C-reaktives Protein und Arteriosklerose

Untersuchungen zur Proteinkinase-C-vermittelten CRP-Synthese in HepG2-Zellen

und zur Rolle des Thrombins

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät der Universität Ulm

vorgelegt von
Marco Codagnone
geboren in Esslingen am Neckar

2015
Amtierender Dekan: Prof. Dr. rer. nat. Thomas Wirth
1. Berichterstatter: Prof. Dr. med. Oliver Zimmermann
2. Berichterstatter: PD Dr. med. Barbara Möpps

Tag der Promotion: 10.02.2017
Gewidmet meinen Eltern und meinem Bruder
In Liebe und Dankbarkeit
Inhaltsverzeichnis

1 Einleitung .. 1
1.1. Definition und Pathogenese der Arteriosklerose ... 1
1.1.1. Definition .. 1
1.1.2. Pathohistologie der Arteriosklerose ... 2
1.1.3. Pathogenese der Arteriosklerose .. 3
1.2. Capsel-reaktives Protein (CRP) ... 5
1.2.1. Allgemein .. 5
1.2.2. Synthese, Struktur und Funktion ... 7
1.3. Capsel-reaktives Protein und Arteriosklerose .. 8
1.4. Proteinkinase C (PKC) ... 10
1.5. Thrombin ... 13
1.6. RNA-Interferenz (iRNA) ... 15
1.7. Fragestellung .. 17

2 Material und Methoden ... 19
2.1. Zellkultur .. 19
2.1.1. Splitten von HepG2-ABEK14-Zellen ... 21
2.2. Transfektion mit small-interference RNA (siRNA) ... 22
2.3. Stimulation ... 23
2.3.1. Stimulation transfizierter und unbehandelter HepG2-ABEK-14 Zellen mit PDBu .. 23
2.3.2. Stimulation von HepG2-ABEK-14 Zellen mit Thrombin 23
2.4. Lyse ... 24
2.4.1. Lyse für den Luziferase-Assay ... 24
2.4.2. Lyse für den Western-Blot ... 24
2.5. Luziferase-Assay .. 25
2.6. Proteinassay .. 26
2.7. Gelelektrophorese ... 28
2.8. Western-Blot .. 30
2.9. Detektion der Proteine mit Antikörpern ... 31
2.10. Filmentwicklung ... 32
2.11. Stripping zur α-Tubulin Ladungskontrolle .. 33
2.12. Statistik ... 34
Inhaltsverzeichnis

3 Ergebnisse .. 35
 3.1. Capsel-reaktives Protein-Promoteraktivität in siRNA transfizierten HepG2-ABEK-14
 Zellen .. 35
 3.1.1. Knockdown der Proteinkinase C δ durch siRNA Transfektion – Bestimmung der
 Capsel-reaktives Protein-Promoteraktivität .. 36
 3.1.2. Knockdown der Proteinkinase C ε durch siRNA Transfektion – Bestimmung der
 Capsel-reaktives Protein-Promoteraktivität .. 38
 3.2. Capsel-reaktives Protein-Synthese in HepG2-ABEK14-Zellen nach Stimulation mit
 Thrombin .. 40

4 Diskussion .. 42
 4.1. Capsel-reaktives Protein und Arteriosklerose .. 42
 4.2. Diskussion des Versuchsmodells ... 46
 4.3. Proteinkinase C δ/ε – Mögliche Angriffspunkte der Syntheseinhibierung 47
 4.4. Thrombin, ein Stimulator der Capsel-reaktives Protein-Synthese? 49

5 Zusammenfassung .. 51

6 Literaturverzeichnis ... 53

7 Danksagung .. 72

8 Lebenslauf .. 73
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Ångström</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosinmonophosphat</td>
</tr>
<tr>
<td>aPKC</td>
<td>atypische Proteinkinase C</td>
</tr>
<tr>
<td>APP</td>
<td>Akute-Phase-Proteine</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäuren</td>
</tr>
<tr>
<td>ASO</td>
<td>Antisense oligonucleotid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchonin-Säure</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>C</td>
<td>CCAAT-Box/ Enhancer-Binding-Protein</td>
</tr>
<tr>
<td>C5b-9</td>
<td>Komplementkomponenten C5b-C9, terminaler Membranangriffskomplex</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium-Ionen</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of Differentiation</td>
</tr>
<tr>
<td>CHAPS</td>
<td>[(3-Cholamidopropyl)dimethylammonio]-l-Propansulfonsäure</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>cm²</td>
<td>Quadratzentimeter</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlenstoffdioxid</td>
</tr>
<tr>
<td>CRP</td>
<td>Capselreaktives Protein</td>
</tr>
<tr>
<td>cPKC</td>
<td>konventionelle Proteinkinase C</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>dd H₂O</td>
<td>doppelt destilliertes Wasser</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dsRNA</td>
<td>doppelsträngige Ribonukleinsäure</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraessigsäure</td>
</tr>
<tr>
<td>ELDDL</td>
<td>enzymatisch verändertes LDL</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>eNOS</td>
<td>endotheliale Stickstoffmonoxid-Synthetase</td>
</tr>
<tr>
<td>Fc</td>
<td>Immunglobulinrezeptor</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>Abkürzungsverzeichnis</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GPIb</td>
<td>Glykoprotein Ib</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Wasserstoffperoxid</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Schwefelsäure</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis B Virus</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrogenchlorid</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>HepG2</td>
<td>Hepatomzelllinie G2</td>
</tr>
<tr>
<td>HepG2-ABEK14</td>
<td>Hepatomzelllinie G2 mit einer stabilen Transfektion eines CRP Promoterkonstrukts und Luciferase Reportergens, Eigennamen benannt nach den Mitarbeitern die diese Zelllinie generiert haben (Andrea Bucher, Elke Kessler)</td>
</tr>
<tr>
<td>HIV</td>
<td>Humanes Immundefizienz Virus</td>
</tr>
<tr>
<td>HNF</td>
<td>hepatocyte nuclear factors, lebertypische Transkriptionsfaktoren</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse radish peroxid</td>
</tr>
<tr>
<td>hsCRP</td>
<td>high sensitivity CRP</td>
</tr>
<tr>
<td>HTS</td>
<td>High-Throughput-Screening</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>ICAM</td>
<td>Intercellular Adhesion Molecule</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon γ</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-like growth factor</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>IL-1</td>
<td>Interleukin 1</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin 8</td>
</tr>
<tr>
<td>IMDM</td>
<td>Iscove’s Modified Dulbecco’s Media</td>
</tr>
<tr>
<td>iRNA</td>
<td>RNA-Interferenz</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>kbp</td>
<td>kilo-Basenpaare</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KHK</td>
<td>koronare Herzkrankheit</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LAE</td>
<td>Lungenarterienembolie</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>LF</td>
<td>Lipofectamin</td>
</tr>
<tr>
<td>LY33531</td>
<td>Bisindolylmalmeid-Derivat Ly33531</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mA</td>
<td>Milliamperre</td>
</tr>
<tr>
<td>MAK</td>
<td>Membran-Angriffskomplex</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte Chemoattractant Protein-1</td>
</tr>
<tr>
<td>MCSF</td>
<td>Monocyte Colony Stimulating Factor</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>μg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Magnesiumionen</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>μl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>MPS</td>
<td>Mononukleäres Phagozytierendes System</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>neg.</td>
<td>negativ</td>
</tr>
<tr>
<td>NET</td>
<td>Blockpuffer, enthält Leberextrakt</td>
</tr>
<tr>
<td>nFKB</td>
<td>nukleärer Faktor Kappa B</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>nm</td>
<td>Nanomol</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>nPKC</td>
<td>neue Proteinkinase C</td>
</tr>
<tr>
<td>NT</td>
<td>non-treated (unbehandelt)</td>
</tr>
<tr>
<td>O₂</td>
<td>Sauerstoffmolekül</td>
</tr>
<tr>
<td>oxLDL</td>
<td>oxidiertes Low Density Lipoprotein</td>
</tr>
<tr>
<td>p</td>
<td>statistischer Signifikanzwert</td>
</tr>
<tr>
<td>p50</td>
<td>Untereinheit des nukleären Faktors kappa-B</td>
</tr>
<tr>
<td>p65</td>
<td>Untereinheit des nukleären Faktors kappa-B</td>
</tr>
<tr>
<td>PAR</td>
<td>Protease-aktivierte Rezeptoren</td>
</tr>
<tr>
<td>PAVK</td>
<td>Periphere Arterielle Verschlusskrankheit</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PDBu</td>
<td>4α-Phorbol 12,13 Dibutyrat</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet Derived Growth Factor</td>
</tr>
<tr>
<td>PDK-1</td>
<td>phosphoinositide-dependent kinase-1</td>
</tr>
<tr>
<td>pGL3</td>
<td>Luciferase-Reporter Vektor</td>
</tr>
<tr>
<td>PHH</td>
<td>primäre humane Hepatozyten</td>
</tr>
<tr>
<td>PKC</td>
<td>Proteinkinase C</td>
</tr>
<tr>
<td>PKR</td>
<td>Proteinkinase R</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonylfluorid</td>
</tr>
<tr>
<td>PP</td>
<td>Pyrophosphat</td>
</tr>
<tr>
<td>PS</td>
<td>Phosphatidylserin</td>
</tr>
<tr>
<td>PSG</td>
<td>Penicillin/Streptomycin/L-Glutamin</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>PTGS</td>
<td>posttranskriptionale Genblockade</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>RISC</td>
<td>RNA-induced silencing complex</td>
</tr>
<tr>
<td>RLU</td>
<td>relative light units</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNAl</td>
<td>RNA-Interferenz</td>
</tr>
<tr>
<td>RNAse</td>
<td>RNA-spaltendes Enzym</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering ribonuclein acid</td>
</tr>
<tr>
<td>SMC</td>
<td>smooth muscle cells</td>
</tr>
<tr>
<td>snRNA</td>
<td>small nuclear ribonuclein acid</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal Transducer and Activator of Transcription</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming Growth Factor β</td>
</tr>
<tr>
<td>TMB</td>
<td>Tetramethylbenzidin</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Nekrose Faktor</td>
</tr>
<tr>
<td>TPA</td>
<td>Tetradecanoylphorbolacetat</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>TVT</td>
<td>tiefe Beinvenenthrombose</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>U/min</td>
<td>Umdrehungen/Minute</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Vascular Cell Adhesion Molecule 1</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very Low Density Lipoprotein</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>Zinkionen</td>
</tr>
</tbody>
</table>
Einleitung

