Universitätsklinikum Ulm
Klinik für Psychosomatische Medizin und Psychotherapie
Ärztlicher Direktor: Prof. Dr. Harald Gündel

Erkennungsleistung mimisch expressiver Stimuli bei
Sichtbarkeitsdauern kleiner 100 Millisekunden

Dissertation zur Erlangung des Doktorgrades der Medizin der
Medizinischen Fakultät der Universität Ulm

Christoph Daniel Tisler,
Freudenstadt
2017
Amtierender Dekan: Prof. Dr. T. Wirth

1. Berichterstatter: apl. Prof. Dr. Harald C. Traue

2. Berichterstatter: apl. Prof. Dr. J. Kampmeier

Tag der Promotion: 13.07.2017
Meinen lieben Eltern,

Konrad und Brunhilde Tisler
Inhaltsverzeichnis

Inhaltsverzeichnis ... I
Abkürzungsverzeichnis .. III

1. Einleitung ... 1
 1.1 Emotionen .. 1
 1.2 Kommunikation / Interaktion ... 5
 1.2.1 Nonverbale Kommunikation (4 - Zeichensignal) .. 5
 1.2.2 Visuelle Wahrnehmung (5 – Kanal) ... 7
 1.2.3 Gesichts- und Emotionserkennung (3 – Empfänger) 9
 1.3 Ziel der Studie und Fragestellung ..……….. 13

2. Material & Methodik .. 14
 2.1 Beschreibung der Stichprobe ... 14
 2.2 Beschreibung des Versuchsablaufs ..……….. 14
 2.3 Stimulusausgabegerät ... 15
 2.3.1 Bildentstehung / Reaktionszeit ... 16
 2.3.2 Nachleuchtzeit ... 18
 2.3.3 Bildaufbau / Frame ... 19
 2.3.4 Stimulusichtbarkeitsdauer .. 20
 2.4 Stimulusmaterial .. 22
 2.4.1 Bildersatz „Japanese and Caucasian Facial Expressions of Emotion“(JACFEE) / Japanese and Caucasian Neutral Faces (JACNeuF) von Matsumoto 22
 2.4.2 t-FEEL ... 23
 2.4.2 Backward Masking – Noise Mask .. 25
 2.5 Psychometrie ... 26
 2.5.1 Emotional Regulation Questionnaire (ERQ) .. 26
 2.5.2 Trait Emotional Intelligence Questionnaire (TEIQue) - Short Form 27
 2.5.3 Ten-Item-Personality-Inventory (TIPI) .. 27
 2.6 Datenauswertung ... 28

3. Ergebnisse ... 29
 3.1 Allgemeine Erkennungsleistung der Emotionen ... 29
 3.2 Erkennungsleistung der Einzelemotionen ... 33
 3.3 Analyse häufiger Verwechslungen ... 34
 3.4 Auswertung der Fragebögen .. 35
3.4.1 Auswertung des Fragebogens „Emotional Regulation Questionnaire“ 35
3.4.2 Auswertung des Fragebogens „Trait Emotional Intelligence Questionnaire“ 35
3.4.3 Auswertung des Fragebogens „Ten Item Personality Inventory“ 36
4. Diskussion ... 37
5. Zusammenfassung .. 43
6. Literaturverzeichnis ... 45
Danksagung .. 51
Lebenslauf ... 52
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Action Unit</td>
</tr>
<tr>
<td>CRT</td>
<td>Kathodenstrahlröhrenmonitor</td>
</tr>
<tr>
<td>ERP</td>
<td>Event related Potential</td>
</tr>
<tr>
<td>ERQ</td>
<td>Emotion Regulation Questionnaire</td>
</tr>
<tr>
<td>FACS</td>
<td>Facial Action Coding System</td>
</tr>
<tr>
<td>FEEL</td>
<td>Facially Expressed Emotion Labeling</td>
</tr>
<tr>
<td>JACFEE/JACNeuF</td>
<td>Japanese and Caucasian Facial Expression of Emotion (JACFEE) and Neutral Faces (JACNeuF)</td>
</tr>
<tr>
<td>ms</td>
<td>Millisekunden</td>
</tr>
<tr>
<td>TeiQue-SF</td>
<td>Trait Emotional Intelligence Questionnaire – Short Form</td>
</tr>
<tr>
<td>TIPI</td>
<td>Ten Item Personal Inventory</td>
</tr>
<tr>
<td>Vpn</td>
<td>Versuchsperson</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Emotionen

Konsensus über die Teilkomponenten, die nötig sind, eine Emotion als solche zu charakterisieren.

Es zählen dazu (Traue et. al 2004):

- subjektives Erleben
- sprachliche Repräsentanz
- kognitive Bewertung von inneren und äußeren Stimuli
- Ausdrucksverhalten der Mimik, der Gestik und des gesamten Körpers
- physiologische und endokrine Aktivierungen, die Anpassungsvorgängen und Reaktionen dienen
- kognitiver Entwurf von Handlungen und Handlungsbereitschaften

„Emotion is a complex set of interactions among subjective and objective factors, mediated by neural/hormonal systems, which can (a) give rise to affective experiences such as feelings of arousal, pleasure/displeasure; (b) generate cognitive processes such as emotionally relevant perceptual effects, appraisals, labeling processes; (c) activate widespread physiological adjustments to the arousing conditions; and (d) lead to behavior that is often, but not always, expressive, goal-directed, and adaptive.“

(Kleinginna et. al 1981, S. 355)

Es sind vor allem vier Beiträge, von denen die heutige Emotionsforschung immer noch profitiert (Ekman 2009):

1. Darwin nahm an, dass mimisch expressive Emotionen universal, d.h. aufgrund von evolutionärer Einbindung interkulturell in Ausdruck und Bedeutung von Geburt an gleich verständlich sind. (Der Nachweis dieses Beitrags ist vor allem den Emotionsforschern Ekman und Friesen zu verdanken, die Studien zum interkulturellen Vergleich von Ausdruck und Erkennung mimisch expressiver Emotionen an bis dato isoliert lebenden Eingeborenen in Neu Guinea durchführten (Ekman et. al 1971)

2. Darwin konzentrierte sich bei seinen Beobachtungen vor allem auf das Gesicht und sah es als selbstverständlich an, dass vor allem die morphologische Veränderung des Gesichtsausdrucks emotionalen Gehalt vermittelt und nicht Haltung, Vokalisation, Gesten oder sonstiges.

