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EXECUTIVE SUMMARY 
Since the arrival of cloud computing, a significant amount of research has been and continues to be 

carried out towards the creation of efficient optimisation strategies for meeting certain optimisation 

goals such as energy efficiency, resource consolidation or performance improvement within virtualised 

data centres. However, investigating whether specific optimisation algorithms can achieve the desired 

function in a production environment, and investigating how well they operate are quite complex tasks. 

Untested optimisation rules typically cannot be directly deployed in the production system, instead 

requiring manual test-bed experiments. This technique can be prohibitively costly, time consuming and 

cannot always account for scale and other constraints.  

This work presents a design-time optimisation evaluation solution based on discrete event simulation 

for cloud computing. By using a simulation toolkit (CactoSim) coupled with a runtime optimisation 

toolkit (CactoOpt), a cloud architect is able to create a direct replica model of the data centre 

production environment and then run simulations which take into account optimisation strategies. 

Results produced by such simulations can be used to estimate the optimisation algorithm performance 

under various conditions. 

In order to test the CactoSim and CactoOpt integration concept, a validation process has been 

performed on two different scenarios. The first scenario investigates the VM placement algorithm 

performance within a simulated testbed when admitting new VMs into the system. The second scenario 

analyses consolidation optimisation strategy impact on resource utilisation, with the objective being to 

free up nodes towards the goal of energy saving. This deliverable represents the initial part of two 

iterative pieces of work. 
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I. INTRODUCTION 
From a research context, much work has been done in the past in the area of data centre topology 

optimisation algorithms such as power aware optimisation or simulated annealing virtual machine 

placement (see Ranjana and Raja, (2013) and Sekhar, Jeba and Durga, (2012)). The success of such 

optimisation techniques is typically validated on a limited range of hardware, or a particular single test 

bed available to the researchers at the time of the experiment. Further, due to various restricting 

factors such as time, funding, and research focus, algorithm efficiency is only compared to a few existing 

solutions in the area making its benchmark results at least incomplete for the future user. The problem 

of evaluating optimisation algorithms arises when a topology of a real live datacentre needs to be 

optimised. The available hardware and deployed software stack is typically unique to every datacentre, 

meaning that some of the optimisation efficiency results will also differ. In addition, not all of the 

optimisation algorithms are compared side by side, meaning there is little information available to 

support the choice of one optimisation algorithm over another. Cloud computing features such as 

workload and architecture heterogeneity coupled with the complexity and scale of cloud computing 

environments hampers the selection of the appropriate topology optimisation strategies, therefore 

rigorous validation and evaluation is required. 

In order to aid data centre operators in choosing the most appropriate optimisation strategies, this 

section presents an optimisation and simulation coupling technique. While the simulation data is 

captured from a running data centre prior to starting a simulation execution, design time optimisation 

strategy evaluation and validation is made possible through the use of data outputted during simulation 

runtime as input for the optimisation framework. The main idea is to enable the evaluation of the 

runtime optimisation strategies at design time prior to deployment to the real environment. In order to 

make such simulation predictions, the model representation of a data centre needs to be captured 

accurately. This model consists of the following: physical models, that contain information about 

hardware devices and the topology that defines the network of the servers; logical models, that 

represent the virtualization layer configuration, containing information about the setup of the VMs; and 

finally application models, with resource workload information. Further, based on these models, 

resource utilisation can be simulated by substituting real system monitoring data for the optimisation 

toolkit. 

The high level diagram in Figure 1 shows sensor data being collected from the simulation framework 

through the creation of models. These models describe the physical state of the data centre and the 

logical (virtual) layer of resources allocated through hypervisors. The models contain component 
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topology and attributes descriptions forming a dynamic map of the cloud computing environment. By 

parsing the data from the models, the optimisation framework is able to suggest improvements to the 

system, creating an Optimisation Plan Model. This model contains the suggestions for (re-)allocations of 

VMs in the form of “optimisation actions”. This actuator data feedback is converted into model 

transformation actions within the running simulation as it would have been in the real runtime 

environment. 

 

Figure 1. Coupling of CactoSim with CactoOpt 

The continuous and on-demand optimisation approaches for VM consolidation and placement 

algorithms are assessed respectively. The simulation presents the results of pre- and post- optimisation 

data centre resource utilisation thereby enabling the impact of each optimisation algorithm to be 

compared and analysed. A description of work done is provided towards a validation of the models and 

algorithms within CactoOpt and the CactoSim simulation framework. The amount of data available has a 

clear influence on the quality of the simulation models, and Work Package 4 (CactoScale) provides the 

necessary data and trace analysis as an input to the simulation models. In addition, the output from the 

model integration effort in Work Package 5 also feeds into this initial validation of the CACTOS 

optimisation models. 

In summary, this deliverable provides preliminary results from the validation of and experimentation 

with the optimisation models being delivered by the CACTOS project. It presents the reader with the 

scope of the deliverable, optimisation models, simulation and methodology and evaluation. Section II 

provides the background to this work in the form of a brief state of the art review and CACTOS tooling 

overview. Section III presents an overview of the optimisation models, including optimisation policies 

optimisation use cases and optimisation algorithms to be validated. This leads onto Section IV, which 
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gives an overview of CactoSim, reference scenarios and the methods by which the optimisation models 

are validated. The interfaces between CactoOpt and CactoSim are also described along with the 

coupling and integration between these. Finally, evaluation is presented in Section V, which includes a 

simulation model description used for the validation process, the results of the simulation experiments, 

and a discussion of these results with respect to the optimisation models validation. The validation 

process has been performed on two different scenarios. The first scenario investigates the performance 

of VM placement algorithms within a simulated testbed when admitting new VMs into the system. The 

second scenario analyses impact of the Best Fit Memory Consolidation optimisation strategy on 

resource utilisation with the objective being to free up nodes towards reducing energy consumption. 
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II.  BACKGROUND 

1. STATE OF THE ART 
Since both the increase in popularity and vast adoption of cloud computing IaaS architecture 

technologies has taken place, different resource allocation policies are being proposed for data centre 

performance optimisation (Ranjana and Raja, 2013), (Sekhar et al., 2012). Optimisation actions can be 

divided into four broad categories: (1) arriving VM placement, (2) existing VM migration, (3) vertical 

scalability and (4) horizontal scalability known also as load balancing. 

In systems where the relationships between interacting components are difficult to even conceptualise 

due to complexity and scale, it is necessary to formalise a model of the system in some analytical 

framework. In cloud computing environments, discrete event simulation is one analysis methodology 

which suits the decision support in stochastic environments, and has been tested to be utilised 

successfully (see (Long et al., 2013), (Núñez et al., 2012), (Tighe, 2012) and (Wickremasinghe et al., 

2010)). In order to undertake a simulation based analysis, it is necessary to define, build, populate, and 

validate the models of the ‘as-is’ situation. Next, the intended ‘to-be’ situation is represented in the 

models by configuring a set of parameters, obtaining the results for the two situations. Finally these 

results are compared to quantify the impact of the proposed changes. 