1 Einleitung

1.1. Definition und Pathogenese der Arteriosklerose

1.1.1. Definition

Die World Health Organization (WHO) definiert die Arteriosklerose als eine "(...)variable combination of changes of the intima of arteries (as distinguished from arterioles) consisting of the focal accumulation of lipids, complex carbohydrates, blood and blood products, fibrous tissue and calcium deposits, and associated with medial changes." [172].

Die Arteriosklerose und ihre Folgeerkrankungen stellen weltweit laut des europäischen Gesundheitsberichtes der WHO von 2012 ca. 50% aller Todesfälle in der industrialisierten Welt dar [169]. Sie ist Ursache für Volkskrankheiten wie koronare Herzkrankheit (KHK), Schlaganfall, Niereninsuffizienz und periphere arterielle Verschlusskrankheit. Im Rahmen der Framingham-Studie, einer 1948 begonnenen epidemiologischen Studie einer Kleinstadt in den USA, konnten eine ganze Reihe von Risikofaktoren wie Hyperlipoproteinämie, Low Density Lipoprotein (LDL) - Überschuss, High Density Lipoprotein (HDL) - Mangel, ungesunde Ernährung, Bewegungsmangel, psychosoziale Faktoren, obstruktive Schlafapnoe, arterielle Hypertonie, Diabetes mellitus, Adipositas, Hyperuricämie und Rauchen nachgewiesen werden [28, 87]. Im Laufe der vergangenen Jahre kamen weit über 250 Risikofaktoren hinzu inklusive genetisch determinierter Ursachen wie Homozystinurie sowie Hyperlipoproteinämie Typ II / Typ IV [158].

Durch diese Risikofaktoren kommt es über viele Jahre hinweg zu den typischen Veränderungen der Gefäßwände und schließlich zur Manifestation einer Arteriosklerose [131, 132, 133].
1.1.2. Pathohistologie der Arteriosklerose

<table>
<thead>
<tr>
<th>Nomenklatur und Histologie</th>
<th>Wachstumsmechanismus</th>
<th>Zeitliches Auftreten</th>
<th>Manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ I (initiale) Läsion: Einzelne Makrophagen mit Schaumzellbildung</td>
<td>Hauptsächlich Lipidakkumulation</td>
<td>Ab der ersten Dekade</td>
<td>Klinisch stumm</td>
</tr>
<tr>
<td>Typ II (fatty-streak) Läsion: Intrazelluläre Lipidakkumulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ III (Intermediäre) Läsion: wie Typ II Läsionen + kleine extrazelluläre Lipidpools</td>
<td></td>
<td>Ab der dritten Dekade</td>
<td></td>
</tr>
<tr>
<td>Typ IV (atherome) Läsion: Wie Typ II Läsionen + große extrazelluläre Lipidkerne</td>
<td></td>
<td></td>
<td>Klinisch stumm oder Auftreten von Erkrankungen</td>
</tr>
<tr>
<td>Typ V (fibroatherome) Läsion: Lipidkerne, Fibrose, Verkalkung</td>
<td>Zunahme von glatter Muskulatur und Kollagen</td>
<td>Ab der vierten Dekade</td>
<td></td>
</tr>
<tr>
<td>Typ VI (komplizierte) Läsion: Oberflächendefekte, Hämorrhagien, Hämatome, Thromben</td>
<td>Thrombose, Hämatome</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 1: Progression arterieller Läsionen und ihre histologische Klassifizierung nach Stary [133]. In der ersten Spalte wird die Stadieneinteilung nach Stary der arteriellen arteriosklerotischen Läsionen nach ihrem histologischen Verlauf (Typ I – VI) dargestellt. In der zweiten Spalte kann man sehen, dass es sich um einen progredienten Verlauf handelt, in dem es sukzessive im Laufe des Lebens (Spalte 4) bis zu einer komplizierten Läsion kommen kann mit z.B. Thrombenbildung und Hämatomen (Spalte 3). Hierbei kann das Stadium IV (atherome Läsion) direkt in das Stadium VI (komplizierte Läsion) übergehen. Ein Stadium VI (komplizierte Läsion) wiederum kann sich in ein Stadium V (fibroatheromatöse Läsion) zurückentwickeln, bzw. stabilisieren. Die ersten 3 Stadien laufen in der Regel unbemerkt ab (Spalte 5).
...einem Lipidkern (Typ Va)
...Verkalkung (Typ Vb)
...sehr wenigen oder ohne Lipide (Typ Vc)

1.1.3. Pathogenese der Arteriosklerose

Aufgrund der Komplexität der arteriosklerotischen Prozesse gab es im Laufe der Jahrzehnte verschiedenste Theorien zu ihrer Entstehung. Ribbert hatte 1905, aufgrund der Beobachtung einer aufgelockerten Intima, das „Eindrücken“ von Blutplasma in die Gefäßwand als Voraussetzung für die Entstehung der Arteriosklerose vermutet [110]. Anitschkow verdächtigte bereits 1913 die Lipide als verantwortlich für eine schädigende Wirkung auf die Gefäßwände [3]. Während zunächst häufig infektiöse Faktoren im Verdacht standen die Arteriosklerose zu
Einleitung

1.2. Capsel-reaktives Protein (CRP)

1.2.1. Allgemein

Erstmals beschrieben wurde das C-reaktive Protein im Jahr 1930 von Tillet und Francis am Rockefeller Institut in New York, USA [145]. Sie entdeckten eine Substanz im Serum von Patienten, die an einer akuten Lobärpneumonie erkrankt waren und die die Eigenschaft hatte mit dem C-Fragment des Lipopolysaccharids von Pneumokokken zu präzipitieren. Initial schrieb man ihr eine kausale pathologische Bedeutung zu, da es in Patienten mit Infekten und/oder Tumorerkrankungen zu finden war.
Einleitung

CRP gehört funktionell in die Gruppe der Akute-Phase-Proteine (APP). Per Definition steigen oder fallen die Plasmaspiegel der APP um mindestens 25% während eines entzündlichen Geschehens [95]. Proteine mit ansteigenden Werten zählen zu den positiven APP, solche mit sinkenden zu den negativen APP.

<table>
<thead>
<tr>
<th>Proteinase-Inhibitoren</th>
<th>Positive Akute-Phase-Proteine</th>
<th>Negative Akute-Phase-Proteine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha1-Antitrypsin, Alpha1-Antichymotrypsin, Alpha2-Macroglobulin, Antithrombin</td>
<td>Inter Alpha-Antitrypsin</td>
<td></td>
</tr>
<tr>
<td>Gerinnungsfaktoren</td>
<td>Fibrinogen, Prothrombin, Factor VIII, Plasminogen</td>
<td></td>
</tr>
<tr>
<td>Komplementfaktoren</td>
<td>C1s, C2, B, C3, C4, C5</td>
<td>Properdin</td>
</tr>
<tr>
<td>Transportproteine</td>
<td>Haptoglobin, Haemopexin, Caeruloplasmin</td>
<td></td>
</tr>
<tr>
<td>Weitere Proteine</td>
<td>Capsel-reaktives Protein, Serum Amyloid A protein, Fibronektin</td>
<td>Albumin, Transthyretin, High Density Lipoprotein, Low Density Lipoprotein</td>
</tr>
</tbody>
</table>

Tab. 1: Akute-Phase-Proteine und ihre Serumkonzentrationsänderung im Rahmen akuter Infekte nach Kaplan [58]. Positive Akute-Phase-Proteine steigen in ihrer Serumkonzentration an, negative Akute-Phase-Proteine fallen ab.
1.2.2. Synthese, Struktur und Funktion

Das CRP ist ein vorwiegend in der Leber synthetisiertes Protein, das ebenso wie Serum Amyloid P component zur Gruppe der kurzen Pentraxine gehört. Weitere Syntheseseorte, die aber nicht wesentlich die Serumspiegel beeinflussen, sind Lymphozyten [79, 98], Makrophagen [76], glatte Muskulatur (SMC) [19], arteriosklerotische Plaques [64], Nieren [64], Pankreasgewebe [39] und respiratorisches Epithel [49].

