Bedeutung der viralen Proteine pUL71, pUL103 und gpUL132 für das Viruswachstum klinischer Isolate des Humanen Cytomegalievirus

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät der Universität Ulm

vorgelegt von
Elena Bauerschmidt aus München
Ulm, 2019
Amtierender Dekan: Prof. Dr. T. Wirth

1. Berichterstatter: Jun.-Prof. Dr. von Einem

2. Berichterstatter: Prof. Dr. Spellerberg

Tag der Promotion: 16.12.2021
Diese Arbeit wurde im Rahmen des Promotionsprogramms für experimentelle Medizin der Universität Ulm gefördert.
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaltsverzeichnis</td>
<td>I</td>
</tr>
<tr>
<td>Abkürzungsverzeichnis</td>
<td>II</td>
</tr>
<tr>
<td>1. Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Das Humane Cytomegalievirus</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Taxonomische Einordnung</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Klinische Bedeutung</td>
<td>1</td>
</tr>
<tr>
<td>1.1.3 Antivirale Therapie</td>
<td>3</td>
</tr>
<tr>
<td>1.1.4 Aufbau eines Viruspartikels</td>
<td>4</td>
</tr>
<tr>
<td>1.1.5 Replikationszyklus</td>
<td>5</td>
</tr>
<tr>
<td>1.2 relevante HCMV Proteine</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1 pUL71</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2 pUL103</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3 gpUL132</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Klinische Isolate und Laborstämme</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Ziel dieser Arbeit</td>
<td>11</td>
</tr>
<tr>
<td>2. Material und Methoden</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Material</td>
<td>13</td>
</tr>
<tr>
<td>2.1.1 Geräte</td>
<td>13</td>
</tr>
<tr>
<td>2.1.2 Software</td>
<td>15</td>
</tr>
<tr>
<td>2.1.3 Verbrauchsmaterial</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4 Kits</td>
<td>16</td>
</tr>
<tr>
<td>2.1.5 Reagenzien und Chemikalien</td>
<td>16</td>
</tr>
<tr>
<td>2.1.6 Antibiotika</td>
<td>18</td>
</tr>
<tr>
<td>2.1.7 Enzyme</td>
<td>18</td>
</tr>
<tr>
<td>2.1.8 Medien und Lösungen</td>
<td>19</td>
</tr>
<tr>
<td>2.1.9 Bakterien</td>
<td>20</td>
</tr>
<tr>
<td>2.1.10 Eukaryotische Zellen</td>
<td>20</td>
</tr>
<tr>
<td>2.1.11 Viren</td>
<td>21</td>
</tr>
<tr>
<td>2.1.12 Primer</td>
<td>22</td>
</tr>
<tr>
<td>2.1.13 Antikörper</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Methoden</td>
<td>25</td>
</tr>
<tr>
<td>2.2.1 Molekularbiologische Methoden</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2 Zellbiologische Methoden</td>
<td>32</td>
</tr>
<tr>
<td>2.2.3 Immunfärbung infizierter Zellen</td>
<td>33</td>
</tr>
<tr>
<td>2.2.4 Wachstumsanalyse</td>
<td>...</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>2.2.5 Untersuchung der Zirkularität des vAC</td>
<td>...</td>
</tr>
<tr>
<td>2.2.6 Statistik</td>
<td>..</td>
</tr>
<tr>
<td>3. Ergebnisse</td>
<td>..</td>
</tr>
<tr>
<td>3.1 Untersuchung der Bedeutung der viralen Proteine pUL71 und pUL103 für das Viruswachstum eines klinischen Isolats</td>
<td>..</td>
</tr>
<tr>
<td>3.1.1 Vorstellung der zur Untersuchung der viralen Proteine pUL71 und pUL103 verwendeten Viren</td>
<td>..</td>
</tr>
<tr>
<td>3.1.2 Rekonstitution und Wachstumsanalyse</td>
<td>...</td>
</tr>
<tr>
<td>3.1.3 Transfektionseffizienz und Plaqueanzahl</td>
<td>..</td>
</tr>
<tr>
<td>3.2 Untersuchung der Bedeutung des viralen Glykoproteins gpUL132 für das Viruswachstum im Hintergrund eines klinischen Isolats</td>
<td>..</td>
</tr>
<tr>
<td>3.2.1 Vorstellung der zur Untersuchung des Glykoprotein gpUL132 verwendeten Viren</td>
<td>..</td>
</tr>
<tr>
<td>3.2.2 Rekonstitution und Wachstumsanalyse</td>
<td>...</td>
</tr>
<tr>
<td>3.2.3 Analyse der Zirkularität des vAC</td>
<td>..</td>
</tr>
<tr>
<td>4. Diskussion</td>
<td>..</td>
</tr>
<tr>
<td>4.1 Bedeutung der viralen Proteine pUL71 und pUL103 für das Viruswachstum im Hintergrund eines klinischen Isolats</td>
<td>..</td>
</tr>
<tr>
<td>4.2 Bedeutung des viralen Glykoproteins gpUL132 für das Viruswachstum im Hintergrund eines klinischen Isolats</td>
<td>..</td>
</tr>
<tr>
<td>4.3 Verwendung des HCMV-Virusstammes Merlin zur besseren Übertragbarkeit von Ergebnissen auf das klinische Setting</td>
<td>..</td>
</tr>
<tr>
<td>5. Zusammenfassung</td>
<td>..</td>
</tr>
<tr>
<td>6. Literaturverzeichnis:</td>
<td>..</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>µM</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>BAC</td>
<td>Bacterial artificial chromosome</td>
</tr>
<tr>
<td>bFGF</td>
<td>basic fibroblast growth factor</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumine</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′,6-Diamidin-2-phenylindol</td>
</tr>
<tr>
<td>DE</td>
<td>delayed early</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNS</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Didesoxyribonukleosidtriphosphate</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double-stranded desoxyribonucleic acid</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal Growth Factor Receptor</td>
</tr>
<tr>
<td>Exp.</td>
<td>Experiment</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
</tr>
<tr>
<td>GM130</td>
<td>Golgi Matrix Protein 130</td>
</tr>
<tr>
<td>gp</td>
<td>Glykoprotein</td>
</tr>
<tr>
<td>HA</td>
<td>hemagglutinin</td>
</tr>
<tr>
<td>HCMV</td>
<td>Humanes Cytomegalievirus</td>
</tr>
<tr>
<td>HFF</td>
<td>human foreskin fibroblasts</td>
</tr>
<tr>
<td>IE</td>
<td>immediate early</td>
</tr>
<tr>
<td>Inc.</td>
<td>Incorporated</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>kDA</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolt</td>
</tr>
<tr>
<td>L</td>
<td>late</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>MCP</td>
<td>major capsid protein</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum Essential Medium</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>n.s.</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>ncbi</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NEC</td>
<td>nuclear egress complex</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>OAT1</td>
<td>organic anion transporter 1</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>p</td>
<td>Protein</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDGRFα</td>
<td>platelet-derived growth factor receptor alpha</td>
</tr>
<tr>
<td>PFA</td>
<td>Perfluoralkoxy-Polymere</td>
</tr>
<tr>
<td>PrV</td>
<td>Pseudorabies-Virus</td>
</tr>
<tr>
<td>psm</td>
<td>positive selection marker</td>
</tr>
<tr>
<td>RFLA</td>
<td>Restriktionsfragmentlängenanalyse</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>s</td>
<td>Sekunden</td>
</tr>
<tr>
<td>SOB</td>
<td>Super Optimal Broth</td>
</tr>
<tr>
<td>SOC</td>
<td>Super Optimal broth with Catabolite repression</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>TAE</td>
<td>TRIS-Acetat-EDTA</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>TE</td>
<td>TRIS-EDTA</td>
</tr>
<tr>
<td>t_{inkub}</td>
<td>Inkubationszeit</td>
</tr>
<tr>
<td>UL</td>
<td>unique long</td>
</tr>
<tr>
<td>vAC</td>
<td>virales assembly compartment</td>
</tr>
<tr>
<td>µF</td>
<td>Mikrofarad</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>µL</td>
<td>Mikroliter</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Das Humane Cytomegalievirus