The exact captured metric requirement for simulation is defined by the data structure of the model 

container. In the case of cloud computing, the model is expected to contain information about 

hardware composition of the data centre together with a virtual layer describing various properties of 

virtual machines. Depending on the design and purpose of an experiment, simulation can integrate with 

models based on, for example, hardware configuration, network topology and workload. These models 

allow changing each aspect independently from the others and evaluate their effect on the whole 

composition. Besides structural information, these models can be populated with behaviour 

descriptions based on actual events occurring within a data centre, e.g. HDD failure, VM admission or 

CPU utilisation changes. In return, information on the resource and system utilisation under controlled 

and reproducible conditions can be obtained, which eliminates the complexity, hardware usage, and 

costs associated with the typical sandbox experiment setup. The use of simulation gives the ability to 

predict system behaviour and produce information for large-scale data centres without even starting a 

single VM. 
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There are a number of cloud simulation tools available in order to create and run a cloud computing 

simulation model. Overviews are given in (Ahmed and Sabyasachi, 2014), (Mohana et al., 2014), 

(Malhotra and Jain, 2013), (Sinha and Shekhar, 2015) and (Zhao et al., 2012). For example, CloudSim 

(Long et al., 2013) uses Java language classes as data holders which will form a model usable by the 

simulation engine. For modelling cloud, iCanCloud (Núñez et al., 2012) has a Java user interface to help 

in the building of a model which then is saved in plain text format, but in the core it uses OMNeT++ to 

describe model components. GreenCloud (Kliazovich et al., 2010) uses OTcl language script to define the 

model on top of its core written in C++ making model easier to decouple from the code base classes. 

One of the main aims of simulation focuses on the effectiveness of the aforementioned optimisation 

actions evaluation by studying the behaviour of the system when different algorithms are deployed. For 

example, Goudarzi and Pedram (2011) propose SLA-aware resource allocation optimisation algorithms 

to reduce the power consumption and VM migration costs. In order to appraise the proposed VM 

placement algorithms, a simulation based on a true-to-life cloud computing system model was used. 

Results were produced from the output of the simulation giving algorithm performance compared to 

the number of clients using the system. 

In the available literature, a wide range of cloud optimization scenarios have been both demonstrated 

and investigated (Jennings and Stadler, 2014) towards increasing the efficiency of data centres. 

Examples include energy and power consumption (Heller et al., 2010), workload migration (Yao, 2012), 

and incorporation of predictions of IT demand and renewable energy (Liu et al., 2012), modelling of 

correlation-aware demand (Chen et al., 2011) and interference effects of co-located workloads (Zhu and 

Tung, 2012), joint optimization of placement and routing (Jiang et al., 2012) and thermal management 

(Rodero et al., 2012). In terms of the development of simulation to specifically support the validation of 

optimisation techniques during design-time, an example of related is given by  Svärd et al., (2014), in 

which a runtime continuous datacentre consolidation using a set of heuristic methods is introduced. In 

order to prove that the approach is applicable to real world scenarios, the combination of simulation 

and real system experiment results were presented. Simulation results reflect CPU utilisation over time 

in high, medium and low load conditions. 

CactoSim aims to deliver a simulation framework that relies on the data traces and their analysis 

provided by CactoScale and serve as means of validation for CactoOpt. CactoSim plays the role of a 

context-aware advanced decision-support tool for data centre management. Operators are able to 

model heterogeneous landscape components in order to validate and evaluate optimisation algorithms 

via what-if-analyses. Produced results, in form of simulated forecasts, are calculated based on collected 
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historical system data. The following gives an overview of CACTOS tooling towards meeting the goal of 

CactoSim in validation of the optimisation algorithms. 

2. CACTOS TOOLING OVERVIEW  
This deliverable builds on previous work performed within the CACTOS project and as such this section 

serves as a high level overview through introducing the reader to the CACTOS tooling. The aim of this 

section is to provide a brief description to CACTOS components, their properties and naming 

conventions to support further discussions within this document. For the overall vision of the project, 

please refer to Östberg et al., (2014a) and more detail is provided on CACTOS tooling in Groenda et al., 

(2014). 

 

Figure 2: CACTOS tooling overview, from Groenda et al., (2014) 

In terms of tooling, the CACTOS project is mainly concerned with the development and employment of 

three tools, namely CactoScale, CactoOpt and CactoSim: 

¶ CactoScale is a monitoring and data gathering toolkit built upon large-scale log collection and 

analysis system Chuckwa (Boulon et al., 2008). The role of CactoScale is, firstly, to poll the 

infrastructure data from the datacentre via deployed agents and secondly, to process the 
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obtained data by exposing them as infrastructure models. The models conform to a specific 

design developed to contain information that suits needs of all the consumer tools i.e. CactoSim 

and CactoOpt. CactoScale is described in more detail in Papazachos et al. (2014a) and 

Papazachos et al. (2014b). 

¶ CactoOpt is an optimisation toolkit that makes use of multi-objective optimisation algorithms to 

reach a set of goals such as energy efficiency, performance and quality of service. The 

optimisations are performed by managing already running Virtual Machines (VMs) and the 

placement of newly arriving VMs. More information on CactoOpt can be found in Östberg et al. 

(2014b) and Aleyeldin et al. (2015). 

¶ CactoSim is a discrete event simulation toolkit with a focus on cloud computing environments. 

It main aim is to estimate the resource utilisation of the modelled system. Simulation is used for 

the validation of cloud datacentre optimisation strategies which are provided by CactoOpt and 

also in assisting in system design by providing what-if analysis capabilities to cloud operators. 

More information on the CactoSim design and features can be found in Svorobej et al. (2014). 

 

These CACTOS tools are integrated to form both a Runtime Toolkit and Prediction Toolkit as shown in 

Figure 2, each serving a different purpose. The Runtime Toolkit supports datacentre runtime resource 

management operations in a real-world live system. CactoScale continuously captures measurements 

provided by the data centre. These measurements are exposed in a consistent state via the 

Infrastructure Models database. Using these models, the latest datacentre state can be acquired by the 

CactoOpt toolkit for further analysis. CactoOpt then produces an optimisation plan containing suggested 

actions to be enacted within the datacentre, for example to move a set of VMs to better suited nodes 

whether through the use of continuous optimisation methods or on-demand optimisations. The 

optimisation plan is a model itself, and is executed on the system by a Virtual Middleware Integration 

(VMI) component. The VMI component is responsible for converting optimisation actions into the API 

calls for the cloud management framework, i.e. OpenStack (OpenStack, 2015) and Flexiant Cloud 

Orchestrator (FCO) (Flexiant Ltd., 2015). 

The Prediction Toolkit on the other hand uses simulation instead of the real datacentre to deploy 

optimisation plans. The CactoSim simulation framework enables the retrieval of the same Infrastructure 

Models created by CactoScale, in order to perform simulation experiments with identical features than 

the real system. These models can be utilised without modification, or can be modified to fit specific 

experimentation requirements. Models also can be created manually from scratch to represent systems 

which do not exist or are simply not accessible for the user. Once the Infrastructure Models are 

finalised, CactoSim can be launched to simulate system load. During the simulation, CactoSim 
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periodically calls CactoOpt to send results of simulated Infrastructure Models. CactoOpt then generates 

an optimisation plan, which is sent to the CactoSim VMI and enacted in the simulated datacentre. In this 

way, the Prediction Toolkit evaluates and validates the behaviour of the optimisation algorithms in a 

controlled simulated environment, prior to deploy them in a real datacentre.  

 

The Infrastructure Models that are used by the CACTOS Runtime and Prediction toolkits consist of: 

¶ Physical Data Centre Model (PDCM) – describes hardware configuration inside a datacentre. It 

contains model elements to capture the main features of physical nodes placed in racks, such as 

CPU, memory, storage and network.  

¶ Physical Load Model (PLM) – represents the current workload of resources contained in PDCM.  

¶ Logical Data Centre Model (LDCM) – captures the features of the logical hypervisor layer of the 

cloud datacentre. It links resources assigned to each VM to a Hypervisor which in turn relays to 

nodes within PDCM model.  