Synthese:
Reguliert wird die CRP-Synthese durch Zytokine, v.a. IL-1, IL-8 und IL-6 [44, 71, 82, 88, 142, 146, 180]. Transkriptionsfaktoren wie signal transducer and inductor 3 (STAT 3) und Mitglieder der CCAATbox/Enhancer Binding Protein-Familie (C/EBP, v.a. α/β/γ) sind an der IL-6 induzierten Kaskade beteiligt. Weiterhin zu nennen wären die lebertypischen Transkriptionsfaktoren hepatocyte nuclear factors (HNF) HNF-1α und HNF-3 [82, 146]. Des Weiteren sind die Untereinheiten p50/p65 des nukleären Faktors kB (NF-kB) im Signaltransunktionsweg der Zytokin vermittelten CRP-Synthese involviert [63].

Struktur:
Das CRP hat ein Molekulargewicht von 105 kiloDalton (kDa) und einen Außendurchmesser von 102 Å mit einer zentralen Pore von 30 Å. Strukturell liegt hier ein Pentamer aus nichtkovalent gebundenen identischen Polypeptideinheiten vor. Jede Untereinheit hat eine Masse von 23 kDa und besteht aus ca. 206 Aminosäuren (AS). Die Monomere besitzen eine Bindungsstelle für den Komplementfaktor C1q sowie Fcγ (A-Seite) und gegenüberliegend eine Calcium-abhängige (mit 2 Calcium-Ionen assozierte) Untereinheit zur Bindung von Phosphorylcholin, Histom, Chromatin und small nuclear ribonuclein acid (snRNA) (B-Seite) [33, 144, 165].

Funktion:
CRP ist in der Lage pathogene und beschädigte Zellen zu erkennen und deren Zerstörung zu veranlassen indem das Komplementsystem aktiviert und Phagozyten bereitgestellt werden. Bei beschädigten Zellhüllen stülpt sich die innere Membran nach außen (membran flip-flop) und das CRP interagiert in Anwesenheit von Lysolecithin mit Phosphocholin, d.h. mit den polaren Gruppen von Lecithin und Sphingomyelin [50]. Phosphocholin ist Bestandteil von Lipopolysacchariden,

1.3. Capsel-reaktives Protein und Arteriosklerose

In den letzten drei Jahrzehnten haben sich viele Studien mit der Frage beschäftigt, ob CRP ein verlässlicher Prädiktor für zukünftige kardiovaskuläre Ereignisse sei. Dabei konnte mehrfach in großen epidemiologischen Studien bewiesen werden, dass erhöhte Serum-CRP-Werte mit einem erhöhten Risiko für kardiovaskuläre Erkrankungen, d.h. erhöhter kardiovaskulärer Morbidität und Mortalität einhergehen [27, 56, 74, 83, 111, 113, 116]. So konnte u.a. die EPIC-Norfolk-Studie, eine prospektive Studie an gesunden Männern/Frauen, zeigen, dass CRP ein statistisch signifikanter Prädiktor für zukünftige kardiovaskuläre Ereignisse darstellt. Es handelt sich hierbei um das bereits erwähnte hsCRP, d.h. CRP-Werte die sich im Normbereich bewegen und nicht das z.B. im Rahmen von Infekten erhöhte klassische CRP. So zeigte sich eine Odds ratio von 1,66 (CI 1,31-2,12, p<0,0001) nach Adjustierung für klassische Risikofaktoren (nach dem Framingham risk score) für Patienten im oberen Drittel des CRP Normbereichs im Vergleich zu Probanden mit CRP Werten im unteren Normdrittel [11]. Ob CRP ein reiner Prädiktor oder auch pathogenetisch an der Atherosklerose beteiligt ist, ist Gegenstand der Forschung und noch nicht endgültig
Einleitung

Ein weiterer Effekt des CRPs auf Endothelzellen ist die Herunterregulation der endothelialen Stickstoffmonoxid-Synthetase (eNOS) durch Hemmung ihrer Expression und Aktivität [162, 163]. Die eNOS katalysiert die Bildung von Stickstoffmonoxid (NO) aus L-Arginin. Das entstandene Stickstoffmonoxid wirkt vasoprotektiv über verschiedene Mechanismen. Unter anderem führt NO zu einer Vasodilatation und zu einer Hemmung der Proliferation der glatten Gefäßmuskulatur [20, 42]. Durch NO kommt es zu einer verminderten Anlagerung der Thrombozyten an das Endothel und Hemmung ihrer Aggregation [20, 42, 159].

Zusammenfassend kann postuliert werden, dass CRP über Komplement- und Makrophageninteraktion Einfluss auf die Arteriosklerose zu nehmen scheint. Weitere Mechanismen durch die CRP Einfluss nimmt, aber auf die nicht weiter eingegangen werden soll, sind die CRP induzierte Expression intrazellulärer Adhäsionsmoleküle wie intercellular adhesion molecule 1 (ICAM-1), VCAM-1 und E-Selektin in Endothelzellen [105], die CRP stimulierte Superoxide-Anionen Freisetzung sowie die tissue-factor Aktivität in vivo [31].

1.4. Proteinkinase C (PKC)

Der PKC-pathway ist an der CRP Synthese in primären humanen Hepatozyten (PHH) und in der Hepatomzelllinie G2-ABEK14-Zellen (HepG2-ABEK14) involviert [63]. HepG2-ABEK14-Zellen sind eine stabil mit einem 1kbp CRP Promotorkonstrukt und dem Luciferase Gen transfizierte Hepatoma-Zelllinie (siehe Material und Methoden). Diese Zelllinie eignet sich hervorragend aufgrund ihrer Stabilität und großen
Verfügbarkeit, um in Hochdurchsatz-Screenings (High-Throughput-Screening, HTS) die CRP-Synthese zu untersuchen.

Synthese/Struktur/Eigenschaften

1977 wurde die Protein Kinase C zunächst als protease-aktivierte Histon-Proteinkinase bezeichnet [61]. In den 1980er konnte man zeigen, dass die Kinase durch Phosphatidylserin und Calcium-Ionen (Ca$^{2+}$) aktiviert und durch Phorbolester stimuliert werden kann [21]. Heute weiß man, dass die Familie der PKC zu den ubiquitären Serin/Threonin – Kinasen gehört und in vielfältige Signaltransduktionsprozesse involviert ist. Sie spielen eine wichtige Rolle in der Regulation vieler Zellprozesse wie Differenzierung, Wachstum, Protein- und Enzymsynthese und auch bei der Regulation kritischer Zellübergänge wie z.B. im Zellzyklus [10]. Es sind inzwischen mehr als 10 Isoformen der PKC bekannt die sich hinsichtlich Struktur, Gewebsverteilung, Substratspezifität, Lokalisation und biochemischen Eigenschaften unterscheiden. Eingeteilt werden die Isoformen aufgrund ihrer Aktivierungsmechanismen in 3 Gruppen. Die conventional PKCs (cPKC) beinhalten die Isotypen α, β1, β2, γ. Die Isoformen β1 und β2 stellen hier Splicevarianten dar [26]. Alle cPKC werden durch Calcium, Diacylglycerol (DAG) oder Tetradecanoylphorbolacetat (TPA), sowie in Anwesenheit von sauren Lipiden wie Phosphatidylserin (PS) aktiviert. TPA gehört zur Familie der Phorbolester und zeigt aufgrund seiner strukturellen Ähnlichkeit zu DAG eine ähnliche Wirkung in Bezug zu PKC wie DAG. Die novel PKC (nPKC) δ, ε, θ, η benötigen DAG und saure Lipide, wohingegen die atypical PKC (aPKC) ζ, Λ, ι allein durch saure Lipide aktiviert werden können.

Alle Proteinkinasen bestehen aus einer c-terminalen katalytischen Region (ca. 45 kDa) und einer regulatorischen n-terminalen Untereinheit (ca. 20-70 kDa) [100]. Eine flexible hinge-Region verbindet beide Untereinheiten miteinander. Hier findet bevorzugt Proteolyse, durch Trypsin oder Calpain, statt. Insgesamt finden sich vier konservierte (C1-C4) und fünf variable Regionen (V1-V5). Die katalytische Untereinheit besteht aus der C3-Untereinheit, in der das für die Phosphorylierung notwendige Adenosintriphosphat (ATP) gebunden wird [23] und der C4-Untereinheit, in der das Substrat gebunden und das Phosphat übertragen wird. Die regulatorische Domäne besteht bei den PKCs aus einer Pseudosubstratregion, die sich im inaktiven
Zustand des Enzyms an das Zentrum der katalytischen Domäne legt, einer C1-Domäne mit zwei sich wiederholenden Zinkfingermotiven, in der DAG oder Phorbolester bindet (cPKCs und nPKCs). Am C2-Segment bindet bei den cPKC Ca\(^{2+}\) und saure Phospholipide, bei den nPKC hat sie keine Bindungspartner. Bei den aPKC ist die C2-Region nicht vorhanden.