3. Darwin konzeptualisiert Emotionen in eigenständige, gesonderte Wesen, die Familien bilden, welche sich untereinander durch verschieden Eigenschaften unterscheiden.

Eine übersichtliche Zuordnung der einzelnen Autoren und deren Zugehörigkeit zu verschiedenen Emotionstheorien gibt Abbildung 1 wieder.

Abbildung 1: Zuordnung verschiedener Forscher zu den unterschiedlichen Emotionstheorien (Gross et. al 2011, Seite 10, Abbildung mit freundlicher Genehmigung von SAGE Publishing)

1.2 Kommunikation / Interaktion

Im Folgenden werden die Kommunikationsstufen „4“ (Zeichensignal), „5“ (Kanal) sowie „3“ (Empfänger) der Abbildung näher beleuchtet.

1.2.1 Nonverbale Kommunikation (4 - Zeichensignal)

Unter dem Begriff der „nonverbalen Kommunikation“ werden alle Kommunikationswege zusammengefasst, die nicht das Medium des semantischen Austauschs bedürfen. Innerhalb der Gruppe der nonverbalen Signale sind es für Ekman (2004) fünf verschiedene Zeichensignalgruppen, die er bei der Beschreibung nonverbalen Verhaltens als Quelle interpersoneller Beziehungen zu Hilfe nimmt:

Neben Emblemen, Illustratoren, Manipulatoren sowie Regulatoren, die vor allem Körperverhalten von Händen, Armen und Gesten beschreiben, sind es vor allem emotionale Ausdrücke bzw. mimisch expressive Emotionen, die er als eindeutige Informationsträger identifiziert (Ekman 2004).
Facial Action Coding System

Ekman und Friesen diskriminierten bei ihren Untersuchungen zu Gesichtsausdrücken insgesamt 46 verschiedene AUs (vgl. Tabelle 1 & Tabelle 2, S.7)
1.2.2 Visuelle Wahrnehmung (5 – Kanal)

1.2.3 Gesichts- und Emotionserkennung (3 – Empfänger)

aus ihren eigenen Studien mit bildgebenden Verfahren, ERP-Studien (event-related-potential) wie auch Tiermodellen und Tierstudien beziehen konnten (vgl. Abbildung 3).

Microexpression und Macroexpression

1.3 Ziel der Studie und Fragestellung

Diesbezüglich wurden folgende Hypothesen aufgestellt:

- **Hypothese 1:** Die Erkennungsleistung mimischer expressiver Emotionen nimmt innerhalb der Sichtbarkeitsdauer von 0-100 Millisekunden zu.

- **Hypothese 2:** Die Erkennungsleistung der verschiedenen Emotionen unterscheidet sich in Abhängigkeit der Sichtbarkeitsdauer voneinander.

- **Hypothese 3:** Die Emotion „Freude“ wird „schneller“ und besser erkannt als alle anderen Emotionen.

- **Zum anderen sollten explorativ folgende Fragestellungen bearbeitet werden:**
2. Material & Methodik

Gegenstand der vorliegenden Arbeit ist die Untersuchung der Emotionserkennungsfähigkeit humaner mimischer Expressivität bei einer Sichtbarkeitsdauer der Stimuli unter 100 Millisekunden. Eine derart zeitkritische Darbietung von Stimuli erfordert einen speziellen Versuchsauflauf. Dieser Versuchsauflauf gliedert sich in die Grundkomponenten Ausgabegerät (Personal Computer und Kathodenstrahlrohrenmonitor (CRT)), Stimulumaterial („Japanese and Caucasian Facial Expressions of Emotion“ (JACFEE) / „Japanese and Caucasian Neutral Faces“ (JACNeuF) - Bildersatz (Matsumoto et al. 1988)), Software zur Darbietung der Stimuli (t-FEEL (Kessler et al. 2002)) sowie ausgewählte Fragebögen zur psychometrischen Erfassung von Persönlichkeit (Ten Item Personality Inventory, TIPI (Gosling et al. 2003)), emotionaler Intelligenz (Trait Emotional Intelligence Questionnaire - Short Form, TeiQue-SF (Petrides et al. 2001)) und Emotionsregulation (Emotional Regulation Questionnaire, ERQ (Gross et al. 2003)). Im folgenden Abschnitt wird neben der Beschreibung der Stichprobe und des Versuchsablaufs erläutert, weshalb die von uns verwendeten Grundkomponenten für den Versuchsauflauf ausgewählt wurden.

2.1 Beschreibung der Stichprobe

Insgesamt wurden N=100 Versuchspersonen (Vpn) getestet. Zwei Vpn hatten eine bekannte (bereits diagnostizierte) psychische Erkrankung, aufgrund derer sie sich in Behandlung befanden. Diese Vpn wurden für die Auswertung ausgeschlossen, da nicht sicher ist, inwieweit der psychopathologische Befund Einfluss auf die Emotionserkennungsfähigkeit nimmt. Von den verbliebenen N=98 Vpn im Alter zwischen 13 und 63 Jahren (MW=27,0; SD=10,7) waren 56 Vpn weiblich (57,1%) und 42 männlich. Die psychometrisch erfassten Daten der untersuchten Stichprobe werden im Ergebnisteil im Detail vorgestellt. Die Datenerhebung erfolgte im Zeitraum vom Dezember 2012 bis April 2013.

