-Blue Competent Cells (Stratagene) verwendet. Von einigen Klonen werden Mini-Präparationen gemacht und sequenziert, um den Anteil der mutierten
Nukleotide zu überprüfen. Die Maxi-Präparation mit den mutierten Plasmiden wird später für die Transformation der Hefezellen YL03-47 eingesetzt.

3.15.2 Transformation der Hefezellen

In dieser Arbeit werden die Hefezellen entweder durch Elektroporation oder durch die Lithium-Acetate/Single-Stranded-Carrier-DNA/Polyethylene-Glycol-Methode transformiert. Die Methode der Elektroporation wird wie schon früher beschrieben durchgeführt (Späth, 2002).

Im Folgenden wird die LiAc/SS-Carrier-DNA/PEG-Transformationsmethode näher beschrieben. Diese Methode wird eingesetzt, um die durch die XL1-Red-Zellen (s. oben) mutierten pSE358-SceTrz (+)-Plasmide in den Hefestamm YL03-47 zu transformieren:

Am ersten Tag werden die zu transformierenden Hefezellen in 2 cm² großen Flächen auf YPD-Platten ausgestrichen und über Nacht bei 30 °C inkubiert.

Am zweiten Tag werden folgende Schritte durchgeführt:

Carrier-DNA wird in kochendem Wasser für 5 Minuten erhitzt und in Eiswasser abgekühlt. Vor Gebrauch wird die SS-Carrier-DNA kurz gevortext. Die frisch gewachsenen Hefezellen werden abgekratzt und in 1 ml steriles Wasser in einem 1,5 ml Eppendorfgefäß resuspendiert, um die Zellen anschließend bei 13000 rpm 30 Sekunden bei Raumtemperatur zu pelletieren. Der Überstand wird verworfen.

Folgende Bestandteile des Transformationsmixes (T-Mix) werden zum Pellet gegeben, wobei es wichtig ist, die angegebene Reihenfolge einzuhalten:

PEG 3350 (50 %, w/v) 240 µl
Lithiumacetat (1 M) 36 µl
gekochte SS-Carrier-DNA (2 mg/ml) 50 µl
Plasmid-DNA (0,5-1 µg) plus Bidest 34 µl
Gesamtvolumen 360 µl

Als Nullkontrolle wird statt Plasmid-DNA nur Bidest transformiert.

Das Reaktionsgefäße wird in einem 42 °C warmen Wasserbad für 60-75 Minuten inkubiert. Nach einem kurzen Zentrifugationsschritt (30 Sekunden) bei 13000 rpm bei Raumtemperatur wird der T-Mix abpipettiert. 1 ml steriles Wasser wird in das Reaktionsgefäße gegeben, durch Auf- und Abpipettieren und Vortexen wird das Zellpellet resuspendiert. Je 10 µl-, 50 µl- und 100 µl-Portionen werden auf SD-Platten ohne Uracil und Tryptophan ausplattiert. Der Stamm

3.15.3 Selektion und Identifikation potentieller ts-Mutanten

die weiterhin ts sind, werden für weitere Untersuchungen (z.B. Wachstumskurven und Mikroskopie) ausgewählt.
4 Ergebnisse

4.1 In vivo: SceTrz-Mutantenbank

Die Bäckerhefe *S. cerevisiae* besitzt im Gegensatz zu *A. thaliana* (s. 4.3) nur ein tRNase Z-Gen, das für ein langes tRNase Z-Protein mit 838 Aminosäuren codiert. Die Hefe tRNase Z ist auch bekannt unter dem Namen TRZ1 (YKRO79c), sie wird hier im folgenden SceTrz genannt, um den Vergleich mit anderen tRNase Z-Proteinen zu erleichtern.

Eine ausgedehnte *in vitro*-Studie mit Hefezellextrakten ergab, dass drei Exonukleasen und zwei Endonukleasen Vorläufer-tRNAs am 3´-Ende prozessieren können (Papdimitrou & Gross, 1996). Im Hefezellkern ist eine Endonuklease für die tRNA-3´-Reifung notwendig, für den endonukleolytischen Abbau existiert jedoch ein exonukleolytisches Backup-System (Yoo & Wolin, 1997). Der Knock-out der Hefe tRNase Z ist letal (Tavtigian et al., 2001). Die essentielle Funktion der tRNase Z kann jedoch aufgrund der Existenz eines exonukleolytischen Reifungssystems nicht in der nukleären tRNA-3´-Prozessierung liegen.

Die Reifung der mitochondrialen tRNA-Vorläufer-Moleküle ist nicht für das Überleben der Hefezellen erforderlich, solange vergärbares Medium zur Verfügung steht. Um die biologische Funktion der Hefe tRNase Z zu untersuchen, wird in dieser Arbeit eine Bank mit temperatursensitiven (ts) Mutanten aufgebaut.

In Bild 9 wird schematisch erklärt, wie in dieser Arbeit die Mutantenbank hergestellt wurde. Im Methodenteil (s. 3.15) werden die einzelnen Arbeitsschritte detailliert beschrieben.

Ergebnisse

Zur Wachstumskontrolle wurden sowohl die transformierten als auch die untransformierten Hefezellen auf SD-Platten ohne Uracil (SD-Ura) ausgestrichen und in den 30 °C-Schrank gestellt.

Wie erwartet wachsen die mit pSE358-SceTrz (+) transformierten Hefezellen bei allen Temperaturen, was bedeutet, dass der chromosomale tRNase Z-Defekt komplementiert wird. Die transformierten Zellen wachsen ebenso auf der SD-Ura-Kontrollplatte. Die untransformierten Zellen wachsen erwartungsgemäß nur auf der SD-Ura-Platte. Ein Wachstum auf 5-FOA ist nicht möglich, da der chromosomale tRNase Z-Defekt letal ist und das p426-Plasmid mit intaktem Gen durch die 5-FOA-Passage eliminiert wurde.

Mutation des SceTrz-Gens

Parallel zur Ligation in pSE358 wurde eine „blunt“-Ligation in einen SmaI verdauten pBlueScript-Vektor durchgeführt, mit dem Ziel, eine höhere Rate an positiven Klonen zu erhalten. Um eine Mutantenbank aufzubauen, ist eine hohe Anzahl verschiedener SceTrz-Sequenzen notwendig. Viele mutierte SceTrz-Sequenzen sind möglicherweise letal, weil die Expression des Proteins nicht stattfindet oder das Protein inaktiv ist, was zu keinem Wachstum von Klonen führt. Oder die Mutationen der SceTrz-Sequenzen sind nicht überlebenswichtig, weil die Expression und Funktion des Proteins nicht beeinflusst wird, was in vielen nicht-temperatursensitiven Klonen resulitert. Es war geplant, alle positiven DH5α-Klone, d.h. alle Klonen, die eine mutierte SceTrz-Sequenz beinhalten, zu vereinigen und eine Plasmidpräparation zu machen. Anschließend sollte die pBlueSkript-mut-Z-Konstrukte verdaut werden, um die herausgeschnittene mutierte SceTrz-Sequenz in den pSE358-Vektor zu klonieren. Da das Ergebnis der Mini-PCR jedoch zeigte, dass nur 22 % der pBlueSkript-Klone ein SceTrz-Insert aufweisen, wurde von den positiven Klonen keine Plasmidpräparation durchgeführt, um daraus später die Inserts für eine Umklonierung in pSE358 zu gewinnen.
Um zu kontrollieren, ob überhaupt Mutationen im SceTrz-Gen zu finden sind, wurden einige pSE358-mut-Z- und einige pBlueSkript-mut-Z-Plasmide ansequenziert. Da die Sequenzen einzelne Mutationen aufwiesen, war die Mutations-PCR erfolgreich.

Da insgesamt die Ausbeute der positiven Klone zu gering war, um möglichst schnell eine genügend hohe Anzahl an verschiedenen pSE358-mut-Z-Plasmiden für die Transformation der Hefezellen zu erhalten, wurde beschlossen, die mutierten und aufgereinigten PCR-Produkte direkt für die Hefetransformation einzusetzen. Die PCR-Produkte besitzen durch die 3´- und 5´-UTR die entsprechenden Überhänge, um ins Hefechromosom so zu integrieren, dass das defekte tRNase Z-Gen aus dem Chromosom ersetzt wird. Die Transformation der Hefezellen mit dem mutierten PCR-Produkt führte zu keinem Wachstum von Klonen. Es wurde sowohl die Elektroporationsmethode als auch die LiAc/SS-Carrier-DNA/PEG-Transformationsmethode angewendet.

Insgesamt wurden 3812 Klone gepickt, auf 5-FOA ausgestrichen, Replika plattiert und auf Temperatursensitivität analysiert. Potentielle temperatursensitive (ts) Mutanten wurden noch einmal zusammen mit einer Positivkontrolle, d. h. einer nicht ts-Mutante, ausgestrichen und

| 2) Bezeichnung der Mini-Präparationen 1) + Kleinbuchstaben von a-e: z.B. 17c, 18e |
| 3) ts-Mutante nach der Retransformation 1) + 2) + Römische Zahlen von I-VI: z.B. 17cII, 18eIII |

Verdünnungsreihen mit potentiellen ts-Mutanten:

Ergebnisse

Da die Mutanten 17cII und 18eIII besonders auf Sucrose-Medium temperatursensitiv sind, wurden Wachstumskurven in YPS erstellt (Bild 11). Dafür wurde morgens eine 3 ml-Vorkultur angesetzt, abends wurde damit eine 100 ml-Über-Nacht-Kultur so inokuliert, dass die Zellen am anderen Morgen eine OD600 von 0,2-0,3 aufweisen. Waren die Zellen zu dicht gewachsen, wurden sie verdünnt auf OD600 = 0,1 und so lange bei 28-30 °C wachsen gelassen, bis sie eine OD600 = 0,2-0,3 aufwiesen. Eine weitere Möglichkeit bestand darin,

![Graph](image)

Die potentiellen ts-Mutanten wachsen bei 28 °C fast genauso gut wie der Wildtyp. Bei 37 °C wachsen die beiden Mutanten 17cII und 18eIII im Vergleich zum Wildtyp deutlich langsamer (Tabelle 4).

<table>
<thead>
<tr>
<th>Mutante</th>
<th>Verdopplungszeit (in h) bei 28 °C</th>
<th>Verdopplungszeit (in h) bei 37 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>2,92 +/- 0,53</td>
<td>2,83 +/- 0,5</td>
</tr>
<tr>
<td>17cII</td>
<td>2,57 +/- 0,43</td>
<td>5,41 +/- 1,16</td>
</tr>
<tr>
<td>18eIII</td>
<td>2,57 +/- 0,31</td>
<td>5,19 +/- 1,09</td>
</tr>
</tbody>
</table>

Tabelle 4: Verdopplungszeiten der Hefemutanten bei 28 °C und 37 °C. Die Verdopplungszeit ergibt sich aus \(t_d = \ln(2)/k \), wobei \(k \) die Steigung der angepassten Geraden ist, die sich bei der halblogarithmischen Auftragung der Zelldichte gegen die Zeit ergibt. Die Wachstumskurven wurden drei Mal unabhängig voneinander durchgeführt.
Bild 12: Phänotypischer Vergleich der potentiellen ts-Mutanten mit YL03-47 (WT). Parallel zur Erstellung der Wachstumskurve (s. auch Bild 11) wurden Aliquots von Hefezellen nach 1 Stunde, nach 3 Stunden und 9 Stunden Inkubationszeit bei 28 °C bzw. 37 °C entnommen und mikroskopisch analysiert.

Parallel zur Dichtemessung wurden die Hefezellen unter dem Mikroskop betrachtet. Aliquots der Hefezellen wurden über Nacht bei 4 °C gelagert, um sie am nächsten Tag zu fotografieren.
Ergebnisse 68

Außer den Mutanten 17cII und 18eIII wurden mit weiteren potentiellen ts-Mutanten Verdünnungsreihen gemacht. Dabei fiel auf, dass es auch potentielle ts-Mutanten gibt, die Glycerin als Kohlenstoffquelle nicht nutzen können und deshalb auf YPG-Platten nicht wachsen (Bild 13). Bei den ρ- Mutanten handelt es sich um 1bII, 1eIV, 2dIV, 14cI und 18dIV. Ein Teil der Mutanten (1bII, 1eIV, 2dII und 2dIV), die in Bild 13 dargestellt sind, wurde mittels Wachstumskurven untersucht und ebenfalls fotografiert. Diese Mutanten zeigten die gleichen phänotypischen Erscheinungen wie bei 17cII und 18eIII (Bild 12).

In der folgenden Tabelle (Tabelle 5) wird ein Überblick über die verschiedenen potentiellen ts-Mutanten gegeben.
Ergebnisse

<table>
<thead>
<tr>
<th>Mutante</th>
<th>ρ</th>
<th>YPD 23 °C</th>
<th>YPD 30 °C</th>
<th>YPD 37 °C</th>
<th>YPS 23 °C</th>
<th>YPS 30 °C</th>
<th>YPS 37 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1bII</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>+</td>
<td>-</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>1eIV</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>+</td>
<td>-/+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>2dII</td>
<td>+</td>
<td>-</td>
<td>+++</td>
<td>+</td>
<td>-/+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>2dIV</td>
<td>-</td>
<td>-/+</td>
<td>+++</td>
<td>+</td>
<td>-/+</td>
<td>+++</td>
<td>-/+</td>
</tr>
<tr>
<td>14cI</td>
<td>-</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>16dVI</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>17cII</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>18dIV</td>
<td>-</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>18eIII</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>WT</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Wie oben schon erwähnt, wurden mit einem Teil der Mutanten Wachstumskurven erstellt. Die Wachstumsbedingungen wurden allerdings variiert, so dass nur ein Vergleich der Mutanten möglich ist, die gleichzeitig unter den gleichen Bedingungen angezogen wurden. Bei den Mutanten 1bII, 1eIV, 2dII, 2dIV wurde das Wachstum bei 37 °C in YPD-Medium untersucht. Die Verdopplungszeiten sind in Tabelle 6 dargestellt.

<table>
<thead>
<tr>
<th>Mutante</th>
<th>Verdopplungszeit (in h) bei 37 °C in YPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1bII</td>
<td>4,42 +/-1,20</td>
</tr>
<tr>
<td>1eIV</td>
<td>4,91 +/-0,21</td>
</tr>
<tr>
<td>2dII</td>
<td>4,39 +/-0,37</td>
</tr>
<tr>
<td>2dIV</td>
<td>3,69 +/-0,21</td>
</tr>
<tr>
<td>WT</td>
<td>2,64 +/-0,27</td>
</tr>
</tbody>
</table>

Tabelle 6: Verdopplungszeit ermittelt bei 37 °C in YPD-Medium. Die Verdopplungszeit ergibt sich aus \(t_d = \frac{\ln 2}{k} \), wobei k die Steigung der angepassten Geraden ist, die sich bei der halblogarithmischen Auftragung der Zelldichte gegen die Zeit ergibt. Die Wachstumskurven wurden zwei Mal unabhängig voneinander durchgeführt.
Da die beiden Mutanten 17cII und 18eIII in dieser Arbeit am besten untersucht wurden, werden die mutierten Plasmide dieser Hefezellen als erstes sequenziert.

4.2 In vitro: SceTrz und SceTrz-Deletionsmutanten

Wie in Abschnitt 4.1 schon erwähnt, handelt es sich bei der *S. cerevisiae* tRNase Z (SceTrz), um eine tRNA-3´-prozessierende Endonuklease. Um die Domänen, die für die Katalyse wichtig sind, herauszufinden, wurden in dieser Arbeit verschiedene N- und C-terminale SceTrz-Mutanten in die Überexpressionsvektoren pET30a bzw. in pET29a kloniert (s. 3.2), um die Proteine anschließend zu überexprimieren und in in vitro-Prozessierungsreaktionen einzusetzen.

Eines der Ziele dieser Arbeit war außerdem, die Überexpression von SceTrz zu optimieren, um das Protein anschließend kristallisieren zu können. SceTrz lag zu Beginn dieser Arbeit in pET32a kloniert vor. Im Rahmen eines Praktikums wurde SceTrz in pET30a und pET41a umkloniert. Zusätzlich wurde SceTrz in pET29a kloniert (Kirchner, 2004).

4.2.1 Überexpression und Aufreinigung von SceTrz

Die Überexpression von SceTrz in pET29a lieferte nach der S-Protein-Agarose-Aufreinigung und anschließender Elution mit Magnesiumchlorid (s. 3.4.1) im Vergleich zu den Aufreinigungen mit den anderen Konstrukten eine nur noch mit wenigen anderen Proteinen kontaminierte tRNase Z. Ein weiterer Vorteil der Überexpression von SceTrz in pET29a liegt darin, dass der pET29a-Vektor nur einen S-Tag am N-Terminus besitzt, der nicht unbedingt abgeschnitten werden muss, da das Protein auch mit S-Tag in den in vitro-Prozessierungsreaktionen aktiv ist (Kirchner, 2004). Das Protein ohne Tag bindet in den EMSA-Tests aber effektiver an reife tRNA als SceTrz mit S-Tag (Kirchner, 2004). Wenn das Protein in pET30a (S-Tag und His-Tag am N-Terminus) oder in pET32a (S-Tag, His-Tag, Thioredoxin-Tag am N-Terminus) überexprimiert wurde, mussten die Tags jeweils durch rekombinante Enterokinase abgespalten werden, um ein funktionsfähiges Protein zu erhalten.

Das in pET29a überexprimierte SceTrz wurde nach der S-Protein-Agarose-Aufreinigung mittels Anionenaustausch-Chromatographie weiter aufgereinigt. Als Puffer A wurde ein 40 mM Tris-Puffer pH 7 mit 5 mM Magnesiumchlorid und 5 % Glycerin verwendet. Der Puffer B hatte die gleiche Zusammensetzung wie A und war zusätzlich mit 2 M Kaliumchlorid versetzt. Die Anionenaustauscher-Säule (Mini Q) wurde an der SMART-Anlage betrieben. In einem linearen Gradienten mit einer Endkonzentration von 300 mM Kaliumchlorid erfolgte der Säulenlauf. Die Elution des Proteins SceTrz (mit S-Tag) erfolgte bei ~ 200 mM
Ergebnisse

Kaliumchlorid (Bild 14). Insgesamt wurden 780 µg S-Protein-Agarose aufgereinigtes Protein innerhalb von 3 Läufen über die Mini Q-Säule aufgereinigt. (Lauf I: 230 µg, Lauf II: 300 µg, Lauf III: 250 µg).

Bild 14: Chromatogramm der Anionenaustausch-Chromatographie (Säule: Mini Q) von SceTrz mit S-Tag (SceTrz-29a). OD₂₈₀: blau. Leitfähigkeit: pink. Bei 6,2 ml wird SceTrz eluiert, was einer Konzentration von ~ 200 mM KCl entspricht.

Bild 15: SceTrz überexprimiert von pET29a-SceTrz nach Anionenaustausch-Chromatographie. Das SDS-Gel wurde silbergefärbt. M: Proteingrößenstandard, die Fragmentgrößen sind in kDa angegeben.

Die Fraktionen, die SceTrz enthielten, wurden vereinigt, nachdem sie vorher separat gegen 1 x Bindewaschpuffer dialysiert worden waren, und mit 10 % Glycerin versetzt. Diese aufgereinigte Proteinprobe (Volumen: 160 µl) wurde zu Kristallisationsversuchen weggeschickt (Bild 15). Die Kristallisation war nicht erfolgreich, mit der Menge an
weggeschicktem Protein konnte nur eine geringe Anzahl von verschiedenen
Kristallisationsansätzen durchgeführt werden.