Damit die Proteinkinasen in ihre aktive Form übergehen und zum Wirkort gelangen können sind mehrere Phosphorylierungsschritte notwendig. Am Beispiel der PKCε soll dies dargelegt werden. In einem ersten Schritt erfolgt die Phosphorylierung an einem Threoninrest (Thr566) im activation loop durch die upstream kinase phosphoinositide-dependent kinase-1 (PDK-1) [23, 34, 80]. Dies führt zum Beginn einer Folge von Autophosphoryrierungen am c-terminalen Ende. Am turn motif (Thr710) kommt es durch bisher noch unbekannte Mechanismen zur Phosphorylierung und dadurch Aktivierung der Funktion der enzymatischen Eigenschaften der PKC. Anschließend folgt die Autophosphorylierung am hydrophobic motif (Ser729) die wichtig für die subzelluläre Lokalisation und Stabilität der PKC ist [5]. Die Konformationsänderungen und Translokalisationen unterscheiden sich erheblich bei den 11 Isoformen. Auch die Verteilung bzw. das Muster unterliegt je nach Zell- und Gewebsart großer Variabilität.

Wie oben beschrieben können die PKC durch Phorbolester aktiviert werden. In folgenden Versuchen wurde 4α-Phorbol 12,13 Dibutyryl (PDBu) zur Stimulation der CRP-Synthese verwendet. Ivashchenko et al. zeigten 2005, dass durch Stimulierung mit PDBu die Transkription und Synthese von CRP gesteigert wird. Dies wird über Aktivierung der PKC durch PDBu erzielt. Durch das PDBu kommt es zu einer Phosphorylierung von Serin 105 innerhalb der Aktivierungsdomäne von C/EBPβ, was zu einer Steigerung der transkriptionellen Aktivität führt und dadurch eine Erhöhung der CRP-Syntheserate in PHH zur Folge hat [63]. Weiterhin konnte eine Beteiligung der NF-κB-Kaskade in der PKC vermittelten CRP-Synthese gezeigt werden. PDBu gehört zu der Familie der Phorbolester und wird synthetisch hergestellt. Es ist ein starker Aktivator der PKC und fördert die Bildung von NO [2, 60, 173].
Einleitung

1.5. Thrombin

Einleitung

Synthese/Struktur/Eigenschaften

Einleitung

Der Aktivierungsmechanismus soll hier am Beispiel der PAR1 erläutert werden:

Abb. 2: Schematische Darstellung der Aktivierung des Proteinase-aktivierten Rezeptors 1 nach Hollenberg [59].

1.6. RNA-Interferenz (iRNA)

Einleitung

Wirkung der RNAi

In experimentellen Zellversuchen wird siRNA durch z.B. lipidvermittelte Transfektion, Mikroinjektion oder Elektroporation direkt in die Zellen eingeschleust [35]. Gründe hierfür stellen folgende Mechanismen dar: Ein Einbringen von reiner dsRNA führt in Säugetierzellen zu einer Induktion der Interferon-Synthese. Das freigesetzte IFN induziert die 2´,5´-Oligoadenylat-Synthetase und über eine Aktivierung von Ribonuklease L kommt es zur Degradation von mRNA. IFN aktiviert weiterhin die

1.7. Fragestellung

Einleitung

In dieser Arbeit sollte untersucht werden, ob die Isoenzyme der Proteinkinase C, hier PKC δ und ε, an der CRP-Synthese beteiligt sind um über ihre Hemmung die CRP-Synthese zu senken. Es ist bekannt, dass die PKC an der Synthese des CRPs in humanen Hepatozyten beteiligt ist [63]. In unserer Arbeitsgruppe konnten die PKC-Isoformen α, β₁, β₂, γ, δ und ε in PHH nachgewiesen werden. Weiterhin konnte für PKC β₁ eine Beteiligung an der CRP-Synthese in HepG2-ABEK14-Zellen gezeigt werden. PKC α scheint nicht beteiligt zu sein [97].

Bei Identifikation einer möglichen Involvierung der PKC-Isoenzyme an der CRP-Synthese könnte über weitere Studien, z.B. durch Hemmung der PKC-Isoenzyme in vivo, die Frage der Rolle des CRPs an der Genese der Arteriosklerose weiter untersucht werden.

Fragestellung:

1. Sind die PKC-Isoenzyme δ und ε an der CRP-Synthese beteiligt?

2. Ist eine Inhibition ihrer Aktivität durch die Methode der RNA-Interferenz möglich?

Für diese Fragestellungen soll ein Knockdown der PKC-Isoformen durch Einschleusen von siRNA in die mit einem CRP-Promotor/Luciferase-Konstrukt stabil transfizierten HepG2-ABEK14-Zellen erfolgen.

3. Thrombin, ein Aktivator der CRP-Synthese?

Weiterhin soll untersucht werden ob Thrombin einen möglichen physiologischen Aktivator der CRP-Synthese darstellt. Der Thrombinspiegel im Serum steigt bei Infekten, analog zum CRP, stark an. Eine Beteiligung an der CRP-Synthese erscheint möglich. Da es kommerziell verfügbare Thrombininhibitoren gibt, könnte dies einen einfachen therapeutischen Ansatz zur CRP-Synthesehemmung darstellen.
Material und Methoden

Übersicht Versuchsaufbau

Ausplattieren der Zellen
\[\downarrow 24 \text{h} \]
Transfektion mit siRNA
\[\downarrow 72 \text{h} \]
Stimulation der Proteinkinase C Synthese mit PDBu
\[\downarrow 24 \text{h} \]
Herstellen von Proteinvolllysatsaten der Zellen und Durchführen von Western-Blot und Luziferase Assay

Abb. 3: Flussdiagramm mit Darstellung des zeitlichen Versuchsablaufs

h = Stunden, PDBu = 4\(\alpha\)-Phorbol 12,13-Dibutyrate, siRNA = small interfering Ribonukleinsäure

2.1. Zellkultur

HepG2-ABEK14 Zellen

Material und Methoden

Hierdurch wurde es möglich, Veränderungen der CRP-Promoteraktivität einfach und schnell durch Luziferase-Assay-Messungen zu erfassen und zu dokumentieren [38, 63].

HepG2 Zellen wurden aus einem gut differenziertem heptozellulären Karzinoms eines elfjährigen argentinischen Jungen isoliert. Die Zellen sind sehr gut kultivierbar und sezernieren eine Vielzahl an Proteinen (Albumin, Transferrin, α2-macroglobulin,...), was sie zu der am häufigsten genutzten Zelllinie macht um Zytokin induzierte Synthesezprozesse der Leber zu untersuchen. Für die folgenden Versuche entscheidend, ist die Eigenschaft CRP zu produzieren [138].

Ablauf der Herstellung der Zelllinie HepG2-ABEK14 [63]:
Transfektion der HepG2 Zelllinie:
Es wurde zunächst ein Teil des CRP-Promoters (-1005 to +12 bp) aus dem humanen Genom kloniert.

Forward primer: 5´-ATGGTACCGTAAGATTGACAGACAGTGTGGAG-3`
Reverse primer: 5´-ATCTCGAGGGCTAGAAGTCCTAGATCTCTTGC-3`

2.1.1. Splitten von HepG2-ABEK14-Zellen

Drei Mal wöchentlich erfolgte ein Mediumwechsel der Zellen, einmal die Woche die Passagierung mit Trypsin/ Ethylendiamintetraessigsäure (EDTA) wenn eine 70-80%ige Konfluenz der Zellen erreicht war. Die Zellen wurden in Iscove’s Modified Dulbecco’s Media (IMDM, Kulturmedium), angereichert mit 10% fetalem Kälbersserum (FCS), 1% Penicillin/Streptomycin und 1% L-Glutamin in Kollagen-I beschichteten Kulturschalen kultiviert. Dazu mussten eine Stunde vor Ausplattieren der Zellen die T-75 Flaschen bzw. 24 Well-Platten für eine Stunde mit 5μg/cm² Kollagen-I beschichtet und anschließend der Überstand bei Raumtemperatur unter einer LaminAir-Arbeitsbank abgesaugt werden. Auf Kollagen-beschichteten Oberflächen wird die Adhäsion der Zellen gesteigert. Zu Beginn der Passagierung wurde das Medium abgesaugt, die Zellen mit 5 ml Dulbecco’s PBS gewaschen und anschließend mit 4 ml Trypsin/EDTA abgelöst (Dauer ca. 5 min). Nach Zentrifugation (1200rpm, 5min, 20°C) zur Trennung der Zellen vom Überstand, wurden die Zellen in IMDM Kulturmedium resuspendiert, mit Hilfe der Neubauer-Zählkammer ausgezählt und mit einer Dichte von 100.000 Zellen pro ml Suspension wieder ausgesät (10 ml/T-75 Flasche). Für die Versuche wurden die Zellen auf 24 Well-Platten mit einer Dichte von 60.000 Zellen pro Well ausplattiert.