1.1.1 Taxonomische Einordnung

Das Humane Betaherpesvirus 5, besser bekannt als das Humane Cytomegalievirus (HCMV), ist taxonomisch den β- *Herpesvirinae* zuzuordnen. Diese Unterfamilie ist insbesondere charakterisiert durch einen langen Replikationszyklus, welcher eine Dauer von sieben Tagen überschreiten kann, ein enges Wirtsspektrum, sowie das charakteristische Anschwellen infizierter Zellen [56].

1.1.2 Klinische Bedeutung

Auch immungeschwächte Personen sind im Besonderen gefährdet, nach einer Reaktivierung des latent vorhandenen Erregers oder einer Neuinfektion, Komplikationen wie Retinitiden, periphere Neupathien oder seltener auch Enzephalitiden zu entwickeln. Die HCMV Seroprävalenz als Gradmesser der Durchseuchung der Bevölkerung reicht abhängig vom sozioökonomischen Status von etwa 50% in westlichen Industrienationen bis nahezu 100% in Entwicklungsländern. Eine Übertragung erfolgt durch direkten Kontakt mit virushaltigen Körperflüssigkeiten wie Speichel, Blut, Muttermilch, Urin oder Genitalsekret, was die ubiquitäre Verbreitung des Erregers erklärt. Zusätzlich stellt die intermittierende Ansteckungsfähigkeit seropositiver Patienten, begünstigt durch die vom Erreger etablierte Latenz und Fähigkeit zur Reaktivierung, eine wichtige Infektionsquelle dar [47].

Hieraus ergibt sich eine essentielle Notwendigkeit effektive und zielgerichtete Therapiestrategien gegen HCMV zu entwickeln, was nur durch ein tiefgreifendes
Verständnis des viralen Replikationszyklus und der daran beteiligten Proteine ermöglicht werden kann.

1.1.3 Antivirale Therapie

bessere Wirksamkeit und Sicherheit in der medikamentösen Therapie könnte durch Kombination mehrerer spezifischer Wirkstoffe erreicht werden, wie für andere Viruserkrankungen bereits gezeigt [27, 58], was die Identifizierung weiterer Zielstrukturen für die antivirale Therapie erfordert.

1.1.4 Aufbau eines Viruspartikels

1.1.5 Replikationszyklus
1.1.5.1 Anheftung und Eintritt in die Zelle

Der etwa 48 bis 72 Stunden dauernde Replikationszyklus von HCMV beginnt zunächst mit der Anheftung infektiöser Viruspartikel, auch als Virionen bezeichnet, an die Zelle und der sich anschließenden Penetration der Wirtszellmembran. Dies geschieht zelltypabhängig entweder durch direkte, pH-unabhängige Membranfusion, wie beispielsweise in Fibroblasten, oder durch pH-abhängige Endozytose, wie in Endothel- und Epithelzellen [89]. Vermittelt werden diese Prozesse neben zellulären Rezeptoren, die den Zelltropismus bestimmen, auch durch Virusproteine auf der Oberfläche der Virionen. Die Adsorption an die Wirtszelle wird über die Interaktion der viralen Glykoproteine gB und gM/gN an zelluläres Heparansulfat vermittelt [17, 80]. Für den erfolgreichen Eintritt der infektiösen Partikel in die Zelle, erfolgt zunächst die Receptorbindung. Als potentielle zelluläre Rezeptoren für das sehr gut charakterisierte virale Oberflächenglykoprotein gB werden der epidermal growth factor receptor (EGFR) [83], der platelet-derived growth factor receptor alpha (PDGFRα) [72] und verschiedene Integrine [28, 29] diskutiert. Die Glykoproteine gH und gL bilden zusammen mit gO einen auf der Virusoberfläche lokализierten heterotrimeren Proteinkomplex (Trimer). gO scheint dabei für die Infektiosität von zellfreiem Virus
von entscheidender Bedeutung zu sein [38, 86, 92]. Als zellulärer Interaktionspartner für gH/gL/gO dient nach neuesten Erkenntnissen der *platelet-derived growth factor receptor alpha* (PDGFRα) [40, 75, 88]. gH und gL bilden neben dem gH/gL/gO-Trimer einen weiteren Komplex mit drei kleineren Glykoproteinen, den Genprodukten von UL128, UL130 sowie UL131. Dieser pentamere Proteinkomplex (Pentamer) ist für die Infektion von Epithel- und Endothelzellen wie auch Leukozyten und dendritischen Zellen notwendig [51]. Als zugehöriger Rezeptor scheint unter anderem *Neuropilin-2* zu dienen [43]. Der auf die Rezeptorbinding folgende Eintritt in die Zelle wird unter anderem durch die essentiellen, für die Infektion notwendigen Glykoproteinen gB, gH und gL vermittelt, welche innerhalb der Familie der *Herpesviridae* konserviert sind [80].

Abbildung 3: Schematische Darstellung wichtiger Glykoproteinkomplexe und zellulärer Rezeptoren: Der Trimer-Komplex, bestehend aus den Glykoproteinen gH, gL und gO, interagiert mit dem PDGFRα, der Pentamer-Komplex, bestehend aus gH, gL und den Genprodukten von UL128, UL130 sowie UL131, interagiert mit Neuropilin-2. Quelle: Nguyen & Kamil, 2018 [51], doi: 10.3390/v10120704, modifiziert (Bildausschnitt), Lizenz: CC-BY 4.0 https://creativecommons.org/licenses/by/4.0/

Sofern die Nukleokapside, bestehend aus Kapsid und viraler Nukleinsäure, nicht durch direkte Membranfusion an der Plasmamembran in das Zytosol gelangt sind,
sondern durch Endozytose ins Zellinnere aufgenommen wurden, erfolgt zunächst eine Verschmelzung der Virushülle mit endosomalen Membranen [66]. Nach der Freisetzung der Nukleokapside in das Zytosol müssen diese den Zellkern erreichen, da hier die virale DNS transkribiert wird. Über einen Transport entlang von Mikrotubuli gelangen die Nukleokapside zu den Kernporen, durch welche das lineare DNS Genom in den Zellkern entlassen wird [53] [47]. Bemerkenswert ist, dass bei der Infektion Tegumentproteine nach der Verschmelzung der Virushülle mit der Wirtszellmembran ins Zytosol freigesetzt werden, die dort während den obig beschriebenen Prozessen bereits vielfältige Funktionen, wie die Modulation der Immunantwort des Wirtes oder die Regulation der viralen Genexpression, erfüllen [41, 47].