¶ Logical Load Model (LLM) – the model contains the same workload measurements of resources 

as PLM, only within the constraints of VMs. 

In addition to the logic separation of the components, the models are also classified by the frequency of 

data updates. For example, the resource utilisation captured in PLM and LLM will be updated more 

frequently than the hardware components of a datacentre located in PDCM, thus making it easier to 

process by data collection toolkit (CactoScale). Full model descriptions and related topology information 

can be found in Groenda et al., (2014). 

The next section introduces cloud environment optimisation overview within the scope of the project. 

The optimisation policies and algorithms are explained through addressing the use case requirements. 
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III.  OPTIMISATION MODELS   
CactoOpt is designed using a sensor-actuator model where the optimisation engine’s view of the 

surrounding world is captured in a set of infrastructure topology and load models (sensors) and the 

actions the optimisation engine can use to affect data centre resources (actuators) are represented 

using an optimisation plan language (describing a set of infrastructure actions recommended to 

optimise data centre layout and operation). The model does not assume that all recommended 

optimisation actions are immediately taken, but rather views these as a set of recommendations the 

optimiser gives to an external party (e.g., a virtualisation middleware integration implementation or a 

systems administrator) that enacts (part of or the entire) plan. 

1. OPTIMISATION POLICIES 
To illustrate the use of optimisation in CactoOpt/CACTOS, three types of high-level policies are here 

considered: load balancing, consolidation, and energy efficiency. These are selected to illustrate the 

basic use cases of CactoOpt, and formulate objective functions / evaluation functions for the 

optimisations, based on the intended purpose of the policies. The differences between the policies (in 

particular between consolidation and energy efficiency) are illustrated by the evaluation functions used: 

¶ Load balancing: seeks to minimize the difference between the load of a particular host and 

the average load of all hosts (i.e. spread the load evenly or in proportion to physical machine 

sizes). This policy has been designed to ensure the QoS of virtual machines, in spite of the 

expense of energy efficiency. 

¶ Consolidation: seeks to minimize the number of physical machines used to host virtual 

machines while preserving the basic placement constraints of the system (i.e. without 

overloading any individual machines). The main aim of this policy is to maximize the available 

residual capacity (number of unused physical machines) for future workloads / virtual 

machines. 

¶ Energy efficiency: seeks to minimize the total power consumption of the data centre. This 

differs from consolidation primarily when there is heterogeneity in a) the hardware used, but 

also later in b) workloads, i.e. when we consider vertical elasticity techniques to overbook 

physical machines. Energy efficiency is here included as a new policy type that combines the 

fundamental placement constraints of consolidation, while also modelling and taking into 

account differences in power consumption at node level. 
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Note that all of these optimisations can be seen as parts of cost optimisation, which would typically 

include combining these policies in some way. For this deliverable we do not seek to investigate 

combinations of the different types of policies, but this is a target for later work that will be addressed. 

In order to limit complexity and facilitate interpretation of results, all placement (including migrations) 

optimisation detailed in this work are subject to the following placement constraints: 

¶ No individual physical machines may host more virtual machines than it can fit (i.e. zero 

overbooking of physical machines). These constraints are enforced at all capacity levels (i.e. 

with respect to CPU cores, RAM, I/O, storage capacity, storage performance, network capacity, 

and network performance). 

¶ No individual virtual machines can be involved in more than one migration at the same time 

from one node to another (i.e. migrations may not overlap in time). 

The constraints were introduced to comply with the common abilities of cloud management solutions 

and create clear guidelines for initial optimisation policies. 

2. OPTIMISATION USE CASES 
Two main types of use case scenarios for optimisation are considered: on demand, and continuous. On 

demand optimisation is here defined as an external party contacting CactoOpt to trigger a quick 

optimisation decision (i.e. a synchronous request-response model API call). Continuous optimisation is 

defined by CactoOpt maintaining a background process that continuously pulls in data and 

independently creating optimisation plans (i.e. an asynchronous publish-subscribe type of model API). 

We consider on demand optimisation primarily useful for placement of new virtual machines, while 

continuous optimisation addresses a broader range of usage scenarios (and is illustrated in this 

document through migration optimisations scenarios). 

Due to the difference in response time, different types of algorithms are considered for the different 

use cases: 

¶ On demand optimisations will contain quickly executing search-based and single-pass 

evaluation of objective function algorithms. Also algorithms where more time consuming 

solutions have been prepared in advance (i.e. optimisation plans that have been prepared for 

specific scenarios, e.g., submission of new virtual machines of specific sizes). 

¶ Continuous optimisation will contain more time-consuming algorithms that over time will seek 

to optimise data centre operations by, e.g., placing, migrating or changing the hardware 

assignments of existing virtual machines. 
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3. OPTIMISATIONS 
In this work we classify data centre optimisations into four categories: placement, migration, vertical 

elasticity, and horizontal elasticity. Placement here refers to initial assignment of virtual machines to 

physical machines. Migration similarly deals with (re-)placement of virtual machines, that is moving 

running virtual machines to alternative physical machines. Vertical elasticity here refers to dynamic 

control of the amount of hardware resources (e.g., #CPU cores, amount of I/O or network bandwidth) 

allocated to virtual machines. Horizontal elasticity refers to dynamic control of the number of instances 

of a virtual machine. 

The perspective we take of these action categories is: 

¶ Placement is covered in this deliverable in a preliminary state 

¶ Migration is covered in this deliverable in a preliminary state 

¶ Vertical elasticity requires prediction models and will be addressed and delivered in Month 24 

(deliverable D3.3) 

¶ Horizontal elasticity requires application models and will be considered in Year 3, pending a 

suitable use case and sufficient success in application modelling 

4. ALGORITHMS 
The optimisation algorithms covered here primarily consider modelling of resources capacity of main 

subsystems that composes on a node. They use the level of indirection provided by virtual machines to 

control the interactions with the physical machines: placement, migration, and elasticity, as a means of 

data centre optimisation. 

For this deliverable, the following algorithms are provided: 

¶ On demand (VM placement) 

o Seek-based algorithms. These algorithms search the optimisation value space of the 

problem by using different formulations of linear search,  and selecting the solution that 

best fits a given cost function. 

o Computationally lightweight (single-pass) evaluation algorithms. Discrete optimisation 

algorithms that use a single evaluation of a complex algorithm to find a best effort solution 

to a placement problem. 

¶ Continuous optimisation 
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o Lightweight evaluation algorithms. Iterative (multi-pass) versions of the lightweight 

algorithms used for VM placement that are adapted to migration optimisation problems. 

o Heuristics-based iterative algorithms for migration. Discrete optimisation methods for 

optimising the placement of existing VMs via migration, in this report illustrated by a set of 

algorithms derived from a Lin-Kernighan inspired heuristic for combinatorial optimisation. 

Future plans (from Month 23 – Month 36) include advanced algorithms that will consider 

¶ On demand (VM placement) 

o Advanced algorithms preparing placement plans in advance. Essentially combinations of 

placement and migration optimisation algorithms that collaborate to increase the quality 

of placement optimisation (via reservation of free space in migration optimisation). 