Materialien
- 24-well Kulturplatte (Becton Dickinson, Heidelberg, D)
- Kulturflaschen (Becton Dickinson, Heidelberg, D)
- Eppendorf Reaktionsgefäße (Eppendorf, Hamburg, D)

Geräte
- Brutschrank: HeraCell (Heraeus, Hanau, D)
- Zentrifuge: Multifuge 1 S-R (Heraeus, Hanau, D)
- Lamin Air (Heraeus, Hanau, D)
- Neubauer-Zählkammer (Madaus AG, Köln, D)

Reagenzien
- IMDM without L-Glutamine (PAA Laboratories GmbH, Linz, A)
- fetales Kälberserum (FCS) (FisherScientific, Waltham, Massachusetts, USA)
- Penicillin/Streptomycin/ Glutamin (Invitrogen/GIBCO, Groningen, NL)
Material und Methoden

-L-Glutamine (200 MM) (Invitrogen/GIBCO, Groningen, NL)
-Collagen Type I Rat Tail (BD Biosciences, Franklin Lakes, New Jersey, USA)
-Trypsin-EDTA (1x) (PAA Laboratories GmbH, Linz, A)
-Dulbecco’s PBS (1x) with Ca & Mg (PAA Laboratories GmbH, Linz, A)

2.2. Transfektion mit small-interference RNA (siRNA)

Zur Vorbereitung wurden die HepG2-ABEK14-Zellen am Vortag in 24 Well-Platten mit einer Dichte von 60.000/Well ausgesät und in 10% FCS-, 1% Penicillin/Streptomycin/L-Glutamin (PSG) –angereichertem IMDM-Medium (insg. 10 ml) kultiviert. Nach 24 Stunden wurde den subkonfluenten Zellen (ca. 60%), nach zweimaligem Waschen mit jeweils 1 ml PBS, das fertige Transektionsreagenz hinzugegeben. Die Versuche in dieser Arbeit erfolgten mit der Methode der liposomalen Formulierung. Das Transfektionsreagenz wurde wie folgt vorbereitet:

Zunächst wurden die zwei Reagenzien Oligofectamin und OptiMEM (FCS-freies Medium) auf 37°C erwärmt und im Verhältnis 1 zu 4 (2,5 ml + 10 ml) gemischt. Anschließend wurden die siRNA Stammlösungen bzw. die Negative Control siRNA für fünf Minuten in den entsprechenden Konzentrationen (100nm) in je 40 μl OptiMEM-Medium gelöst und inkubiert. Nach der Inkubation wurde für weitere 20 Minuten mit 10 μl des vorbereiteten Transfektionsreagenz-Gemisches (OptiMEM und Oligofectamin) erneut inkubiert. Nach Zugabe von weiteren 200 μl OptiMEM wurde das fertige Transfektionsreagenz auf die Zellen gegeben.

Die Zugabe von 10 ml 30%FCS-haltigem IMDM-Medium erfolgte nach vier Stunden.
Material und Methoden

Reagenzien
- OptiMEM® I (Invitrogen/GIBCO, Groningen, NL)
- Oligofectamin Reagent (Invitrogen/GIBCO, Groningen, NL)
- Stealth™ Select RNAi HSS108497 (PRKCδ) (Invitrogen/GIBCO, Groningen, NL)
- HP Validated siRNA 1027400 (PRKCε) (Qiagen, Hilden, D)
- Stealth™ RNAi Negative Control Med GC (Invitrogen/GIBCO, Groningen, NL)

2.3. Stimulation

2.3.1. Stimulation transfilterter und unbehandelter HepG2-ABEK-14 Zellen mit PDBu

Reagenzien
- PDBu (Phorbol 12,13-dibutyrate) (Sigma-Aldrich, Deisenhofen, D)

2.3.2. Stimulation von HepG2-ABEK-14 Zellen mit Thrombin

Reagenzien
- Thrombin (human plasma) (Sigma-Aldrich, Deisenhofen, D)
Material und Methoden

2.4. Lyse

2.4.1. Lyse für den Luziferase-Assay

Für den Luziferase-Assay wurden die Zellen nach Absaugen des Kulturmediums zunächst 2x mit 1ml PBS gewaschen und anschließend mit GloLysis Buffer (1x) ca. 10 min bei 4 Grad auf einer Wippe lysiert (siehe 2.5. Luziferase Assay).

2.4.2. Lyse für den Western-Blot

Für den Western-Blot wurden die Zellen nach Absaugen des Kulturmediums zunächst 1x mit 5ml PBS gewaschen und anschließend mit 80 μl des folgenden Ansatzes 10 min bei 4 °C auf einer Wippe lysiert.

Tab. 2: Lyseansatz für Proteinvolllysat:

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Für 1 ml Lysepuffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCL (NET)</td>
<td>ph 8,0</td>
</tr>
<tr>
<td>NaCl (NET)</td>
<td>100 μl</td>
</tr>
<tr>
<td>EDTA (NET)</td>
<td></td>
</tr>
<tr>
<td>CHAPS 600 nM</td>
<td>10 μl</td>
</tr>
<tr>
<td>Iodoacetamide 10 mM</td>
<td>10 μl</td>
</tr>
<tr>
<td>10 % NP-40</td>
<td>100 μl</td>
</tr>
<tr>
<td>PMSF 0,1 M</td>
<td>0,5 μl</td>
</tr>
<tr>
<td>Protease-Inhibitor (AEBSF, EDTA, Bestatin, Leupeptin, Aprotinin)</td>
<td>20 μl</td>
</tr>
<tr>
<td>dd. H₂O</td>
<td>760 μl</td>
</tr>
</tbody>
</table>
Material und Methoden

Die lysierten Zellen wurden komplett in 1,5 ml Eppendorf-Gefäße überführt und 10 min bei 14000rpm und 4°C zentrifugiert. Der proteinhaltige Überstand wurde bei -80 °C gelagert.

Alle verwendeten Reagenzien stammen von: (Sigma-Aldrich, Deisenhofen, D)

2.5. Luziferase-Assay

Das Chemolumineszenz-Verfahren ist eine validierte Methode um verschiedenste physiologische Vorgänge zu untersuchen. Es können Rezeptorfunktionen, Signalkaskaden, Transkriptionsfaktoren ebenso wie mRNA-Prozesse und Proteinfaltung analysiert werden. In diesem Fall wurde die Promotoraktivität für CRP im Zellkern dargestellt.

Mit Hilfe folgender chemischen Reaktion, in der Energie in Form von Licht freigesetzt wird, kann die transkriptionelle Aktivität im Zellkern durch das Luminometer bestimmt werden. Dabei gilt, dass je höher die Luciferase-Aktivität ist, desto höher ist auch die transkriptionelle Aktivität. Die Einheit beträgt relative light units (RLU).

\[
\text{Luciferin} + \text{ATP} + O_2 \xrightarrow{\text{Luziferase/Mg}^{2+}} \text{Oxyluciferin} + \text{AMP} + \text{PP} + \text{CO}_2 + \text{Licht}
\]

Die Reaktion ist eine ATP-abhängige oxidative Decarboxylierung von Luciferin, katalysiert durch das Enzym Luciferase und Mg\(^{2+}\).

Es wurde die CRP-Promoter-Aktivität in siRNA transfizierten und nicht transfizierten HepG2-ABEK14-Zellen untersucht. Die transfizierten Zellen wurden 72 h nach Transfektion für 24 h mit PDBu stimuliert und anschließend dem Versuch zugeführt. Die nicht transfizierten Zellen wurden ebenfalls nach 72 h für 24 h mit PDBu stimuliert.

Den in 24-Well Platten ausgesäten Zellen wurde zunächst das Medium abgesaugt und die Zellen zweimal mit jeweils 1 ml PBS gewaschen. Nach Zugabe von 100μl/Well
Material und Methoden

Reagenzien
- GloLysis Buffer (1x) (Promega, Mannheim, D)
- Bright-Glo™ Luciferase Assay Buffer (Promega, Mannheim, D)
- Bright-Glo™ Luciferase Assay Substrate (lyophil.) (Promega, Mannheim, D)

Geräte
- Luminometer: flash’n glow (Berthold Tech., Bad Wildbad, D)

2.6. Proteinassay

Die Proteinstandards mit den Konzentrationen 10, 20, 30, 40, 50 und 60 μg/ml und die zu untersuchenden Proteinlysate wurden langsam aufgetaut und nach folgendem Schema auf ein 96-Well pipettiert.
Material und Methoden

<table>
<thead>
<tr>
<th>Standardreihe (μg/ml)</th>
<th>Pipettierschema der Proteinlysate (Konzentrationsverhältnisse Proteinlysate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[1:50]</td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Im grün hinterlegten Teil des Pipettierschemas wurden die zu bestimmenden Proteinvolllysate aufgetragen. Der blau hinterlegte Teil diente zur Ermittlung der Standardkurve mit Hilfe der Albumin-Standards (10-60μg/ml). Die unterste Standardreihe (0 μg/ml) blieb proteinfrei.