1.1.5.2 Transkription der viralen Gene und Zusammenbau neuer Nukleokapside im Nukleus

der Bildung von Nukeokapsiden wird der sogenannte Terminase-Komplex, bestehend aus pUL89, pUL56 und pUL51 benötigt [78]. Dieser ist Zielstruktur des bereits erwähnten antiviralen Therapeutikums Letermovir, welches durch Inhibition des Terminase-Komplexes die Verpackung von HCMV Genomen hemmt [30].

1.1.5.3 Translokation, Umhüllung und Freisetzung infektiöser Partikel

1.2 relevante HCMV Proteine

1.2.1 pUL71

1.2.2 pUL103

1.2.3 gpUL132

Bei gpUL132 handelt es sich um ein Glykoprotein mit einem berechneten Molekulargewicht von 29,8 kDa. Es wird angenommen, dass dieses Protein dabei in zwei Formen vorliegt, einer von 22 bis 28 kDa und einer N-glykosylierten Form von 45 bis 60 kDa. Bei Deletion des für gpUL132 kodierenden Bereichs zeigte sich für den laboradaptierten HCMV-Virusstamm AD169 ein starker Replikationsdefekt mit einer deutlich reduzierten Virusfreisetzung [73]. Nach seiner Expression wird gpUL132 zunächst zur Plasmamembran transportiert, wo es wieder endozytiert wird, um schließlich das virale assembly compartment zu erreichen. Es besitzt hierfür mehrere trafficking-Motive, die für die Endozytose und richtige Lokalisation des Proteins entscheidend sind [42, 73]. Vorangegangene Arbeiten zeigten zudem, dass gpUL132-defiziente Mutanten ein deformiertes, weniger rundes vAC aufweisen, ein deutlicher Defekt in der Virusausbreitung konnte hierbei jedoch nicht festgestellt werden. Es konnte zudem kein signifikanter Unterschied in der Anzahl vollständig umhüllter Viruspertikel gefunden werden, was gegen eine Beteiligung dieses Proteins am secondary envelopement spricht [52, 63]. Auch wenn für gpUL132 eine Funktion während der viralen Replikation angenommen wird, bleibt die genaue Bedeutung dieses Glykoproteins weiterhin unklar.
1.3 Klinische Isolate und Laborstämme

1.4 Ziel dieser Arbeit

Um neue antivirale Therapiestrategien zu entwickeln, sollten biologische Modelle bevorzugt werden, welche die natürlichen Gegebenheiten *in vivo* adäquat widerspiegeln. Das Humane Cytomegalievirus zeichnet unter anderem seine Fähigkeit aus, eine Vielzahl von Zelltypen im menschlichen Körper zu infizieren [57], wobei laboradaptierte Stämme die Fähigkeit zur Infektion von Endothel-,
2. Material und Methoden

2.1 Material

2.1.1 Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakterienschüttler Certomat IS</td>
<td>Braun Biotech International, Melsungen, Deutschland</td>
</tr>
<tr>
<td>Biometra Agagel</td>
<td>Analytik Jena AG, Jena, Deutschland</td>
</tr>
<tr>
<td>Block Thermostat BT 100</td>
<td>Kleinfeld Labortechnik GmbH, Gehrden, Deutschland</td>
</tr>
<tr>
<td>Bunsenbrenner USBECK</td>
<td>USBECK, Rade vorm Wald, Deutschland</td>
</tr>
<tr>
<td>Centrifuge Beckmann Coulter Allegra™ 6</td>
<td>Beckman Coulter, Brea CA, USA</td>
</tr>
<tr>
<td>Centrifuge Beckmann Coulter Avanti J-25</td>
<td>Beckman Coulter, Brea CA, USA</td>
</tr>
<tr>
<td>Centrifuge Eppendorf 5424</td>
<td>Eppendorf, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Centrifuge Heraeus™ Megafuge™ 16R</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>Eppendorf Thermomixer F1.5</td>
<td>Eppendorf AG, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Fluoreszenzmikroskop Axiovert-Observer. Z1, mit Apotome ausgestattet</td>
<td>Carl Zeiss AG, Oberkochen, Deutschland</td>
</tr>
<tr>
<td>FUSION SL</td>
<td>Vilber Lourmat Deutschand GmbH, Eberhardzell, Deutschland</td>
</tr>
<tr>
<td>Gel Doc XR+</td>
<td>Bio-Rad Laboratories Inc., Hercules CA, USA</td>
</tr>
<tr>
<td>Gelelektrophorese Kammer</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>Heraeus Fresco 21 Zentrifuge</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>Inkubator Heracell 150</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>Laminar flow hood Heraeus Laminair</td>
<td>Heraeus, Hanau, Germany</td>
</tr>
<tr>
<td>Instrument</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>HBB 2472S</td>
<td>Carl Zeiss AG, Oberkochen, Deutschland</td>
</tr>
<tr>
<td>invertiertes Lichtmikroskop Primovert Zeiss</td>
<td>SensoQuest GmbH, Göttingen, Deutschland</td>
</tr>
<tr>
<td>PCR Cycler Labcycler</td>
<td>Pharmacia Biotech Inc., NJ, USA</td>
</tr>
<tr>
<td>Photometer, GeneQuant® pro RNA/DNA Calculator</td>
<td>Bio-Rad Laboratories Inc., Hercules CA, USA</td>
</tr>
<tr>
<td>PowerPAC™ HC</td>
<td>Brand, Wertheim, Deutschland</td>
</tr>
<tr>
<td>Neubauer Zählkammer</td>
<td>Pharmacia LKB Biotechnology, Uppsala, Schweden</td>
</tr>
<tr>
<td>Novaspec® II Spectrophotometer</td>
<td>Gilson Inc., Middleton, WI, USA</td>
</tr>
<tr>
<td>Pipetten Gilson</td>
<td>Hirschmann Laborgerate GmbH & Co.KG, Eberstadt, Deutschland</td>
</tr>
<tr>
<td>Pipettor pipetus®-akku</td>
<td>Mettler Toledo GmbH, Giessen, Deutschland</td>
</tr>
<tr>
<td>PowerPac 300</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>Waage PM 2000</td>
<td>Hettich Zentrifugen, Andreas Hettich GmbH & Co.KG, Tuttlingen, Deutschland</td>
</tr>
<tr>
<td>Qubit® Fluorometer</td>
<td>Duran Group GmbH, Mainz, Deutschland</td>
</tr>
<tr>
<td>Rotina 48 R</td>
<td>Edmund Bühler GmbH, Hechingen, Deutschland</td>
</tr>
<tr>
<td>Schott Glasflaschen</td>
<td>Analytik Jena AG, Jena, Deutschland</td>
</tr>
<tr>
<td>Schütltler EB KS-15</td>
<td>Scientific, Inc., New York, USA</td>
</tr>
</tbody>
</table>
2.1.2 Software