¶ Continuous optimisation 

o Discrete optimisation, constraint programming, heuristics, and meta-heuristics algorithms 

for placement, combined placement and migration, and combined placement, migration, 

vertical elasticity, as well as self-aware algorithms that take optimisation costs into 

account in, e.g., energy consumption calculations. 

o Algorithms that model migration costs in terms of risk and impact of migrations, e.g., in 

modelling network load and potential QoS degradations for co-hosted virtual machines. 

o Iterative methods with deeper search depths and application-level placement constraints. 
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IV. SIMULATION AND METHODOLOGY  
This section outlines potential scenarios for simulation to evaluate, improve and validate the QoS within 

a data centre. Section 1 άReference scenario: Real data centre managed by the CACTOS Runtime Toolkit” 

outlines the reference scenario whose behaviour the simulation tries to (partially) replicate. Section 2 

έReference Case: Simulating the Behaviour of a Data Centreέ describes the use of simulation to 

artificially increase the size of a small-scale data centre test bed by coupling it with a data centre 

simulation. Section 3 έClosed-Loop Simulation of a Self-Optimising Data Centreέ discusses a closed-loop 

integration of simulation and optimisation. Closed-loop integration iteratively applies optimisations 

within a simulation run. It aims at replicating the behaviour of a data centre that is automatically 

optimised at run-time. The goal of the closed-loop integration is to allow data centre operators to 

evaluate the impact this automated optimisation has on the QoS within a data centre. A description of 

the integration and coupling between CactoSim and CactoOpt is given in Section 4 έIntegration and 

Coupling of CactoSim and CactoOptέ. Finally, Section 5 έExtending the Simulationέ outlines how 

simulation has been extended towards closed loop-integration with CactoOpt. In the interplay between 

the CACTOS toolkits, the closed loop integration is the most beneficial, because it enables the validation 

optimisation algorithms and hence, enables the operator to benefit most from CACTOS. The chosen 

integration method is described in Section 3 ”Closed-Loop Simulation of a Self-Optimising Data Centre”. 

1. REFERENCE SCENARIO: REAL DATA CENTRE MANAGED BY THE 

CACTOS RUNTIME TOOLKIT 
Data centres from the domain of cloud computing typically host a multitude of applications with 

different application types, such as frontend services, databases, and non-interactive computations. In 

the case of IaaS, users submit VMs to a cloud provider. The VMs are then deployed onto physical hosts 

where they perform their operations using the physical resources assigned to them. Resources amount 

can either be assigned manually by a data centre operator or by an automated mechanism. The primary 

aim of CACTOS is to automate the deployment decisions using scheduling algorithms that focuses the 

VM resource allowance and image type. 

The CACTOS Runtime Toolkit (Groenda et al., 2014b) automatically optimises the assignment of 

resources to VMs at runtime. It carries out the optimisations to achieve objectives such as minimal 

energy consumption and optimal performance. The CACTOS Runtime Toolkit consists of CactoScale and 

CactoOpt. CactoScale monitors the data centre topology and load. It then reflects the topology and load 

information in a holistic model abstraction, namely the CACTOS Infrastructure Models. CactoOpt uses 

these models as input for its optimisations. The optimisation toolkit produces a recommended 
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Optimisation Plan with optimisation actions, which aim to improve QoS in the data centre. Finally, this 

plan is executed by a set of VMI connectors (Figure 2) that interact with the middleware used to operate 

the data centre, i.e. OpenStack (OpenStack, 2015) or FCO (Flexiant Ltd., 2015). 

To simulate the behaviour of the real system the CACTOS Prediction Toolkit uses CactoSim to produce 

resource utilisation data. This enables the validation of the optimisation algorithms used by CactoOpt in 

running environments (for more, see Section II.2 άCACTOS Tooling Overviewέ). 

2. REFERENCE CASE: SIMULATING THE BEHAVIOUR OF A DATA 

CENTRE 
Operating a large-scale data centre requires a large investment in space, personnel, money and time. 

While one might have access to a small-scale testbed, large-scale production systems are typically not 

open for experimentation with new monitoring and optimisation mechanisms as realized by CactoScale 

and CactoOpt. 

Simulations can be used to analyse the behaviour of a running production data centre. In order to 

provide benefits over a real data centre, the simulation typically has to utilise significantly less resources 

than the operation of the real data centre would. In order to achieve this, the simulation needs to make 

a set of simplifying assumptions. 

Discrete-event simulation (DES) is a widespread simulation paradigm where the time does not run 

continuously. Rather, it characterises time as a series of events that occur at discrete points. When 

simulating a system, DES skips the interval between the points in time defined by two subsequent 

events. This enables the simulation to complete usually faster than the behaviour of a real system. 

However, in some rare cases the speed of simulation can be slower than the real system depending on 

the granularity and confidence factor, but even in this case simulation provides the benefit of not 

requiring the actual physical system to be available. It also provides an evaluation environment that is 

easier to control than a real-world experiment. 

3. CLOSED-LOOP SIMULATION OF A SELF-OPTIMISING DATA 

CENTRE  
Scheduling and placement algorithms as realized in CactoOpt optimise the mapping of resources to 

applications using a set of objectives. Algorithmic quality guarantees of such algorithms are determined 

based on a set of simplifying assumptions. Algorithms always operate on a model abstraction of the 

system. In the cloud computing domain they have to carry out their optimisations without full 



 

1 5  |  P a g e P r e l i m i n a r y  R e s u l t s  -  O p t i m i s a t i o n  M o d e l s   C A C T O S 

 

knowledge of future load. Consequently, the impact of the proposed actions on the quality objective is 

not necessarily optimal. 

For this reason, it is good practice in algorithm engineering and the scheduling community to also 

evaluate algorithms in real test environments. This is, however, infeasible when it comes to data centre-

wide optimisations: Researchers usually do not have access to cloud-scale test beds. Simulative analysis 

can be used as a compromise between the accuracy of the execution in a real data centre environment 

and a mathematical quality bounds analysis. Simulation engines for software systems such as Palladio 

(Rathfelder and Klatt, 2011) replicate the behaviour of resource schedulers, usage patterns and 

interactions between the software components. At the same time, they abstract from lower-level 

performance effects, such as differences in execution time for alternative CPU instruction sets, or 

network routing. 

A closed-loop integration of simulation and optimisation couples an optimisation algorithm designed for 

QoS optimisation with a simulative analysis. The simulation is conducted at the datacentre optimisation 

policies design time. The term closed-loop hereby refers to the iterative execution of the optimisation as 

part of the simulation. The optimisation plans produced by this integrated optimisation are enacted 

within the simulation.  

The closed-loop integration of simulation and optimisation aims at enabling 

1. Algorithm engineers to reason on the effectiveness of their designed optimisation algorithms. 

2. Data centre operators to reason on the benefit of employing a set of optimisation algorithms in 

his data centre without risking the operational integrity of his data centre. 

The closed-loop integration of simulation and optimisation allows evaluating the QoS impact of an 

optimisation algorithm and its configuration using the measurements from a simulated data centre 

instead of the real data centre. 

4. INTEGRATION AND COUPLING OF CACTOSIM AND CACTOOPT 
In order to evaluate the impact that automated, continuous optimisation has on QoS, the simulation 

needs to integrate with and carry out optimisations with the simulated system. As part of the 

integration of optimisation with simulation, the actions proposed by the optimisation need to be 

enacted in the simulated system. If input and output models of the optimisation algorithm are identical 

with the simulation model, the optimisation plan proposed by the optimisation can be directly enacted 

using model transformations. However, if the models the optimisation reasons on are not identical to 

the simulation model, it needs to be ensured that these models are kept consistent. 
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Figure 3. Overview of the Model Integration between CactoOpt and CactoSim 

CactoSim is built in the top of a stack of simulation software. The main base of CactoSim is the Palladio 

Component Model (PCM). It defines a software system on an abstraction level layer. PCM provides a 

white box approach towards software systems and accounts for dependencies between individual 

software components. On top of PCM, CactoSim utilises Simulizar (Becker, Luckey, et al., 2013). This is a 

simulation engine that enables the performing of experiments of software systems. 