Zunächst wurde in den grünen Teil und in die unterste Standardreihe 100 μl dd H₂O vorgelegt. Anschließend wurden 100 μl der Albuminstandards und 1-2 μl der Proben in die dafür vorhergesehenen Wells pipettiert. Jede Probe wurde jeweils doppelt aufgetragen. Mit einer Multipette wurden danach 100 μl des Detektionsreagens auf alle Wells gegeben und es erfolgte eine Inkubation bei 60°C im Wärmeofen. Nach 1 h erfolgte die photometrische Messung bei 562 nm und die Auswertung mit der KC-4 Software am Computer.
Material und Methoden

Tab. 3: Ansatz Detektionsreagenz für den Proteinassay. Mischungsverhältnisse und -volumina für 1 ml Gesamtreagenz.

BCA = Bicinchinon-Säure, μl = Mikroliter, ml = Milliliter

<table>
<thead>
<tr>
<th>Micro BCA™ Reagenz</th>
<th>Verhältnis</th>
<th>Für 1ml Reagenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50%</td>
<td>500 μl</td>
</tr>
<tr>
<td>B</td>
<td>48%</td>
<td>480 μl</td>
</tr>
<tr>
<td>C</td>
<td>2%</td>
<td>20 μl</td>
</tr>
</tbody>
</table>

Material

-96 Well (Greiner bio-one GmbH, Frickenhausen, D)

Reagenzien

-Albumin Standard (Pierce Biotechnology Inc., Rockford, IL, USA)
-Micro BCA™ Reagent A (MA) (Pierce Biotechnology Inc., Rockford, IL, USA)
-Reagent B (MB)
-Reagent C (MC)

Geräte

-Multipette plus (Eppendorf, Hamburg, D)
-Photometer: Lambda K ELX808 (MWG-Biotech, Ebersberg, D)
-KC-4 Software (BioTek, Bad Friedrichshall, D)

2.7. Gelelektrophorese

Die Gelelektrophorese dient der Auftrennung der Proteine nach ihrem Molekulargewicht. Die hier verwendeten Polyacrylamidgele bilden (je nach Polyacrylamid-Gehalt) ein mehr oder weniger dichtes Netz. Die Proteine bleiben je nach Größe und Form an diesem Netz hängen. Die Wanderungsgeschwindigkeit wird durch die angelegte Spannung reguliert. Es wurde eine SDS-PAGE (Sodium Dodecyl
Material und Methoden

Geräte
Western-Blot Kammer Minigel Twin G42 (Biometra, Göttingen, D)
Power Pack P25T (Biometra, Göttingen, D)
pH-Meter pH538 (WTW Multical, Weilheim, D)

Reagenzien
Laufpuffer (Sigma-Aldrich, Deisenhofen, D)
Probenlaufpuffer (Sigma-Aldrich, Deisenhofen, D)
ProGel-Tris-Glycin-Gel 4-12% (anamed, Groß-Bieberau/Rodau, D)
Precision Plus Protein Standards Kaleidoscope™ (Bio-Rad, Hercules, California, USA)
BenchMark™ Pre-Stained Protein Ladder (Invitrogen/GIBCO, Groningen, NL)

Materialien
2.8. Western-Blot

Die blasenfreie Schichtung des Blots erfolgte wie in der Abbildung dargestellt:

<table>
<thead>
<tr>
<th>Anode(+)</th>
<th>Filterpapier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papier</td>
<td>Gel</td>
</tr>
<tr>
<td>Filterpapier</td>
<td>Kathode(-)</td>
</tr>
</tbody>
</table>

Abb. 5: Anordnung der Schichten beim Western-Blot

Die Filterpapiere und das Nitrozellulosepapier wurden vor dem Blotaufbau in Transferpuffer gelegt. Für die Übertragung der Proteine auf das Papier wurde eine konstante Stromstärke von 150-160 mA über eine Stunde appliziert.

Material

- Hybond™-C Extra Nitrozellulose Membran (Amersham-Pharmacia, Freiburg, D)
- Blot Filter Paper (Bio-Rad, Hercules, California, USA)
- Falcon Röhrchen (Becton Dickinson, Franklin Lakes, NJ, USA)

Reagenzien

- Transferpuffer pH 8,3 50ml Methanol (Sigma-Aldrich, Deisenhofen, D)
Material und Methoden

1,514g TRIS-Base (Sigma-Aldrich, Deisenhofen, D)
5,313g Glycin (Sigma-Aldrich, Deisenhofen, D)
Ad 500ml dd A. bidest (Sigma-Aldrich, Deisenhofen, D)

Geräte
Blotgerät: Fastblot B43 (Biometra, Göttingen, D)

2.9. Detektion der Proteine mit Antikörpern

Zur Absättigung freier Bindungsstellen wurde das Nitrozellulosepapier nach dem Western Blot für eine Stunde bei Raumtemperatur in Blockpuffer auf dem Schwenktisch inkubiert. In einem zweiten Schritt erfolgte die Inkubation über Nacht mit einem der PKC-Isoform spezifischem Primärantikörper (siehe Tab. 4), der zuvor in 10 ml Blockpuffer verdünnt wurde. Nach fünfmaligem vorsichtigem Spülen für jeweils 5 min mit Waschpuffer wurden nicht gebundene Primärantikörper entfernt. Der ebenfalls in 10 ml Blockpuffer gelöste Sekundärantikörper, der an den Primärantikörper bindet und an das Enzym HRP (Horse Radish Peroxidase) gekoppelt ist, wurde für 1 Stunde dazugegeben.

Reagenzien
Blockpuffer 5g Magermilchpulver (Sigma-Aldrich, Deisenhofen, D)
1ml 10% Tween 20 (Sigma-Aldrich, Deisenhofen, D)
ad 100ml 1xPBS (Universität Ulm, Ulm, D)
Waschpuffer 100ml 10x PBS (Sigma-Aldrich, Deisenhofen, D)
10ml 10% Tween 20 (Sigma-Aldrich, Deisenhofen, D)
890 ml A. bidest (Universität Ulm, Ulm, D)
Tab. 4: Übersicht der verwendeten Primär- und Sekundärantikörper PKC δ/ε

h = Stunde, HRP = Horse radish peroxide, Ig = Immunglobulin, PKC = Proteinkinase C.

<table>
<thead>
<tr>
<th>Primär-Antikörper</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>Inkubationszeit/Temperatur</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCδ (c-17)</td>
<td>sc-213</td>
<td>Rabbit, polyclonal IgG</td>
<td>über Nacht; 4°C</td>
<td>1:1000</td>
<td>Santa Cruz Biotechnology, Dallas, Texas, USA</td>
</tr>
<tr>
<td>Anti PKCε</td>
<td>#p8458</td>
<td>Rabbit, polyclonal IgG</td>
<td>über Nacht; 4°C</td>
<td>1:2000</td>
<td>Sigma-Aldrich, Deisenhofen, D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sekundär-Antikörper</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>Inkubationszeit/Temperatur</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-rabbit-Ig/HRP</td>
<td>Swine, polyclonal</td>
<td>1 h; Raumtemperatur</td>
<td>1:3000</td>
<td>Dako Cytomation, Glostrup, Dänemark</td>
<td></td>
</tr>
</tbody>
</table>

2.10. Filmentwicklung

Nach Zugabe des Sekundärantikörpers wurde die Nitrozellulosemembran erneut fünfmal 5 min in Waschpuffer inkubiert und anschließend 1 min in ECL Western Blotting Substrate getaucht. Das Luminol im ECL Substrate wird durch die Meerrettichoxidase (HRP) oxidiert, woraufhin es zu einer Chemolumineszenzreaktion und zur Belichtung des Films kommt. Dazu wurde die Membran luftblasenfrei in eine Frischhaltefolie verpackt und der Röntgenfilm für 1-5 Stunden (je nach Intensität des Signals) in einer Film-Kassette belichtet. Abschließend erfolgte die Entwicklung des Röntgenfilms in einer Filmentwicklungsmaschine.

Material

Amersham Hyperfilm™ ECL (General Electrics Healthcare, Chalfont St Giles, UK)
Reagenzien

- **ECL Western Blotting Substrate** (Pierce Biotechnology, Rockford, Illinois, USA)

Geräte

- Filmentwicklungsmaschine XOMAT M35 (Kodak, New York, USA)
- Film-Kassette (General Electrics Healthcare, Chalfont St Giles, UK)

2.11. Stripping zur α-Tubulin Ladungskontrolle

Reagenzien

- **Restore™ Western Blot Stripping Buffer** (Pierce Biotechnology, Rockford, IL, USA)
- **Blockpuffer**
 - 5g Magermilchpulver
 - 1ml 10% Tween 20
 - ad 100ml 1xPBS (Sigma-Aldrich, Deisenhofen, D)
- **Waschpuffer**
 - 100ml 10x PBS
 - 10ml 10% Tween 20
 - 890 ml A.bidest (Sigma-Aldrich, Deisenhofen, D)
Tab. 5: Übersicht der verwendeten Primär- und Sekundärantikörper zur α-Tubulin-Ladungskontrolle

HRP = Horse radish peroxid, Ig = Immunglobulin, min = Minuten.