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC Main Workbench 8.0.1</td>
<td>Qiagen, Hilden, Deutschland</td>
</tr>
<tr>
<td>GraphPad Prism 5.0.1</td>
<td>GraphPad Software, La Jolla, CA, USA</td>
</tr>
<tr>
<td>ImageJ 1.38u</td>
<td>National Institute of Health, USA</td>
</tr>
<tr>
<td>Image Lab™ 6.0.0. Standard Edition</td>
<td>Bio-Rad Laboratories Inc., Hercules CA, USA</td>
</tr>
<tr>
<td>Zen 2.3 pro</td>
<td>Carl Zeiss AG, Oberkochen, Deutschland</td>
</tr>
</tbody>
</table>

2.1.3 Verbrauchsmaterial

<table>
<thead>
<tr>
<th>Verbrauchsmaterial</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 well ibidi™-slide</td>
<td>Integrated BioDiagnostic GmbH, Martinsried, Deutschland</td>
</tr>
<tr>
<td>Zentrifugenröhrchen 15mL und 50mL</td>
<td>Sarstedt AG & Co., Nümbrecht, Deutschland</td>
</tr>
<tr>
<td>Cryo Röhrchen</td>
<td>Greiner Bio-One, Frickenhausen, Deutschland</td>
</tr>
<tr>
<td>Eppendorf Röhrchen 1.5 mL und 2 mL</td>
<td>Eppendorf, München, Deutschland</td>
</tr>
<tr>
<td>Falcons 15 mL und 50 mL</td>
<td>Becton Dickinson GmbH, Heidelberg</td>
</tr>
<tr>
<td>Glas Pipetten 5 mL, 10 mL und 20 mL</td>
<td>Sarstedt AG & Co., Nümbrecht, Deutschland</td>
</tr>
<tr>
<td>PCR Röhrchen</td>
<td>Biozym Scientific GmbH, Hessisch Oldendorf, Deutschland</td>
</tr>
<tr>
<td>serologische Pipetten 5 mL, 10 mL und 20 mL</td>
<td>Sarstedt AG & Co., Nümbrecht, Deutschland</td>
</tr>
<tr>
<td>Sterillium® Händedesinfektionsmittel</td>
<td>Bode Chemie, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Zellkulturflaschen T75 and T25</td>
<td>Greiner Bio-One, Frickenhausen, Deutschland</td>
</tr>
<tr>
<td>Zellkulturplatten (6, 12, 24, 48, 96-</td>
<td>Greiner Bio-One, Frickenhausen, Deutschland</td>
</tr>
</tbody>
</table>
2.1.4 Kits

<table>
<thead>
<tr>
<th>Kit</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>NucleoBond® Xtra Midi kit</td>
<td>Macherey Nagel, Düren, Deutschland</td>
</tr>
<tr>
<td>HiYield® PCR Clean Up and Gel Extraction Kit</td>
<td>Südlaborbedarf GmbH, Gauting, Deutschland</td>
</tr>
<tr>
<td>Qubit™ dsDNA HS Assay Kit</td>
<td>Greiner Bio-One, Frickenhausen, Deutschland</td>
</tr>
<tr>
<td>K2® Transfection System, DNA & RNA Transfektionskit für Säugerzellen</td>
<td>Biontex Laboratories GmbH, München, Deutschland</td>
</tr>
</tbody>
</table>

2.1.5 Reagenzien und Chemikalien

<table>
<thead>
<tr>
<th>Reagenzien und Chemikalien</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>6X DNA loading dye</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>Agarose LE</td>
<td>Biozym Scientific GmbH, Hessisch Oldendorf, Deutschland</td>
</tr>
<tr>
<td>Aqua bidest</td>
<td>Universität Ulm, Deutschland</td>
</tr>
<tr>
<td>Bacto™ Agar</td>
<td>Becton Dickinson GmbH, Heidelberg, Deutschland</td>
</tr>
<tr>
<td>Bacto™ Tryptone</td>
<td>Becton Dickinson GmbH, Heidelberg, Deutschland</td>
</tr>
<tr>
<td>Bacto™ Yeast Extract</td>
<td>Becton Dickinson GmbH, Heidelberg, Deutschland</td>
</tr>
<tr>
<td>basic fibroblast growth factor (bFGF)</td>
<td>PeproTech EC, Ltd., London, UK</td>
</tr>
<tr>
<td>Bovine Serum Albumine (BSA)</td>
<td>SERVA Electrophoresis GmbH, Heidelberg, Deutschland</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>SERVA Electrophoresis GmbH, Heidelberg, Deutschland</td>
</tr>
<tr>
<td>DAPI (4′,6-Diamidin-2-phenylindol)</td>
<td>Thermo Fisher Scientific, Waltham</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Essigsäure 100%</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Ethylenediaminetetraacetate (EDTA)</td>
<td>Biochrom KG, Berlin, Deutschland</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Fetal Calf Serum (FCS)</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>GeneRuler™ 1 kb DNA Ladder</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>GlutaMAX™ Supplement</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Glycine</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>humanes Serum</td>
<td>Universitätsklinikum Ulm, Deutschland</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Kaliumchlorid (KCl)</td>
<td>Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Kaliumdihydrogenphosphat (KH₂PO₄)</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>L-Glutamine 200 mM Lösung</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
</tr>
<tr>
<td>Magnesiumchlorid (MgCl₂)</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>MEM® Medium</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>Methanol</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Midori-Green Advanced DNA stain</td>
<td>Nippon Genetics Europe, Düren, Deutschland</td>
</tr>
<tr>
<td>Natriumchlorid (NaCl)</td>
<td>Merck KGaA, Darmstadt, Deutschland</td>
</tr>
</tbody>
</table>
2.1.6 Antibiotika

<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanamycin</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>50 mg/mL in H₂O</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>100mg/mL in Ethanol</td>
</tr>
<tr>
<td>Penicillin/Streptomyein</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>10,000 U/mL Penicillin und 10mg/mL Streptomycin</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>50mg/mL in H₂O</td>
</tr>
</tbody>
</table>

2.1.7 Enzyme

<table>
<thead>
<tr>
<th>Enzym</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoRV, BamHI</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
<tr>
<td>DreamTaq DNA Polymerase</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
</tr>
</tbody>
</table>
Medien und Lösungen

<table>
<thead>
<tr>
<th>Medien und Lösungen für die Kultivierung von HFF-Zellen</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM® complete Medium</td>
<td>Minimum Essential Medium (1X) mit 10 % FCS, 1 % Penicillin/Streptomycin, 1 % L-glutamine, 1% Nichtessentielle Aminosäuren</td>
</tr>
<tr>
<td>MEM® complete Medium (Transfektion)</td>
<td>Minimum Essential Medium (1X), GlutaMax, 0.1g/L Gentamycin, 5 % FCS</td>
</tr>
<tr>
<td>Einfriermedium für eukaryotische Zellen</td>
<td>MEM Medium mit 30 % FCS und 10 % DMSO</td>
</tr>
<tr>
<td>0.01 M PBS</td>
<td>8.5 g NaCl, 1.4 g KH₂PO₄, ad 1 L aqua bidest, adjustiert auf pH 7.8 und autoklaviert</td>
</tr>
<tr>
<td>0.01 M PBS/EDTA</td>
<td>0.01 M PBS mit 0.02 % EDTA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medien und Lösungen für Bakterien</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfriermedium (Glycerolkultur)</td>
<td>60 % Glycerol, 40 % SOB-Medium</td>
</tr>
<tr>
<td>Luria Bertani (LB) Medium</td>
<td>10 g Bacto™ Tryptone, 5 g Bacto™ Yeast Extrakt, 10 g NaCl, ad 1 L aqua bidest, adjustiert auf pH 7.0</td>
</tr>
<tr>
<td>LB-Medium für Agarplatten</td>
<td>1L LB-Medium, 15 g Agarose</td>
</tr>
<tr>
<td>SOB-Medium</td>
<td>20 g Bacto™ Tryptone, 5 g Bacto™ Yeast Extrakt, 0.5 g NaCl, 2.5 mL 1 M KCl, ad 1 L aqua bidest, adjustiert auf pH 7.2, nach Autoklavieren 10 mL steriles 2 M MgCl₂ hinzufügen</td>
</tr>
<tr>
<td>SOC-Medium</td>
<td>10 mL SOB-Medium, 100 μl 2 M Glucose</td>
</tr>
</tbody>
</table>
Lösungen für Agarose-Gelelektrophorese