Moreover, the CACTOS Infrastructure Model provides a different environment than provided by PCM. It 

does not model individual components, but rather VMs that encapsulate a set of components. The 

components inside a VM are not individually distinguished. In Svorobej et al., (2014) an initial mapping 

from the CACTOS Infrastructure Models to PCM has been defined in order to support the evaluation of 

QoS in data centres without accounting for optimisation. The Virtualisation Middleware Integration 

(VMI) is deployed in real data centres to execute the Optimisation Plans proposed by CactoOpt. This 

plan is performed on the middleware that controls the data centre, i.e., OpenStack or FCO. In the 

simulation, the VMI (CactoSim VMI) is realized as a model-to-model transformation that translates both, 

the CACTOS Infrastructure Models, and the PCM instance to which the CACTOS models are mapped. 
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This initial prototype is being expanded as part of the future CACTOS Deliverable 6.3 (due Month 24) to 

support a closed-loop integration of CactoOpt’s optimisations. 

Figure 3 gives a high-level overview of the relations between CACTOS Infrastructure Models and PCM. 

Once a simulation experiment is launched, CactoSim transforms the CACTOS Infrastructure Models to 

PCM. Next, while the simulation is running, in this case CactoSim periodically calls CactoOpt getting new 

actions to be triggered from the Optimisation Plan (see Figure 4). The CactoSim Optimisation Integration 

component, also periodically updates the Palladio Runtime Measurement Model (PRM) with load 

measurements from the simulation. Prior to executing an optimisation, the Optimisation Integration 

needs to map the load measurements in the PRM into CACTOS Physical Load Models (PLM) and Logical 

Load Models (LLM). This mapping ensures that the CACTOS models used as input of the optimisation 

reflect the load at the current simulation time. 

:PCM VMI

:CactpSim 
Integration

getOptimisationPlan(InfrastructureModel)

<<OptimisationPlan>>

:CactoSim VMI

:CactoOpt

<<InfrastructureModel>>
<<PCM OptimisationPlan>>

:Palladio

<<PCM>>

<<Load Models>>

getSimulatedData()

 

Figure 4. Prediction Toolkit Component Interaction Sequence Diagram 

The load measurements in the PLM and LLM each must reference the element for which they were 

collected, i.e. a CPU or the memory of a node. The optimisation integration matches the load collected 

for elements in the PCM simulation model back to the CACTOS Infrastructure Model elements that they 

represent. 

Once the load measurements from the PRM have been transformed to PLM and LLM models, the 

Optimisation Integration calls CactoOpt and waits for it to finish. CactoOpt then produces an 

Optimisation Plan that is enacted on the simulated data centre. 
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During simulation, CactoOpt is semantically dependent on the CactoSim, meaning that it cannot directly 

rely on implementation-internal wall clock time readings. All dependencies of CactoOpt to the wall-clock 

time need to be controlled via a well-defined interface. This allows the simulation integration to feed 

the optimisation simulation time instead of real wall clock time. 

When an Optimisation Plan is executed in the CACTOS Runtime Toolkit, the VMI triggers a 

transformation of the logical data centre topology, i.e. by causing one VM to be migrated from one host 

to another. Within the simulation of the CACTOS Prediction Toolkit the data centre topology is not 

derived from monitoring information. Changes to the topology need to be applied by transforming the 

state of the simulated system, as is outlined by (Becker, Becker, et al., 2013). Since the CACTOS 

Optimisation Plan refers to elements in the CACTOS Infrastructure Models and not the simulations’ PCM 

instance, it is transformed to a PCM-specific optimisation plan. The PCM VMI then applies the actions 

contained in a PCM Optimisation Plan. However, as CactoOpt only operates on CACTOS Infrastructure 

Models and not PCM, the CACTOS Optimisation Plan also needs to be applied to the CACTOS 

Infrastructure Models. This is necessary in order to ensure that the next optimisation triggered at 

CactoOpt is passed a CACTOS Infrastructure Model that represents the current system state.  

Optimisation Actions that cause elements to be added to the model such as VmPlacementAction 

(Groenda et al., 2014a) require further synchronization between the CactoSim and PCM VMI. When the 

CactoSim VMI processes a VM placement, it adds a VM image instance on the hypervisor as defined by 

the VmPlacementAction. The PCM VMI deploys an application behaviour model representing VM to a 

physical host. In order to match the load information from the simulation to the CACTOS Infrastructure 

Models the next time an optimisation is triggered, the Optimisation Integration needs to keep track of 

the correspondence between the VM in the CACTOS Infrastructure Model and the VM component in 

PCM.  

The time it takes to carry out the optimisation may be taken into account by the Optimisation 

Integration by issuing the PCM VMI to enact the optimisation at a future point in time. 

At the time of deliverable submission the coupling methodology between CactoSim and CactoOpt is 

finalised together with the one-way model transformation. Currently the CACTOS Infrastructure Model 

can be programmatically converted to PCM and simulation can take place. The Optimisation Plan 

transformations for the validation results presented in section V ”Evaluation” were made manually for 

each experiment. The full integration of CactoSim with the optimisation framework CactoOpt is planned 

by the end of Month 24 towards CACTOS Deliverable D6.3 άCactoSim Simulation Framework 
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LƴǘŜǊƳŜŘƛŀǘŜ tǊƻǘƻǘȅǇŜέ. The work in year 3 for further integration improvement will address VM 

lifecycle management and application behaviour implementation for CactoSim. 

5. EXTENDING THE SIMULATION 
To enact the optimisation plans proposed by CactoOpt, modifications were required to be made to 

CactoSim. The chart in Figure 5 breaks down the optimisation supported simulation process into logical 

system states. Each state represents the separation between actions performed by CactoSim in order to 

call the optimisation framework for executing the returned optimisation plans. 

Start

Running Simulation

entry / start or resume simulation
do / generate descrete events
exit / pause simulation 

Enact Optimisation Plan

entry / transform PDCM, LDCM and PCM
exit / swap exiting PCM with new

[ Simulation time = Optimisation Plan time ]

Process Cyclic Optimiser Event

entry / update measurements to PLM and LLM
entry / send models and deadline to CactoOpt
entry / receive Optimisation Plan
exit / schedule Optimisation Plan event

[ Simulation time interval = Measurement interval ]

[new event occurred]

Stop

[ end of Simulation time ]

Process Simulation Event

entry / read system measurements
do / check and trigger conditions

 

Figure 5. Validation process state chart 

To action the optimisation plans proposed by the optimisation toolkit, the standard simulation process 

flow must be modified. The state transition chart given in Figure 5 breaks down the optimisation 

supported simulation process into logical system states each representing the separation between 

actions performed by the simulation toolkit in order to call the optimisation framework and execute the 

returned optimisation plans. Referring to Figure 5: 

¶ Running Simulation state – Represents the discrete simulation engine which uses data centre 

system models and configuration parameters as core aspects to generate events. The 

simulation can be fully stopped if one of the stopping conditions are met or paused for other 

actions to take place. 
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¶ Process Simulation Event state – Each simulation event can trigger a metric generation. These 

measurements need to be read and used for executing any attached conditions.  

¶ Process Cyclic Optimiser Event state - If the simulation has reached a certain event, the system 

will collect resource utilisation data of the physical and logical layers from the simulated data 

measurements. Both the system models and newly-generated resource utilisation monitored 

data are sent to the optimisation toolkit in order to produce an optimisation plan. Lastly the 

received optimisation plan will be scheduled at the events queue, taking into account the time it 

took for calculating the optimisation. 