4.2.2 Überexpression und Aufreinigung der SceTrz-Deletionsmutanten

Folgende Deletionsmutanten wurden in dieser Arbeit konstruiert:
pET30a-SceTrz-C2
pET30a-SceTrz-N2
pET30a-SceTrz-C3

Die Deletionsmutanten N3 und M1 wurden parallel im Rahmen einer Diplomarbeit kloniert
und überexprimiert (Kirchner, 2004). Das Konstrukt pET30a-SceTrz-N wurde während eines
Praktikums kloniert. SceTrz-C wurde ebenfalls im Rahmen eines Praktikums in pET30a und
pET32a kloniert. SceTrz-C wurde in pET32a während eines Praktikums überexprimiert. Ein
Überblick über die Mutanten ist in Bild 16 schematisch dargestellt.

Die überexprimierten Proteine sind in Bild 17 und Bild 18 gezeigt und sind alle noch mit den
pET30a-Tags versehen (N-terminaler His-Tag und S-Tag). Die Aufreinigung erfolgte mit S-
Protein-Agarose, die Proteine wurden jeweils eluiert mit 3 M Magnesiumchlorid.

Bild 16: Schematische Darstellung der SceTrz-Varianten. Das His- bzw. Pseudo-His-Motiv ist blau
dargestellt. Die konservierte Domäne 1 (CD1) ist in gelb abgebildet. Von dieser Domäne ist bisher nicht
bekannt, welche Funktion sie hat. Die Anzahl der Aminosäuren für jedes Konstrukt sind in Klammern
angegeben: SceTrz (838), SceTrz-N (487); SceTrz-C (351), SceTrz-N2 (527); SceTrz-C2 (311), SceTrz-N3
(613) (Kirchner, 2004), SceTrz-C3 (225), SceTrz-M1 (507) (Kirchner, 2004).
Bild 17: Überblick über die C-terminalen SceTrz-Deletionsmutanten SceTrz-C, -C2 und -C3. Die von pET30a überexprimierten Proteine besitzen noch beide Tags (N-terminaler His-Tag und S-Tag). Je 500 ng Protein wurden auf ein SDS-Gel aufgetragen und silbergefärbt. M: Marker, die Größen der Proteine sind in kDa angegeben. Bei SceTrz-C2 erscheint eine zusätzliche Bande bei 72 kDa, hier handelt es sich um das *E. coli* Protein GroEL, ein Chaperon.

Bild 18: SceTrz-N überexprimiert von pET30a-SceTrz-N. Die N-terminalen Tags (His-Tag und S-Tag) sind nicht abgespalten. 100 ng Protein wurden auf ein SDS-Gel aufgetragen und silbergefärbt. M: Proteingrößenstandard, die Größen der Proteine sind in kDa angegeben.

Die Überexpression von SceTrz-N2 von pET30a war zwar sehr schwach, das Protein konnte aber mittels Western Blot und anschließender S-Tag-Detektion nachgewiesen werden. Eine Bande bei ~ 70 kDa, die der Größe des Proteins entspricht, konnte mit dem S-Tag-HRP LumiBlot Kit detektiert werden. Die Aufreinigung des Proteins war jedoch schlecht, viele zusätzliche Banden und keine deutliche Überexpressionsbande sind auf dem SDS-Gel nach der Silberfärbung zu sehen (Bild nicht gezeigt).

Es war geplant, die von pET30a überexprimierten Proteine ohne Abspaltung des Tags in *in vitro*-Prozessierungstests einzusetzen, da der Tag die Aktivität oft nicht beeinflusst. Da es sich aber zeigte, dass das Wildtyp-SceTrz-Protein, das von pET30a überexprimiert wurde, mit den Tags nicht prozessiert, wurde versucht, die Tags mit rekombinanter Enterokinase abzuspalten. Die Abspaltung der Tags gelingt beim Wildtyp-Protein, wobei das Protein nicht so sauber ist.
wie nach der Überexpression in pET29a. Die Abspaltung der Tags bei den meisten Deletionsmutanten (C, C2, C3) gestaltete sich trotz verschiedener Optimierungsversuche als schwierig, da die Proteine durch die rekombinante Enterokinase teilweise abgebaut wurden (Kirchner, 2004). Die Überexpression von SceTrz-N3 und -M1 und die anschließende Abspaltung der Tags war nach zahlreichen Versuchen erfolgreich (Kirchner, 2004). Nachdem durch die Überexpression von pET30a und die anschließende Abspaltung der Tags keine sauberen Proteine für die Aktivitätstests erhalten werden konnten, wurden die Deletionsmutanten (C2, C3, N, N2) in pET29a umkloniert, da dieser Überexpressionsvektor nur für einen N-terminalen S-Tag codiert, der mittels Thrombin abgespaltet werden kann. Die Überexpression für die SceTrz-N und -N2 in pET29a war erneut nicht erfolgreich. Die Überexpression von C2 und C3 wurde im Rahmen der Diplomarbeit von S. Kirchner (Kirchner, 2004) durchgeführt. Mit den letzten beiden rekombinanten Proteinen (C2 und C3) konnte im Rahmen dieser Diplomarbeit mittels EMSA und in vitro-Prozessierungsreaktionen gezeigt werden, dass die Deletionsproteine im Gegensatz zum Wildtyp-Protein weder an tRNA binden noch Vorläufer-tRNAs prozessieren können.

4.2.3 Crosslink mit SceTrz

Es wurde bereits gezeigt (Späth, 2002; Späth et al., 2005), dass AthTrz^{S1} aus <i>A. thaliana</i> als Homodimer vorliegt. In dieser Arbeit wurde das Dimerisierungsvermögen von SceTrz untersucht. Dafür wurde SceTrz, ein Mal mit und ein Mal ohne S-Tag mit Glutaraldehyd inkubiert (s. 3.12). In den Spuren mit Glutaraldehyd läuft das Protein auf gleicher Höhe wie in den Spuren ohne Glutaraldehyd. SceTrz liegt demnach als Monomer vor.
4.2.4 In vitro-Prozessierung mit SceTrz

Neben der tRNA-Bindungsaktivität (Kirchner, 2004) wurde die katalytische Aktivität des SceTrz-Wildtyp-Proteins mittels in vitro-Prozessierungsreaktionen (ivps) untersucht. Als heterologes Substrat wurde die mitochondriale Vorläufer-tRNA_{Tyr} aus Oenothera berteriana verwendet. Als homologes Substrat diente die Vorläufer-tRNA_{Ser}, die zusätzlich ein Intron mit einer Länge von 19 Nukleotiden besitzt. Im Rahmen dieser Arbeit wurden die ivp-Bedingungen für SceTrz optimiert. Es wurde sowohl der 10 x ivp-Puffer pH 7,1 und der 10 x -ivp-cyto-Puffer pH 8,4 getestet. Außerdem wurden die Inkubationszeiten (15 Minuten, 30 Minuten und 60 Minuten) und die Inkubationstemperatur (20 °C, 30 °C und 40 °C) variiert. Eine 30-minütige Inkubation bei 40 °C in 50 mM Tris (pH 7,1), 20 mM KCl, 5 mM MgCl₂ und 2 mM DTT stellte sich als optimal heraus. Statt 40 °C wurde jedoch in späteren Versuchen die ivp-Standardtemperatur von 37 °C verwendet (Bild 20), was ebenso gut funktionierte.
Prozessierung der mitochondrialen Vorläufer-tRNA\textsubscript{Tyr} aus \textit{O. berteriana} und der nukleären Vorläufer-tRNA\textsubscript{Ser} aus \textit{S. cerevisiae} durch SceTrz. \textit{p}: Die prä-tRNAs werden mit 100 ng rekombinanter tRNase Z aus \textit{S. cerevisiae} (SceTrz) für 30 Minuten bei 37 °C inkubiert. \textit{c}: Kontrollreaktion ohne Proteinzugabe. Die Vorläufer und Produkte werden an den Seiten schematisch dargestellt. Die gepunkteten Linien bezeichnen das Intron in der tRNA\textsubscript{Ser}. M: DNA-Marker, die Größen der Fragmente sind in Nukleotiden angegeben. Beide Vorläufer-tRNAs, sowohl die heterologe prä-tRNA\textsubscript{Tyr} (tRNATyr) als auch die homologe, Intron-enthaltende prä-tRNA\textsubscript{Ser} (tRNASer) werden von SceTrz prozessiert, wobei zwei Produkte entstehen, die reife tRNA und das 3´-Ende.

4.2.5 Schnittstellenbestimmung (Primerextension)

Um herauszufinden, wo SceTrz exakt schneidet, wurde eine Schnittstellenbestimmung mittels Primerextensionsanalyse wie beschrieben (Kunzmann et al., 1998) durchgeführt. Für die Schnittstellenbestimmung wurde der 3´-Trailer der Vorläufer-tRNA\textsubscript{Tyr} und der Vorläufer-tRNA\textsubscript{Ser} analysiert. Für die reverse Transkription des tRNA\textsubscript{Tyr}-Trailers wurde der Primer Y1C verwendet. Für die Sequenzierung der Template-DNA, die für die Vorläufer-tRNA\textsubscript{Tyr} codiert, wurde ebenfalls der Primer YC1 eingesetzt. Der Primer ScSer2 wurde sowohl für die reverse Transkription der Vorläufer-tRNA\textsubscript{Ser} als auch für die Sequenzierung des entsprechenden DNA-Templates verwendet. Die Primerextensionsanalyse zeigt, dass beide Vorläufer-tRNAs, sowohl die heterologe prä-tRNA\textsubscript{Tyr} (Bild 21) als auch die homologe prä-tRNA\textsubscript{Ser} (Bild 22) direkt 3´ zum Diskriminator geschnitten werden. Bei der prä-tRNA\textsubscript{Ser} (Bild 22) ist neben der Hauptschnittstelle auch eine Nebenschnittstelle detektierbar, die um ein Nukleotid 3´ zum Diskriminator verschoben ist.
Bild 21: Schnittstellenbestimmung für die Prozessierung der prä-tRNA3\textprime Tyr mittels Primerextension. Die Primerextensionsanalyse mit den Trailer-Molekülen der Vorläufer-tRNA3\textprime Tyr (Spur: pex) zeigt, dass SceTrz die prä-tRNA direkt stromabwärts vom Diskriminator schneidet. Eine Sequenzierreaktion (Spuren: G, A, T, C) wurde mit dem gleichen Primer durchgeführt, der auch für die Primerextension verwendet wurde (Primer: Y1C).

Bild 22: Schnittstellenbestimmung für die Prozessierung der prä-tRNA3\textprime Ser mittels Primerextension. Eine Sequenzierreaktion (Spuren: G, A, T, C) wurde mit dem gleichen Primer durchgeführt, der auch für die Primerextension (pex) verwendet wurde (Primer: ScSer2). Die Sequenz des codierenden Stranges ist auf der rechten Seite dargestellt, die Schnittstellen sind durch Pfeile gekennzeichnet. Die Hauptschnittstelle des SceTrz-Proteins (Spur: pex) ist direkt 3\textprime zum Diskriminator lokalisiert.
4.3 **AthTrzS1**

A. thaliana besitzt insgesamt vier tRNase Z-Proteine, zwei kurze und zwei lange Versionen. In dieser Arbeit wurde die kurze Version AthTrzS1 (Schiffer et al., 2002) näher untersucht. In parallelen Arbeiten wurden Mutanten von AthTrzS1 erstellt (Freund, 2002; Kirchner, 2004; Späth et al., 2005), die in dieser Arbeit auf ihre Fähigkeit, Homodimere zu bilden, untersucht wurden. Außerdem wurden mit diesen Mutanten Substrattests durchgeführt.

4.3.1 Crosslinks

Aus einer früheren Arbeit (Späth, 2002) ist bekannt, dass AthTrzS1 als Homodimer existiert. In dieser Arbeit wurden die AthTrzS1-Mutanten auf ihre Homodimerisierungsfähigkeit untersucht. Die Proteine wurden entweder mittels Glutaraldehyd-Crosslink oder mittels NHS/EDC-Crosslink vernetzt. Für den Glutaraldehyd-Crosslink wurde jeweils 1 µg Protein mit 0,05 % Glutaraldehyd versetzt und für 30 Minuten bei Raumtemperatur inkubiert. Bei dem NHS/EDC-Crosslink wurden bessere Ergebnisse erzielt, wenn 2 µg Protein verwendet wurde. Im Folgenden werden beispielhaft einige Crosslinks vorgestellt (Bild 23).

Bild 23: Crosslinks mit AthTrzS1-Varianten. Alle Proteine wurden vernetzt wie im Methodenteil (s. 3.12) beschrieben. Monomere und Dimere der AthTrzS1-Proteine sind am Rand schematisch dargestellt. c: Kontrollreaktion ohne Glutaraldehyd, GA: Reaktion mit Glutaraldehyd (0,05 % Endkonzentration), m: Proteingrößensstandard, die Größen der Fragmente sind in kDa angegeben. WT: Wildtyp-Protein. Alle SDS-Gele sind 10 %ige Polyacrylamidgele außer das mit 7,5 % markierte (Polyacrylamidkonzentration: 7,5 %).

Die Crosslinks der Varianten von AthTrzS1 (Bild 23) wurden deshalb beispielhaft ausgewählt, weil sie im Rahmen dieser Arbeit weiter untersucht wurden (s. unten) (Späth et al., 2005). Die Mutanten H59L, P83L, T186I (Bild 23), K203I, H248L und del270-280 können keine Dimere mehr bilden. Es sieht so aus, als ob diese Proteine aggregieren, da die Vernetzung mit
Glutaraldehyd zu größeren Komplexen führt, die in den Geltaschen hängen bleiben. Vermutlich führt die jeweilige Mutation zur Veränderung der Proteinstruktur, was wiederum die Inaktivität des Proteins zur Folge hat.

4.3.2 Beseitigung von GroEL

Die Mehrheit der AthTrzS1-Proteine werden zusammen mit dem *E. coli*-Protein GroEL aufgereinigt. Bei diesem Protein handelt es sich um ein Chaperon, das Proteinen unter ATP-Verbrauch hilft, sich richtig zu falten (Bild 24).

![Bild 24: AthTrzS1-Mutante T186I mit GroEL. 250 ng Protein (T186) wurde auf ein 10 %-iges-SDS-Gel aufgetragen und silbergefärbt. M: Proteinmarker, die Größen sind in kDa angegeben.](image)

Es wurde versucht, GroEL mittels Anionenaustausch-Chromatographie zu beseitigen. Für das Wildtyp-Protein wurde die teilweise Trennung von GroEL bereits erfolgreich durchgeführt. Wie im Methodenteil beschrieben (s. 3.5.1), wurde T186I unter den gleichen Bedingungen, die für das Wildtyp-Protein angewendet werden, über die Mini Q-Säule aufgereinigt. Die Trennung von GroEL war jedoch nicht erfolgreich, das gesamte T186I-Protein scheint so fest an GroEL gebunden, dass eine Trennung nicht möglich ist.

Eine weitere Möglichkeit, GroEL abzutrennen, bestand darin, das Protein, in dem Fall T186I, vor dem Säulenlauf in einem Puffer mit 2 mM ATP, 60 mM KCl und 10 mM MgCl$_2$ für eine Stunde auf Eis zu inkubieren (A. Dickmanns, persönliche Kommunikation). Die Puffer für die Anionenaustausch-Chromatographie wurden zusätzlich mit 5 mM MgCl$_2$ versetzt. GroEL konnte jedoch nicht von T186I abgetrennt werden. In einem weiteren Versuch wurde das Protein vor dem Säulenlauf in 0,5 mM ATP und 5 mM MgCl$_2$ für 1 Stunde 45 Minuten auf
Eis inkubiert. Danach wurde die Anionenaustausch-Chromatographie mit Puffern, die zuvor mit 1 mM ATP versetzt worden waren, durchgeführt (M. Hayer-Hartl, persönliche Kommunikation). Auch dieses Mal wurde T186I nicht von GroEL abgetrennt.

Das Protein T186I scheint Faltungsprobleme zu haben, da es in keinem der Ansätze von GroEL abgetrennt werden konnte. Ein weiterer Hinweis darauf, dass dieses Protein nicht richtig falten kann, ist das Ergebnis des Crosslinks, das gesamte Protein bleibt nach der Vernetzung in der Geltasche hängen (Bild 23).

4.3.3 Optimierung der AthTrzS1-Überexpression und Aufreinigung

Da für zukünftige Versuche wie z.B. Kristallisierung des Proteins, Metallanalyse und Massenspektrometrie möglichst viel Protein benötigt wird, wurde in dieser Arbeit die Überexpression von AthTrzS1 optimiert. Wie im Methodenteil (s. 3.4.3) bereits beschrieben, wurde die Überexpression und die anschließende Aufreinigung durchgeführt. Im Gegensatz zu bisherigen Überexpressionen wurden die Zellen in den Überexpressionsstamm BL21-AI transformiert. Für jeden Ansatz wurden die Zellen neu transformiert. Außerdem wurde eine His-Tag-Aufreinigung durchgeführt, was bei der Verwendung des Überexpressionsvektors pET32a (N-terminaler His- und S-Tag) möglich ist. Bei früheren Versuchen wurde normalerweise eine S-Tag-Aufreinigung bevorzugt.

Nach dem Einengen des Proteins wurden die Tags mittels rekombinanter Enterokinase entfernt und eine Anionenaustausch-Chromatographie durchgeführt. Bei 120 mM KCl wird das Protein eluiert. Da jedoch auch AthTrzS1-Abbauprodukte bei 120 mM KCl mit heruntereluiert wurden, wurden die zukünftigen Aufreinigungen mittels Gelfiltration durchgeführt. Da die Auftrennung hier nach Größe erfolgte, wurden die kleineren AthTrzS1-Abbauprodukte vom Volllängen-Protein abgetrennt. Nach der Gelfiltration (Bild 25) wurden die Proben, die AthTrzS1 enthielten, vereinigt und gegen Chelex-behandelten 40 mM Tris-Puffer (pH 8,5) dialysiert. Dieser Puffer wurde mit Chemikalien höchster Reinheit (p. A.) angesetzt. Für die Konzentrationsbestimmung wurde die dialysierte Proteinprobe photometrisch vermessen (OD\textsubscript{280}) (s.3.4.4). Insgesamt wurde pro Liter \textit{E. coli}-Kultur 1,2 mg Protein gewonnen. Die Probe wurde ohne Glycerin mit Stickstoff schockgefroren. 250 µg der Proteinprobe wurden zur Metallanalyse wegeschickt (s. 4.3.4).
Ergebnisse

Bild 25: Gelfiltration von AthTrzS1. AthTrzS1 wird eluiert ab 0,8 ml. Die Fraktionen von 0,8 ml bis 1,4 ml werden vereinigt und weiter aufgearbeitet. Das AthTrzS1-Homodimer und das -Monomer sind in der Grafik schematisch dargestellt.

Bild 26: Fraktionen der Gelfiltration von AthTrzS1. Je 10 µl von 100 µl Fraktionsvolumen wurde auf ein 10 %iges SDS-Gel aufgetragen und silbergefärbt. Die Fraktionsnummer (Beschriftung oben) ist in ml angegeben. M: Proteingrößenstandard, die Größen der Fragmente sind in kDa angegeben. Die Fraktionen von 0,8 ml bis einschließlich 1,4 ml wurden vereinigt.
Ergebnisse

Bild 27: AthTrzS1 nach Gelfiltration. Je 100 ng, 250 ng, 500 ng und 1 µg aufgereinigtes AthTrzS1-Protein wurde auf ein 10 %iges SDS-Gel aufgetragen und silbergefärbt. Marker: Proteingrößenstandard, die Größen der Fragmente sind in kDa angegeben.