<table>
<thead>
<tr>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x TAE</td>
</tr>
<tr>
<td>48.4 g Tris, 2.9 g EDTA, 10 mL Essigsäure, ad 1 L aqua bidest, adjustiert auf pH 8.2</td>
</tr>
<tr>
<td>DNA loading dye</td>
</tr>
<tr>
<td>5 mL Glycerol, 400 μl 0.5 M EDTA, 250 μl 2 % Bromophenolblau, 250 μl 2 % Xylencyanol, ad 10 mL aqua bidest</td>
</tr>
</tbody>
</table>

Lösungen für Immunfärbung

<table>
<thead>
<tr>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 % Triton X-100</td>
</tr>
<tr>
<td>50 mL 0.01 M PBS, 500 μl 10% Triton X-100 Lösung</td>
</tr>
<tr>
<td>4 % PFA</td>
</tr>
<tr>
<td>4 % PFA in 0,01 M PBS, adjustiert auf pH 7.2</td>
</tr>
<tr>
<td>blocking solution</td>
</tr>
<tr>
<td>10 % Humanserum in 0,01 M PBS /1% BSA</td>
</tr>
<tr>
<td>washing solution</td>
</tr>
<tr>
<td>0.1 % Triton X-100 in 0,01 M PBS/1% BSA</td>
</tr>
<tr>
<td>80% Acetone</td>
</tr>
<tr>
<td>80% Aceton in aqua bidest</td>
</tr>
</tbody>
</table>

2.1.9 Bakterien

<table>
<thead>
<tr>
<th>Bakterien</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli GS 1783</td>
<td>Gregory Smith, USA</td>
</tr>
</tbody>
</table>

2.1.10 Eukaryotische Zellen

<table>
<thead>
<tr>
<th>Eukaryotische Zelllinien</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFF (human foreskin fibroblasts)</td>
<td>primäre humane Vorhautfibroblasten</td>
</tr>
</tbody>
</table>
2.1.11 Viren

<table>
<thead>
<tr>
<th>Viren</th>
<th>Name</th>
<th>Labor-Nr.</th>
<th>Eigenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildtyp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merlin</td>
<td>#2209</td>
<td></td>
<td>HCMV-Wildtyp</td>
</tr>
<tr>
<td>UL103</td>
<td>Merlin UL103Stop</td>
<td>#2731</td>
<td>Stopcodon in UL103, backbone: #2209</td>
</tr>
<tr>
<td>UL71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merlin</td>
<td>UL71Stop</td>
<td>#2224</td>
<td>Stopcodon in UL71, backbone: #2209</td>
</tr>
<tr>
<td>Merlin</td>
<td>UL71-mutY23A</td>
<td>#2733</td>
<td>Aminosäurenaustausch in UL71:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Position 23: Tyrosin zu Alanin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Position: 23: Tyrosin zu Alanin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Position: 22: Tyrosin zu Alanin</td>
</tr>
<tr>
<td>Merlin</td>
<td>UL71-mutL34-L41A</td>
<td>#2741</td>
<td>Aminosäurenaustausch in UL71:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Positionen 34 und 41: Leucin zu Alanin, backbone:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#2209</td>
</tr>
<tr>
<td>Merlin</td>
<td>UL71-mut-K348-51A</td>
<td>#2749</td>
<td>Aminosäurenaustausch in UL71:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Positionen 348-351: Lysin zu Alanin, backbone:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#2209</td>
</tr>
<tr>
<td>UL132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merlin</td>
<td>UL132HA</td>
<td>#2469</td>
<td>HA-getaggtes HCMV-Wildtyp-Virus, backbone #2209</td>
</tr>
<tr>
<td>Merlin</td>
<td>UL132Stop</td>
<td>#2770</td>
<td>Stop-Codon in UL132, backbone #2469</td>
</tr>
</tbody>
</table>
2.1.12 Primer

<table>
<thead>
<tr>
<th>Primer für BAC-Mutagenese</th>
<th>Nr.</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifikation des Transferkonstruks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ep-UL71-K348/51A_for</td>
<td>#741</td>
<td>GATACCCCTTTGTGGGTTCCCGCG CGTGAACTCAGGGGCGTGCG GCGGCTGCGCCCACGGCGGAG GATGACGACGATAAGTAGGG</td>
</tr>
<tr>
<td>ep-UL71-K348/51A_rev</td>
<td>#742</td>
<td>AGGCTGTTCACGCGGAGGACA GCAAGGCGGCGCCGCTGGGCG CAGCGGCGCCACGCCCTGCA AACCAATTACCAATTCTGATTAGG</td>
</tr>
<tr>
<td>pEP-UL71-L34A/L41A_for</td>
<td>#601</td>
<td>GGCCGATTACGTGCTGCTGCA GCCTAGCGAGGACGTGGAGGC CCGCGAGCTGCAGGCGTTTGC CGACGAGAAAGGATGACGACG ATAAGTAGGG</td>
</tr>
<tr>
<td>pEP-UL71-L34A/L41A_rev</td>
<td>#602</td>
<td>GATCGGCGGCGGTATCTCCA GCCTTTAAAGTTCTCCTGCGGC AAGCCTGCTGAGTCGGGGC CTCCACGTCCAACCAATTAACC AATTCTGATTAGG</td>
</tr>
<tr>
<td>ep-UL103-Stop_for</td>
<td>#667</td>
<td>GGAGGTCCATACGGATTTCACT AGACAGAATGTGATGATCTAGG CCGCAAGTGCTCGACTAGGATG ACGACGATAAGTAGGG</td>
</tr>
<tr>
<td>ep-UL103-Stop_rev</td>
<td>#668</td>
<td>CAGCTTTGTCGCCCGCCACCGT AAAGTCGAGCCTTGCGGCCTA GATCATCACATTCTGATGATG AATTAAACAAATTCTGATTAGG</td>
</tr>
<tr>
<td>ep-UL71-Y23A_for</td>
<td>#977</td>
<td>TGATGTGCGCCGCAAAACCGG CGCCTGTCGCCGATGCCTGCG TGCTGCGCTGCTAGGAGA</td>
</tr>
<tr>
<td>Kontroll-PCR</td>
<td>TGACGACGATAAGTAGGG</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>ep-UL71-Y23A_rev</td>
<td>#978</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGACGACGATAAGTAGGG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGCAGCTCCACGTCCTCGCTAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCTGCAGCAGCAGCAGGATCGG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCACAGGCGGAATTAACATTACATCGG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGATTAG</td>
<td></td>
</tr>
<tr>
<td>aphAI-seq2</td>
<td>#6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGTTCCCGTTGAATATGGGCTC</td>
<td></td>
</tr>
<tr>
<td>UL72seq1</td>
<td>#267</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCTATCTGCGGTGGGCGAG</td>
<td></td>
</tr>
<tr>
<td>seq-UL71start_fw</td>
<td>#981</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAGTCCGAGCACTTTTTCGTCTGT</td>
<td></td>
</tr>
<tr>
<td>ex-UL103_for</td>
<td>#587</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CACCGGATCCATGGAGGCCCCT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GATGATCCG</td>
<td></td>
</tr>
<tr>
<td>seq-UL103_rev</td>
<td>#589</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTCACGTAGGGGAACGTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td></td>
</tr>
<tr>
<td>ex_71_rev</td>
<td>#143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TACGGAATTCTTTTTCCAAAACGT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCCAGGCTGT</td>
<td></td>
</tr>
</tbody>
</table>