¶ Enact Optimisation Event state – once the simulation time reaches the scheduled enactment 

time of the optimisation plan, the system models are transformed according to the proposed 

plan. For example if the optimisation plan suggests moving a VM from Node A to Node B, the 

logical data centre model will be transformed to reflect this change and the simulation will 

resume with this new model in place. 

The following section provides an overview of validation and experimentation of the optimisation 

models provided by CactoOpt through the use of the CactoSim simulation framework. 
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V. EVALUATION 
This section provides an overview of validation and experimentation of the optimisation models 

provided by CactoOpt, using simulations and CactoSim. For validation eight simulation runs, listed in 

Table 1, were conducted. As this deliverable details preliminary results, future CACTOS-available 

testbeds will be integrated in the follow up deliverable 6.5, due in month 36 of the project. Future work 

for each scenario is also presented in this section towards delivery in D6.5. In this section, results 

analysis and conclusions are made as to the effectiveness of the optimisation models.  

Table 1. Validation experiments list 

Run No. Scenario Testbed Model Optimisation Algorithm 
Simulation 

Platform 

1 Baseline UULM None CactoSim 

2 Placement UULM First Fit CactoSim 

3 Placement UULM First Fit CPU CactoSim 

4 Placement UULM First Fit Memory  CactoSim 

5 Migration UULM Best Fit Memory Consolidation CactoSim 

6 Placement Stochastic Lin-Kernighan RAM Load Balancing Crude 

7 Migration Stochastic Lin-Kernighan RAM Consolidation Crude 

8 
Migration and 

Placement 
Stochastic Lin-Kernighan Power Utilization  Crude 

1. EXPERIMENT SETUP 
This evaluation is primarily based on the real testbed located at the University of Ulm. The testbed 

contains 16 physical nodes with a total CPU core count of 256, as described in Table 2. Further details 

for this testbed can be found in CACTOS Deliverable D5.2.1 (Groenda et al., 2014b). 

Table 2. Components per node type in the  UULM cloud testbed, (Groenda et al., 2014b) 

Cloud 

Controller 

CPU 2x Intel Xeon 6-Core Westmere (2.92 Ghz) 

Memory 48 GB DDR3 Memory  

Storage 2x 1TB SATA HDD, 7.2k rpm 

Network 

Controller 

CPU 2x Intel Xeon 6-Core Sandy Bridge (2.0 GHz) 

Memory 64 GB DDR3 Memory 

Storage 2x 1TB SATA HDD, 7.2k rpm, RAID-1 

Storage node CPU 2x Intel Xeon 6-Core Sandy Bridge (2.0 GHz) 

Memory 64 GB DDR3 Memory 
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Storage 2x 500GB SATA HDD, 7.2k rpm 

6x 2TB SATA HDD, 7.2k rpm 

Compute 

Nodes 1-4 

CPU 2x Intel 8-Core Sandy Bridge (2.6 GHz) 

Memory Node 1,2 

Node 3,4 

64 GB DDR3 Memory 

128 GB DDR3 Memory  

Storage 2x 1TB SATA HDD, 7.2k rpm 

Compute 

Nodes 5, 6 

CPU 2x Intel 8-Core Sandy Bridge (2.6 GHz) 

Memory Node 5 

Node 6 

64 GB DDR3 Memory 

128 GB DDR3 Memory 

Storage 2x 240GB SSD 

Compute 

Nodes 7-12 

CPU 2x Intel 8-Core Sandy Bridge (2.6GHz) 

Memory Node 7-9 

Node 10-12 

64 GB DDR3 Memory 

128 GB DDR3 Memory  

Storage No local storage 

Compute 

Nodes 13,14 

CPU 2x Intel Haswell 8-Core (2.4GHz) 

Memory Node 13 

Node 14 

64 GB DDR4 Memory 

128 GB DDR4 Memory  

Storage 2x 1TB SATA HDD, 7.2k rpm 

Compute 

Nodes 15,16 

CPU 2x Intel Haswell 8-Core (2.4GHz) 

Memory Node 15 

Node 16 

64 GB DDR4 Memory 

128 GB DDR4 Memory  

Storage 2x 240GB SSD 

 

The hardware specification of the testbed (i.e. set of physical machines) is complemented with a set of 

stochastically derived virtual machines (see Table 3), where the number of virtual machines are chosen 

to equal the number of physical machines times four (i.e. 64 virtual machines for the Ulm testbed). This 

number of virtual machines reaches a realistic load level for the testbeds and produces suitably 

challenging optimisation problems for this evaluation. To match the complexity in the optimisation 

problems between the testbeds, virtual machines are scaled (in CPU and RAM requirements) with the 

size of the testbed nodes. 

Table 3. Initial random VM allocation by node 

Compute 

Node ID 

Number of 

VMs 

Compute Node 

ID 

Number of 

VMs 

1 2 9 4 

2 1 10 7 

3 7 11 0 
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4 0 12 8 

5 1 13 4 

6 10 14 5 

7 5 15 1 

8 7 16 2 

 

a) SIMULATION EXPERIMENT SETUP 

The randomly generated VM placement shown in Table 3 is used as a starting point for each experiment 

based on the Ulm testbed model. The Logical Data Centre Model (LDCM), which describes the virtual 

layer, contains the configuration attributes of VMs such as the amount of allocated memory or CPU 

cores linked to appropriate hypervisors entities. In order to simulate small instances, VMs images are 

defined with 512MB of RAM and 1 core. Each VM is assigned the same black box type Application 

Behaviour Model representing CPU resource demand distribution with a 10% probability of high, 30% 

medium high, 50% medium and 10% low CPU consumption per user call. The simulation time was set to 

86400 seconds to represent a 24 hour cycle with the maximum measurement count set to 100,000 

units. This means that the simulation run stops upon reaching the set time or when the maximum 

measurement count is reached. 

b) BASELINE SIMULATION RESULTS  

This section describes the results from the simulation run without the optimisation models being called. 

The results that are highlighted are used for comparison purposes to show the effectiveness of different 

optimisation models. 

The correlation between CPU demand and amount of assigned VMs is shown in Figure 6 . As expected, 

the average CPU utilization is higher on the hosts that have more VMs deployed to them. Node ID 6 

reaches 100% CPU load with 10 VMs running, which indicates a problem of resource overbooking.  



 

2 4  |  P a g e P r e l i m i n a r y  R e s u l t s  -  O p t i m i s a t i o n  M o d e l s   C A C T O S 

 

 

Figure 6. Simulated baseline CPU utilisation in Ulm testbed 

The baseline simulation results captures average CPU demand of the cloud data centre test bed “as-is” 

without optimisation. This information serves as a comparison point for future simulation results 

acquired with the optimisation in mind further under validation scenarios. 

2. VALIDATION SCENARIO 1: VM PLACEMENT 
In order to establish a basis of comparison for the placement algorithms, a set of standard algorithms is 

evaluated on the example scenarios, and the performance of these is compared to the optimisation 

algorithms.  

¶ First fit placement places virtual machines on the first physical machine it finds that is capable 

of hosting them. 

¶ Best fit placement is a search-based method that evaluates all available physical machines and 

matches virtual machines to the ones that give the highest evaluation score, e.g., the lowest 

value in a placement cost function. In this evaluation three best fit algorithms are evaluated: 

load balancing best fit, consolidation best fit, and power consumption best fit (an energy 

efficiency algorithm). 

An on-demand optimisation model is used whereby CactoSim contacts CactoOpt to trigger a quick 

optimisation decision (i.e. a synchronous request-response model API call). In this case, seek-based 

algorithms (computationally lightweight (single-pass) evaluation algorithms) are used. 