2.2 Beschreibung des Versuchsablaufs

Die Vpn wurden bei Interesse zur Teilnahme an der Studie „pERCEIVE“ (pERkennungsleistung mimisCh ExpressIVer Emotion) vom Versuchsleiter hinsichtlich des

2.3 Stimulusausgabegerät

2.3.1 Bildentstehung / Reaktionszeit
Als Grundprinzip bedient sich ein CRT-Monitor dem physikalischen Phänomen, dass freie Elektronen beim Aufprall auf eine Phosphorschicht diese zur Lichtemission anregen können. Die Grundbausteine des CRT sind daher eine elektronenemittierende Heizkathode, Ablenkspulen zur gezielten Ablenkung der Elektronen sowie die eigentliche Glasbildröhre welche auf ihrer inneren Vorderseite mit einer Phosphorschicht beschichtet ist ; vgl. Abbildung 4, S.16

Eine zwischen Heizkathode und Glasbildröhre (=Anode) angelegte Anodenspannung, die bei Kathodenstrahlmonitoren mehrere Kilovolt betragen kann, beschleunigt die aus dem über 600°C erhitzten Kathodenmaterial freigesetzten Elektronen in Richtung

Unter Reaktionszeit versteht man das verstrichene Zeitintervall das zwischen Signaleingang und Bildausgabe vergeht. LCD Monitore können für diesen Vorgang bis zu 20 Millisekunden zum Erreichen vergleichbarer Helligkeitswerte in Anspruch nehmen (Brainard et al. 2002); vgl. Abbildung 5, S. 17

2.3.2 Nachleuchtzeit

Abbildung 6: Verlauf des Phosphor Decay des Vergleichmonitors Iiyama HD204DT (Elze 2005, S.4, mit freundlicher Genehmigung von Elsevier)

Es kann davon ausgegangen werden, dass diese Referenzwerte für den bei unserem Versuchsaufbau eingesetzten Liyma HD202 DT ebenso gelten, da auch bei diesem Modell

2.3.3 Bildaufbau / Frame
Um eine möglichst konstante Wiedergabe der Stimulusbilder auf dem CRT-Bildschirm gewährleisten zu können sollte der Monitor vor dem Start der Versuchsdurchführung eine Aufwärmpphase durchlaufen. Erst nach dieser „warm up“ – Zeit erreicht die Bildröhre ihre maximale Leuchtkraft, ebenso hat sich die Farbwiedergabe auf einen Konstantwert kalibriert (Metha et al. 1993). Die Aufwärmpphase bei der Versuchsdurchführung betrug

2.3.4 Stimulussichtbarkeitsdauer

Berechnung der Sichtbarkeitsdauer:

Im Folgenden wird exemplarisch die reale Sichtbarkeitsdauer für 1, 2 bzw. 3 Frames dargestellt.

Rechnung für einen Einzelframe:

- Bei einer Bildwiederholfrequenz von 85Hz oder 85 Frames pro Sekunde ergibt sich für eine Einzelframedauer nach der Formel:
 \[n/f = \text{Einzelframedauer} \text{; } 1/85\text{Hz} = 11,76 \text{ Millisekunden für einen einzelnen Frame.} \]
 Von diesen 11,76 Millisekunden ist das „vertical blank interval“, in dem der Monitor physikalisch schwarz ist, abzuziehen. Das vertical blank Intervall bedarf ca. 5% der Gesamtframedauer:
 \[11,76\text{ms} \times 0,05 = 0,588\text{ms} \rightarrow 11,76-0,588 = 11,17\text{ms} \]

 Der Monitor bedarf nunmehr 11,17 Millisekunden, um alle 1024 Zeilen in vertikaler Ausrichtung nacheinander aufleuchten zu lassen. Zum Zeilenaufbau von einer Einzelzeile bedarf er demnach:
 \[11,17 \text{ ms} / 1024 = 0,011 \text{ Millisekunden.} \]

 Dementsprechend errechnet sich für eine Bildhöhe von 500 Zeilen eine Sichtbarkeitsdauer von:
 \[500 \times 0,011\text{ms} = 5,45 \text{ Millisekunden.} \]

 Unter Beachtung des Phosphor-Decay von 2 Millisekunden ergibt sich für einen angezeigten Frame eine effektive Sichtbarkeitsdauer von:
 \[5,45 \text{ ms} + 2 \text{ ms} = \textbf{7,45 Millisekunden} \]

- Beispielrechnung für zwei aufeinanderfolgende Frames:
 \[2,85 \text{ ms bis zum Stimulusbeginn} + 5,45 \text{ Stimuluszeit (1 Frame)} + 2,85 \text{ ms Zeit nach Stimulus} + 0,588 \text{ ms vertical blank} + 2,85 \text{ ms vor Stimulusbeginn} + 5,45 \text{ Stimuluszeit (2. Frame)} + 2 \text{ ms Phosphor-Decay} = \textbf{22 Millisekunden} \]

- Beispielrechnung für drei aufeinanderfolgende Frames:
 \[2,85 \text{ ms bis zum Stimulusbeginn} + 5,45 \text{ Stimuluszeit (1 Frame)} + 2,85 \text{ ms Zeit nach Stimulus} + 0,588 \text{ ms vertical blank} + 2,85 \text{ ms vor Stimulusbeginn} + 5,45 \text{ Stimuluszeit (2. Frame)} + 2,85 \text{ ms Zeit nach Stimulus} + 0,588 \text{ ms vertical blank} + 2,85 \text{ ms vor Stimulusbeginn} + 5,45 \text{ Stimuluszeit (3. Frame)} + 2 \text{ ms Phosphor-Decay} = \textbf{33,8 Millisekunden} \]

Analog der obigen Beispielrechnungen lässt sich für alle sieben Präsentationsstufen die effektive Stimulussichtbarkeitsdauer berechnen; vgl. Tabelle 3, S. 21