4.3.4 Metallanalyse

Die tRNase Z-Proteine gehören zur Familie der Metallo-β-Lactamasen, die eine Zink-Bindedomäne aufweisen. Für die tRNase Z aus \textit{E. coli} (EcoTrz) wurde bereits gezeigt, dass für dessen Aktivität Zn2+ erforderlich ist (Vogel et al., 2002). In dieser Arbeit wurde untersucht, ob Metalle für die Homodimerisierung, die tRNA-Bindung und die 3’-tRNA-Prozessierungsaktivität von AthTrzS1 notwendig sind. Außerdem wurde dieses Protein nach His-Tag-Aufreinigung mittels Gelfiltration weiter aufgereinigt und gegen metallfreien Puffer dialysiert (s. 4.3.3), um die Probe anschließend einer Metallanalyse zu unterziehen. Dafür wurde das Protein an das Institute for Analytical Science (ISAS, Dortmund) zur ICP-MS (Inductively Coupled Plasma Mass Spectrometry)- und TXRF (Total Reflection X-Ray Fluorescence)-Analyse geschickt.

Metallabhängigkeit

Für alle folgenden Tests wurden die verwendeten Puffer mittels Chelex entmetallisiert. AthTrzS1 wurde für 1 Stunde bei 4 °C mit 10 mM EDTA inkubiert und anschließend gegen
Chelex-behandelten Puffer dialysiert. Statt mit EDTA wurde AthTrzS1 auch mit 10 mM 1,10-Phenantrolin, einem anderen Komplexbildner, vorinkubiert.

Um zu untersuchen, ob AthTrzS1 ohne Metalle dimerisieren kann, wurde ein Glutaraldehyd-Crosslink mit EDTA-behandeltem Protein und metallfreiem Puffer durchgeführt. Wie in Bild 28 zu sehen ist, kann AthTrzS1 ohne Metalle dimerisieren. Nach der Inkubation mit Glutaraldehyd tritt sowohl eine Bande auf Monomer- als auch auf Dimerebene auf.

Bild 28: Metallfreies AthTrzS1 liegt als Homodimer vor. Je 1 µg AthTrzS1 (TrzS1) und EDTA-behandeltes AthTrzS1 (TrzS1(EDTA)) wurden versetzt mit 0,1 % Glutaraldehyd (Spuren 0,1 GA) oder 0,05 % Glutaraldehyd (Spuren 0,05 GA) und für 30 Minuten bei Raumtemperatur inkubiert. Parallel wurden Kontrollreaktionen (Spuren c) ohne Glutaraldehyd durchgeführt. Auf der linken Seite sind die Monomere und Dimere schematisch dargestellt. m: Proteinmarker, auf der rechten Seite sind die Fragmentgrößen in kDa angegeben.

Des Weiteren wurde untersucht, ob metallfreies AthTrzS1 an reife tRNA binden kann. Dazu wurde ein Electrophoretic Mobility Shift Assay (EMSA) mit EDTA-behandeltem Protein und Chelex-behandeltem Puffer durchgeführt. Wie aus Bild 29 ersichtlich wird, kann metallfreies AthTrzS1 an reife tRNA binden.
Bild 29: Metallfreies AthTrzS1 bindet an reife tRNA. p: ~200 ng EDTA-behandeltes AthTrzS1 wurde in den Electrophoretic Mobility Shift Assay (EMSA) eingesetzt. c: Kontrolle ohne Protein. Auf der rechten Seite sind von oben nach unten schematisch dargestellt: an reife tRNA gebundenes tRNase Z-Protein (Z), reife tRNA.

Bild 30: Metallfreies AthTrzS1 prozessiert keine Vorläufer-tRNAs. Bei den in vitro-Prozessierungsreaktionen (ivps) wurde die Vorläufer-tRNA\textsubscript{Y}r aus den Mitochondrien der Pflanze O. berteriana verwendet. Die Reaktionen wurden 20 Minuten bei 37 °C inkubiert. Auf der rechten Seite sind von oben nach unten schematisch dargestellt: tRNA-Vorläufer, 3' -Ende, reife tRNA. A) In die in vitro-Prozessierungsreaktion wurde je 100 ng EDTA-behandeltes Protein eingesetzt. 1: als ivp-Puffer wurde Chelex-behandelter 40 mM Tris-Puffer pH 8 verwendet. 2: als ivp-Puffer wurde der 1 x ivp-cyto-Puffer eingesetzt. c: Kontrollreaktion ohne Protein. Die Größen der Fragmente sind auf der linken Seite in Nukleotiden angegeben. B) Die Prozessierungsreaktionen wurden für 5 Minuten bei 37 °C vorinkubiert mit dem Chelator 1,10-Phenantrolin (Spur phe) und ohne (Spur wt) c: Kontrollreaktion ohne Protein. m: DNA-Marker, die Größen sind auf der linken Seite in Nukleotiden angegeben.
Als nächstes wurde untersucht, ob metallfreies AthTrzS1 Vorläufer-tRNAs am 3'-Ende prozessieren kann. Dazu wurde EDTA-behandeltes Protein in einen \textit{in vitro}-Prozessierungstest eingesetzt (Bild 30A). In einem anderen Ansatz wurden die Prozessierungsreaktionen mit 10 mM 1,10-Phenantrrolin für 5 Minuten bei 37 °C vorinkubiert (Bild 30B). Bei der metallfreien tRNase Z zeigte sich, dass das Enzym Vorläufer-tRNAs nicht mehr prozessieren kann (Bild 30), deshalb wurde untersucht, welche Metalle die Prozessierungsaktivität wieder herstellen können. AthTrzS1 wurde mit 10 mM 1,10-Phenantrrolin vorinkubiert, wobei anschließend das überschüssige Phenantrolin mit metallfreiem Puffer herausdialysiert wurde. Dieses Protein wurde in \textit{in vitro}-Prozessierungsreaktionen eingesetzt, wobei verschiedene Metalle zugegeben wurden, um zu testen, welches Metall die Aktivität des Proteins wieder herstellen kann. Die Metalle wurden in einer Endkonzentration von 0,2 mM zugegeben, eine Ausnahme mit 2 mM Endkonzentration bildete Mg2+. Der normalerweise verwendete \textit{in vitro}-Prozessierungspuffer enthält ebenfalls Magnesium in einer Endkonzentration von 2 mM (Mayer et al., 2000). Deshalb wurde in diesem Experiment die Magnesiumkonzentration von 2 mM beibehalten. Unter den getesteten Metallen stellten Mn2+, Mg2+ und Ca2+ die 3’-tRNA-Prozessierungsaktivität wieder her (Bild 31).
Ergebnisse

Bild 31: In vitro-Prozessierungsreaktionen mit 1,10-Phenantrrolin-behandeltem AthTrzS1 unter Zugabe verschiedener Metalle. m: DNA-Marker, die Größen der Fragmente sind jeweils auf der linken Seite in Nukleotiden angegeben. Rechts sind schematisch jeweils der tRNA-Vorläufer und die Reaktionsprodukte dargestellt. A) Zugabe von Mn²⁺ stellt die in vitro-Prozessierungsaktivität von AthTrzS1 wieder her (Spur Mn). p: Prozessierungsreaktion mit unbehandeltem Protein. c: Kontrollreaktion ohne Protein. B) Zn²⁺ (Spur Zn) und Fe²⁺ (Spur: Fe) können im Gegensatz zu Mg²⁺ (Spur M) die Prozessierungsaktivität von AthTrzS1 nicht wiederherstellen. Kontrollreaktion ohne Protein. C) Ca²⁺ (Spur Ca) kann die 3'-tRNA-Prozessierungsaktivität wiederherstellen. c: Phenantrolin-behandeltes AthTrzS1 ohne Metallzugabe.

Metallanalyse von AthTrzS1

Wie oben bereits erwähnt, wurde das AthTrzS1-Protein zur Metallanalyse an das Institute for Analytical Science (ISAS, Dortmund) gesendet. Das Protein wurde durch His-Aufreinigung, Gelfiltration und Dialyse gegen metallfreien Puffer für die Metallanalyse vorbereitet. Die Probe wurde mittels ICP-MS- und TXRF-Analyse auf an das Protein gebundene Metalle untersucht. Zum Probenabgleich wurde der Dialysepuffer ebenfalls analysiert.

Wenn bei der ICP-MS-Analyse die theoretisch berechnete Proteinmenge nicht mit der tatsächlich eingesetzten Menge übereinstimmt, weicht die ermittelte Anzahl der Atome/Dimer entsprechend ab, die Verhältnisse der einzelnen Metalle zueinander sind jedoch unabhängig
von der eingesetzten Proteinmenge. Die TXRF-Werte können im Gegensatz zu den ICP-MS-Werten exakt berechnet werden ohne zu wissen, welche Menge an Protein für die Analyse eingesetzt wurde (s. oben und 3.4.5), weshalb angenommen wird, dass die TXRF-Werte den tatsächlich vorliegenden Metallgehalt widerspiegeln. Aus diesem Grund werden im Folgenden nur die TXRF-Werte näher betrachtet und später diskutiert.

<table>
<thead>
<tr>
<th>Element</th>
<th>Verhältnis der relativen Anteile: S/Element *</th>
<th>Molekulare Masse</th>
<th>Atome/Dimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>32,07</td>
<td>18</td>
</tr>
<tr>
<td>Ca</td>
<td>3,37</td>
<td>40,08</td>
<td>4,36</td>
</tr>
<tr>
<td>Zn</td>
<td>7,78</td>
<td>65,37</td>
<td>1,13</td>
</tr>
<tr>
<td>Fe</td>
<td>13,625</td>
<td>55,85</td>
<td>0,79</td>
</tr>
<tr>
<td>Ni</td>
<td>18,17</td>
<td>58,69</td>
<td>0,54</td>
</tr>
<tr>
<td>Mn</td>
<td>25,15</td>
<td>54,94</td>
<td>0,42</td>
</tr>
</tbody>
</table>

Tabelle 7: Ergebnisse der Elementanalyse mittels TXRF. (Quelle: ISAS, Dortmund). Die Berechnung der Atome/Dimer erfolgte wie im Methodenteil beschrieben (s. 3.4.5). * Die TXRF-Analyse lieferte die Werte der relativen Anteile der in der linken Spalte aufgeführten Elemente, das Verhältnis der relativen Anteile im Bezug zu Schwefel (S) wurde anschließend berechnet und ist in dieser Spalte aufgeführt.

Die an die anderen TXRF-Werte angepasste Anzahl der Magnesiumatome pro Dimer wurde über das Verhältnis der anderen Metalle zu Magnesium berechnet (Tabelle 9). Die Menge der anderen Atome konnte mit Hilfe der Werte aus Tabelle 8 bestimmt werden, was somit die Ermittlung der durchschnittlichen Anzahl der Magnesiumatome pro Dimer ermöglichte (Tabelle 9) (s. Methodenteil 3.4.5). Bei den Metallen, die in erhöhter Konzentration auftraten, handelte es sich um Calcium (4,35 Atome/Dimer) und Magnesium (durchschnittlich 3,02 Atome/Dimer +/-0,61 Atome/Dimer). Rund ein Zinkatom ist mit einem AthTrzS1-Dimer assoziiert. Eisen, Nickel und Mangan wiesen ebenfalls noch einen geringen Anteil (< 1 Atom/Dimer) in der untersuchten Probe auf.
<table>
<thead>
<tr>
<th>Element</th>
<th>Konzentration in der Messlösung [ng/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>95</td>
</tr>
<tr>
<td>Mg</td>
<td>38</td>
</tr>
<tr>
<td>Zn</td>
<td>53</td>
</tr>
<tr>
<td>Fe</td>
<td>19</td>
</tr>
<tr>
<td>Ni</td>
<td>17</td>
</tr>
<tr>
<td>Mn</td>
<td>9,5</td>
</tr>
</tbody>
</table>

Tabelle 8: Ergebnisse der Elementanalyse mittels ICP-MS (Quelle: ISAS, Dortmund). (s. auch Methodenteil: 3.4.5)

<table>
<thead>
<tr>
<th>Element</th>
<th>y</th>
<th>Magnesiumatome/Dimer (angepasst an die TXRF-Werte)</th>
<th>Durchschnittliche Anzahl der Magnesiumatome/Dimer angepasst an die TXRF-Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>1,500</td>
<td>2,91</td>
<td>3,02 +/- 0,61</td>
</tr>
<tr>
<td>Mg</td>
<td>1,000</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0,524</td>
<td>2,15</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0,214</td>
<td>3,69</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0,190</td>
<td>2,84</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0,119</td>
<td>3,53</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 9: Berechnung der an die TXRF-Werte angepasste Anzahl der Magnesiumatome (Mg)/Dimer. y: Berechnung der Atomverhältnisse mittels ICP-MS-Werten, wobei y = Anzahl der Atome_{element}/Anzahl der Atome_{Mg}. Magnesiumatome/Dimer angepasst an die TXRF-Werte: Anzahl der Atome_{element}/y.

4.3.5 Massenspektrometrie

Eine massenspektrometrische Analyse des AthTrz^{S1}-Proteins soll Auskünfte darüber geben, ob das Protein Modifikationen trägt. Das AthTrz^{S1} Protein für diese Untersuchung wurde in den BL21-AI-Zellen überexprimiert und His-aufgereinigt. Die Massenspektrometrie wurde in der Abteilung „Protein Mass Spectrometry for Experimental Biomedicine“ von Prof. Sickmann (Würzburg) durchgeführt. Eine vorläufige Bestimmung lieferte eine Masse von 32061 Da (~ +/- 10 Da). Das Protein ohne zusätzliche Modifikation müsste theoretisch eine Masse von 31606 Da aufweisen. Im Folgenden muss nun näher untersucht werden, welche Art von Modifikationen das tRNase Z-Protein enthält.
4.4 Substrattests

4.4.1 Bis(p-nitrophenyl)phosphat (bpNPP)

In dieser Arbeit wurden sämtliche verfügbaren tRNase Z-Proteine auf ihre Fähigkeit, den Phosphodiester bpNPP umzusetzen, überprüft, denn die tRNase Z-Proteine besitzen alle eine Phosphodiesterasedomäne (PDE-Domäne) (Schiffer et al., 2002). Bei diesem Test handelt es sich um einen photometrisch messbaren Versuch. Die Gelbfärbung, die sich bei einer positiven Reaktion zeigt, wird bei OD$_{405}$ gemessen. Als Positivkontrolle wurde EcoTrz verwendet, dessen bpNPP-Aktivität bereits nachgewiesen wurde (Vogel et al., 2002).

Als erstes ging es darum, welche tRNase Z-Proteine überhaupt Phosphodiesteraseaktivität zeigen. Im nächsten Schritt wurden diejenigen Proteine für kinetische Analysen ausgewählt, die eine ausreichend hohe Aktivität bezüglich bpNPP zeigen. Für AthTrzSI wurde zusätzlich die Metallabhängigkeit bezüglich der bpNPP-Aktivität getestet.

Die Ergebnisse der bpNPP-Aktivitäts tests des Wildtyp-Proteins AthTrzSI, der archaealen tRNase Z-Proteine aus *H. volcanii* (HvoTrz) und *P. furiosus* (PfuTrz) und der langen tRNase Z-Proteine aus *S. cerevisiae* (SceTrz), *D. melanogaster* (DmeTrz) und *A. thaliana* (AthTrzL1) sind in Tabelle 10 dargestellt.

<table>
<thead>
<tr>
<th>tRNase Z-Protein</th>
<th>bpNPP-Aktivität (in %)</th>
<th>ivp-Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>AthTrzSI</td>
<td>100</td>
<td>Schiffer et al., 2002</td>
</tr>
<tr>
<td>HvoTrz</td>
<td>5,1</td>
<td>Schierling et al., 2002</td>
</tr>
<tr>
<td>PfuTrz (55 °C)</td>
<td>5,9</td>
<td>Lieberoth, 2004</td>
</tr>
<tr>
<td>SceTrz</td>
<td>-</td>
<td>diese Arbeit, Takaku et al., 2003</td>
</tr>
<tr>
<td>DmeTrz</td>
<td>-</td>
<td>Dubrovsky et al., 2004</td>
</tr>
<tr>
<td>AthTrzL1</td>
<td>-</td>
<td>Marchfelder, unveröffentlicht</td>
</tr>
</tbody>
</table>

Tabelle 10: Vergleich der bpNPP-Aktivitäten der tRNase Z-Proteine. Für alle untersuchten tRNase Z-Proteine wurde die tRNA-3'-Prozessierungsaktivität (ivp-Aktivität) bereits gezeigt. Die bpNPP-Aktivität von AthTrzSI wurde gleich 100 % gesetzt. Alle Reaktionen wurden für 1 Stunde bei 37 °C inkubiert, außer PfuTrz, dieses Enzym wurde bei 55 °C inkubiert (vgl. Lieberoth, 2004), und bei OD$_{405}$ photometrisch vermessen. -: keine Aktivität.

Nachdem die bpNPP-Aktivität von AthTrzSI gezeigt werden konnte (Tabelle 10), wurden alle AthTrzSI-Mutanten (Späth et al., 2005) ebenfalls auf Phosphodiesteraseaktivität untersucht. Folgende AthTrzSI-Mutanten wiesen bpNPP-Aktivität auf (s. auch Tabelle 11): del149-164,
Ergebnisse

Das zweite kurze AthTrz-Protein (AthTrzS2) wurde ebenfalls auf Phosphodiesteraseaktivität getestet (Tabelle 11). Es wurde sowohl das Protein mit N-terminaler Verlängerung (AthTrzS2l), einer potentiellen Targetsequenz für Chloroplasten, als auch ohne diese Verlängerung (AthTrzS2s) verwendet. Die tRNase Z-Aktivität dieser Proteine wurde bereits charakterisiert (Ptak, 2005), beide haben tRNA-3´-Prozessierungsaktivität.
Ergebnisse

Kinetiken mit bpNPP

Von einigen tRNase Z-Proteinen wurden kinetische Analysen durchgeführt (Tabelle 11). Für jedes Protein wurde die Messung 3-4 Mal durchgeführt und der Mittelwert bestimmt. Diese Werte wurden mit Hilfe des Computerprogramms Origin 7.0 an Michaelis-Menten-Kurven angepasst. In der folgenden Tabelle sind die kinetischen Parameter \(v_m \) (maximale Geschwindigkeit in Units/mg Protein), die Michaeliskonstante \(k_m \) (in mM), die katalytische Konstante \(k_{cat} \) (in s\(^{-1}\)) und die katalytische Effizienz \(k_{cat}/k_m \) (in s\(^{-1}\) mM\(^{-1}\)) aufgelistet. Bei der Durchführung der Kinetiken mit C40G, F51L und G62V wurde bei den Messungen noch kein eindeutiges Plateau erreicht. Die Messungen konnten bei einer bpNPP-Konzentration > 20 mM nicht ausgeführt werden, da die Lösung dann gesättigt ist. Bei diesen Mutanten wurde der höchste gemessene Wert als \(v_m \) bestimmt und dementsprechend \(k_m \) festgestellt.