2.1.13 Antikörper

<table>
<thead>
<tr>
<th>Primä rantikörper</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>monoklonal</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Hersteller</td>
</tr>
<tr>
<td>anti-GM130</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td></td>
<td>GmbH, Heidelberg,</td>
</tr>
<tr>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>anti-IE (E13)</td>
<td>Argene-Biosoft,</td>
</tr>
<tr>
<td></td>
<td>Varies, Frankreich</td>
</tr>
<tr>
<td>anti-MCP (28-4), Hybridoma</td>
<td>Hybridoma, Institut für Virologie, Universität Ulm, Deutschland</td>
</tr>
<tr>
<td>polyklonal</td>
<td>anti-HA</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
</tbody>
</table>

Sekundärantikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
<th>Isotyp</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cy3-conjugated F(ab)2 Goat anti-Mouse IgG (H+L)</td>
<td>Jackson ImmunoResearch Europe Ltd., Ely, UK</td>
<td>Maus, IgG</td>
<td>IF 1:300</td>
</tr>
<tr>
<td>Goat anti-mouse Alexa Fluor®, 488 IgG1</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
<td>Maus, IgG1</td>
<td>IF 1:1000</td>
</tr>
<tr>
<td>Goat anti-mouse Alexa Fluor®, 555 IgG2a</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
<td>Maus, IgG2a</td>
<td>IF 1:1000</td>
</tr>
<tr>
<td>Goat anti-rabbit Alexa Fluor®, 647 F(ab')2 fragments</td>
<td>Thermo Fisher Scientific, Waltham MA, USA</td>
<td>Maus, IgG</td>
<td>IF 1:1000</td>
</tr>
</tbody>
</table>
2.2 Methoden

2.2.1 Molekularbiologische Methoden

2.2.1.1 Polymerasekettenreaktion

Die Polymerasekettenreaktion dient der Vervielfältigung von Desoxyribonukleinsäure. Es werden hierfür eine thermostabile Polymerase, geeignete Pufferlösung, Didesoxyribonukleosidtriphosphate (dNTPs), ein DNS-Template sowie spezifisch ausgewählte Primer benötigt. Letztere ermöglichen eine gezielte Amplifikation des gewünschten Abschnitts. Der zyklische Reaktionsablauf beginnt zunächst mit einem initialen Denaturierungsschritt, der der Auftrennung des Doppelstranges in zwei Einzelstränge dient. Es folgt die Anlagerung (annealing) der Oligonukleotid-Primer und zuletzt ausgehend von diesen die Elongation des DNS-Abschnittes. Für die Durchführung der PCR wurde die Thermo Scientific DreamTaq DNA Polymerase nach Herstellerangaben verwendet, welche sich durch eine hohe Sensitivität auszeichnet.

2.2.1.2 Markerlose BAC-Mutagenese

2.2.1.2.1 Herstellung des universellen Transferkonstruks

Um die gewünschten Mutationen in das virale Genom einzuführen, wurde für jede Virusmutante ein entsprechendes Transferkonstrukt mittels PCR hergestellt und amplifiziert. Die hierfür designierten Primer binden an einen Sequenzbereich der als Selektionsmarker dienenden Kanamycin-Kassette (I-SceI-AphAI). Selbige befindet sich ebenso wie die I-SceI-Schnittstelle auf dem pPEkan-S Plasmid, welches für die Verwendung als PCR template mit den Restriktionsenzymen BamHI und EcoRV verdaut wurde. Die Primer beinhalten zudem etwa 40-50 Basenpaare
lange, homologe Bereiche zur Zielsequenz sowie die mutationstragenden Bereiche, um die korrekte Integration der gewünschten Veränderung zu ermöglichen.

Die PCR-Produkte wurden nach Herstellung zur Größenkontrolle auf ein 1%iges Argarosegel aufgetragen und mit dem HiYield® PCR Clean Up and Gel Extraction Kit nach Herstellerprotokoll für die weitere Verwendung aufgereinigt. Tabelle 1 zeigt einen Reaktionsansatz und Tabelle 2 das Reaktionsprogramm für die Polymerasekettenreaktion zur Vervielfältigung des universellen Transferkonstrukts.

Tabelle 1: Beispiel eines Reaktionsansatzes für die PCR zur Vervielfältigung des universellen Transferkonstrukts

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>ad 50</td>
</tr>
<tr>
<td>template x (50 ng)</td>
<td></td>
</tr>
<tr>
<td>DreamTaq Polymerase</td>
<td>0,5</td>
</tr>
<tr>
<td>DreamTaq Puffer</td>
<td>5</td>
</tr>
<tr>
<td>dNTPs</td>
<td>1</td>
</tr>
<tr>
<td>5’Primer</td>
<td>1</td>
</tr>
<tr>
<td>3’Primer</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 2: Beispiel eines PCR-Programmes für die PCR zur Vervielfältigung des universellen Transferkonstrukts

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Dauer (s)</th>
<th>Temperatur (°C)</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale Denaturierung</td>
<td>180</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>30</td>
<td>95</td>
<td>15</td>
</tr>
<tr>
<td>Anlagerung</td>
<td>30</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>90</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Denaturierung</td>
<td>30</td>
<td>95</td>
<td>20</td>
</tr>
<tr>
<td>Anlagerung</td>
<td>120</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>abschließende Elongation</td>
<td>420</td>
<td>68</td>
<td>1</td>
</tr>
</tbody>
</table>