<table>
<thead>
<tr>
<th>Primär-Antikörper</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>Inkubationszeit/ Temperatur</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-α Tubulin</td>
<td>Mouse, monoclonal</td>
<td>45 min; Raumtemperatur</td>
<td>1:3000</td>
<td>Sigma, Saint Louis, Missouri, USA</td>
</tr>
<tr>
<td></td>
<td>Clone B-5-1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sekundär-Antikörper</th>
<th>Bezeichnung</th>
<th>Art</th>
<th>Inkubationszeit/ Temperatur</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-Mouse IgG-HRP</td>
<td>Rabbit, polyclonal</td>
<td>45 min; Raumtemperatur</td>
<td>1:2000</td>
<td>Invitrogen Corporation, Carlsbad, CA, USA</td>
</tr>
</tbody>
</table>

2.12. Statistik

Die Auswertung der erhobenen Daten erfolgte mit Hilfe der Statistiksoftware SigmaStat Version 2.0 von Jandel Corporation. Für die Berechnung der Signifikanzen wurde der student’s t-test für verbundene Stichproben angewendet. Als statistisch signifikant wurden p-Werte <0,05 und als hochsignifikant p-Werte <0,001 angesehen.

Software

SigmaStat Version 2.0 (Jandel Corporation, San Rafael, California, USA)
3 Ergebnisse

3.1. Capsel-reaktives Protein-Promoteraktivität in siRNA transfizierten HepG2-ABEK-14 Zellen

Es wurde die CRP-Promotoraktivität in HepG2-ABEK14-Zellen nach Transfektion mittels 100nM siRNA, die spezifisch die codierenden Genabschnitte für die Enzyme PKC δ und PKC ε inaktiviert, gemessen und analysiert.

3.1.1. Knockdown der Proteinkinase C δ durch siRNA Transfektion – Bestimmung der Capsel-reaktives Protein-Promoteraktivität

Es konnte eine Aktivitätsminderung des CRP-Promoters nach PKCδ –Knockdown in den HepG2-ABEK14-Zellen festgestellt werden. Die relative Änderung der Promoteraktivität in Neg siRNA transfizierten Zellen gegenüber mit komplementärer PKCδ transfizierten Zellen erwies sich als hochsignifikant (p<0,001).

In der unteren Abbildung erkennt man deutlich die Abschwächung der Banden für transfizierte Zellen, was einem erfolgreichen PKCδ- Knockdown entspricht.

Ergebnis:

1. Eine Beteiligung der PKCδ an der CRP-Synthese ist wahrscheinlich.
2. Eine Hemmung der PKC durch die Methode der RNA-Interferenz ist möglich.
Abb. 6: Relative Aktivitätsänderung des CRP-Promoters in PKCδ-Knockdown-Zellen im Vergleich zu unbehandelten Zellen und der siRNA-Negativkontrolle.

Gezeigt ist die CRP-Promoteraktivitätsänderung in stabil mit siRNA transfizierten PKCδ-Knockdownzellen (PKCδ, Balken 5 und 6) im Vergleich zu untransfizierten Zellen (Balken 1 und 2) sowie mit negativer siRNA transfizierten Zellen (Negativkontrolle mit inaktiver siRNA, Balken 3 und 4) vor und nach Stimulation mit PDBu. Es zeigt sich eine signifikant erniedrigte CRP-Promoteraktivität in PKCδ-Knockdownzellen im Vergleich zu der Negativkontrolle. Es zeigte sich weiterhin eine gesteigerte CRP-Promoteraktivität in den sowohl mit Negativ-siRNA als auch mit PKCδ-siRNA transfizierten Zellen.

CRP = Capsel-reaktives protein, nM = Nanomol, Neg = nichtbindende siRNA, NT = non treated, PDBu = 4α-Phorbol 12,13-Dibutyrate, PKCδ = Proteinkinase C -Isoform δ, RLU=relative light units, siRNA = small interfering Ribonukleinsäure. n=9 **=p<0.001
Ergebnisse

PKCδ-Knockdown

![Western-Blot Image](image)

Abb. 7: PKCδ-Knockdown in stabil transfizierten HepG2-ABEK14-Zellen, Darstellung im Western-Blot.

Es zeigt sich eine deutliche Abschwächung der Banden für die mit komplementärer PKCδ-siRNA transfizierten Zellen (Spalte 1 und 2) gegenüber zur Negativkontrolle (Spalte 3 und 4) als Zeichen für einen erfolgreichen Knockdown der Proteinkinase C δ. Aufgeführt sind Zellproben vor und nach Stimulation mit 100 nM PDBu. Die Konzentrationen der jeweilig eingesetzten siRNA betrug 100nM.

Neg = nichtbindende siRNA, nM = Nanomol, NT = non treated, PDBu = 4α-Phorbol 12,13-Dibutyrate, PKCδ = Proteinkinase C-Isoform δ, siRNA = small interfering Ribonukleinsäure. n=9

3.1.2. Knockdown der Proteinkinase C ε durch siRNA Transfektion – Bestimmung der Capsel-reaktives Protein-Promoteraktivität

In der unteren Abbildung erkennt man deutlich die Abschwächung der Banden für transfizierte Zellen, was einem erfolgreichen PKCε-Knockdown entspricht.
Ergebnis:
1. Eine Beteiligung der PKCε an der CRP-Synthese ist wahrscheinlich.
2. Eine Hemmung der PKCε durch die Methode der RNA-Interferenz ist möglich.

Abb. 8: Relative Aktivitätsänderung des CRP-Promoters in PKCε-Knockdown-Zellen im Vergleich zu unbehandelten Zellen und der siRNA-Negativkontrolle.

Gezeigt ist die CRP-Promoteraktivitätsänderung in stabil mit siRNA transfizierten PCKε-Knockdownzellen (PKCε, Balken 5 und 6) im Vergleich zu untransfizierten Zellen (Balken 1 und 2) sowie mit negativer siRNA transfizierten Zellen (Negativkontrolle mit inaktiver siRNA, Balken 3 und 4) vor und nach Stimulation mit PDBu. Es zeigt sich eine signifikant erniedrigte CRP-Promoteraktivität in PKCε-Knockdownzellen im Vergleich zu der Negativkontrolle. Es zeigte sich weiterhin eine gesteigerte CRP-Promoteraktivität in den sowohl mit Negativ-siRNA als auch mit PKCε-siRNA transfizierten Zellen.

CRP = Capsel-reaktives Protein, Neg = nichtbindende siRNA, nM = Nanomol, NT = non treated, PDBu = 4α-Phorbol 12,13-Dibutyrate, PKCε = Proteinkinase C-ε-Isoform, RLU = relative light units, siRNA = small interfering Ribonukleinsäure. n=9 **=p<0.001
Ergebnisse

PKCε - Knockdown

Abb. 9: PKCε-Knockdown in stabil transfizierten HepG2-ABEK14-Zellen, Darstellung im Western-Blot.

Es zeigt sich eine deutliche Abschwächung der Banden für die mit komplementärer PKCε-siRNA transfizierten Zellen (Spalte 1 und 2) gegenüber zur Negativkontrolle (Spalte 3 und 4) als Zeichen für ein erfolgreiches Knockdown der Proteinkinase C ε. Aufgeführt sind Zellproben vor und nach Stimulation mit 100nM PDBu. Die Konzentrationen der jeweilig eingesetzten siRNA betrug 100nM. Neg = nichtbindende siRNA, nM = Nanomol, NT = non treated, PDBu = 4α-Phorbol 12,13-Dibutyrate, PKCε = Proteinkinase C -Isoform ε, siRNA = small interfering Ribonukleinsäure. n=9

3.2. Capsel-reaktives Protein-Synthese in HepG2-ABEK14-Zellen nach Stimulation mit Thrombin

Gemessen wurde die relative Aktivitätsänderung des CRP-Promoters in HepG2-ABEK14-Zellen nach Stimulation mit Thrombin. Nach dem Ausplattieren der Zellen erfolgte nach 24 Stunden eine Stimulation in aufsteigender Konzentration von 0,1/1,0/3,0/6,0 U/ml. Es wurden drei unabhängige Versuche durchgeführt. Die Erfassung der CRP-Promoteraktivität erfolgte mit Hilfe von Luziferase-Assays 48 Stunden nach Stimulation mit Thrombin.
Ergebnisse

4 Diskussion

4.1. Capsel-reaktives Protein und Arteriosklerose

Aufgrund der oben genannten Involvierung und einer möglicherweise kausalen Bedeutung des CRP im Mechanismus der Arteriosklerose erscheint ein Eingriff in dieses System zur Prophylaxe bzw. Therapie sinnvoll. Dies könnte gleichzeitig einen Hinweis auf die kausale Beteiligung des CRP liefern. Denkbare Mechanismen zur Inhibierung der Effekte des CRPs am Wirkort wären:

(3) Crosslinking: Pepys et al. stellten 2006 eine Methode vor in der durch Vernetzung der Untereinheiten des CRPs, wobei 5 Moleküle des Wirkstoffes 1,6-bis(phosphocholine)-hexane von 2 CRP-Pentameren gebunden werden, die Ligandenbindung des CRP verhindert wird. Das synthetisierte 1,6-bis(phosphocholine)-hexane wurde, unter Gabe von humanem CRP, an Ratten mit provoziertem Myokardinfarkt erprobt. Es zeigte sich ein signifikant gebessertes outcome bezüglich Infarktgröße und kardialer Dysfunktion [107]. Aufgrund der fehlenden Spezifität dieses Moleküls kam es nicht zur Erprobung am Menschen. Die Fcγ-Rezeptoren werden ebenfalls bei dieser Methode nicht berücksichtigt.