<table>
<thead>
<tr>
<th>tRNase Z-Proteine</th>
<th>(v_m) (U/mg)</th>
<th>(k_m) (mM)</th>
<th>(k_{cat}) (s(^{-1}))</th>
<th>(k_{cat}/k_m) (s(^{-1}) mM(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AthTrz(^{S2l})</td>
<td>119,21 +/- 3,11</td>
<td>0,20 +/- 0,03</td>
<td>79,57</td>
<td>397,85</td>
</tr>
<tr>
<td>AthTrz(^{S2s})</td>
<td>44,21 +/- 1,71</td>
<td>0,15 +/- 0,04</td>
<td>23,78</td>
<td>158,53</td>
</tr>
<tr>
<td>AthTrz(^{S1})</td>
<td>14,2 +/- 1,02</td>
<td>8,48 +/- 1,30</td>
<td>7,35</td>
<td>0,87</td>
</tr>
<tr>
<td>AthTrz(^{S1})-C25G</td>
<td>7,47 +/- 0,67</td>
<td>13,23 +/- 2,07</td>
<td>3,87</td>
<td>0,29</td>
</tr>
<tr>
<td>AthTrz(^{S1})-P64A</td>
<td>8,89 +/- 0,55</td>
<td>22,19 +/- 2,17</td>
<td>4,60</td>
<td>0,21</td>
</tr>
<tr>
<td>AthTrz(^{S1})-P178A</td>
<td>3,43 +/- 0,11</td>
<td>1,16 +/- 0,17</td>
<td>1,78</td>
<td>1,53</td>
</tr>
<tr>
<td>AthTrz(^{S1})-E208A</td>
<td>7,80 +/- 0,33</td>
<td>3,52 +/- 0,46</td>
<td>4,04</td>
<td>1,15</td>
</tr>
<tr>
<td>AthTrz(^{S1})-R252G</td>
<td>132,37 +/- 6,63</td>
<td>1,79 +/- 0,32</td>
<td>68,52</td>
<td>38,28</td>
</tr>
<tr>
<td>AthTrz(^{S1})-C40G</td>
<td>>6</td>
<td>>6</td>
<td>3,1</td>
<td>0,52</td>
</tr>
<tr>
<td>AthTrz(^{S1})-F51L</td>
<td>>4,5</td>
<td>>6,5</td>
<td>2,3</td>
<td>0,35</td>
</tr>
<tr>
<td>AthTrz(^{S1})-G62V</td>
<td>>1,6</td>
<td>>8</td>
<td>0,8</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabelle 11: Überblick über die kinetischen Parameter der untersuchten tRNase Z-Proteine. Als Substrat wurde der künstliche Phosphodiester bpNPP verwendet. Die maximale Umsatzgeschwindigkeit \(v_m \) wird in Units/mg Protein angegeben. \(k_m \) wird in mM angegeben. Bei den Werten, die mit " > " bezeichnet sind, wurde der am höchsten gemessene Wert bei der kinetischen Kurve abgelesen, da sich kein richtiges Plateau ergab, und dementsprechend \(k_m \) bestimmt. Für \(k_{cat} \) und \(k_{cat}/k_m \) wird der Fehler auf maximal 20 % geschätzt.

Die höchste katalytische Effizienz und damit die höchste Substratspezifität bezüglich bpNPP weist AthTrz\(^{S2l}\) auf. Dieses Protein besitzt eine potentielle Targetsequenz für Chloroplasten. Dasselbe Protein ohne die Targetsequenz, AthTrz\(^{S2s}\), hat im Vergleich zu den anderen untersuchten Proteinen eine immer noch sehr hohe Substratspezifität mit einem Wert von fast 160 s\(^{-1}\)mM\(^{-1}\). Von den AthTrz\(^{S1}\)-Mutanten zeigt R252G die höchste katalytische Effizienz.
Diese Mutante hat eine 44 Mal höhere katalytische Effizienz als das Wildtyp-Protein, aber eine 10fach geringere Substratspezifität als AthTrzS1. Die AthTrzS1-Mutanten P178A, E208A und C40G haben eine in etwa gleich hohe Substratspezifität wie der Wildtyp. Alle anderen untersuchten AthTrzS1-Mutanten (C25G, P64A, F51L, G62V) haben eine katalytische Effizienz kleiner als 0,5 s-1mM-1.

Mit EcoTrz wurde ebenfalls eine Kinetik erstellt, allerdings wurden nur zwei Messreihen durchgeführt. EcoTrz wird mittels Hill-Kinetik analysiert, denn die positive Kooperativität, dieses Enzyms bezüglich bpNPP wurde bereits gezeigt (Vogel et al., 2002). Für EcoTrz wurden folgende Werte erhalten: \(v_m = 1187,11 +/- 54,93\) U/mg; \(k = 3,18 +/- 0,24\) mM; \(n = 1,90 +/- 0,24\). Der ermittelte Hill-Koeffizient \(n\) lieferte einen Wert von fast 2, was bedeutet, dass das Binden des ersten Substratmoleküls die Affinität des zweiten Substratmoleküls erhöht. Die in dieser Arbeit untersuchten AthTrz-Proteine zeigen keine Kooperativität \((n \sim 1)\). Beispielhaft werden im Folgenden kinetische Kurven von AthTrzS1, AthTrzS1-E208A, AthTrzS1-R252G und AthTrzS2l gezeigt (Bild 32).
Wie oben bereits erwähnt, wurde die Metallabhängigkeit der Phosphodiesteraseaktivität des tRNase Z-Proteins AthTrz\(^{S1}\) untersucht. Dazu wurde EDTA-behandeltes AthTrz\(^{S1}\)-Protein zusammen mit Chelex-behandeltem Reaktionspuffer und jeweils verschiedenen Metallen für 3 Stunden bei Raumtemperatur vorinkubiert. Die Metalle wurden in folgenden Konzentrationen zugesetzt: 0,01 mM Zink, 0,2 mM Eisen, 0,2 mM Mangan, 0,2 mM Kobalt, 2 mM Magnesium, 2 mM Kalium. Bei Verwendung von Eisen wurde zusätzlich Dithionit (2 mM) zugegeben, um die Oxidation von Fe\(^{2+}\) nach Fe\(^{3+}\) zu verhindern. Zusätzlich wurde eine 14 mM bpNPP-Lösung mit 10 mM EDTA für 30 Minuten bei Raumtemperatur inkubiert. 200 µl des so vorbereiteten bpNPP-Puffers wurden jeweils mit einem Aliquot der vorbereiteten Proteinprobe versetzt und am Photometer bei OD\(_{405}\) für 3 Minuten vermessen. Als Nullkontrolle wurde der bpNPP-Puffer mit EDTA-behandeltem Protein versetzt, das ohne Metallzusatz vorinkubiert worden ist.
Bild 33: Metallabhängige bpNPP-Aktivität von AthTrzS1. Die Versuche zu A), B) und C) wurden unabhängig voneinander durchgeführt. KO: Reaktion mit Protein ohne Metall.

Mit Hilfe der Ergebnisse, die in Bild 33 dargestellt sind, wurde eine Rangliste der Metalle erstellt. Die Nullkontrolle wurde gleich 1 gesetzt.
Metalle	Aktivitätssteigerung (KO = 1)
Mg/Fe; Fe | 3 x
Co | 2,5 x
Mg/K | 2,4 x
Mg/Zn/Fe | 2,2 x
Mn | 2,1 x
Zn/Fe | 1,7 x
Zn | 1,5 x
Mg/Zn; Mg | keine Aktivitätssteigerung

Tabelle 12: Rangliste der Metalle. Die Nullkontrolle, d.h. die Probe ohne Metallzusatz, wurde gleich 1 gesetzt.

4.4.2 Thymidin-5’-p-nitrophenylphosphat (TpNPP)

Bei TpNPP handelt es sich wie bei bpNPP um einen Phosphodiester. Dieser wird ebenfalls als Substrat eingesetzt, um die im Labor verfügbaren tRNase Z-Enzyme auf Phosphodiesteraseaktivität zu testen. Ein Farbumschlag von farblos nach gelb zeigt eine positive Reaktion an. Dieser Farbumschlag kann photometrisch bei OD_{405} bestimmt werden (s. auch bpNPP). Als Positivkontrolle wurde EcoTrz verwendet, dessen Phosphodiesteraseaktivität bezüglich TpNPP bereits nachgewiesen wurde (Vogel et al., 2002).

In Tabelle 13 sind die Proteine aufgelistet, die auf TpNPP-Aktivität untersucht wurden. Wie aus diesem Überblick ersichtlich wird, setzen alle langen untersuchten tRNase Z-Proteine AthTrzL1 aus *A. thaliana*, DmeTrz aus *D. melanogaster* und SceTrz aus *S. cerevisiae* den Phosphodiester TpNPP nicht um. Alle getesteten Proteine, die TpNPP umsetzen, setzen auch bpNPP um, wobei die Aktivität bezüglich TpNPP deutlich schwächer ist.
Ergebnisse

<table>
<thead>
<tr>
<th>tRNase Z-Protein</th>
<th>TpNPP-Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoTrz</td>
<td>100 %</td>
</tr>
<tr>
<td>AthTrzS_1</td>
<td>3,3 %</td>
</tr>
<tr>
<td>AthTrzS_2s</td>
<td>79,2 %</td>
</tr>
<tr>
<td>AthTrzS_2l</td>
<td>100 %</td>
</tr>
<tr>
<td>AthTrzS_1(R252G)</td>
<td>21,6 %</td>
</tr>
<tr>
<td>$AthTrz^L_I$</td>
<td>-</td>
</tr>
<tr>
<td>DmeTrz</td>
<td>-</td>
</tr>
<tr>
<td>SceTrz</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 13: TpNPP-Aktivität verschiedener tRNase Z-Proteine. Die Aktivität von EcoTrz wird gleich 100 % gesetzt. -: keine Aktivität.

4.4.3 3´, 5´ cyclisches Adeninmonophosphat (cAMP)

Da die tRNase Z-Proteine eine Phosphodiesterasedomäne besitzen, wurde auch untersucht, ob diese Proteine in der Lage sind, 3´, 5´ cAMP umzusetzen. 3´, 5´ cAMP könnte als potenzielles physiologisches Substrat zusätzlich zu den tRNA-Vorläufer-Molekülen umgesetzt werden. In einem chromatographischen Ansatz (s. auch 3.13.3) wurden folgende Proteine auf die Fähigkeit 3´, 5´ cAMP umzusetzen, untersucht: AthTrzS_1, AthTrzS_2l, AthTrzS_2s, EcoTrz und SceTrz.

Als Kontrolle wurde erst 10 µg 5´ AMP und 10 µg 3´, 5´ cAMP gemischt, über die Resource Q (Äkta) geschickt und in einem linearen Gradienten mit 40 % B Endkonzentration eluiert. Als Puffer A wurde 10 mM K$_2$HPO$_4$ pH 8 verwendet, als Puffer B wurde 50 mM K$_2$HPO$_4$ pH 8, 0,25 M NaCl eingesetzt. Auf dem resultierenden Chromatogramm ist sowohl der 5´ AMP-Peak als auch der cAMP-Peak zu sehen (Bild 34A). So müsste im Idealfall das Chromatogramm aussehen, wenn das Testprotein 3´, 5´ cAMP umsetzt. Als Positivkontrolle wurde cAMP mit einer kommerziell erwerbbaren Phosphodiesterase (Sigma) inkubiert und mittels Chromatographie analysiert (Bild 34B). Wie erwartet wird cAMP umgesetzt, der 5´ AMP-Peak und der cAMP-Peak sind auf dem Chromatogramm sichtbar.
Bild 34: Chromatogramme der Testläufe an der Resource Q (Äkta). A) 10 µg 5´ AMP und 10 µg 3´, 5´ cAMP wurden zusammen injiziert und eluiert (linearer Gradient: 40 % B Endkonzentration). B) Positivkontrolle: 50 µg cAMP wurden mit 50 mU Phosphodiesterase (PDE, Sigma) für 5 Minuten bei 30 °C inkubiert, die für 3´, 5´ cyclische Nukleotide spezifisch ist und aus Rinderhirn gewonnen wurde. Anschließend wurde der Säulenlauf gestartet.
Ergebnisse

Nachdem die vorbereitenden Kontroll-Säulenläufe (Bild 34) wie gewünscht durchgeführt worden waren, wurde AthTrzS1 auf die Fähigkeit, 3’, 5’ cAMP umzusetzen, untersucht. Dafür wurde jeweils 25 µg cAMP mit 500 ng AthTrzS1 für 1 Stunde bzw. über Nacht bei 37 °C inkubiert. Als Nullkontrolle wurde jeweils cAMP ohne Protein inkubiert. Alle Chromatogramme gleichen sich (Bild 35). Die Chromatogramme mit Protein sehen genauso aus wie die ohne Protein, das bedeutet, dass AthTrzS1 nicht in der Lage ist, das Substrat 3’, 5’ cAMP umzusetzen.

Analog zu AthTrzS1 wurden die anderen tRNase Z-Proteine getestet. Alle überprüften Enzyme konnten cAMP nicht umsetzen. Für EcoTrz wurde bereits in einer anderen Arbeit (Vogel et al., 2002) gezeigt, dass sich 3’, 5’ cAMP nicht als Substrat eignet.
4.4.4 SD-Lactoylglutathion (SLG)

4.5 cptRNA: Prozessierung der dicistronischen Met42-Transkripte

Herstellung der cptRNA-Substrate

Parallel wurden alle cptRNA-Templates „blunt“ in einen Smal geschnittenen pUC18-Vektor kloniert (s. 3.3.2) und sequenziert. Dabei wurde festgestellt, dass die untersuchten cptRNA-Sequenzen von *N. tabacum* und *N. rustica* identisch sind.

In vitro-Prozessierung mit cptRNA-Substraten

Die *in vitro*-Prozessierungsreaktion wurde wie folgt angesetzt:

1. 10 µl 10 x ivp-Puffer pH 7,1
2. 100 ng Protein (AthTrz S2)
3. 1 µl cptRNA (~ 7000-10000 cpm)
4. 1 µl RNasin (40 U)
5. ad 100 µl Bidest

Der Ansatz wurde für 2 Stunden bei 37 °C inkubiert. Ansonsten wird die ivp wie im Methodenteil (s. 3.7) beschrieben durchgeführt.

Sowohl tRNA-MetG als auch tRNA-Ser (beide aus *N. rustica*) werden von AthTrz S2 prozessiert (Bild 36). Da die Expositionszeit des Röntgenfilms über Nacht meist nicht ausreichte, um den 3´-Trailer deutlich zu sehen, wurde der Film ca. 1 Woche exponiert.
3'-Endmarkierung der cptRNA-Transkripte

5'-Endmarkierung der cptRNA-Transkripte

cptRNA-MetG und cptRNA-Ser wurden in einem anderen Ansatz mit γ-32P-ATP 5'-markiert. Dazu mussten die kalten Transkripte erst dephosphoryliert werden, um sie anschließend mit γ-32P-ATP radioaktiv markieren zu können. Diese Transkripte wurden auch für in vitro-Prozessierungsreaktionen genutzt. In diesem Fall sollten erwartungsgemäß nur die Vorläufer-cptRNA und die reife tRNA autoradiographisch detektierbar sein. Bei der cptRNA-Ser sind
neben der reifen cptRNA auch Abbau-Produkte zu sehen. Die ivp mit 5'-markierter cptRNA-MetG weist eine Bande in der Höhe auf, die der Größe der reifen tRNA entspricht (Bild nicht gezeigt). Die 5'-markierten cptRNAs werden außerdem noch 3'-endmarkiert, um sie anschließend als Substrate für die in vitro-Prozessierungsreaktion zu verwenden. Bei cptRNA-MetG ist auf dem Film nur die 5'-markierte, reife tRNA zu sehen (Bild nicht gezeigt), bei cptRNA-Ser ist nur der 3'-markierte Trailer zu sehen (Bild nicht gezeigt). Erwartungsgemäß sollten jedoch bei beiden verwendeten cptRNAs neben der Vorläufer-cptRNA, die reife tRNA und der 3'-Trailer zu sehen sein.

Herstellung von Transkripten mit längeren 3'-Enden

Um die cptRNA-3'-Trailerlänge zu vergrößern, was den Vorteil einer besseren Detektion im Blick hat, wurde eine PCR mit den cptRNA-pUC18-Konstrukten als Templates durchgeführt. Als Primer 1 wurde der genspezifische Primer, der zusätzlich den T7-Promotor enthält, gewählt, als Primer 2 wurde der RS-Primer verwendet. Die PCR-Produkte wurden mit Pfu-Polymerase behandelt und danach mit NucleotraPCR aufgereinigt. Diese so aufbereiteten PCR-Produkte wurden in vitro transkribiert und anschließend in eine in vitro-Prozessierungsreaktion eingesetzt.

Eine erfolgreiche in vitro-Prozessierungsreaktion konnte nur mit cptRNA-MetG durchgeführt werden (Bild 37).

Bild 37: In vitro-Prozessierungsreaktion mit einem cptRNA-MetG-Vorläufer, der einen verlängerten 3'-Trailer besitzt: TrzS2: 100 ng AthTrzS2 wurde in die Reaktion eingesetzt und für 2 Stunden bei 37 °C inkubiert. KO: Reaktion ohne Protein, M: DNA-Marker. Rechts sind die Größen der Markerfragmente in Nukleotiden angegeben. Auf der linken Seite sind die Reaktionsprodukte von oben nach unten schematisch dargestellt: Vorläufer-tRNA (162 nt), 3'-Trailer (89 nt), reife tRNA (73 nt).
4.6 EcoTrz

Für die EcoTrz typische Phosphodiesteraseaktivität ist die Exosite nicht erforderlich. Der Phosphodiester bpNPP kann auch von der Deletionsmutante, die keine Exosite mehr enthält, umgesetzt werden (Schilling et al., 2005b). Außerdem ist die Dimerisierungsfähigkeit dieser Mutante nicht eingeschränkt (Schilling et al., 2005b).

In dieser Arbeit wurde überprüft, ob die Exosite für die tRNA-Reifung notwendig ist, d.h. ob die EcoTrz-Mutante ohne Exosite (EcoTrzΔ) Vorläufer-tRNAs am 3´-Ende prozessieren kann. Die tRNase Z-Aktivität von EcoTrz wurde bereits gezeigt (Minagawa et al., 2004).

Für die Überprüfung der tRNA-3´-Prozessierungsaktivität wurde die mitochondriale Tyrosin-Vorläufer-tRNA aus *O. berteriana* eingesetzt (Schierling et al., 2002; Schiffer et al., 2003; Mayer et al., 2000). Das tRNase Z-Protein aus *S. cerevisiae*, SceTrz, wurde als Positivkontrolle verwendet. Der EcoTrz-Wildtyp prozessiert die Vorläufer-tRNA_Tyr auf gleiche Art und Weise wie SceTrz. Sowohl die reife tRNA als auch der abgeschnittene 3´-Trailer sind detektierbar (Bild 38).
Ergebnisse

Bild 38: Die EcoTrz-Exosite ist erforderlich für die Vorläufer-tRNA-3’-Prozessierung. In der *in vitro*-Prozessierungsreaktion wurde die Vorläufer tRNA_{Tyr} aus *O. berteriana* eingesetzt. Die Proben wurden 2 Stunden bei 37 °C inkubiert. EcoTrz: 100 ng EcoTrz-Wildtyp-Protein wurde in die Reaktion eingesetzt. Δ: EcoTrz Δ, von der Deletionsmutante ohne EcoTrz-Exosite wurden ebenfalls 100 ng eingesetzt. SceTrz: als Positivkontrolle wurden 100 ng der tRNase Z aus *S. cerevisiae* eingesetzt. K0: als Negativkontrolle wurde dem Reaktionsmix kein Enzym zugesetzt. Auf der linken Seite befindet sich der DNA-Marker, wobei die Fragmentgrößen in Nukleotiden angegeben sind. Auf der rechten Seite (von oben nach unten) sind die Reaktionsprodukte schematisch dargestellt: Vorläufer-tRNA, 3’-Trailer, reife tRNA.