Tabelle 3: Stimulussichtbarkeitsdauer in Abhängigkeit der Anzahl angezeigter Frames

<table>
<thead>
<tr>
<th>Anzahl Frames</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sichtbarkeitsdauer[ms]</td>
<td>7,5</td>
<td>22</td>
<td>33,8</td>
<td>45,5</td>
<td>57,3</td>
<td>69,1</td>
<td>80,1</td>
</tr>
</tbody>
</table>
2.4 Stimulusmaterial

2.4.1 Bildersatz „Japanese and Caucasian Facial Expressions of Emotion“ (JACFEE) / Japanese and Caucasian Neutral Faces (JACNeuF) von Matsumoto

2.4.2 t-FEEL

Abbildung 7: Grafische Darstellung der Darstellungsvariante des „t-FEEL“ sowie des zeitlichen Verlaufs bei Präsentation eines Stimulus (Quelle: eigene Darstellung)

Die Einblendung eines Fixationskreuzes zentral auf dem Bildschirm dient zur Aufmerksamkeitslenkung hin zu dem Bildschirmareal innerhalb dessen die eigentliche Stimuluspräsentation stattfindet. Um eine mögliche Erwartungshaltung seitens der Vpn abzuwenden ist dieses Fixationskreuz immer mindestens 3000 Millisekunden sichtbar. Von Stimulus zu Stimulus jedoch verschieden ergänzt sich diese Mindestsichtbarkeitsdauer randomisiert um einen Betrag von 0 – 2000 Millisekunden. Ein neutrales Stimulusbild wird für 1500 Millisekunden im Anschluss an das Fixationskreuz eingeblendet um der Vpn die Erstellung eines Vergleichswertes zur anschließenden Einschätzung des emotionalen Stimulusbild zu ermöglichen und sich auf

Die emotionalen Stimulusbilder werden anschließend randomisiert von minimal 7,5ms bis maximal 80ms Sichtbarkeitsdauer eingeblendet.

2.4.2 Backward Masking – Noise Mask

2.5 Psychometrie
Zur Exploration der Emotionsregulation, emotionaler Intelligenz sowie der Persönlichkeitsdimensionen der Vpn wurden drei Fragebögen ausgewählt welche von den Vpn selbstständig beantwortet wurden. Die drei verwendeten Fragebögen sollen im Folgenden näher beleuchtet werden.

2.5.1 Emotional Regulation Questionnaire (ERQ)
2.5.2 Trait Emotional Intelligence Questionnaire (TEIQue) - Short Form

2.5.3 Ten-Item-Personality-Inventory (TIPI)

2.6 Datenauswertung

3. Ergebnisse

3.1 Allgemeine Erkennungsleistung der Emotionen

Die N=98 analysierten bzw. ausgewerteten Vpn konnten im t-FEEL einen Punktwert zwischen 0 (=keine Emotion erkannt) und 42 (=alle Emotionen erkannt) erreichen.

Insgesamt wurden von allen N=98 Vpn 65,8% (SA=10,2) der Emotionen richtig zugeordnet (Minimum: 40,5%; Maximum: 83,3%). Die Erkennungsleistung einzelner Emotionen unterscheidet sich signifikant voneinander (Wald $\chi^2(5; n=98)=104,32; p<0,001$). Post-hoc-Analysen zeigen, dass Freude mit einer Erkennungsrate von 87,9% signifikant besser erkannt wurde als alle anderen Emotionen ($p<0,001$); gefolgt von Trauer, Überraschung, Ärger, Ekel und Angst (vgl. Tabelle 4, S.29).

Angst und Ekel wurden signifikant schlechter erkannt als alle anderen Emotionen ($p<0,001$). Die Verteilung der Erkennungsleistung auf Ebene der einzelnen Emotionen entspricht damit in etwa dem bekannten Bild: Freude wird meistens am besten, Angst fast immer am schlechtesten erkannt (McAndrew 1986).

Tabelle 4: Tabellarisch Darstellung der Auswertung der Erkennungsraten für Einzelemotionen über alle N=98 Versuchspersonen des „t-FEEL“. Die Emotion Freude wird signifikant besser erkannt als die anderen getesteten Emotionen; Universitätsklinikum Ulm 2013-2014

<table>
<thead>
<tr>
<th>Emotion</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angst</td>
<td>98</td>
<td>0,00</td>
<td>100,00</td>
<td>51,8950</td>
<td>21,55220</td>
</tr>
<tr>
<td>Freude</td>
<td>98</td>
<td>42,86</td>
<td>100,00</td>
<td>87,9099</td>
<td>10,12276</td>
</tr>
<tr>
<td>Überraschung</td>
<td>98</td>
<td>40,48</td>
<td>83,33</td>
<td>65,8406</td>
<td>10,21144</td>
</tr>
<tr>
<td>Ekel</td>
<td>98</td>
<td>0,00</td>
<td>85,71</td>
<td>54,8105</td>
<td>20,88852</td>
</tr>
<tr>
<td>Ärger</td>
<td>98</td>
<td>28,57</td>
<td>85,71</td>
<td>61,9534</td>
<td>17,87629</td>
</tr>
<tr>
<td>Trauer</td>
<td>98</td>
<td>28,57</td>
<td>100,00</td>
<td>67,0554</td>
<td>18,04781</td>
</tr>
</tbody>
</table>

Die Erkennungsleistung der emotionalen Stimuli unterschied sich darüber hinaus signifikant in Abhängigkeit der jeweiligen Präsentationsdauer (Wald $\chi^2(6; N=98)=448,01; p<0,001$). Die Erkennungsleistung stieg anfangs rapide an und erreichte ab ca. 50 Millisekunden einen Sättigungsbereich (vgl. Abbildung 8, S.30).
Abbildung 8: In dieser Graphik ist die prozentuale Erkennungsleistung, gemittelt aus der Erkennungsleistung aller Einzelelementen der jeweiligen Präsentationsstufe in Abhängigkeit der jeweiligen Sichtbarkeitsdauer dargestellt. Der Kurvenverlauf verdeutlicht, dass ab ca. 46 Millisekunden Sichtbarkeitsdauer der Stimuli eine Plateauphase erreicht wird, ab der eine weitere Zunahme der Sichtbarkeitsdauer kein Wachstum der prozentualen Erkennungsleistung mehr bedingt; Universitätsklinikum Ulm 2013-2014