20%

13%

81%

0%

12%

100%

54%

73%

41%

68%

0%

76%

41%
46%

9%

19%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e

so
u

rc
e

 U
ti

lis
at

io
n

 (
%

)

N
u

m
b

e
r 

o
f 

V
ir

tu
al

 M
ac

h
in

e
s

Compute Node ID

VM

avg CPU util



 

2 5  |  P a g e P r e l i m i n a r y  R e s u l t s  -  O p t i m i s a t i o n  M o d e l s   C A C T O S 

 

The cloud environment model is transformed by deploying 32 new VMs. Newly deployed VMs are 

arranged according to the generated CactoOpt optimisation plans. The VM node distribution by 

different optimisation algorithms are shown in Table 5.  

 

SIMULATION RESULT SET: EXPERIMENT RUN 1 ɀ FIRST FIT PLACEMENT ALGORITHM 

This section describes the results from the simulation run with the VM First Fit Placement algorithm 

being called. The results are highlighted and used for comparison purposes to show the effectiveness of 

the different optimisation models. 

During the First Fit placement the nodes are sequentially populated by arriving VMs until the node’s 

available memory threshold is reached then moving on to the next available node. The simulation 

results shown in Figure 7 indicate oversaturation of Node ID 1 and 2 leading to high CPU resource 

demand. Overloading of CPU can lead to longer job processing and response delays questioning the 

efficiency of this VM placement approach. The increase reaches only a few nodes leaving the state of 

the virtual layer largely unchanged. 

Table 4. First Fit VM placement 

Compute 

Node ID 

Number of 

VMs 

Compute Node 

ID 

Number of 

VMs 

1 14 (↑12) 9 4 

2 15 (↑14) 10 7 

3 9 (↑2) 11 0 

4 4 (↑4) 12 8 

5 1 13 4 

6 10 14 5 

7 5 15 1 

8 7 16 2 

 

Note that following this optimisation algorithm, VMs can be assigned to the empty compute nodes 

bringing them out of sleep state. This has happened in this case also with Node ID 4 that was assigned 

four running VMs. Activating dormant nodes can lead to more energy consumption and it is better to 

distribute VMs among already running machines if the available resources permit. 
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Figure 7. First Fit optimisation results 

 

SIMULATION RESULT SET: EXPERIMENT RUN 2 ɀ BEST FIT CPU PLACEMENT ALGORITHM 

This section describes the results from the simulation run with the VM Best Fit CPU Placement algorithm 

being called. The results are highlighted and used for comparison purposes to show the effectiveness of 

the different optimisation models. 

Table 5. Best Fit CPU VM placement 

Compute 

Node ID 

Number of 

VMs 

Compute Node 

ID 

Number of 

VMs 

1 8 (↑6) 9 8 (↑4) 

2 4 (↑3) 10 8 (↑1) 

3 8 (↑1) 11 0 

4 0 12 8 

5 1 13 8 (↑4) 

6 10 14 8 (↑3) 

7 8 (↑3) 15 1 

8 8 (↑1) 16 8 (↑6) 
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The Best Fit CPU placement algorithm places a Virtual Machine on the compute node with the smallest 

residual CPU capacity where the VM fits. The only difference compared to the First Fit placement 

algorithm shown in Experiment Run 1 is that at the beginning physical nodes are analysed and sorted 

according to their residual capacity in ascending order. 

The end simulation results shown in Figure 8 demonstrate a quite even distribution of the VMs across 

the available compute nodes. 

 

Figure 8. Best Fit CPU placement results 

 

SIMULATION RESULT SET: EXPERIMENT RUN 3 ɀ BEST FIT MEMORY PLACEMENT 

ALGORITHM 

This section describes the results from the simulation run with the VM First Fit Memory Placement 

algorithm being called. The results are highlighted and used for comparison purposes to show the 

effectiveness of the different optimisation models. 

 

Similar to the Best Fit CPU placement algorithm demonstrated in Experiment Run 2, the Best Fit Memory 

algorithm uses smallest residual capacity of memory on the physical nodes to allocate VMs. 
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Table 6. Best Fit Memory VM placement 

Compute 

Node ID 

Number of 

VMs 

Compute Node 

ID 

Number of 

VMs 

1 8 (↑6) 9 12 (↑8) 

2 1 10 9 (↑2) 

3 9 (↑2) 11 0 

4 0 12 8 

5 1 13 4 

6 10 14 11 (↑6) 

7 11 (↑6) 15 1  

8 9 (↑2) 16 2 

 

Obtained simulation results shown in Figure 9 demonstrate oversaturation of some nodes leading to 

higher CPU utilization rates which in turn may lead to slower VM response rates. 

 

Figure 9. Best Fit Memory placement results 

FUTURE ACTIONS  

Future work on placement algorithms include the definition and use of more advanced cost functions 

for placement, collaboration between placement and migration algorithms that reserve capacity for 
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incoming workloads, as well as placement algorithms that migrate existing workloads to make room for 

incoming workloads. 

3. VALIDATION SCENARIO 2: VM MIGRATION 
A continuous optimisation model is used where CactoOpt cyclically performs optimisation computations 

to detect and exploit opportunities for optimisations of the data centre configuration. In this model 

CactoSim runs CactoOpt that autonomously produces optimisation plans when appropriate (i.e. an 

asynchronous publish-subscribe interaction). In this case, seek-based and combinatorial optimisation 

algorithms ranging from computationally lightweight to high complexity algorithms are used. 

 

SIMULATION RESULT SET: EXPERIMENT RUN 4 ɀ BEST FIT MEMORY CONSOLIDATION 

ALGORITHM 

This section describes the results from the simulation run with the VM Consolidation algorithm being 

called. The results are highlighted and used for comparison purposes to show the effectiveness of the 

different optimisation models. 

The generated optimisation plan proposes VM migration in order to completely free up as many nodes 

as possible without violating available physical node memory constrains. If a node has no running VMs 

assigned it can be completely switched off or put into sleep mode to save power. 

Table 7. VM Consolidation algorithm migration 

Compute 

Node ID 

Number of 

VMs 

Compute Node 

ID 

Number of 

VMs 

1 0(↓2) 9 1(↓3) 

2 0(↓1) 10 8(↑1) 

3 6(↓1) 11 0 

4 0 12 8 

5 2(↑1) 13 5(↑1) 

6 10 14 8(↑4) 

7 8(↑2) 15 0(↓1) 

8 8(↑1) 16 0(↓2) 

 

As shown in Table 7 an additional 4 nodes (Node ID: 1,2,15 and 16) became VM free and also the 

average simulated CPU utilization results across remaining nodes are below maximum.  
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Figure 10. VM Consolidation results 

FUTURE ACTIONS 

Future work on migration algorithms includes formulation of more advanced cost, heuristics, and 

objective functions as well as exploration of other types of optimisation algorithms. In particular, 

constraint programming techniques will be investigated for formulation of more direct constraint-

oriented optimisations, as well as genetic algorithms and meta-heuristics techniques that are explored 

for formulation of near-optimal search functions. Heuristics that take interference effects into account 

for migrations as well as algorithms that operate on load predictions are planned for development in 

deliverable D3.3. 

4. TOWARDS ENERGY ANALYSIS 
For the power consumption analysis randomly generated datacentre model was used. This 

stochastically derived testbed consists of 25 physical nodes and an average total CPU core count of 700 

cores. The purpose of including the stochastic testbed is to illustrate a possibility of using presented 

optimisation validation method without an actual real testbed model. In the example slightly larger 

cloud environment model is used presenting more heterogeneity and energy variance when compared 

to the Ulm testbed. This sort of configuration might not be reached in a real data centre, but is useful 

for borderline optimisation behaviour studies. 
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To introduce further heterogeneity in placement optimisation experiments, one quarter of the virtual 

machines are preplaced in a random configuration on the testbed of the experiment. For migration 

optimisation scenarios all virtual machines are placed on physical machines at the start of experiments. 