Neben der *in vitro*-Prozessierungsaktivität von Vorläufer-tRNAs wurde in dieser Arbeit die Fähigkeit der tRNA-Bindung untersucht. Hier wurde der Electrophoretic Mobility Shift Assay (EMSA) angewendet, um zu testen, ob der Wildtyp von EcoTrz und EcoTrzΔ an reife Weizen-tRNA binden (Bild 39). S. Kirchner (Kirchner, 2004) konnte zeigen, dass die tRNase Z aus *S. cerevisiae*, SceTrz, an reife Weizen-tRNA bindet. Auch in diesem Test diente SceTrz als Positivkontrolle. SceTrz hat im Vergleich zu EcoTrz eine hohe Affinität für reife Weizen-tRNA. Eine größere Proteinmenge von EcoTrz-Wildtyp ist nötig, um einen Shift der tRNA zu detektieren. 200 ng von SceTrz sind ausreichend, um einen tRNA-Shift erkennen zu können; vom EcoTrz-Wildtyp mussten dafür 750 ng Protein eingesetzt werden. Obwohl bei EcoTrz mehr Protein als bei SceTrz eingesetzt wurde, ist der Anteil an Protein-gebundener tRNA geringer als bei SceTrz. Das ist ein Hinweis dafür, dass EcoTrz eine eindeutig schwächere
tRNA-Affinität besitzt als SceTrz. Unter den gleichen experimentellen Bedingungen wurde eine EMSA für EcoTrzΔ durchgeführt. Hier konnte kein Shift der tRNA und somit keine Bindung des Proteins an die tRNA nachgewiesen werden. Das Fehlen der EcoTrz-Exosite ist somit die Ursache dafür, dass das Protein nicht mehr an die tRNA binden kann. Die hier vorgestellten Ergebnisse wurden bereits veröffentlicht (Schilling et al., 2005b).

Bild 39: Die EcoTrz-Exosite ist notwendig für die Bindung an tRNA. Ein Electrophoretic Mobility Shift Assay (EMSA) wurde mit reifer Weizen-tRNA durchgeführt. SceTrz: als Positivkontrolle diente die tRNase Z aus S. cerevisiae. K0: Negativkontrolle, hier wurde kein Protein zugesetzt. Folgende Proteinmengen wurden verwendet: 200 ng SceTrz, 250 ng (1), 500 ng (2), oder 750 ng (3) EcoTrz (Wildtyp), und 500 ng (1) oder 750 ng (2) von EcoTrzΔ. Auf der rechten Seite sind von oben nach unten schematisch dargestellt: an reife tRNA gebundenes Protein, reife tRNA.
5 Diskussion

5.1 Charakterisierung der tRNase Z aus S. cerevisiae

5.1.1 In vivo-Analyse von SceTrz

Da für die Untersuchung der biologischen Funktion aufgrund der Letalität dieses Gens ein Knock-out nicht analysiert werden kann, wurde eine Mutantenbank mit temperatursensitiven Mutanten aufgebaut. Zur Verfügung stand ein Hefestamm (YL03-47, Myriad), bei dem das chromosomale tRNase Z-Gen deletiert ist. Um diesen Gendefekt zu komplementieren, liegt in diesem Stamm das Plasmid p426 vor, in das tRNase Z-Gen mit einer etwa 100 bp langen 3´-UTR und einer etwa 1,1 kb langen 5´-UTR kloniert worden war. Für die Erstellung der Mutantenbank wurden möglichst viele SceTrz-Templates mit jeweils unterschiedlichen Mutationen benötigt, denn es wurde erwartet, dass nur ein geringer Anteil der Genmutationen letztendlich zu einer temperatursensitiven SceTrz-Mutante führt.

In einem anderen Ansatz wurde versucht, das PCR-Produkt „blunt“ in den Vektor pBlueSkript zu klonieren, um die Ausbeute der Klone mit mutiertem SceTrz zu erhöhen. Die
Ausbeute hat sich zwar verdoppelt, aber das war immer noch nicht genug, um eine ausreichende Bandbreite an SceTrz-Mutanten zu liefern. Außerdem wäre hier ein weiterer Schritt nötig, nämlich die Klonierung in den Hefevektor pSE358.

Nachdem diese beiden Klonierungsstrategien keine genügend hohe Ausbeute an Plasmiden mit mutierten SceTrz-Insert gewährleisten konnten, wurde versucht, die mutierten PCR-Produkte direkt in Hefe zu transformieren. Es wurde erwartet, dass das PCR-Produkt mit Hilfe der 3'- und 5'-UTR in das Chromosom integriert. Dieser Ansatz resultierte darin, dass keine transformierten Hefezellen gewachsen sind. Das könnte folgende Ursachen haben: die Transformation des PCR-Produktes war nicht erfolgreich. Ein Marker auf dem transformierten PCR-Produkt war jedoch nicht vorhanden, um dies zu kontrollieren. Oder die Rekombination ins Hefegenom hat nicht funktioniert.

Die identifizierten Mutanten sind besonders sensitiv bei 37 °C auf Sucrose-Medium. Ein Teil der Mutanten ist petite, d.h. ein Wachstum auf glycerinhaltenigem Medium ist nicht möglich. Chen et al. (Chen et al., 2005) haben gerichtete SceTrz-Mutanten konstruiert, nachdem weder eine Mutagenese mittels PCR noch eine Mutagenese mit Hilfe eines Mutator *E. coli*-Stammes zu ts-Mutanten führte. Die gerichteten Mutanten Y537L und L538K, die sich beide in der Nähe des konservierten Histidin-Motivs (H$_{540}$xH$_{542}$xD$_{544}$H$_{545}$) befinden, zeigten ebenfalls bei 37 °C auf Sucrose-Medium die höchste Temperaturselektivität. Die Aminosäuren Y537 und L538 selbst sind wenig konserviert. Sie wurden deshalb für eine gerichtete Mutation ausgewählt, weil erwartet wurde, dass dadurch nicht die ganze Proteinfunktion inaktiviert wird. Beide Mutanten (Y537L und L538K) sind petite. Der petite-Status konnte bei der Y537L-Mutante wieder aufgehoben werden, indem eine Kopie des Wildtyp-Gens auf einem CEN-Vektor in die mutierte Hefezelle transformiert wurde. Die Y537L-Mutante war nach der Transformation nicht mehr ρ-, sondern ρ+ (Chen et al., 2005).

In der hier vorliegenden Arbeit wurden insbesondere die Mutanten 17cII und 18eIII mittels Wachstumskurven in Sucrose-Medium und Mikroskopie untersucht. Beide Mutanten sind ρ+.

Während die Zellen bei 28 °C bzw. 30 °C gleich gut wachsen, ist die Verdopplungszeit der
Mutanten in YPS bei 37 °C etwa um das 2fache höher als beim Wildtyp. Je länger die Zellen bei 37 °C inkubiert wurden, desto deutlicher wurden die Deformationen sichtbar: längere Sprosse und große abgerundete Zellen. Außerdem fiel auf, dass die Wildtyp-Zellen sowohl bei 28 °C als auch bei 37 °C kleiner sind als die der Mutanten. Chen et al. (Chen et al., 2005) untersuchten die Y537L-Mutanten daraufhin, ob die Mutation für einen Zell-Zyklus-Defekt verantwortlich ist. Sie stellten fest, dass sich mehr Zellen des mutierten Hefestammes in der M-Phase befanden als beim Kontrollstamm (YPH499), wenn sie die stationäre Phase bei 37 °C erreicht haben. Durch mikroskopische Analyse wurde festgestellt, dass die mutierten Zellen im Vergleich zum Kontrollstamm aggregierten, vergrößert waren und verlängerte Sprosse zeigten (Chen et al., 2005). Dieselben Merkmale wurden bei den Mutanten in der hier vorliegenden Arbeit festgestellt. Chen et al. vermuten, dass die untersuchte SceTrz-Mutation keinen Phänotyp zeigt, der durch einen Zell-Zyklus-Arrest verursacht wurde, sondern dass dieses abnormale Aussehen höchst wahrscheinlich ein Resultat von Zelltod in Hefe ist (Chen et al., 2005).

In dieser Arbeit wurden neben ρ+ auch petite SceTrz-Mutanten mittels Wachstumsverlauf und Mikroskopie untersucht. Allerdings wurde das Wachstum lediglich bei 37 °C in Glucose-Medium analysiert. Aus den Verdünnungsreihen wurde bereits ersichtlich, dass bei 30 °C alle Mutanten gleich gut wachsen wie der Wildtyp. Die Verdopplungszeit der Mutanten in YPD-Medium bei 37 °C ist im Vergleich zum Wildtyp um den Faktor 1,5-2 erhöht. Diese Mutanten wurden auch fotografiert, diese Zellen zeigten den gleichen Phänotyp wie die ts-Mutanten 17cII und die 18eIII bei 37 °C. Im Glucose-Medium unterschieden sich die petite Mutanten (1bII, 1eIV und 2dIV) weder im Wachstumsverhalten noch im Phänotyp von der parallel analysierten ρ+ SceTrz-Mutante 2dII.

Professor Engelke (Ann Arbor, USA) geschickt. Bis jetzt wurde jedoch keine Auffälligkeit gegenüber dem Wildtyp festgestellt.

D. melanogaster und *C. elegans* besitzen wie die Hefe ebenfalls nur ein langes tRNase Z-Protein. Die Funktion dieser Proteine wurde bereits untersucht (Dubrovsky et al., 2000; Dubrovsky, 2003; Smith & Levitan, 2004). Die tRNase Z aus *D. melanogaster* wird induziert vom Juvenilhormon (JH). Dieses Hormon wiederum ist an Zellproliferation und – differenzierung beteiligt. In der Keimbahn-Zellentwicklung und in der Zellteilung involviert ist die tRNase Z aus *C. elegans*. Der Mensch besitzt neben dem kurzen tRNase Z-Protein auch ein langes. Es wurde gezeigt, dass die Mutation des Gens der langen humanen tRNase Z an der Entstehung von Prostata-Krebs beteiligt ist (Tavtigian et al., 2001). Von Korver et al. (Korver et al., 2003) wurde gezeigt, dass die Überexpression der langen tRNase Z Verzögerungen im Zell-Zyklus verursacht und dass das humane lange Trz mit dem γ-Tubulin-Komplex interagiert. Alle diese Daten zusammengenommen weisen darauf hin, dass die lange tRNase Z direkt oder indirekt durch ihre (t)RNA-prozessierende Funktion an der Regulation des Zell-Zyklus beteiligt ist (Vogel et al., 2005).

Prozessosoms, das an der Synthese der 40S-Untereinheit beteiligt ist, wurde ein Stopp des Zell-Zyklus in der G1-Phase verursacht (Dez & Tollervey, 2004).

In Zukunft sind noch weitere Analysen notwendig, um die lebensnotwendige, biologische Funktion von SceTrz eindeutig herauszufinden.

5.1.2 In vitro-Analyse von SceTrz

Im in vitro-Teil dieser Arbeit sollten die für die Katalyse wichtigen Domänen von SceTrz identifiziert werden. Dafür wurden verschiedene N- und C-terminale Deletionsmutanten von SceTrz in die Überexpressionsvektoren pET30a und pET29a kloniert und überexprimiert. Die Deletionsmutanten wurden teilweise im Rahmen einer parallel durchgeführten Diplomarbeit (Kirchner, 2004) überexprimiert. Bevor jedoch die Deletionsmutanten auf ihre Prozessierungsaktivität untersucht wurden, wurde in dieser Arbeit die tRNA-3’-Prozessierungsbedingungen optimiert. Eine 30-minütige Inkubation bei 37 °C in 50 mM Tris (pH 7,1), 20 mM KCl, 5 mM MgCl₂ und 2 mM DTT stellte sich als geeignet heraus. Im Vergleich dazu verwendeten Takaku et al. für SceTrz einen ähnlichen ivp-Puffer mit 10 mM Tris-HCl (pH 7,5), 3,2 mM MgCl₂ und 1,5 mM DTT (Takaku et al., 2003). Im Gegensatz zu dem in dieser Arbeit verwendeten Puffer fehlt bei Takaku et al. (Takaku et al., 2003) Kalium. Es wurde bereits gezeigt, dass dieses Metall nicht essentiell für die Katalyse ist, jedoch die Prozessierungsaktivität verbessert (Mayer et al., 2000; Kunzmann et al., 1998). In dem für die Weizen tRNase Z und AthTrz⁰ optimierten ivp-cyto-Puffer (Mayer et al., 2000; Schiffer et al., 2002) prozessiert SceTrz nur schwach, was vermutlich vor allem am höheren pH-Wert (pH 8,4) liegt, denn die Konzentrationen für Magnesium (2 mM), Kalium (20 mM) und DTT (2 mM) stimmen mit dem in dieser Arbeit verwendeten Puffer fast überein.

Es wurde in dieser Arbeit gezeigt, dass SceTrz sowohl heterologe Vorläufer-tRNA, in dem Fall mitochondriale tRNA⁰ Tyr aus O. berteriana, als auch homologe tRNA, die Intron enthaltende tRNA Ser⁰, direkt 3’ zum Diskriminator schneidet. Die Analyse der Deletionsmutanten wurde von S. Kirchner (Kirchner, 2004) durchgeführt. Alle untersuchten Deletionsmutanten zeigen keine tRNA-Bindungsaktivität und keine tRNA-Prozessierungsaktivität (Kirchner, 2004). Bei diesen Funktionstests wurde herausgefunden, dass SceTrz mit den pET30a-Tags (N-terminaler His und S-Tag) im Gegensatz zu SceTrz mit einem vom pET29a stammenden N-terminalen S-Tag keine Prozessierungsaktivität zeigt. Obwohl SceTrz mit einem N-terminalen S-Tag Vorläufer-tRNAs schneidet, ist die tRNA-Bindungsaktivität geringer als beim Protein ohne zusätzliche Tags (Kirchner, 2004). Die Kombination von zwei sich theoretisch komplementierenden Deletionsmutanten, SceTrz-N3
und SceTrz-C3, führte nicht zur Wiederherstellung der Prozessierungsaktivität. Die Proteinkomponenten können in vitro demnach nicht wechselwirken, um ein funktionsfähiges Protein zu bilden (Kirchner, 2004). Die Ergebnisse wurden bestätigt von Takaku et al. (Takaku et al., 2003). Takaku et al. (Takaku et al., 2003) untersuchten auch eine C- und eine N-terminale Deletionsmutante, die etwas anders konstruiert waren als die hier vorliegenden, auf Prozessierungsaktivität, wobei der C-terminale Proteinanteil, der eine hohe Homologie zu den kurzen tRNase Z-Proteinen aufweist, Vorläufer-tRNAs prozessieren kann (Takaku et al., 2003). Die in dieser Arbeit konstruierten SceTrz-C-Mutanten zeigten jedoch keine Prozessierungsaktivität. Für AthTrzS1 wurde gezeigt, dass es nur in Form eines Homodimers katalytisch aktiv ist (Späth et al., 2005). Möglicherweise ist die SceTrz-C-Mutante von Takaku et al. (Takaku et al., 2003) im Gegensatz zu den hier konstruierten SceTrz-C-Mutanten in der Lage, sich wie ein kurzes tRNase Z-Protein zu verhalten und ein Homodimer zu bilden, so dass es Vorläufer-tRNAs am 3′-Ende schneiden kann. Entsprechende Untersuchungen liegen jedoch nicht vor. Die hier vorliegenden Deletionsmutanten, die nur noch aus dem N-terminalen Anteil von SceTrz bestehen, können wie das nur noch aus dem N-Terminus bestehende SceTrz-Protein von Takaku et al. (Takaku et al., 2003) keine Vorläufer-tRNAs mehr prozessieren.

Im Rahmen dieser Arbeit wurde die Dimerisierungsfähigkeit des SceTrz-Proteins untersucht. Aus anderen Arbeiten (Späth, 2002; Vogel et al., 2002; Schilling et al., 2005b; Späth et al., 2005; de la Sierra-Gallay et al., 2005; Ishii et al., 2005) ist bekannt, dass kurze tRNase Z-Proteine Homodimere bilden. Es gibt die Theorie, dass lange tRNase Z-Gene während der Evolution aus der Duplikation von zwei kurzen tRNase Z-Genen hervorgegangen sind. Ein Hinweis darauf könnte die Sequenzähnlichkeit zwischen kurzer tRNase Z und dem C- und N-terminalen Teil der langen tRNase Z sein, wobei die Sequenzähnlichkeit zwischen TrzS und dem C-Terminus von TrzL höher ist als die zwischen TrzS und N-terminalen TrzL. SceTrz wurde sowohl mit als auch ohne S-Tag mittels Glutaraldehyd-Crosslink auf Homodimerisierung getestet. Beides mit demselben Ergebnis, SceTrz lässt sich nicht vernetzen, es liegt als Monomer vor. Dieses Resultat ist in Übereinstimmung mit anderen langen, bereits untersuchten tRNase Z-Proteinen. Die tRNase Z aus \textit{Xenopus laevis} (Castaño et al., 1985) hat laut Migration auf dem SDS-Gel eine Molekülmasse von 97 kDa; diese Masse konnte mittels Gelfiltration bestätigt werden. Dies deutet darauf hin, dass es sich bei diesem Enzym ebenfalls um ein Monomer handelt. Bei der tRNase Z aus \textit{Aspergillus nidulans} handelt es sich auch um ein Monomer mit einer Größe von 160 kDa (Han & Kang, 1997).
Die Kristallstrukturen der kurzen tRNase Z-Enzyme von *B. subtilis* (de la Sierra-Gallay et al., 2005), *T. maritima* (Ishii et al., 2005) und *E. coli* (Kostelecky et al., 2005) geben einen Einblick in die molekulare Architektur der TrzS-Proteine. Bisher existiert jedoch keine Publikation über die Kristallisierung eines langen tRNase Z-Enyzms. In zukünftigen Arbeiten könnte SceTrz analog zu AthTrzSI ebenso mit Hilfe des BL21-AI-Stammes überexprimiert und mittels His-Tag aufgereinigt werden, um eine genügend hohe Menge an Protein für Kristallisationsversuche zu erhalten. In Vorversuchen, die im Rahmen dieser Arbeit noch durchgeführt wurden, konnte bereits gezeigt werden, dass die Überexpression von SceTrz in pET30a und SceTrz-pET32a in BL21-AI eine hohe Ausbeute an Protein liefert. Die Optimierung der Tag-Entfernung mittels rekombinanter Enterokinase und die weitere Aufreinigung des SceTrz mittels Chromatographie bzw. Gelfiltration stehen noch aus.

5.2 Charakterisierung von AthTrzSI

Das tRNase Z-Enzym AthTrzSI ist eines von insgesamt vier tRNase Z-Proteinen aus *A. thaliana*. Diese molekularbiologische Modellpflanze besitzt zwei kurze und zwei lange tRNase Z-Enzyme. In dieser Arbeit wurde vor allem das AthTrzSI hinsichtlich seiner Homodimerisierungsfähigkeit und Metallabhängigkeit untersucht. Des Weiteren wurden Aktivitätstests mit verschiedenen Substraten durchgeführt. Im Rahmen dieser Arbeit wurden 29 Deletions- und Punktmutanten des AthTrzSI-Proteins mittels Crosslinks untersucht, um die Aminosäuren und Regionen, die für die Homodimerisierung des Proteins wichtig sind, zu identifizieren (Späth et al., 2005). In parallelen Arbeiten (Späth et al., 2005) wurden diese Mutanten bezüglich ihrer tRNA-Bindung und -Katalyse analysiert.