Post-hoc-Analysen (Tukey) zeigen, dass Stimuli mit einer Präsentationsdauer von 7,5 Millisekunden signifikant schlechter erkannt wurden als alle anderen (p<0,001). Die Erkennungsleistung lag dabei mit 10,7 % unter dem statistischen Zufall (16,6% bei 6 Auswahlmöglichkeiten). 22 Millisekunden wird signifikant schlechter erkannt als alle anderen (mit Ausnahme von 7,5ms (p<0,001)). 33,8 Millisekunden werden signifikant besser erkannt als 7,5 & 22 Millisekunden (p<0,001) aber signifikant schlechter als 57,30, 69,05 und 80,08 Millisekunden (p<0,05). Kein Unterschied in der Erkennungsleistung ist zwischen 33,8 und 45,5 Millisekunden zu erkennen. Ab einer Präsentationsdauer von 45,5 Millisekunden wird ein Sättigungsbereich erreicht und die Erkennungsleistung nimmt nicht mehr signifikant zu. Die Interaktion zwischen den Haupeffekten Emotion und Präsentationsdauer war ebenfalls hochsignifikant (Wald $\chi^2(30;N=98)=107,89$; p<0,001) was bedeutet, dass die Präsentationsdauer die Erkennungsleistung der einzelnen Emotionen...
auf unterschiedliche Art und Weise beeinflusst. Männer und Frauen unterschieden sich hinsichtlich ihrer Erkennungs raten nicht (vgl. Tabelle 5, S.31)

<table>
<thead>
<tr>
<th>Haupteffekt</th>
<th>Wald-Chi-Quadrat</th>
<th>Freiheitsgrad</th>
<th>Signifikanzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emotion</td>
<td>104,316</td>
<td>5</td>
<td>.000</td>
</tr>
<tr>
<td>Präsentationsdauer</td>
<td>448,009</td>
<td>6</td>
<td>.000</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>.302</td>
<td>1</td>
<td>.582</td>
</tr>
<tr>
<td>Interaktion von Emotion und Präsentationsdauer</td>
<td>107,886</td>
<td>30</td>
<td>.000</td>
</tr>
</tbody>
</table>

Bei der Reaktionszeit gilt es zu beachten, dass diese nicht in der Instruktion erwähnt wurde. Sprich, die Vpn waren nicht angehalten möglichst schnell zu antworten. Demnach besitzt diese Variable nur eine eingeschränkte Aussagekraft. Die Zeit bis zur Auswahl einer Emotionskategorie hat im Schnitt ca. 1903ms (SD=61ms) betragen (vgl. Tabelle 6, S. 31).

<table>
<thead>
<tr>
<th>Reaktionszeit</th>
<th>N</th>
<th>Minimum (ms)</th>
<th>Maximum (ms)</th>
<th>Mittelwert (ms)</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>1013,98</td>
<td>4059,95</td>
<td>1903,2721</td>
<td>61,42791</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 7: Tabellarische Darstellung der Reaktionszeit (Angabe in Millisekunden) bei jeweilig zugehöriger Sichtbarkeitsdauer der Emotion. Im Vergleich der Reaktionszeiten zeigt sich eine signifikant geringere Reaktionszeit nur für die kürzeste Sichtbarkeitsdauer von ca. 8 Millisekunden; Universitätsklinikum Ulm 2013-2014

<table>
<thead>
<tr>
<th>Sichtbarkeit (ms)</th>
<th>Anzahl Stimuli</th>
<th>Reaktionszeit (Mittelwert in ms)</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 ms</td>
<td>588</td>
<td>1579,78</td>
<td>1189,011</td>
</tr>
<tr>
<td>22 ms</td>
<td>588</td>
<td>1928,44</td>
<td>1367,986</td>
</tr>
<tr>
<td>34 ms</td>
<td>588</td>
<td>1942,74</td>
<td>1295,282</td>
</tr>
<tr>
<td>46 ms</td>
<td>588</td>
<td>1930,25</td>
<td>1406,218</td>
</tr>
<tr>
<td>57 ms</td>
<td>588</td>
<td>1940,22</td>
<td>1445,180</td>
</tr>
<tr>
<td>69 ms</td>
<td>588</td>
<td>2041,55</td>
<td>1637,569</td>
</tr>
<tr>
<td>80 ms</td>
<td>588</td>
<td>1959,93</td>
<td>1495,543</td>
</tr>
</tbody>
</table>
Ebenso zeigt die Verwechslungstabelle (vgl. Tabelle 8, S.34) bei der Präsentationszeit 7,5 Millisekunden die signifikant größte Anzahl der Auswahl „nicht erkannt“. Die Zusammenschau dieser Ergebnisse zeigt, dass eine Präsentationszeit von 7,5 Millisekunden für die Analyse hinsichtlich des emotionalen Gehalts mimischer Expressivität zu kurz ist und dementsprechend mit einer höheren Anzahl der Auswahl „nicht erkannt“ beantwortet wird (vgl. Abbildung 9, S. 32).