(4) Antisense-Technik: Durch einzelsträngige komplementär zur Ziel-mRNA gerichtete RNA kann die Translation des CRPs vermindert werden. Hierzu gibt es aber bisher nur wenige Studien, die Wirkung konnte jedoch bisher an Mäusen, Ratten, Hasen und an gesunden Menschen belegt werden [51, 66, 139, 177].

Drei aktuell klinisch bereits verfügbare Medikamentengruppen, die aktuell im Fokus stehen, sollen hier noch erwähnt werden. Zum einen sind dies die beta-HMG-Reduktase-Hemmer (Statine). In der JUPITER-Studie konnte gezeigt werden, dass Patienten ohne kardiovaskuläre Risikofaktoren und normalen LDL-Werten aber erhöhten CRP-Werten hinsichtlich dem Auftreten zukünftiger kardiovaskulärer Ereignisse von einer Behandlung mit einem HMG-CoA-Reduktase-Hemmer profitierten [149]. In dieser Studie wurde der Frage nachgegangen, ob gesunde Probanden mit normalem LDL-Cholesterin kleiner 3,4mmol/l aber erhöhten hsCRP-Werten über 2mg/l von einer Therapie mit 20mg Rosuvastatin im Vergleich zu Placebo hinsichtlich einer Primärprävention gegenüber kardiovaskulären Erkrankungen profitieren würden. Primärer Endpunkt war das Auftreten von kardiovaskulären Ereignissen wie z.B. Myokardinfarkt, instabile Angina pectoris oder ischämischer Schlaganfall. Nach ca. 2 Jahren wurde die Studie gestoppt. In der Behandlungsgruppe zeigte sich eine Senkung des LDL-Wertes um ca. 50% und des hsCRP-Spiegels um ca. 37%. Das Risiko für kardiovaskuläre Ereignisse war in der Verum-Gruppe um hochsignifikante 44% reduziert [112]. Es bleibt aber unklar, ob die

In einer kürzlich erschienen Arbeit konnte Jialai et al. einen neuen vielversprechenden Ansatz vorstellen. Der Peptid-Inhibitor (CRP-i2) konnte in ersten Versuchen die pro-inflammatorischen Effekte des CRP wie z.B. Superoxid Anion Induktion, NFκb Aktivität und Entzündungsmediatoren-release durch Monozyten vermindern [65]. Es wird nicht die Synthese gehemmt, sondern Einfluss auf die durch CRP ausgelöste Kaskade genommen.

4.2. Diskussion des Versuchsmodells

HepG2-ABEK14 ist eine Zelllinie die aus einem hepatozellulären Karzinoms eines 11-jährigen argentinischen Jungen gewonnen wurde. Sie besitzen eine große Ähnlichkeit
zu humanen primären Leberzellen und behalten im Gegensatz zu primären Hepatozyten ihre Teilungsaktivität bei [48, 72, 73]. Von Voraussetzung für unsere Arbeit ist ihre Eigenschaft CRP zu produzieren [138]. Trotzdem unterscheiden sie sich hinsichtlich Struktur, Enzymvorkommen bzw. -verteilung, Rezeptoren intrazellulär, d.h. im Zytosol und Zellkern und membranären Rezeptoren. So konnte z.B. gezeigt werden, dass eine Superinduktion durch parallele Stimulation durch Interleukin 1, Interleukin 6 und PDBu in HepG2-ABEK14-Zellen erreicht werden konnte, in PHH trat dieser Effekt aber nicht auf [63].

4.3. Proteinkinase C δ/ε – Mögliche Angriffspunkte der Syntheseinhibierung

Diskussion

Für die Proteinkinase C δ konnte im Vergleich zu den nichttransfizierten Zellen eine signifikant erniedigte CRP-Promoteraktivität nachgewiesen werden, so dass von einer Beteiligung an der CRP-Synthese ausgegangen werden muss. Auch für die Proteinkinase ε zeigte sich eine hochsignifikante Reduktion ihrer Aktivität nach Behandlung mit siRNA.

Zusammenfassend konnte gezeigt werden, dass die PKC δ und ε an der CRP-Synthese in HepG2-ABEK14-Zellen beteiligt sind. Hier besteht ein möglicher Ansatzpunkt für
zukünftige medikamentöse Therapien. Die in dieser Arbeit angewendete Technik der RNA-Interferenz wäre für weitere Studien auch auf den Menschen anwendbar.

Zusätzlich sollten aber die unspezifischen methodischen Artefakte einer geringen Erhöhung der CRP-Promoteraktivität durch Transfektion wie z.B. Manipulation, Reagenzien, unspezifische Zellschäden, Toxizität untersucht werden. Hierfür würde sich z.B. eine Versuchsreihe mit den Watanabe heritable hyperlipidemic (WHHL) Hasen anbieten [122]. Hasen scheinen sich aufgrund ihrer biologischen Eigenschaften, besser als Mäuse für Versuche zu CRP und Arteriosklerose zu eignen. So weiß man, dass sich die biologische Funktion von CRP in Menschen und Hasen im Gegensatz zu Mäusen und Ratten sehr ähnelt [154]. So ist z.B. das CRP in Mäusen kein Akute-Phase-Protein und wird auch nur in geringen Mengen gebildet.

4.4. Thrombin, ein Stimulator der Capsel-reaktives Protein-Synthese?

In den Stimulationsversuchen mit Thrombin kam es zu keinem signifikanten Ansteigen der CRP-Promoter-Aktivität in HepG2-ABEK14-Zellen. Wie oben bereits beschrieben unterscheiden sich die Hepatom-Zellen trotz großer Ähnlichkeiten von
den PHH. Es ist bekannt, dass HepG2-Zellen Thrombinrezeptoren exprimieren und durch Aktivierung intrazelluläre Kaskaden ausgelöst werden können [93]. Ob die Effekte der aktivierten Thrombin-Rezeptoren in HepG2-ABEK14-Zellen auch auf humane Leberzellen übertragbar sind muss in weiteren Versuchen geklärt werden.
Zusammenfassung

5 Zusammenfassung

Die Arteriosklerose und ihre Folgeerkrankungen sind für über 50% aller Todesfälle weltweit verantwortlich. Erkrankungen wie z.B. arterielle Hypertonie, Hyperlipidämie und Diabetes mellitus sind als Risikofaktoren eindeutig belegt und etabliert.

Zusammenfassung

6 Literaturverzeichnis

9 Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med 190: 585-90 (1990)
10 Black JD: Protein kinase C-mediated regulation of the cell cycle. Front Biosci 5: 406-23 (2000)

15 Brown MS, Goldstein JL: Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci USA 76: 3330-7 (1979)

61

62

63

64

65

66

67

68

69
Keaney J, Campbell M, Humphries P: From RNA interference technology to effective therapy: how far have we come and how far to go? Ther Deliv 2: 1395-406 (2011)

Li SP, Goldman ND: Regulation of human C-reactive protein gene expression by two synergistic IL-6 responsive elements. Biochemistry 35: 9060-8 (1996)

Majello B, Arcone R, Toniatti C, Ciliberto G: Constitutive and IL-6-induced nuclear factors that interact with the human C-reactive protein promoter. EMBO J 9: 457-65 (1990)

99

100

101

102

103

104

105

106

107

108

109

115 Ridker PM, Macfadyen JG, Nordestgaard BG, Koenig W, Kastelein JJ, Genest J, Glynn RJ: Rosuvastatin for primary prevention among individuals with elevated high-sensitivity C-reactive protein and 5% to 10% and 10% to 20% 10-year risk. Implications of the Justification for Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial for "intermediate risk". Circ Cardiovasc Qual Outcomes 3: 447-52 (2010)

130

131

132

133

134

135

136

137

138
139

140

141

142

143

144

145

146

147

148
149

150

151

152

153

154

155

156

157
158

159

160

161

162

163

164

165

166

167

7 Danksagung

Danksagung aus Gründen des Datenschutzes entfernt.
8 Lebenslauf

Lebenslauf aus Gründen des Datenschutzes entfernt.