Das AthTrzSI-Protein ist ein Homodimer (Schiffer et al., 2002; Späth, 2002) wie die homologen Proteine von *B. subtilis* (de la Sierra-Gallay et al., 2005), *T. maritima* (Ishii et al., 2005) und *E. coli* (Vogel et al., 2002). Es bindet an tRNA und ist für die tRNA-3´-Prozessierung verantwortlich (Schiffer et al., 2002; Späth et al., 2005). Die Kristallstruktur der bakteriellen Enzyme zeigt, dass die zwei Untereinheiten verschiedene Konformationen im Dimer annehmen (de la Sierra-Gallay et al., 2005; Ishii et al., 2005), was dazu führt, dass Mutationen in der monomerer Untereinheit verschiedene Effekte haben können, je nachdem, welche Funktion das entsprechende Monomer hat.
5.2.1 AthTrzS1-Dimerisierungsmodule

Es wurde untersucht, ob die beiden nur bei AthTrzS1 vorkommenden Cysteine C25 und C40 für die Dimerisierung des Proteins notwendig sind. Das Vorhandensein beider Cysteine ist nicht notwendig für die Dimerisierungsfähigkeit, da beide Cystein-Mutanten noch dimerisieren können. Die Mutation von C40 beeinflusst die katalytische Aktivität des Proteins überhaupt nicht. Die tRNA-3'-Prozessierungsaktivität wird durch die Mutation von C25 nur reduziert. Das bedeutet, dass die beiden Cysteine für die tRNA-Prozessierungsaktivität nicht wichtig sind (Späth et al., 2005).

Insgesamt konnten fünf Aminosäuren identifiziert werden, die im Falle einer Mutation einen Verlust der Dimerisierungsfähigkeit zur Folge haben. Die Mutation der Aminosäuren H59, P83, T186, K203 und H248 resultiert vermutlich in der vollständigen Zerstörung der Proteininstuktur, so dass die Proteine nicht mehr richtig falten können und aggregieren (Späth et al., 2005). Ein Sequenzvergleich von AthTrzS1 mit EcoTrzS, BsuTrzS, MjaTrzS und SceTrzL zeigt, dass nur AthTrzS1 ein Lysin (K203) anstelle der konservierten Asparaginsäure besitzt, alle anderen für die Dimerisierung wichtigen Aminosäuren sind innerhalb der oben genannten Organismen konserviert. Die aggregierten Proteine sind nach den Crosslinks jeweils auf Höhe der Taschen des Sammelgels detektierbar. Ein weiterer Hinweis darauf, dass diese Proteine, die keine Dimere mehr bilden können, ein Faltungsproblem haben, ist die Tatsache, dass sie selbst mit Hilfe von zusätzlichem ATP mittels Gelfiltration oder Anionenaustausch-Chromatographie von dem Chaperon GroEL nicht getrennt werden können.

Die Deletion zweier potentieller Leucin-Zipper (del149-164 und del200-212) verursachte eine fast vollständige Inaktivierung des Proteins, da weder eine Bindung an tRNA noch eine tRNA-3’-Prozessierungsaktivität nachgewiesen werden konnte. Die Dimerisierung findet jedoch noch statt, was bedeutet, dass diese beiden Regionen für die Dimerisierung nicht notwendig sind.

Die Deletion der 11 Aminosäuren am C-Terminus (del 270-280) resultiert ebenfalls in einem Verlust der Dimerisierungsfähigkeit. Der BsuTrz-Struktur entsprechend ist der C-terminale Proteinanteil nicht an der Dimerisierung beteiligt. Vermutlich führt die Deletion der 11 Aminosäuren zu einer vollständigen Zerstörung der Proteininstruktr, was in einer Aggregierung des Proteins resultiert. Für ein Faltungsproblem spricht auch die Tatsache, dass sich dieses Protein nicht von GroEL trennen lässt. Die kürzlich veröffentlichte Struktur der bakteriellen tRNase Z zeigt, dass die Dimerisierung mit Hilfe der Schleifen α_1, α_2, α_3 und der α_1/α_2-Schleife eines jeden Monomers erfolgt. Dem Sequenzvergleich (s. oben) entsprechend
sind die AthTrzS1-Mutationen C40, H56, D58, H59, G62, P64 in der Region lokalisiert, wo im BsuTrz-Protein die Helices α_1 (C40) und α_2 (H56, D58, H59, G62, P64) lokalisiert sind. Von diesen Aminosäuren wurde jedoch nur für die Mutation von H59 gezeigt, dass sie wichtig für die Dimerisierung ist.

Die Kristallstruktur der \textit{B. subtilis} tRNase Z bestätigt, dass die kurzen tRNase Z-Proteine in Form von Dimeren vorliegen. Dem Modell entsprechend bindet ein Monomer des Dimers das Substrat während das andere Monomer die Katalyse durchführt. Auf diese Weise sind beide Monomere notwendig, da sie möglicherweise verschiedene Funktionen ausführen.

5.2.2 Optimierung der AthTrzS1-Überexpression

Im Rahmen dieser Arbeit ist es gelungen, die bisher geringe Ausbeute an löslichem Protein von durchschnittlich 100-200 μg/l Überexpressionskultur auf etwa 1,2 mg/l zu erhöhen. Dazu beigetragen hat die Verwendung des Überexpressionsstamms BL21-AI, der sich für die Überexpression von für \textit{E. coli} toxischen Proteinen besonders eignet. Die Aufreinigungsmethode, d.h. die Aufreinigung des Proteins mittels His-Tag, sorgte ebenfalls für die deutlich erhöhte Proteinausbeute. In früheren Arbeiten wurde die S-Tag-Aufreinigung mittels S-Protein-Agarose bevorzugt, die besonders geeignet ist für gering exprimierte Proteine. Nachdem jedoch festgestellt wurde, dass die Überexpression in den BL21-AI-Zellen deutlich besser ist als in den anderen bisher getesteten Stämmen, wurde die His-Tag-Aufreinigung mittels His-Bind-Resin (Novagen) durchgeführt. Für zukünftige Aufreinigungen können anstelle des Resins auch mit Nickel beladene Säulen (Novagen) verwendet werden. Die deutliche Steigerung der Proteinausbeute ermöglichte bzw. ermöglicht in Zukunft nun Versuche, bei denen größere Mengen an Protein benötigt werden z.B. Metallanalyse mittels ICP-MS oder Kristallisierung.

Nachdem diese Art der Überexpression für AthTrzS1 so erfolgreich war, wurde die Überexpression von SceTrz analog zu der von AthTrzS1 durchgeführt. Die Vorversuche dazu zeigten auch hier eine erhöhte Proteinausbeute im Vergleich zu den bisher erzielten, die Entfernung der Tags und die weitere Aufreinigung mittels Anionenaustausch-Chromatographie bzw. Gelfiltration müssen in zukünftigen Arbeiten noch durchgeführt werden (s. oben).

5.2.3 Das potentielle Metallbindungsmotiv von AthTrzS1

Die tRNase Z-Proteine gehören zur Familie der Metallo-ß-Lactamasen, die bis zu zwei Zink-, Eisen- oder Manganionen binden können (Schilling et al., 2005a; Wang et al., 1999). EcoTrz
benötigt zwei Zinkionen für die Katalyse, Vogel et al. (Vogel et al., 2004) schlagen eine Metallkoordination für EcoTrz vor. Das Metallbindungsmotiv von EcoTrz ist gleich wie die Metallkoordinationsphäre der Glyoxalase II (GlxII) (Vogel et al., 2004, Melino et al., 1998). Wenn die entsprechenden Aminosäuren von AthTrzS1 auf das *E. coli*-Modell übertragen werden, würde demnach His54, His56 und His133 ein Metallion binden, während Asp58, His59 und His248 das zweite Metallion binden würden. Asp185 würde beide Metallionen „brückenartig“ verbinden (Bild 40). Die jeweilige Mutation der Aminosäuren, die vermutlich an der Metallbindung bei AthTrzS1 beteiligt sind, führt zu AthTrzS1-Mutanten, die nicht in der Lage sind, Vorläufer-tRNAs am 3´-Ende zu schneiden. Nur die Brücken-bildende Aminosäure Asp185 zeigt noch sehr schwache Prozessierungsaktivität (7 %) (Späth et al., 2005). Falls das Metallbindungszentrum von AthTrzS1 dasselbe ist wie bei EcoTrz, würden die tRNase Z-Enzyme die gleiche Metallkoordinationsphäre wie die Glyoxalase II aufweisen. GlxII kann Zink durch Eisen oder Mangan ersetzen (Vogel et al., 2004).

Bild 40: Potentielles Metallbindungszentrum von AthTrzS1 (Quelle: Späth et al., 2005). Das Metallbindungszentrum von EcoTrz wurde bereits beschrieben (Vogel et al., 2004). Der Vergleich von AthTrzS1 mit EcoTrz zeigt, dass für AthTrzS1 identische Aminosäuren an den gleichen Positionen identifiziert wurden: His54, His56 und His133 könnten das Metallion A (M^A) binden, Asp58, His59, His248 könnten das Metallion B (M^B) binden. Asp185 könnte beide Metallionen verbinden.

AthTrzS1, das mit einem Chelator (10 mM EDTA bzw. 10 mM 1,10-Phenantrolin) behandelt wurde, kann Vorläufer-tRNAs am 3´-Ende nicht mehr prozessieren. Das zeigt, dass Metalle für die katalytische Aktivität erforderlich sind. Durch die Zugabe von Mangan, Magnesium oder Calcium konnte die Prozessierungsaktivität des Proteins wieder hergestellt werden. Die tRNase Z, die aus Weizen extrahiert wurde, zeigte nach Inkubation mit 10 mM EDTA ebenfalls keine Prozessierungsaktivität mehr (Mayer et al., 2000). Durch die Zugabe von
Magnesium (2 mM) oder Calcium (2 mM) konnte die tRNA-3´-Prozessierungsaktivität des Enzmys wieder hergestellt werden (Mayer et al., 2000). Es wurde auch gezeigt, dass eine Magnesiumkonzentration größer als 50 mM und eine Calciumkonzentration größer als 20 mM die Prozessierungsreaktion inhibieren (Mayer et al., 2000). Die tRNase Z, die aus Kartoffelmitochondrien gewonnen wurde, benötigt ebenfalls divalente Kationen für ihre katalytische Aktivität. Die optimale Konzentration für Magnesium und Calcium beträgt jeweils 5 mM, Konzentrationen über 50 mM inhibieren jedoch die Reaktion (Kunzmann et al., 1998). Die Zugabe monovalenter Metallionen wie z.B. Kalium (2 mM) oder Ammonium (2 mM) sind nicht essentiell für die Katalyse, sie verbessern jedoch die Prozessierungsaktivität, wobei auch hier eine Inhibierung der Reaktion auftritt, wenn die Kaliumkonzentration von 150 mM bzw. die Ammoniumkonzentration von 100 mM überschritten wird (Mayer et al., 2000; Kunzmann et al., 1998).

Das PDE-Motiv des AthTrzS1-Enzym zeigt eine Homologie zu den Klasse II cAMP-Phosphodiesterasen (Schiffer et al., 2002). Da das Metallbindungscentrum der Phosphodiesterase I (NPP1/PC-1) strukturell gut untersucht ist (s. unten), wurde es hier zum Vergleich herangezogen. Bei den Nukleotid-Pyrophosphatasen/Phosphodiesterasen (NPPs) handelt es sich um Typ II Transmembran-Proteine mit einer kleinen intrazellulären und einer großen extrazellulären Domäne, die die katalytische Seite enthält. Diese Proteine gehören zur Familie der Phospho-/Sulfo-koordinierenden Metalloenzyme. NPP1 (PC-1) ist ein Metalloenzym mit zwei divalenten Kationen (Mn²⁺, Zn²⁺, Ca²⁺ oder Mg²⁺) und einem Threonin im aktiven Zentrum (Wilcox, 1996; Gijsbers et al., 2001, Belli et al., 1994; Belli et al., 1995; Stefan et al., 1996). Mittels Datenbank- und Strukturvergleichen erstellten Gijsbers et al. ein Modell des katalytischen Zentrums von NPPs am Beispiel der NPP1 aus der Maus. An der Bindung des ersten Metallions ist dann Asp358, His362 und His517 beteiligt, an der Bindung des zweiten Metallions Asp200, Asp405 und His406. Bei der katalytisch aktiven Aminosäure handelt es sich um Thr238 (Gijsbers et al., 2001). Gijsbers et al. (Gijsbers et al., 2001) konnten zeigen, dass die jeweilige Mutation der sechs Aminosäuren, von denen laut Modell vorhergesagt wurde an der Metallbindung beteiligt zu sein, dazu führte, dass diese NPP1-Mutanten den Phosphodiester Thymidin-5´-p-nitrophosphat (TpNPP) nicht mehr umsetzen. Dieser Versuch bestätigte das vorhergesagte Modell. Das Metallbindungsmotiv des NPP1-Proteins entspricht nicht genau dem Metallbindungsmotiv wie es beispielsweise für die tRNase Z-Enzyme EcoTrz (Vogel et al., 2004), AthTrzS1 (Späth et al., 2005), BsuTrz (de la Sierra-Gallay et al., 2005) und TmaTrz (Ishii et al., 2005) vorhergesagt wurde, die Metallionen werden jedoch wie bei den tRNase Z-Proteinen mit Hilfe von je drei
Aminosäuren gebunden. Die Metalle, die für die Funktion von NPP1 erforderlich sind (Mn$^{2+}$, Zn$^{2+}$, Ca$^{2+}$ oder Mg$^{2+}$), werden auch für die tRNA-3′-Prozessierungsaktivität der tRNase Z-Proteine benötigt (EcoTrz: Zn$^{2+}$; AthTrz$^{\text{St}}$: Mn$^{2+}$, Ca$^{2+}$ oder Mg$^{2+}$).

Das mit Chelator behandelte AthTrz$^{\text{St}}$ konnte zwar, wie bereits oben erwähnt, Vorläufer-tRNAs am 3′-Ende nicht mehr prozessieren, die Dimerisierungsaktivität und die tRNA-Bindung waren jedoch nicht eingeschränkt. Demzufolge sind Metalle nur notwendig für die Katalyse. Bis auf zwei Aminosäuren (H59 und H248) sind alle Aminosäuren, die an der Metallbindung beteiligt sind, nicht wichtig für die Dimerisierung (Späth et al., 2005). Mit Ausnahme von den AthTrz$^{\text{St}}$-Mutanten H59L und H248L können alle anderen an der Metallbindung beteiligten Mutanten an tRNA binden (Späth et al., 2005).

5.2.4 Metallanalyse von AthTrz$^{\text{St}}$

Die Metallanalyse für AthTrz$^{\text{St}}$ schließt nicht aus, dass gleichzeitig verschiedene Metalle an ein Dimer binden können. Für die volle enzymatische bpNPP-Aktivität von EcoTrz wurde ein
durchschnittlicher Zinkgehalt von einem Zink pro Monomer, d.h. zwei Zinkatomen pro Dimer, nachgewiesen (Schilling et al., 2005a). Diese Situation spiegelt sich wider bei den anderen MBL-Proteinen (Heinz & Adolph, 2004). Bei den MBL-Proteinen, die als Monomere vorliegen, gibt es nur eine Art, ein Metallatom zu binden, die dimeren TrzS können zwei Metallionen/Dimer auf zwei verschiedene Arten binden: entweder binden beide Metallionen an eine Untereinheit, wobei die andere Untereinheit in diesem Fall in der inaktiven apo-Form verbleibt, oder je ein Metallion bindet an je eine Untereinheit. Der zuletzt genannte Fall wird durch eine vergleichende ITC (isothermal titration calorimetry)-Studie mit einem monomeren MBL-Protein bevorzugt (Schilling et al., 2005a). Die Kristallstruktur von BsuTrz zeigt den zuerst erwähnten Fall (de la Sierra-Gallay et al., 2005).

Theoretisch können die dimeren TrzS-Proteine jedoch insgesamt vier Metallionen binden, je zwei Metallionen/Monomer. Dass dieser Zustand auch praktisch erreicht werden kann, zeigt die Kristallstruktur von EcoTrz, bei der beide Monomere in der aktiven bi-Zink-Form vorliegen (Kostelecky et al., 2005). Die hier ermittelte Anzahl der Calciumionen (rund 4 Atome/Dimer) könnte ein Hinweis darauf sein, dass beide AthTrzS1-Untereinheiten mit je zwei Metallen beladen sind.

Wie die Metallbindung im Detail erfolgt und ob gleichzeitig auch verschiedene Metalle binden können, muss in Zukunft noch geklärt werden. Außerdem müssen die Metallanforderungen abhängig von der katalytischen Aktivität, im vorliegenden Fall die tRNA-3’-Prozessierungsaktivität und die Phosphodiesteraseaktivität, betrachtet werden (s. auch 5.3.1).

5.2.5 Massenspektrometrie

Mittels Massenspektrometrie sollte herausgefunden werden, ob AthTrzS1 Modifikationen aufweist. Die massenspektrometrische Analyse des AthTrzS1-Proteins lieferte einen Wert von 32061 Da (+/- 10 Da), die theoretisch berechnete Masse müsste 31606 Da sein. Dies bedeutet, dass höchstwahrscheinlich Modifikationen diese Massendifferenz verursachen. Weitergehende Analysen werden zeigen, welche Aminosäuren auf welche Art modifiziert sind.
5.3 **Substrattests**

5.3.1 **Charakterisierung der Phosphodiesteraseaktivität der tRNase Z-Proteine**

Die tRNase Z-Proteine besitzen alle eine konservierte Phosphodiesterase (PDE)-Domäne. Innerhalb dieses PDE-Motivs befindet sich das hochkonservierte His-Motiv (HxHxDH), ein charakteristisches Motiv der Metallo-β-Lactamase-Familie (Aravind, 1999). Das PDE-Motiv wurde als erstes in cAMP-Phosphodiesterase-Enzymen beschrieben, die auf der Basis von Sequenzähnlichkeiten in zwei Unterklassen eingeteilt werden (Klasse I und Klasse II) (Francis et al., 2001). Das in AthTrz \(^{S1}\) identifizierte PDE-Motiv ist zu 78 % identisch mit der PDE-Domäne der Klasse II cAMP Phosphodiesterase aus *Vibrio fischeri* (Dunlap & Callahan, 1993). Neben AthTrz \(^{S1}\) wurden in dieser Arbeit alle im Labor verfügbaren tRNase Z-Proteine auf ihre Phosphodiesteraseaktivität getestet. Als Substrate wurden die beiden Phosphodiester Bis(p-nitrophenyl)phosphat (bpNPP) und Thymidin-5'-p-nitrophenylphosphat (TpNPP) verwendet. Die Phosphodiesteraseaktivität von EcoTrz bezüglich bpNPP und TpNPP wurde bereits gezeigt (Vogel et al., 2002). Als physiologisches Substrat wurde 3', 5' cyclisches Adeninmonophosphat (cAMP) getestet.

5.3.1.1 **Charakterisierung der PDE-Aktivität bezüglich Bis(p-nitrophenyl)-phosphat (bpNPP)**

bezüglich bpNPP zeigt G62V, die *in vitro*-Prozessierungsreaktivität ist ebenfalls gering (26 %).