∞ 4
2.2.1.2.2 Herstellung elektrokompetenter Bakterien

Im zweiten Schritt sollten *E. coli* des Stammes GS1783 mittels Elektroporation transformiert werden, wobei die Insertion des erstellten Transferkonstruks durch eine erste homologe Rekombination ermöglicht wird. Um hierfür elektro- und rekombinationskompetente Bakterien zu erhalten, wurden im Labor bei -80°C vorrätige Chloramphenicol-resistente GS1783 *E. coli*, die das BAC mit dem Wildtyp-Genom des Merlin-Virusstammes enthalten in 5 mL LB-Medium mit 5 μL Chloramphenicol angeimpft (Vorkultur) und über Nacht bei 32°C im Schüttler inkubiert, um ein ausreichendes Bakterienwachstum zu gewährleisten. Daraufhin wurden aus dieser Vorkultur 100 μL entnommen und hiermit 100 mL LB-Medium mit 100μl Chloramphenicol beimpft (Hauptkultur). Die Hauptkultur wurde wiederum für 3-4 Stunden bis zu einer OD₆₀₀nm von 0,5 - 0,7 im 32°C-Schüttler inkubiert. Hierauf folgte für 20 Minuten das erneute Schütteln der Bakterien in einem auf 42°C eingestellten Wasserbad. Daraufhin wurde die Kultur sofort unter leichtem Schwenken auf Eis heruntergekühlt und bei 6000 rpm für fünf Minuten bei 4°C pelletiert. Das erhaltene Pellet wurde daraufhin sorgfältig in 10%igem Glycerol resuspendiert und erneut mit 6000 rpm bei 4°C zentrifugiert und der Überstand verworfen. Nach dreimaliger Wiederholung dieses Waschschrittes erfolgte die Resuspendierung des Pellets in 600μl 10%igem Glycerol und das zügige Einfrieren in flüssigem Stickstoff in 50 μl Aliquots. Sofern keine sofortige Verwendung der elektrokompetenten Bakterien erfolgte, wurden diese bei -80°C gelagert.

2.2.1.2.3 Transformation der generierten Transferkonstrukte

Um die gewünschten Mutationen in das auf dem BAC liegende virale Genom einzubringen, wurde das zuvor hergestellte Transferkonstrukt mittels Elektroporation in GS-Bakterien transformiert. Hierfür wurden die zuvor aliquotierten elektrokompetenten Bakterien langsam auf Eis aufgetaut, 500ng DNS des amplifizierten universellen Transferkonstruks zugegeben und nach vorsichtigem Mischen rasch in eine vorgekühlte Elektroporationskuvette pipettiert. Mit einem Puls von 1,25 kV, 25μF und 200 Ω wurde anschließend elektroporiert und zügig 500 μl LB-Medium hinzugefügt. Die Bakterien wurden dann für 1-2 Stunden bei 32°C geschüttelt und auf Agarplatten mit Kanamycin (Konzentration...
50µg/mL) und Chloramphenicol (Konzentration 34µg/mL) ausplattiert, sodass nach Inkubation über Nacht bei 32°C positive Klone selektiert werden konnten. Um die gelungene Insertion der Kanamycin-Kassette nachzuweisen, wurde dann eine Kolonie-PCR durchgeführt. Tabelle 3 und 4 zeigen beispielhaft einen Reaktionsansatz und das Reaktionsprogramm für diese Kontroll-PCR. Einer der drei Primer bindet dabei innerhalb der aphαI Region und ermöglicht somit den Nachweis des Integrats mittels Größenanalyse im Agarosegel.

Tabelle 3: Beispiel eines Reaktionsansatzes für die Kontroll-PCR

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>ad 50</td>
</tr>
<tr>
<td>DreamTaq Polymerase</td>
<td>0,2</td>
</tr>
<tr>
<td>DreamTaq Puffer</td>
<td>5</td>
</tr>
<tr>
<td>dNTPs</td>
<td>1</td>
</tr>
<tr>
<td>1. Primer</td>
<td>1</td>
</tr>
<tr>
<td>2. Primer</td>
<td>1</td>
</tr>
<tr>
<td>Kontroll-Primer (innerhalb der aphαI Region)</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 4: Beispiel eines PCR-Programmes für die Kontroll-PCR

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Dauer (s)</th>
<th>Temperatur (°C)</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale Denaturierung</td>
<td>180</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>20</td>
<td>95</td>
<td>30</td>
</tr>
<tr>
<td>Anlagerung</td>
<td>30</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>120</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>abschließende Elongation</td>
<td>300</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>∞</td>
<td>72</td>
<td>4</td>
</tr>
</tbody>
</table>

2.2.1.2.4 Auflösung positiver Klone

Um die der Selektion dienende Kanamycin-Kassette zu entfernen, sollte im Folgenden die Homing-Endonuklease I-Scel durch Zugabe von Arabinose induziert werden. Diese dient neben der Entfernung des Selektionsmarkers dazu, einen Doppelstrangbruch zu induzieren, welcher als Substrat für die zweite homologe Rekombination dient (siehe Abbildung 4).
Positive Klone wurden für die Auflösung zunächst in 1 mL LB-Medium, welches mit Chloramphenicol (Konzentration 34µg/mL) supplementiert wurde, angeimpft und für 1-2 Stunden im 32°C-Schüttler inkubiert. Es wurde dann 1mL 2%ige Arabinoselösung zugegeben und die Bakterien wiederum für 60 Minuten bei 32°C unter stetigem Schütteln inkubiert. Nach Ablauf dieser Zeit wurden die Rekombinationsenzyme durch Schütteln der Bakterien im Wasserbad bei 42°C über einen temperatursensitiven Promotor induziert. Es wurde hierbei im Besonderen darauf geachtet, ein Absinken der Temperatur zu vermeiden.

Nach einer weiteren Inkubation im 32°C Schüttler für 2-3 Stunden und Messung der OD₆₀₀ wurden die Bakterien mit frischem LB-Medium verdünnt. Bei einer OD₆₀₀nm < 0,5 wurde in einem Verhältnis von 1:100 verdünnt, bei einer OD₆₀₀nm > 0,5 in einem Verhältnis von 1:1000. Anschließend wurden die Bakterien auf Agarplatten mit Chloramphenicol (Konzentration 34µg/mL) und 1% Arabinosegehalt ausplattiert. Zuletzt erfolgte die Inkubation im 32°C-Brutschrank über Nacht.