Abbildung 9: Graphische Darstellung der Anzahl der Auswahl des „Nicht erkannt“-Buttons in Abhängigkeit der jeweiligen Sichtbarkeitsdauer der gezeigten Stimuli. Der Kurvenverlauf verdeutlicht, dass insbesondere zwischen den Sichtbarkeitsdauern 8 und 34 Millisekunden eine starke Abnahme der Auswahl „Nicht erkannt“ stattgefunden hat. Bei ca. 8 Millisekunden Sichtbarkeitsdauer liegt die Anzahl der Auswahl „Nicht erkannt“ zwischen 400-500, dies unterstreicht die Annahme, dass diese Sichtbarkeitsdauer zu kurz ist um mimische Expressivität zu identifizieren; Universitätsklinikum Ulm 2013-2014
3.2 Erkennungsleistung der Einzelemotionen

Aufgrund der signifikanten Interaktion zwischen den beiden Haupteffekten Emotion und Präsentationsdauer wurde der Einfluss der Präsentationsdauer für jede einzelne Emotion analysiert (vgl. Abbildung 10, S.33)

- **Angst**: Bereits ab 34 ms Sichtbarkeitsdauer der Emotion Angst wird ein Sättigungsbereich erreicht ab dem trotz zunehmender Sichtbarkeitsdauer kein weiterer signifikanter Anstieg in der Erkennungsleistung folgt.
- **Freude**: Bereits ab 22 ms Sichtbarkeitsdauer der Emotion Angst wird ein Sättigungsbereich erreicht ab dem trotz zunehmender Sichtbarkeitsdauer kein weiterer signifikanter Anstieg in der Erkennungsleistung folgt.
- **Überraschung**: Ebenfalls ab 22 ms Sichtbarkeitsdauer der Emotion Überraschung wird ein Sättigungsbereich erreicht ab dem trotz zunehmender Sichtbarkeitsdauer kein weiterer signifikanter Anstieg in der Erkennungsleistung folgt.
- **Ekel**: Die Erkennungsleistung für die Emotion Ekel nimmt ab 22ms Sichtbarkeitsdauer eher linear zu und erreicht erst ab 47 ms ein Plateau ab dem keine signifikante Verbesserung in der Erkennungsleistung mehr stattfindet.

Abbildung 10: Für jede der untersuchten Einzelemotionen ist in dieser Grafik die prozentuale Erkennungsleistung in Abhängigkeit der jeweiligen Sichtbarkeitsdauer dargestellt. Im Vergleich der Kurvenverläufe der Einzelemotionen sticht hervor, dass insbesondere die Emotion „Freude“ schon ab der zweiten Präsentationsstufe mit Sichtbarkeitsdauer 22 Millisekunden ein Plateau erreicht, ab dem eine weitere Zunahme der Sichtbarkeitsdauer keine weitere Zunahme der prozentualen Erkennungsleistung bedingt; Universitätshklinik Ulm 2013-2014
• **Trauer:** Mit zunehmender Präsentationsdauer ab 46ms Sichtbarkeitsdauer der Emotion Angst wird ein Sättigungsbereich erreicht ab dem trotz zunehmender Sichtbarkeitsdauer kein weiterer signifikanter Anstieg in der Erkennungsleistung folgt.

• **Ärger:** Zunächst nimmt die Erkennungsleistung für die Emotion Ärger bis 35ms Sichtbarkeitsdauer schnell zu. Ab 35ms Sichtbarkeitsdauer gibt es einen Wendepunkt ab dem der Zuwachs der Erkennungsleistung stark abfällt, insgesamt jedoch bis 80ms Sichtbarkeitsdauer stetig signifikant zunimmt.

3.3 Analyse häufiger Verwechslungen

<table>
<thead>
<tr>
<th>Gezeigte Emotion</th>
<th>Angst</th>
<th>Freude</th>
<th>Überraschung</th>
<th>Ekel</th>
<th>Trauer</th>
<th>Ärger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angst</td>
<td>356</td>
<td>2</td>
<td>96</td>
<td>7</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>Freude</td>
<td>10</td>
<td>603</td>
<td>6</td>
<td>21</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Überraschung</td>
<td>128</td>
<td>4</td>
<td>490</td>
<td>2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Ekel</td>
<td>79</td>
<td>2</td>
<td>7</td>
<td>376</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td>Trauer</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>460</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Ärger</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>154</td>
<td>31</td>
<td>425</td>
</tr>
<tr>
<td>„nicht erkannt“</td>
<td>103</td>
<td>71</td>
<td>85</td>
<td>116</td>
<td>147</td>
<td>145</td>
</tr>
</tbody>
</table>
3.4 Auswertung der Fragebögen

3.4.1 Auswertung des Fragebogens „Emotional Regulation Questionnaire“

Aus diesen Ergebnissen lässt sich ableiten, dass die Fähigkeit zur Emotionsregulation sowohl bei Frauen und Männern in diesem Experiment keinen Einfluss auf die Erkennungsleistung für Emotionen auszuüben scheint.

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Reappraisal</th>
<th>Suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männlich</td>
<td>3,4444</td>
<td>4,4107</td>
</tr>
<tr>
<td>Mittelwert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>1,18976</td>
<td>1,03862</td>
</tr>
<tr>
<td>Weiblich</td>
<td>3,4583</td>
<td>4,7366</td>
</tr>
<tr>
<td>Mittelwert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>1,05804</td>
<td>.91381</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>3,4524</td>
<td>4,5969</td>
</tr>
<tr>
<td>Mittelwert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>1,11045</td>
<td>.97761</td>
</tr>
</tbody>
</table>

3.4.2 Auswertung des Fragebogens „Trait Emotional Intelligence Questionnaire“

Die Ergebnisse des Fragebogens sind in Tabelle 10, S.36 dargestellt. Frauen weisen signifikant geringere Werte in der Skala „TQ_self_control“ (M_Frauen: 4,64 / M_Männer: 4,99 (p<0,05)) auf. Ansonsten besteht kein Unterschied zwischen den untersuchten Männern und Frauen. Mit Ausnahme eines signifikanten Zusammenhangs zwischen der Erkennungsleistung von Freude und der Skala Selbstkontrolle (r=-0,272, N=98, p<0,01) konnte zwischen der Erkennungsleistung einzelner Emotionen und den Skalen des TEIQue-SF kein signifikanter Zusammenhang beobachtet werden.
3.4.3 Auswertung des Fragebogens „Ten Item Personality Inventory“

Die Ergebnisse des TIPI sind in Tabelle 11 S. 36 gelistet. Es konnte ein signifikanter Unterschied zwischen Männern und Frauen in den Skalen Zuverlässigkeit (p<0,05) und Neurotizismus (p<0,01) beobachtet werden. Zwischen der Erkennungsleistung einzelner Emotionen und den Skalen des TIPI konnte kein statistisch bedeutsamer Zusammenhang beobachtet werden.