<table>
<thead>
<tr>
<th>Mutation des AthTrzS1-Enzyms</th>
<th>ivp (in %)</th>
<th>bpNPP: katalytische Effizienz (k_{cat}/k_{m}) (in s⁻¹ mM⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildtyp</td>
<td>100</td>
<td>0,87</td>
</tr>
<tr>
<td>C25G</td>
<td>33</td>
<td>0,29</td>
</tr>
<tr>
<td>C40G</td>
<td>99</td>
<td>0,53</td>
</tr>
<tr>
<td>F51L</td>
<td>95</td>
<td>0,35</td>
</tr>
<tr>
<td>G62V</td>
<td>26</td>
<td>0,1</td>
</tr>
<tr>
<td>P64A</td>
<td>98</td>
<td>0,21</td>
</tr>
<tr>
<td>P178A</td>
<td>74</td>
<td>1,53</td>
</tr>
<tr>
<td>E208A</td>
<td>55</td>
<td>1,15</td>
</tr>
<tr>
<td>R252G</td>
<td>26</td>
<td>38,28</td>
</tr>
</tbody>
</table>

*Tabelle 14: Vergleich der *in vitro*-Prozessierungsaktivität (ivp) und der Phosphodiesteraseaktivität (bpNPP) von AthTrzS1 und den AthTrzS1-Mutanten. Die *in vitro*-Prozessierungsaktivität wird in Prozent angegeben (Späth et al., 2005). Die tRNA-Bindungsaktivität, die oben nicht extra aufgeführt wurde, ist für alle hier aufgelisteten Enzyme gleich gut (Späth et al., 2005). Die katalytische Effizienz (k_{cat}/k_{m}) wird in s⁻¹ mM⁻¹ angegeben. Die katalytische Effizienz ist ein Maß für die Substratspezifität.

Die höchste katalytische Effizienz und damit die höchste Substratspezifität innerhalb der AthTrzS1-Proteine weist die Mutante R252G auf. Die katalytische Effizienz dieser Mutante ist etwa 44-mal höher als die des Wildtyps, die maximale Geschwindigkeit v_m ist fast 10-mal höher als die des Wildtyp-Proteins, d.h. die Mutante R252G setzt fast 10-mal mehr bpNPP um als der Wildtyp. Diese Mutation liegt in räumlicher Nähe zum Metallbindungszentrum, das vermutlich auch die katalytische Domäne des Enzyms bildet (Späth et al., 2005). Bei einer anderen Phosphodiesterase (NPP1/PC-1) wurde ein Modell des katalytischen Zentrums, das wie AthTrzS1 ein Metallbindungszentrum für zwei Metallionen aufweist, erstellt (Gijsbers et al., 2001). Das bekräftigt die Vermutung, dass das Metallbindungszentrum bei AthTrzS1 zugleich auch die katalytische Domäne ist. Die Mutante R252G hat innerhalb der AthTrzS1-Proteine zwar die höchste katalytische Effizienz bezüglich dem Phosphodiester bpNPP, aber eine im Vergleich zum Wildtyp geringe *in vitro*-Prozessierungsaktivität (26 %). Vermutlich ist die katalytische Domäne durch die Mutation für das Substrat bpNPP verbessert und für das im Verhältnis zu bpNPP relativ große Vorläufer-tRNA-Molekül verschlechtert worden. Alle AthTrzS1 Mutanten, die in den potentiell metallbindenden Aminosäuren mutiert sind, zeigen

Es scheint, als ob die AthTrzS1-Mutanten eine unterschiedliche Substrataffinität bezüglich bpNPP und Vorläufer-tRNA haben. Bei bpNPP handelt es sich im Vergleich zur Vorläufer-tRNA um ein sehr kleines Molekül. Es ist daher möglich, dass diese beiden Substrate auf unterschiedliche Weise gebunden werden. Wie die beiden Substrate gebunden werden, ist bisher jedoch nicht geklärt. Kokristallisationen der Enzym-Substrat-Komplexe könnten in Zukunft darüber Auskunft geben.

Unter den AthTrz-Proteinen wurde das zweite kurze tRNase Z-Enzym sowohl mit N-terminaler potentieller chloroplastärer Targetsequenz (AthTrzS2l) als auch ohne Targetsequenz (AthTrzS2s) auf Phosphodiesteraseaktivität untersucht und eine Kinetik mit bpNPP erstellt. Dabei stellte sich heraus, dass sowohl AthTrzS2l als auch AthTrzS2s eine sehr hohe Affinität zum Substrat bpNPP aufweisen (k_m = ~ 0,2 mM), wobei die erreichte maximale Umsatzgeschwindigkeit v_m bei AthTrzS2l etwa 3-mal höher ist als die von AthTrzS2s. AthTrzL1, eines der beiden langen tRNase Z-Enzyme aus A. thaliana, zeigte keine bpNPP-Aktivität. Alle anderen untersuchten langen tRNase Z-Enzyme wiesen ebenfalls keine Phosphodiesteraseaktivität auf. Die untersuchten archaealen tRNase Z-Enzyme aus H. volcanii und P. furiosus wiesen nur eine minimale bpNPP-Aktivität auf, aufgrund dessen wurden für diese Enzyme keine Kinetiken erstellt.

Ein Vergleich der maximalen Umsatzgeschwindigkeit v_m zeigt, dass das in dieser Arbeit als Positivkontrolle verwendete EcoTrz die höchste v_m aufweist (v_m = 1187,11 U/mg), eine etwa um den Faktor 10 geringere v_m weisen AthTrzS1-R252G (v_m = 132,37 U/mg) und AthTrzS2l (v_m = 119,21 U/mg) auf, eine um einen weiteren Faktor 10 geringere v_m hat das Wildtypprotein AthTrzS1 (v_m = 14,22 U/mg). Die höchste Substrataffinität unter diesen vier Enzymen hat AthTrzS2l, gefolgt von AthTrzS1-R252G, EcoTrz und AthTrzS1. Von allen hier untersuchten tRNase Z-Enzymen zeigt nur EcoTrz kooperative Substratbindung (n = 1,9). Die kooperative Bindung von bpNPP an EcoTrz wurde bereits von Vogel et al. (Vogel et al., 2002) gezeigt.

5.3.1.2 Metallabhängige Phosphodiesteraseaktivität von AthTrzS1

Für EcoTrz wurde bereits gezeigt, dass dessen Phosphodiesteraseaktivität zinkabhängig ist. Für AthTrzS1 wurde im Rahmen dieser Arbeit dargelegt, dass Metalle notwendig sind für die
Diskussion

tRNA-3’-Prozessierung (s. oben). Nachdem bekannt war, das AthTrzS1 den Phosphodiester bpNPP umsetzt (s. oben), wurde die metallabhängige Phosphodiesteraseaktivität dieses Enzmys untersucht. Dazu wurde die bpNPP-Aktivität von AthTrzS1, das zuvor mit EDTA inkubiert worden war, in Abhängigkeit von verschiedenen Metallen analysiert. Dabei stellte sich heraus, dass Eisen im Vergleich zur Kontrolle ohne Metallzusatz eine dreifache Aktivitätssteigerung zur Folge hat. Im Gegensatz dazu kann die tRNA-3’-Prozessierungsaktivität durch Eisen nicht wieder hergestellt werden. Der Zusatz von Cobalt steigert die PDE-Aktivität um das 2,5fache. Ezraty et al. (Ezraty et al., 2005) zeigten eine Aktivierung von EcoTrz durch Zink. Cobalt wird häufig aufgrund seiner spektroskopischen Eigenschaften verwendet, um Zink in Metalloproteinen zu ersetzen (Maret & Vallee, 1993). Es gibt jedoch selten Enzyme, die eine Aminosäure koordinierte Cobalt-Bindung aufweisen (Kobayashi & Shimizu, 1999), deshalb ist es ziemlich wahrscheinlich, dass die mittels Cobalt erzielte Aktivierung von EcoTrz und AthTrzS1 in vivo keine Relevanz hat. Die Zugabe von Zink führt zu einer 1,5fachen PDE-Aktivitätssteigerung, eine Kombination von Zink und Eisen bewirkt nur eine geringfügig höhere Steigerung der Aktivität um den Faktor 1,7. Die tRNA-3’-Prozessierungsaktivität kann mit Hilfe von Zink jedoch nicht wieder hergestellt werden. Die Gabe von Mangan wirkt sich sowohl bei der PDE-Aktivität als auch bei der tRNA-3’-Prozessierungsaktivität positiv aus. Die PDE-Aktivität wird etwa um das doppelte erhöht, die tRNA-Reifung am 3’-Ende kann durch Mangan wieder hergestellt werden. Die Gabe von Magnesium wirkt sich hinsichtlich der Phosphodiesteraseaktivität unterschiedlich aus. Magnesium allein führt zu keiner Steigerung des bpNPP-Umsatzes. Durch den Zusatz von Magnesium kann jedoch die tRNA-3’-Prozessierungsaktivität wieder hergestellt werden. Möglicherweise wirkt hier Magnesium als tRNA-Stabilisator. Obwohl Zink alleine eine leichte PDE-Aktivitätssteigerung bewirkt, führt die Kombination von Magnesium und Zink zu überhaupt keiner Steigerung der Aktivität. Magnesium in Kombination mit Zink und Eisen hat eine PDE-Aktivitätssteigerung um das 2fache zur Folge. Hier stellt sich die Frage, wie hoch die Affinität der einzelnen Metalle zum Metallbindungszentrum des Proteins ist. In diesem Fall sieht es so aus, als ob hauptsächlich die Eisenkomponente für die Aktivitätssteigerung verantwortlich ist, denn immer wenn in diesem Test Fe2+ als weitere Komponente zugegeben wird, wirkt sich dies aktivitätssteigernd aus. Magnesium in Kombination mit Eisen hat den gleichen Effekt wie Eisen allein (s. oben). Die Metalle Magnesium und Kalium wurden bei dem bpNPP-Test in der gleichen Konzentration eingesetzt wie bei den in vitro-Prozessierungsassays, was zu einer PDE-Aktivitätssteigerung um den Faktor 2,4 führt. Kalium allein wurde nicht getestet. Vermutlich ist jedoch das...
monovalente Kalium für die Aktivitätssteigerung verantwortlich, da Magnesium selbst keine Aktivitätssteigerung bewirkt.

Ein Vergleich der Phosphodiesteraseaktivität und der tRNA-3′-Prozessierungsaktivität macht deutlich, dass die Metallanforderung je nach Aktivität unterschiedlich zu sein scheint. Während Eisen eine 3fache Phosphodiesteraseaktivitäts-Steigerung bewirkt, ist dieses Metall nicht in der Lage, die tRNA-3′-Prozessierungsaktivität wieder herzustellen. Bei Magnesium ist es gerade umgekehrt. Die Phosphodiesteraseaktivität wird durch Magnesium nicht gesteigert, die tRNA-3′-Prozessierungsaktivität kann Magnesium jedoch wieder herstellen. Magnesium stabilisiert zusätzlich die tRNA-Struktur. Mangan sorgt sowohl für eine Steigerung der Phosphodiesteraseaktivität als auch für die Wiederherstellung der tRNA-3′-Prozessierungsaktivität.

5.3.1.3 Charakterisierung der PDE-Aktivität bezüglich TpNPP

Neben der Umsetzung von Bis(p-nitrophenyl)phosphat (bpNPP) wurde auch die Umsetzung des Phosphodiesters Thymidin-5′-p-nitrophenylphosphat (TpNPP) untersucht. Bei diesem Substrat ging es lediglich darum, zu untersuchen, ob es von den tRNase Z-Enzymen hydrolysiert wird oder nicht. Insgesamt wurde festgestellt, dass - wie bereits für EcoTrz gezeigt (Vogel et al., 2002) - die Phosphodiesteraseaktivität bezüglich TpNPP deutlich schwächer ist als bezüglich bpNPP. EcoTrz und AthTrz\textsubscript{S2l} weisen beide die gleiche TpNPP-Aktivität auf, dicht gefolgt von AthTrz\textsubscript{S2s}. AthTrz\textsubscript{S1}-R252G weist etwa noch 20 % der EcoTrz-Aktivität auf. Das Wildtypprotein AthTrz\textsubscript{S1} besitzt nur noch rund 3 % der Aktivität, die von EcoTrz und AthTrz\textsubscript{S2l} gezeigt wird. Nachdem alle untersuchten langen tRNase Z-Enzyme bereits keine Aktivität bezüglich bpNPP gezeigt hatten, überrascht es nicht, dass sie auch kein TpNPP umsetzen.

5.3.1.4 Charakterisierung der PDE-Aktivität bezüglich des physiologischen Substrates cAMP

Aufgrund der konservierten Phosphodiesterasedomäne der tRNase Z-Proteine wurde das \textit{in vivo} vorkommende 3′, 5′ cyclische Adeninmonophosphat (cAMP) als Substrat getestet. Alle untersuchten Proteine (AthTrz\textsubscript{S1}, AthTrz\textsubscript{S2l}, AthTrz\textsubscript{S2s}, EcoTrz und SceTrz) konnten cAMP nicht hydrolysieren. Dass EcoTrz kein cAMP umsetzen kann, wurde bereits früher gezeigt (Vogel et al., 2002).
5.3.2 Charakterisierung der Glyoxalase-Aktivität der tRNase Z-Proteine

5.4 cptRNA: Prozessierung der dicistronischen Met42-Transkripte

In Alexander Hüttenhofers Arbeitsgruppe wurde eine 42 nt lange potentielle small non messenger (snm) RNA, Ntc1-681, in Chloroplasten von *N. tabacum* identifiziert. Ntc1-681 liegt direkt stromabwärts des tRNAMet-Gens. In dieser Arbeit konnte die Frage geklärt werden, ob sich dieses dicistronische pptRNAMet-snmRNA-Transkript ebenfalls als Substrat für die tRNase Z eignet. AthTrzS2, eines von insgesamt vier tRNase Z-Proteinen aus *A. thaliana*, wurde für die *in vitro*-Prozessierungsreaktionen mit dem dicistronischen chloroplastidären Transkript ausgewählt, weil dieses Enzym eine potentielle Targetsequenz für Chloroplasten aufweist (Schiffer et al., 2002). Zusätzlich zum pptRNAMet-snmRNA-Transkript wurde ein Transkript der chloroplastidären Vorläufer-tRNASer hergestellt, das als Positivkontrolle in die *in vitro*-Prozessierungsreaktionen (ivps) eingesetzt wurde. Es konnte gezeigt werden, dass sowohl die chloroplastidäre Vorläufer-tRNASer als auch das dicistronische pptRNAMet-snmRNA-Transkript prozessiert wird. Das 42 nt lange snmRNA-Transkript wird als verlängertes 3´-Ende von AthTrzS2 erkannt und abgeschnitten. Um den abgeschnittenen 3´-Trailer mittels Autoradiographie besser sichtbar zu machen, wurde das Transkript jeweils 3´-endmarkiert, was jedoch darin resultierte, dass nach einer Über-Nacht-Exposition nur die nicht prozessierte tRNA auf dem Film zu sehen war und nach mehrtägiger Exposition waren mehrere Banden sichtbar, so dass dieser Assay nicht ausgewertet werden konnte. Die 5´-Endmarkierung der beiden Transkripte wurde ebenfalls durchgeführt. Diese Transkripte wurden in eine *in vitro*-Prozessierungsreaktion eingesetzt, die reife tRNA war anschließend jeweils

Das andere kurze tRNase Z-Protein, AthTrz S1, kann ebenfalls dicistronische Transkripte schneiden. Kruzka et al. haben eine Genfamilie identifiziert, die für 12 neuartige C/D small nucleolar RNA-Gene (snoR43) codieren, die direkt am 3´-Ende der tRNA Gly-Gene lokalisiert sind (Kruzka et al., 2003). Dieses tRNA Gly-snoRNA-Transkript wird von AthTrz S1 effizient prozessiert (Kruzka et al., 2003). Die Prozessierung dieser Transkripte konnte auch in vivo nachgewiesen werden (Kruzka et al., 2003).

5.5 Charakterisierung der EcoTrz-Exosite

In dieser Arbeit wurde für das tRNase Z-Protein aus E. coli eine Exosite untersucht, die für die Bindung an tRNA und für die Reifung der tRNA am 3´-Ende notwendig ist. Die Beseitigung der Exosite beeinträchtigt die für EcoTrz typische Phosphodiesteraseaktivität nicht. Die Homodimerisierung des Proteins ist durch das Fehlen der Exosite ebenfalls nicht betroffen (Schilling et al., 2005b).

Die Beseitigung der Exosite kann die Faltung des Proteins nicht gravierend beeinträchtigen, dafür sprechen folgende Punkte: erstens, die Hydrolyse von bpNPP ist im Vergleich zum
Diskussion

Wildtyp-Protein fast unverändert und zweitens kann die Exosite-Deletionsmutante weiterhin dimerisieren (Schilling et al., 2005b). Ein strukturbasierter Sequenzvergleich legt die Vermutung nahe, dass die Exosite in der Metallo-\(\beta\)-Lactamase-Faltung eingefügt ist, ohne die allgemeine Proteinstruktur zu beeinträchtigen, z.B. in Form einer ausgestellten Schleife. In der Veröffentlichung der Kristallstruktur von \emph{B. subtilis} (de la Sierra-Gallay et al., 2005) beschreiben die Autoren einen flexiblen Arm in der Struktur, der identisch ist mit der Exosite, die bei EcoTrz genauer untersucht wurde (Schilling et al., 2005b). De la Sierra-Gallay et al. (de la Sierra-Gallay et al., 2005) haben ein Strukturmodell mit gebundener tRNA erstellt und leiten daraus ab, dass die Exosite ihre Funktion in der Substraterkennung hat. Diese Daten stimmen mit den von Schilling et al. (Schilling et al., 2005b) gewonnenen Ergebnissen überein, hier konnte gezeigt werden, dass die Exosite-Deletionsmutante von EcoTrz keine tRNA mehr binden kann.

Das Vorhandensein einer Exosite ist ein charakteristisches Strukturmerkmal der tRNase Z-Proteine. Der Ausdruck Exosite bezeichnet ein Element außerhalb der aktiven Seite, das an der Substraterkennung beteiligt ist. Es gibt jedoch signifikante Unterschiede zwischen den Exosite-Sequenzen der verschiedenen tRNase Z-Proteine (Schilling et al., 2005b). Insgesamt lassen sich die Exosites in drei Untergruppen aufteilen. Kurze tRNase Z-Proteine, die die gleichen Exosite-Strukturmerkmale wie EcoTrz besitzen, gehören zu der ersten Untergruppe. Vertreter der zweiten Untergruppe sind die langen tRNase Z-Proteine, sie besitzen dieselbe Art von Exosite wie EcoTrz, jedoch nur im N-Terminus. Zur dritten Gruppe zählen die kurze tRNase Z aus \emph{T. maritima} und die Trz\(^5\)-Proteine aus \emph{A. thaliana}, sie haben eine deutlich kürzere Exosite als EcoTrz, zusätzlich fehlt das für EcoTrz typische GP-Motiv (Schilling et al., 2005b).

In Zukunft bleibt die Frage zu klären, in welchem Ausmaß die unterschiedlichen Typen von Exosites die Substratspezifität und -affinität beeinflussen. Eine EcoTrz-Mutante, die statt der EcoTrz-Exosite die HsaTrz\(^5\)-Exosite trägt, zeigt eine deutlich geringere K’ bezüglich bpNPP, was darauf hinweist, dass eine höhere Substrataffinität durch die Exosite beeinflusst werden kann (Vogel, unveröffentlicht). Details dieses Mechanismus müssen weiter untersucht werden, dennoch liefern diese Ergebnisse jetzt schon Hinweise darauf, dass es funktionell unterschiedliche Exosite-Typen gibt (Vogel et al., 2005).
5.6 Ausblick

Seit der erstmaligen Identifizierung der Aminosäure- und DNA-Sequenzen für die tRNase Z (Schiffer et al., 2002) gibt es eine Fülle von Informationen über die tRNA-3´-Prozessierung bzw. über die tRNase Z. Bis jetzt wurden die kurzen Trz-Proteine hinsichtlich ihrer Funktion und Struktur besonders gut untersucht. Die molekulare Architektur einer eukaryotischen tRNase Z, insbesondere einer langen tRNase Z, bleibt noch zu klären. Ein Schritt in diese Richtung ist die Aufreinigung der langen Hefe-tRNase Z in großen Mengen, um damit Kristallisationsversuche durchzuführen. Spannend ist die Frage, wie sich das lange tRNase Z-Protein anordnet, ob sich das Monomer so anordnet wie die kurzen tRNase Z-Proteine. Denkbar wäre eine Art strukturelle Deckungsgleichheit des langen tRNase Z-Proteins mit dem Dimer der kurzen tRNase Z.