To ensure that no placement constraints are violated in seeding of the experiments, all experiment 

configurations are created using a two-step process: first preplaced virtual machines are randomly 

assigned to physical machines, and then (secondly) an stabilization algorithm that moves a randomly 

selected virtual machine (from an invalidly configured physical machine) to a randomly selected (validly 

configured) physical machine is repeated until no placement constraints are violated. To ensure 

statistical validity of comparisons, all experiment scenarios are pre-generated, stored (so all algorithms 

run on the same testbed configurations), and repeated with a random seed at least 100 times per 

algorithm. 

Simulation-based power and energy consumption analysis extension was developed as part of CactoSim 

project (Stier et al., 2014) and is available via an Eclipse update site (Stier, 2015). Its integration with 

CactoSim is planned at the later release of “D6.3 CactoSim Simulation Framework Intermediate 

Prototype”. Therefore to demonstrate the algorithm’s impact on the datacentre power consumption, a 

simplified crude simulation toolkit was used together with randomly generated cloud datacentre model. 

a) VALIDATION RESULTS 

The considered power consumption scenario formulates an evaluation function that models the amount 

of power (in Watts) a certain test configuration draws. For testbeds with relatively low heterogeneity 

(typically newly procured clusters with a single generation of hardware in them, e.g., the Ulm testbed 

model in the experiments above) server consolidation provides good energy efficiency as unused 

servers can be put in energy efficient sleep modes (or even powered down). For higher heterogeneity 

data centres (where different servers consume vastly different amounts of power due to, e.g., use of 

different CPU architectures, specialized hardware nodes, or different amounts of hardware generations) 

energy efficiency becomes more complex to optimise. For the sake of simplicity a basic model for power 

consumption is constructed where energy consumption is linearly proportional to the amount of RAM 

used and exponentially proportional to the CPU frequency used (to be replaced with more advanced 

energy consumption models in deliverable D3.3). 

Illustrated in Figure 11, Figure 12 and Figure 13 are the power consumption of the Lin-Kernighan 

inspired algorithm configurations for RAM load balancing, RAM consolidation, and power utilization 

minimization on the random testbed respectively. As can be seen in the graphs, use of RAM 

consolidation allows a reduction of power consumption (as compared to RAM load balancing) of ca 

4500 Watts, and an additional reduction of ca 1200 Watts by use of specialized algorithm targeting 
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power optimisation (I.e. algorithms targeting minimization of power consumption, not only limited to 

server consolidation). In addition, the use of a power optimisation heuristics also allows for faster 

convergence towards a steady state (as evident in Figure 16). 

 

Figure 11. Power utilization for Lin-Kernighan RAM load balancing on the random testbed. 

As the load balancing algorithm strives to distribute load (VMs) evenly on all hosts it constitutes a worst 

case scenario for power utilization (when using a power model with a base offset of power consumption 

for physical machines). In the example this results in a testbed configurations with an average power 

draw of ca 16800W, or ca 670W per node. 

 

Figure 12. Power utilization for Lin-Kernighan RAM consolidation for the random testbed. 

As server consolidation algorithms aim to pack workloads (VMs) onto as few hosts (PMs) as possible, 

they facilitate power savings via providing the ability to power down unused machines. In the example 

this allows testbed configurations with an average power draw of ca 12200W, or ca 490 W per active 

node (unused nodes are assumed to be powered down in the example) 
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Figure 13. Power utilization for Lin-Kernighan power utilization optimisation for the random testbed. 

Optimising directly for power utilization (i.e. with a cost function modelling the power consumption of 

nodes) allows further improvements in power utilization, in the example testbed configurations with an 

average power draw of ca 10800W, or ca 430 W per node (again, unused nodes are assumed to be 

powered down). The main difference between this and consolidation is that this algorithm both 

consolidates workloads as well as rearranges the consolidated workloads towards to higher utilization 

of more energy efficient nodes. 
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VI. DISCUSSION AND CONCLUSIONS 
Preliminary simulation results of the VM placement and consolidation algorithms can already show the 

effects optimisation will have on data centre resource consumption.  

In highly homogenous resource sets, e.g., newly procured symmetric clusters containing a single 

generation of hardware, there is less room for improvement via optimisation, and placement algorithms 

perform robustly and reasonably well with little computational effort. In particular, the initial versions 

of the energy efficiency algorithms developed in his work rely on cost functions that express differences 

in power consumption between hosts. With high degrees of homogeneity in resource sets, power 

consumption optimisation approximates server consolidation. For more heterogeneous resource sets, 

e.g., clusters that have been updated over time or contain specialized GPU computing nodes, algorithm 

cost functions differ more and heuristics are thus more efficient in guiding algorithms toward distinct 

objective functions. In the evaluation, these two types are represented using coarse-grained models of 

the Ulm testbed and an artificial random testbed. It is important to note however that these 

approximate models have been created to evaluate and illustrate specific behaviours of the 

optimisation algorithms (e.g., the energy efficiency cost functions here that are precursors to the energy 

efficiency algorithms planned for later deliverables), and should not be interpreted as descriptive of the 

testbeds used in the project. 

As a final note on this evaluation, consider the graphs in Figure 14, Figure 15 and Figure 16 which 

display the relative time consumption of computing optimisation steps in best fit RAM load balancing, 

Lin-Kernighan RAM load balancing, and Lin-Kernighan RAM consolidation for the random testbed 

respectively. Note that the calculation for the best fit placement algorithm remains steady in the 

interval of a few (0 – 7) milliseconds, while the migration algorithms have outliers on the order of 

hundreds (consolidation) and thousands (load balancing) of milliseconds. The reason for this is the 

progressive complexity of the Lin-Kernighan heuristics: when local minimas are encountered using 

simple operations, more complex actions are taken to attempt to escape them. In the load balancing 

scenario this can lead to a worst case scenario as the action complexity scales exponentially with the 

average number of virtual machines on the considered hosts (and load balancing by definition ensures a 

steady rate of virtual machines per host). For consolidation this is a noticeable but smaller effect as local 

minimas are rarely encountered before some approximation of a solution is found (and thus many 

physical hosts have been emptied and can thus be eliminated without adding much complexity to the 

algorithm). 
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Figure 14. Calculation times for best fit RAM placement consolidation of the random testbed. 

 

Figure 15. Calculation times for Lin-Kernighan migration RAM load balancing of the random testbed. 

 

Figure 16. Calculation times for Lin-Kernighan migration RAM consolidation of the random testbed. 

Future work is heavily focused on creating an application behaviour model for each VM that takes part 

in the simulation experiment. In order to run more accurate simulation experiments, the data collection 

framework (CactoScale) needs to provide resource demand estimation for each virtual machine. This 

procedure requires the collection of resource usage traces, and offline analysis towards producing a 

behaviour model that can be used within the simulation. The application behaviour model based on the 

real VM also allows for different simulated data to be available within the validation experiments such 
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as response time. When even the resource utilisation might be indicating maximum capacity, the 

application response time might still be within a valid threshold. This allows the argument for resource 

overbooking. In addition, further evaluation will be carried out in terms of reactively calling the 

optimisation (for example in reaction to node failure) over the current method of calling the 

optimisation proactively (at a set time period).  
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