<table>
<thead>
<tr>
<th>Skala des Fragebogens</th>
<th>Geschlecht</th>
<th>Anzahl</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEIQue_SF</td>
<td>Männlich</td>
<td>42</td>
<td>5,1587</td>
<td>0,60341</td>
<td>0,09311</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>56</td>
<td>5,0494</td>
<td>0,57889</td>
<td>0,07736</td>
</tr>
<tr>
<td>TQ_well_being</td>
<td>Männlich</td>
<td>42</td>
<td>5,5198</td>
<td>1,00554</td>
<td>0,15516</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>56</td>
<td>5,5774</td>
<td>0,85219</td>
<td>0,11388</td>
</tr>
<tr>
<td>TQ_self_control</td>
<td>Männlich</td>
<td>42</td>
<td>4,9921</td>
<td>0,84900</td>
<td>0,13100</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>56</td>
<td>4,6429</td>
<td>0,79546</td>
<td>0,10630</td>
</tr>
<tr>
<td>TQ_emotionality</td>
<td>Männlich</td>
<td>42</td>
<td>5,0893</td>
<td>0,71316</td>
<td>0,11004</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>56</td>
<td>5,1027</td>
<td>0,63805</td>
<td>0,11199</td>
</tr>
<tr>
<td>TQ_sociability</td>
<td>Männlich</td>
<td>42</td>
<td>4,6429</td>
<td>0,82331</td>
<td>0,09649</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>56</td>
<td>4,5030</td>
<td>0,74229</td>
<td>0,09919</td>
</tr>
</tbody>
</table>

Tabelle 11: Tabellarische Darstellung der Auswertung des Fragebogens „Ten Item Personality Inventory“ mit besonderem Blick hinsichtlich Geschlechterunterschiede innerhalb des Probandenguts. Signifikante Unterschiede zwischen Männern und Frauen sind in den Skalen „Zuverlässigkeit“ und „Neurotizismus“ auffällig; Universitätsklinikum Ulm 2013-2014

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Extraversion</th>
<th>Verträglichkeit</th>
<th>Zuverlässigkeit</th>
<th>Neurotizmus</th>
<th>Offenheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männlich</td>
<td>4,7262</td>
<td>5,2143</td>
<td>5,4405</td>
<td>5,6667</td>
<td>5,1548</td>
</tr>
<tr>
<td>Weiblich</td>
<td>4,6339</td>
<td>5,5179</td>
<td>5,9018</td>
<td>4,6339</td>
<td>5,3571</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Extraversion</th>
<th>Verträglichkeit</th>
<th>Zuverlässigkeit</th>
<th>Neurotizmus</th>
<th>Offenheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männlich</td>
<td>1,36240</td>
<td>1,03678</td>
<td>1,07750</td>
<td>0,93487</td>
<td>1,18161</td>
</tr>
<tr>
<td>Weiblich</td>
<td>1,17354</td>
<td>0,82000</td>
<td>1,01542</td>
<td>1,19275</td>
<td>0,92792</td>
</tr>
</tbody>
</table>

Insgesamt: 4,6735, 5,3878, 5,7041, 5,0765, 5,2704
4. Diskussion

Die Ergebnisse der Studie „pERCEIVE“ zeigen, dass die Sichtbarkeitsdauer mimisch expressiver Stimuli die Erkennungsleistung signifikant beeinflusst (Wald $\chi^2(6;N=98)=448,01; \ p<0,001$). Gemittelt über alle getesteten Emotionen ist die Entwicklung der Erkennungsleistung in Abhängigkeit von der Sichtbarkeitsdauer ähnlich dem Verlauf eines beschränkten Wachstums mit einer natürlichen Kapazitätsgrenze zu beschreiben. Mit zunehmender Sichtbarkeitsdauer vor allem in den drei kürzesten Sichtbarkeitsstufen (7,5; 22 und 34 Millisekunden) hat das Wachstum der Erkennungsleistung ihre größte Änderungsrate, wobei die Zusammenschau der Ergebnisse aus Verwechslungstabelle, Erkennungsleistung sowie Reaktionszeit zeigen, dass die kürzeste Präsentationszeit von 7,5 Millisekunden für die Analyse hinsichtlich des emotionalen Gehalts mimischer Expressivität zu kurz ist und mit einem Mittelwert von 10,7 % in unserer Studie unter dem statistischen Zufall (16,6% bei 6 Auswahlmöglichkeiten) liegt. Die Entwicklung der Erkennungsleistung erreicht anschließend ab ca. 50 Millisekunden einen Sättigungsbereich ab dem eine weitere Zunahme der Sichtbarkeitsdauer keine signifikante Änderung der Erkennungsleistung mehr mit sich bringt. Frauen und Männer unterschieden sich hinsichtlich ihrer Erkennungsraten nicht, obwohl dennoch Studien zur Erkennungsleistung mimischer Expression insbesondere dem weiblichen Geschlecht einen Erkennungsleistungsvoorteil im Hinblick auf richtige Zuordnung von an Intensität reduzierten Gesichtsausdrücken zuschreiben (Hoffmann et. al 2010).