Die Untersuchung des Enzym-Substrat-Komplexes wird in Zukunft wichtige Informationen über die Substraterkennung liefern. Die tRNase Z-Enzyme aus verschiedenen Organismen zeigen deutliche Unterschiede in ihrer Substratspezifität. Während bisher alle untersuchten tRNase Z-Enzyme Vorläufer-tRNA-Moleküle am 3´-Ende prozessieren können, sind manche in der Lage, Phosphodiester wie bpNPP und TpNPP umzusetzen. Ein wichtiges zukünftiges Ziel wird sein, die zusätzliche physiologische Funktion, vor allem die der langen tRNase Z-Proteine wie z.B. SceTrz, zu analysieren. Es gibt Hinweise darauf, dass die tRNase Z-Enzyme nicht nur die Reifung der tRNA am 3´-Ende durchführen, sondern auch an der Reifung oder am Abbau anderer RNAs beteiligt sein können.
6 Zusammenfassung

\textit{In vitro} wurde gezeigt, dass SceTrz als Monomer vorliegt und sowohl homologe als auch heterologe Vorläufer-tRNAs direkt 3´ zum Diskriminator schneidet. Diese Funktion scheint das gesamte Protein zu erfordern, da die in dieser Arbeit konstruierten C- und N-terminalen Deletionsmutanten keine Vorläufer-tRNAs prozessieren konnten.

Der zweite Themenschwerpunkt lag auf der Untersuchung des kurzen AthTrzS1-Enzyms, eines von vier tRNase Z-Proteinen aus \textit{A. thaliana}. Es war bekannt, dass AthTrzS1 als Homodimer vorliegt, tRNA bindet und tRNA-3´-Prozessierungsaktivität zeigt. In dieser Arbeit wurden fünf Aminosäuren identifiziert, die für die Dimerisierung des Proteins notwendig sind. AthTrzS1 besitzt eine konservierte Phosphodiesterase (PDE)-Domäne wie alle tRNase Z-Proteine und kann die beiden Phosphodiester bpNPP und TpNPP umsetzen. Für die katalytische Aktivität des Enzyms sind Metalle erforderlich. AthTrzS1 benötigt Fe, Co, Zn oder Mangan für die Phosphodiesteraseaktivität und Mn, Mg oder Ca für die tRNA-3´-Prozessierungsaktivität. Eine Metallanalyse des AthTrzS1-Proteins mittels ICP-MS- und TXRF-Analysen zeigte, dass Ca, Mg, Zn, Fe und Mn mit dem Protein assoziiert sind. Um zu bestimmen, ob und wie das AthTrzS1-Enzym modifiziert ist, wurde eine massenspektrometrische Analyse begonnen, die momentan noch nicht beendet ist.

Zusätzlich zu AthTrzS1 wurden eine Reihe weiterer tRNase Z-Proteine auf Phosphodiesteraseaktivität untersucht. Für einige tRNase Z-Proteine wurden die kinetischen Parameter bezüglich ihrer PDE-Aktivität bestimmt. Keines der bisher analysierten langen tRNase Z-Proteine weist Phosphodiesteraseaktivität auf. Quantitative Messungen zeigen, dass eine hohe tRNA-3´-Prozessierungsaktivität nicht mit einer hohen Phosphodiesteraseaktivität einhergeht.
In einem dritten Projekt wurde nachgewiesen, dass das potentiell chloroplastidäre tRNase Z-Enzym *A. thaliana* (AthTrzS2) das dicistronische cptRNA$^{\text{Met}-\text{snmRNA}}$-Transkript prozessiert. Alle tRNase Z-Enzyme besitzen ein Sequenzinsertionsmodul von etwa 50 Aminosäuren, das als flexibler Arm vom „Hauptproteinkörper“ hervorsteht. Am Beispiel der *E. coli* tRNase Z (EcoTrz) wurde gezeigt, dass dieses Modul für die Substraterkennung wichtig ist und deshalb als Exosite bezeichnet wird.
7 Summary

In this thesis structure and function of short as well as long tRNase Z proteins were investigated in different organisms. A major topic of this work was the characterization of the essential long tRNase Z protein from *S. cerevisiae* (SceTrz) both *in vivo* and *in vitro*. At the beginning of this research it was known that the essential function was neither 3′-processing of nuclear pre-tRNAs nor 3′-processing of the mitochondrial pre-tRNAs. Recent studies on SceTrz suggest involvement of SceTrz in the processing pathway of other RNA species. To investigate the essential biological function of SceTrz, a SceTrz-mutant library was established and temperature-sensitive mutants were identified. These clones will hopefully provide the material to identify the essential *in vivo* function of SceTrz.

The work presented in this thesis demonstrates *in vitro* that SceTrz exists as a monomer and that this enzyme processes homologous as well as heterologous pre-tRNAs directly 3′ to the discriminator base. This function seems to require the whole protein, since the here generated C- and N-terminal deletion mutants of SceTrz are not able to cleave pre-tRNAs.

The investigation of the short AthTrzS1, which is one of the four *A. thaliana* tRNase Z enzymes, was the second major subject of this study. It was known that AthTrzS1 exists as a homodimer, binds to tRNA and shows tRNA-3′-processing activity. In the present thesis five amino acids were identified as essential for dimerisation. AthTrzS1 contains a conserved phosphodiesterase (PDE) domain like all tRNase Z proteins and indeed can hydrolyse the two phosphodiesters bpNPP and TpNPP. AthTrzS1 requires Fe, Co, Zn or Mn for phosphodiester activity and Mn, Mg or Ca for its 3′-tRNA processing activity. Metal measurements of the AthTrzS1 protein by ICP-MS- and TXRF-analysis show that Ca, Mg, Zn, Fe and Mn are associated with the protein. To determine if and how the AthTrzS1 enzyme is modified mass spectrometry was initiated, and which is still in progress.

Other tRNase Z proteins were also investigated for their phosphodiesterase (PDE) activity. Kinetic parameters for PDE-activity were determined for a few of the proteins. None of the long tRNase Z enzymes investigated to date show PDE-activity. This and further data separate the 3′-tRNA processing activity *in vitro* from the PDE-activity. Quantitative measurements show that a high tRNA-3′-processing activity is not correlated with a high PDE-activity.

In a third project processing of a dicistronic cptRNA\(^{\text{Met}}\)-snmRNA transcript by AthTrzS2 was shown.

All tRNase Z enzymes possess a sequence insertion module of about 50 amino acids which protrudes from the main protein body. In the *E. coli* tRNase Z (EcoTrz) model system the importance of this insertion module for tRNA recognition was demonstrated and the module has been consequently named “exosite”.

Summary
8 Literaturverzeichnis

Aravind, L: In Silico Biol, Vol. 1, [69-91], 1999

Freund S.: Identifizierung funktioneller Domänen der nukleären RNase Z aus *Arabidopsis thaliana*, Diplomarbeit in der Abteilung Molekulare Botanik, Universität Ulm, 2002

Hartmann, E. und Hartmann, R. K.: *Trends Genet.*, Vol 19, [561-569], 2003

Kirchner, S.: Untersuchung der funktionellen Domänen der tRNase Z Enzyme aus *Saccharomyces cerevisiae* und *Arabidopsis thaliana*, Diplomarbeit in der Abteilung Molekulare Botanik, Universität Ulm, 2004

Lieberoth A.: Untersuchung der tRNA-Prozessierung in Archaea, Diplomarbeit in der Abteilung Molekulare Botanik, Universität Ulm, 2004

Maret, W. and Vallee, B. L.: Methods Enzymol, Vol 226, [52-71], 1993

Ptak, M., Characterisation of tRNase Z Proteins from Arabidopsis thaliana, Dissertation in der Abteilung Molekulare Botanik, Universität Ulm, 2005

Späth B.: Untersuchung der Quartärstruktur der nukleären RNase Z von *Arabidopsis thaliana*, Diplomarbeit in der Abteilung Molekulare Botanik, Universität Ulm, 2002

9 Anhang

9.1 Verwendete Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenin</td>
</tr>
<tr>
<td>ad</td>
<td>bis zu (lateinisch)</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosinmonophosphat</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>AthTrz</td>
<td>tRNase Z aus Arabidopsis thaliana</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>Bidest</td>
<td>bidestilliertes Wasser</td>
</tr>
<tr>
<td>bpNPP</td>
<td>Bis(p-nitrophenyl)phosphat</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>Base Cytosin bzw. Nukleosid Cytidin</td>
</tr>
<tr>
<td>° C</td>
<td>Grad Celcius</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclisches Adeninmonophosphat</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>cp</td>
<td>chloroplastidär</td>
</tr>
<tr>
<td>cpm</td>
<td>Zerfälle pro Minute (counts per minute)</td>
</tr>
<tr>
<td>D</td>
<td>Diskriminator</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DAB</td>
<td>3, 3'-Diaminobenzidin-tetrahydrochlorid-dihydrat</td>
</tr>
<tr>
<td>dATP</td>
<td>Desoxyadenosintriphasphat</td>
</tr>
<tr>
<td>dCTP</td>
<td>Desoxyctosintriphasphat</td>
</tr>
<tr>
<td>dGTP</td>
<td>Desoxyguanosintriphasphat</td>
</tr>
<tr>
<td>DmeTrz</td>
<td>tRNase Z aus Drosophila melanogaster</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleosidtriphasphat</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiotreitol</td>
</tr>
<tr>
<td>dTTP</td>
<td>Desoxythymidintriphasphat</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>EcoTrz</td>
<td>tRNase Z aus E. coli</td>
</tr>
<tr>
<td>EDC</td>
<td>1-Ethyl-3-(dimethylaminopropyl)-carbodiimidhydrochlorid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen diamintetraessigsäure</td>
</tr>
<tr>
<td>EGS</td>
<td>externe Führungssequenz (external guide sequence)</td>
</tr>
<tr>
<td>EMSA</td>
<td>Electrophoretic Mobility Shift Assay</td>
</tr>
<tr>
<td>et al.</td>
<td>und andere (lateinisch)</td>
</tr>
<tr>
<td>5-FOA</td>
<td>5-Fluororot-Säure</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>G</td>
<td>Base Guanin bzw. Nukleosid Guanosin</td>
</tr>
<tr>
<td>GA</td>
<td>Glutaraldehyd</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HvoTrz</td>
<td>tRNase Z aus Haloferax volcanii</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively Coupled Plasma Mass Spectrometry</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropylgalactosid</td>
</tr>
<tr>
<td>ivp</td>
<td>in vitro-Prozessierung</td>
</tr>
<tr>
<td>ivt</td>
<td>in vitro-Transkription</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>µCi</td>
<td>Mikrocurie</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>M</td>
<td>Molarität (mol/l)</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>MjaTrz</td>
<td>tRNase Z aus Methanocaldococcus janaschii</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimol</td>
</tr>
<tr>
<td>MOPS</td>
<td>(N-Morpholino)-Propansulfonsäure</td>
</tr>
<tr>
<td>mRNA</td>
<td>Boten-RNA (messenger RNA)</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>NHS</td>
<td>N-Hydroxysuccinimid</td>
</tr>
<tr>
<td>NTP</td>
<td>Ribonukleosidtriphosphat</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
</tbody>
</table>
Anhang

P Phosphat
PAA Polyacrylamid
PAGE Polyacrylamid-Gelelektrophorese
PCR Polymerasekettenreaktion (polymerase chain reaction)
PDE Phosphodiesterase
PEG Polyethylenglycol
P_ex Primerextension
PfuTrz tRNase Z aus Pyrococcus furiosus
pH negativer dekadischer Logarithmus der Protonenkonzentration
PMSF Phenylmethylsulfonylfluorid
rEK rekombinante Enterokinase
RNA Ribonukleinsäure
RNasin Ribonuklease Inhibitor
rpm Umdrehungen pro Minute (rounds per minute)
rRNA ribosomale RNA
RT Raumtemperatur
s. siehe
SceTrz tRNase Z aus Saccharomyces cerevisiae
SDS Natriumdodecylsulfat (Sodiumdodecylsulfat)
SLG SD-Lactoylglutathion
snmRNA small non messenger RNA
snoRNA small nucleolar RNA
ss single stranded
TAE Tris, Essigsäure, EDTA
TBE Tris, Borsäure, EDTA
TE Tris, EDTA
TEMED N, N, N´, N´-Tetramethylethylendiamin
TG Tris, Glycin
TmaTrz tRNase Z aus Thermatoga maritima
TpNPP Thymidin-5´-p-nitrophenylphosphat
Tris Trishydroxymethylaminomethan
tRNA Transfer-RNA
tRNase Z tRNA 3´-Endonuklease
Trz tRNase Z
temperatursensitiv
Total Reflection X-Ray Fluorescence
Base Uracil bzw. Nukleosid Uridin, bei Kinetik: Unit(s) [µmol/min]
nicht-translatierte Region (untranslated region)
Uridintriphosphat
Ultraviolett
Volumen pro Volumen (volume per volume)
Band (volume)
Masse pro Volumen (weight per volume)
Wildtyp
zum Beispiel

Organismen:

A. thaliana Arabidopsis thaliana
B. subtilis Bacillus subtilis
C. elegans Coenorhabditis elegans
D. melanogaster Drosophila melanogaster
E. coli Escherichia coli
H. sapiens Homo sapiens
H. volcanii Haloferax volcanii
N. rustica Nicotiana rustica
N. tabacum Nicotiana tabacum
O. berteriana Oenothera berteriana
P. furiosus Pyrococcus furiosus
M. janaschii Methanocaldococcus janaschii
S. cerevisiae Saccharomyces cerevisiae
X. laevis Xenopus laevis

Aminosäuren
A Ala Alanin
C Cys Cystein
D Asp Asparaginsäure
G Gly Glycin
E Glu Glutaminsäure
Anhang

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Symbol</th>
<th>Aminosäure-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Phe</td>
<td>Phenylalanin</td>
</tr>
<tr>
<td>H</td>
<td>His</td>
<td>Histidin</td>
</tr>
<tr>
<td>I</td>
<td>Ile</td>
<td>Isoleucin</td>
</tr>
<tr>
<td>K</td>
<td>Lys</td>
<td>Lysin</td>
</tr>
<tr>
<td>L</td>
<td>Leu</td>
<td>Leucin</td>
</tr>
<tr>
<td>M</td>
<td>Met</td>
<td>Methionin</td>
</tr>
<tr>
<td>N</td>
<td>Asn</td>
<td>Asparagin</td>
</tr>
<tr>
<td>P</td>
<td>Pro</td>
<td>Prolin</td>
</tr>
<tr>
<td>Q</td>
<td>Gln</td>
<td>Glutamin</td>
</tr>
<tr>
<td>R</td>
<td>Arg</td>
<td>Arginin</td>
</tr>
<tr>
<td>S</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>T</td>
<td>Thr</td>
<td>Threonin</td>
</tr>
<tr>
<td>V</td>
<td>Val</td>
<td>Valin</td>
</tr>
<tr>
<td>W</td>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Y</td>
<td>Tyr</td>
<td>Tyrosin</td>
</tr>
</tbody>
</table>

9.2 Abbildungsverzeichnis

Bild 1: Sekundär-Struktur der reifen tRNA: „Kleeblatt-Struktur“
Bild 2: Tertiär-Struktur der reifen tRNA: L-Form
Bild 3: Reifung von Vorläufer-tRNAs, die ein CCA-Triplett enthalten
Bild 4: tRNA-3′-Reifung in *E. coli*
Bild 5: tRNA-3′-Reifung in *T. maritima*
Bild 6: Primärstrukturvergleich innerhalb der tRNase Z-Familie
Bild 7: Substrate der tRNase Z
Bild 8: Vergleich von tRNase Z-Proteinsequenzen
Bild 9: Aufbau einer SceTrz-Mutantenbank
Bild 10: Verdünnungsreihe von potentiellen temperatursensitiven Mutanten
Bild 11: Wachstumskurven von den potentiellen ts-Mutanten 17cII und 18eIII
Bild 12: Phänotypischer Vergleich der potentiellen ts-Mutanten mit YL03-47 (WT)
Bild 13: Wachstum auf Platten mit Glycerin (YPG)
Bild 14: Chromatogramm der Anionenaustausch-Chromatographie (Säule: Mini Q) von SceTrz mit S-Tag
Bild 15: SceTrz überexprimiert von pET29a-SceTrz nach Anionenaustausch-Chromatographie
9.3 Tabellenverzeichnis

Tabelle 1: Verwendete Hefestämme
Tabelle 2: Verwendete Vektoren
Tabelle 3: Bezeichnung der Hefemutanten
Tabelle 4: Verdopplungszeiten der Hefemutanten bei 28 °C und 37 °C
Tabelle 5: Überblick über das Wachstum der verschiedenen Hefemutanten
Tabelle 6: Verdopplungszeit ermittelt bei 37 °C in YPD-Medium
Tabelle 7: Ergebnisse der Elementanalyse mittels TXRF
Tabelle 8: Ergebnisse der Elementanalyse mittels ICP-MS
Tabelle 9: Berechnung der an die TXRF-Werte angepasste Anzahl der Magnesiumatome (Mg)/Dimer
Tabelle 10: Vergleich der bpNPP-Aktivitäten der tRNase Z-Proteine
Tabelle 11: Überblick über die kinetischen Parameter der untersuchten tRNase Z-Proteine
Tabelle 12: Rangliste der Metalle
Tabelle 13: TpNPP-Aktivität verschiedener tRNase Z-Proteine
Tabelle 14: Vergleich der in vitro-Prozessierungsaktivität (ivp) und der Phosphodiesterase-Aktivität (bpNPP) von AthTrzS1 und den AthTrzS1-Mutanten
10 Publikationen

Originalzitate

Abstracts

Späth, B., Schleyer, I., Marchfelder, A., The tRNA 3´-processing endonuclease of *S. cerevisiae*, Posterpräsentation anlässlich der “XXIst international conference on yeast genetics and molecular biology”, Juli 7-12, 2003, Göteborg

11 Danksagung

Ein ganz besonderes Dankeschön geht an Frau HD Dr. Anita Marchfelder für die hervorragende Betreuung dieser Arbeit. Vielen Dank für die geduldige Beantwortung meiner Fragen, für die Organisation von Kooperationen, für das schnelle Korrekturlesen und natürlich auch für die Motivation in Form von Süßigkeiten.

Bei Herrn Prof. Dr. Axel Brennicke möchte ich mich für das Korrekturlesen der englischen Zusammenfassung bedanken. Außerdem ein Dankeschön dafür, dass er sich als zweiter Gutachter zur Verfügung stellt.

Bei allen aktuellen und ehemaligen Abteilungsmitgliedern möchte ich mich für ihre Kollegialität und Hilfsbereitschaft bedanken.

Ute Beger und meiner Schwester Ulrike danke ich für das Korrekturlesen dieser Arbeit.

Ganz herzlich bedanken möchte ich mich bei meinen Eltern und Schwestern Ulrike und Susanne für die Unterstützung und Motivation während dieser Arbeit. Danke, dass ihr immer für mich da wart!