Auf der Ebene der Erkennungsleistung für einzelne Emotionen lässt sich ebenfalls ein signifikanter Unterschied feststellen (Wald $\chi^2(5;N=98)=104,32; \ p<0,001$). Post-hoc-Analysen zeigen, dass die Emotion Freude mit einer Erkennungsrate von 87,9% signifikant besser erkannt wurde als alle anderen Emotionen ($p<0,001$), gefolgt von den Emotionen Trauer, Überraschung, Ärger, Ekel und Angst. Dieses Ergebnis für die Emotion Freude spiegelt ebenso der Vergleich der Verwechslungstabelle wieder. Freude wurde insgesamt am wenigsten verwechselt. Die Emotion „Ekel“ wurde im Gegensatz dazu insgesamt 154 mal für die Emotion „Ärger“ gehalten und damit am häufigsten verwechselt. Ein Zusammenhang zwischen den Ergebnissen der psychometrischen Erfassung der
Stichprobe und der Erkennungsleistung mimischer Expressivität konnte nicht gefunden werden.

Folgend werden Faktoren näher beleuchtet und diskutiert welche zusätzlichen Einfluss auf die Erkennungsleistung ausgeübt haben könnten:

Lidschlag

Noise mask

dieses Verhaltens der „noise mask“ könnte man annehmen, dass die von uns eingesetzte Maske mit einem Interstimulusintervall von 0 Millisekunden und einer Sichtbarkeitsdauer von 7,5 Millisekunden keinen oder nur sehr geringen Maskierungseffekt hatte und somit die Erkennungsleistung durch nicht eliminierte Nachbilder positiv beeinflusst wurde.

Präsentationsgröße der Stimuli

Ein weiterer auf die Erkennungsleistung einflussnehmender Faktor, den es zu diskutieren gilt, stellt die Präsentationsgröße der Stimuli auf dem Ausgabemedium dar. Einer Untersuchung von Ekman et al. (1979) zufolge, die der Fragestellung nachging ob die Größe der verwendeten Stimuli Einfluss auf die Erkennungsleistung mimischer Expressivität hat (z.B.: größere Bildern mit dementsprechend höherer Auflösung und folglich besserer Charakterisierung der Action Units und letztlich erleichterte Emotionserkennung) konnte zeigen, dass die Darstellungsgröße der Stimuli keinen signifikanten Einfluss auf die Erkennungsleistung nimmt. Somit kann davon ausgegangen werden, dass die von uns getroffene Wahl der Stimulusgröße auf dem Ausgabemedium (alle Stimuli waren in ihrer Vertikalausdehnung auf eine max. Größe von 500 Pixeln
normiert) keine einflussnehmende Größe auf die Erkennungsleistung darstellte (Ekman et al. 1979).

Trainingseffekt

Darstellungsvariante der Stimuli
kleiner 100 Millisekunden) präsentierte Stimuli mit Sichtbarkeitsdauern von 7,5 – 80 Millisekunden wobei eine Darstellung in dynamischer Modulation technisch erst ab einer Sichtbarkeitsdauer von mindestens 33,8 ms möglich gewesen wäre. Um eine Inkonsistenz innerhalb des Tests zu vermeiden verzichteten wir daher auf einen Wechsel des Darstellungsmodus für die unterschiedlichen Sichtbarkeitsdauern der Stimuli.

Alterseffekte

5. Zusammenfassung

Die Studie „pERCEIVE“ konnte zeigen, dass die Erkennungsleistung für Mikroexpressionen ab einer Sichtbarkeitsdauer größer 45,55ms nicht mehr signifikant zunimmt. Mit insgesamt 87,9% wurde die Emotion Freude am besten erkannt. Im Gegensatz dazu wurde die Emotion Angst mit 51,9% am schlechtesten erkannt. Die Emotionen Freude und Überraschung wurden dabei ab Sichtbarkeitsdauern von 22ms am schnellsten wahrgenommen. Angst und Ärger wurden mit 33,8ms später als die Emotion Freude und Überraschung erkannt. Für Ekel und Trauer wurde im Schnitt die doppelte Sichtbarkeitsdauer (45,55ms) bis zur eindeutigen Identifikation benötigt. Weder Alter und Geschlecht noch persönlichkeitsdefinierende Merkmale wie Persönlichkeitsdimension, emotionale Intelligenz oder die Art der Emotionsregulation hatten Einfluss auf die Erkennungsleistung. Letztlich stand die Erkennungsleistung allein im Einfluss der zu erkennenden Emotion und deren Sichtbarkeitsdauer.
6. Literaturverzeichnis

Danksagung

Meinem Doktorvater, Herrn Prof. Dr. Harald C. Traue danke ich für die herzliche Aufnahme als Doktorand in seinen Arbeitskreis. Besonders die durch Dich bereitete freundliche, offene und unkomplizierte Arbeitsatmosphäre war es, die eine erfolgreiche Durchführung dieser wissenschaftlichen Arbeit ermöglichte.

Mein besonderer Dank gilt meinem lieben Freund und ärztlichem Kollegen Dr. biol. hum Holger Alexander Hoffmann. Ich danke Dir für Deine treue Begleitung durch die Zeit der Promotion, die vielen schönen Stunden bei Dir im Institut, eine unvergessliche Reise nach Washington und viele gute Ratschläge und Hilfen in allen Lebenslagen.

Lebenslauf

Name: Christoph Daniel Tisler
Geburtsdatum: 12.08.1988
Geburtsort: Freudenstadt

Berufstätigkeit

01/2017 – aktuell Weiterbildungsassistent „Arbeitsmedizin“ (BMW Group)
01/2015 – 12/2016 Weiterbildungsassistent „Innere Medizin“ (Kreisklinikum Krumbach)

Studium

10/2008 – 10/2014 Studium der Humanmedizin an der Universität Ulm

Wehrdienst

07/2007 – 03/2008 Fallschirmjäger beim Kommando Spezialkräfte (KSK) in Calw

Schulausbildung