2.2.1.2.5 Kontrolle aufgelöster Klone

2.2.1.3 Plasmid-DNS-Midipräparation

Um für die Rekonstitution der Viren geeignete BAC-DNS zu isolieren, wurde das *NucleoBond® Xtra Midi Kit* von *Macherey-Nagel* verwendet. 100 mL LB mit Chloramphenicol (Konzentration 34µg/mL) wurden hierfür mit den entsprechenden Glycerolkulturen inokuliert und über Nacht im 32°C-Schüttler bei 175 rpm inkubiert. Am nächsten Tag wurden die Kulturen bei 5000 rpm und 4°C für 15 Minuten abzentrifugiert. Der Überstand wurde daraufhin verworfen, das Pellet in 10 mL bei 4°C gelagertem Resuspensionspuffer sorgfältig durch auf- und abpipettieren resuspendiert und anschließend in 50 mL Falcons überführt. Um die Bakterien zu lysieren wurden 10 mL Lysis-Puffer hinzugefügt und die Falcons mehrmals vorsichtig invertiert. Nach einer Inkubationszeit von 5 Minuten wurden 10 mL Neutralisationspuffer zugegeben und das Gemisch durch Invertieren erneut vermengt. Die vom Hersteller mitgelieferten NucleoBond Xtra Säulen wurden mit 12 mL Equilibrationspuffer benetzt und das Lysat durch den zugehörigen Filter auf die Säulen gegeben. Nach vollständigem Durchlaufen der Säule wurde der Filter erneut mit 5 mL Equilibrationspuffer gewaschen und anschließend entfernt. Danach wurden 10 mL Waschpuffer auf die Säule gegeben. Die DNS wurde zuletzt mit 5 mL Elutionspuffer eluiert und mit 3,5 mL Isopropanol gefällt. Es erfolgte dann die Zentrifugation für 30 Minuten bei 4°C und 5000 rpm. Der Überstand wurde dann verworfen und die Pellets mit 1 mL 70%igem Ethanol gewaschen und erneut unter den genannten Bedingungen zentrifugiert. Im Anschluss daran wurde das Pellet durch vorsichtiges Absaugen vollständig vom Überstand befreit und in 100 µL TE-Puffer über Nacht gelöst. Die DNS-Konzentration wurde am nächsten Tag mit dem Photometer (*GeneQuant® pro RNA/DNA Calculator*) gemessen. Es wurde hierbei ebenfalls auf das Extinktionsverhältnis geachtet, welches Aufschluss über die Reinheit der isolierten DNS geben kann. Die BAC-DNS wurde zudem mittels Restriktionsfragmentlängenanalyse (RFLA) kontrolliert. Hierfür wurden 2 µg der BAC-DNS für eine Stunde bei 37°C mit 1µL des Restriktionsenzymes EcoRV verdaut. Danach wurden die DNS-Fragmente auf ein Übernachtgel (1%iges Agarosegel) aufgetragen und am Folgetag das Bandenmuster mit dem des Wildtyps verglichen.
2.2.2 Zellbiologische Methoden

2.2.2.1 Kultivierung humaner Vorhautfibroblasten

Die für die Rekonstitution verwendeten Humanen Vorhautfibroblasten (HFF) wurden bei 37°C und 5% CO₂ im Inkubator in zellspezifischem Zellkulturmedium und geeigneten Zellkulturflaschen kultiviert. Für das Passagieren der Zellen wurde zunächst das Medium abgenommen, die Zellen mit Trypsin gewaschen und daraufhin für 5-10 Minuten mit Trypsin im 37°C Inkubator unter mikroskopischer Kontrolle des Ablöseprozess inkubiert. Nach Aufnahme der vereinzelten Zellen in entsprechender Menge Medium wurden diese in neue Zellkulturflaschen überführt.

2.2.2.2 Rekonstitution von Viren

2.2.2.3 Infektion von Fibroblasten-Zellen durch Coseeding

2.2.3 Immunfärbung infizierter Zellen

2.2.3.1 IE-Immunfluoreszenzfärbung

Um IE-positive Zellen sichtbar zu machen wurde eine Immunfluoreszenzfärbung durchgeführt. Die in 24-Well-Platten befindlichen transfizierten Zellen wurden zu definierten Zeitpunkten (5, 12, 19 und 26 Tage nach Transfektion) mit 1 mL 80%igem Aceton fixiert. Nach dreimaligem Waschen mit 0,01 M PBS wurden 500µL des Primärantikörpers E13 zu den Zellen gegeben. Nach Inkubation über Nacht bei 37°C wurde dieser wieder von den Zellen entfernt, 3 Mal mit 0,01 M PBS gewaschen und 500 µL des Sekundärantikörpers Cy3 zugegeben. Nach 50 Minuten Inkubationszeit wurde wiederum dreimalig gewaschen und zuletzt 500 µl DAPI für 10 Minuten zugegeben. Letzteres dient dem Sichtbarmachen des Zellkerns durch Interkalieren mit DNS. Die entsprechenden Verdünnungen der Antikörper sind Tabelle 5 zu entnehmen. Nach einem letzten Waschschritt nach obigem Prinzip wurde 1mL 0,01 M PBS auf den fixierten Zellen belassen, um sie vor Austrocknung zu schützen. Sie wurden zudem, sofern nicht sofort die mikroskopische Auswertung erfolgte, bei 4°C gelagert.
2.2.3.2 vAC-Immunfärbung

Um die Form des vAC in der Merlin UL132Stop-Mutante im Vergleich zum Merlin Wildtyp näher zu bestimmen, wurden mit dieser Mutante sowie dem zugehörigen Backbone-Virus (Merlin UL132HA) durch Coseeding infizierte Zellen (siehe 2.2.2.3) auf iBIDI-8-wells ausgesät und mittels Immunfärbung gefärbt. Hierfür wurden die Zellen zunächst mit 0,01 M PBS gewaschen und für 10 Minuten bei 4°C mit 250 µL vierprozentigem PFA fixiert. Nach erneutem Waschen mit 0,01 M PBS wurden die Zellen für 5 Minuten mit 200 µL 0,1% TritonX-100 in 0,01 M PBS permeabilisiert. Es erfolgte nach erneutem Waschen mit 0,01 M PBS die Zugabe von 200 µL blocking solution für mindestens 30 Minuten bei Raumtemperatur. Daraufhin wurde der erste Primärantikörper in entsprechender Verdünnung auf die Zellen gegeben. Nach Ablauf der Inkubationszeit wurden die Zellen zweimal mit washing solution und einmal mit 0,01 M PBS gewaschen. Es erfolgte daraufhin die Zugabe der weiteren Antikörper (siehe Tabelle 5). DAPI wurde bei Raumtemperatur zusammen mit dem Sekundärantikörper für 45 Minuten inkubiert. Nach dem letzten Waschschritt wurden 200 µL 0,01 M PBS auf den Zellen belassen und diese für die weitere Auswertung verwendet oder bei 4°C gelagert.
Tabelle 5: Auflistung der eingesetzten Antikörper mit entsprechenden Verdünnungen und Inkubationszeiten

<table>
<thead>
<tr>
<th>eingesetzte Antikörper für IE-Färbung</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärantikörper</td>
<td>Verdünnung</td>
<td>(t_{\text{inkub}})</td>
<td>Sekundärantikörper</td>
<td>Verdünnung</td>
<td>(t_{\text{inkub}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-IE (E13), Maus</td>
<td>1:1000 in 0,01 M PBS</td>
<td>über Nacht, 37°C</td>
<td>Cy3- F(ab)2 Ziege anti-Maus, IgG</td>
<td>1:300 in 0,01 M PBS</td>
<td>50 Min, 37°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAPI</td>
<td>1:10000 in 0,01 M PBS</td>
<td>10 Min, RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eingesetzte Antikörper für vAC-Färbung</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärantikörper</td>
<td>Verdünnung</td>
<td>(t_{\text{inkub}})</td>
<td>Sekundärantikörper</td>
<td>Verdünnung</td>
<td>(t_{\text{inkub}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-GM130, Maus</td>
<td>1:1000 in blocking solution</td>
<td>über Nacht, 4°C</td>
<td>Ziege anti-Maus Alexa Fluor®, 488, IgG1</td>
<td>1:1000 in 0,01 M PBS</td>
<td>45 Min, RT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-MCP, Maus</td>
<td>1:2,5-1:5 in blocking solution</td>
<td>60 Min, RT</td>
<td>Ziege anti-Maus Alexa Fluor®, 555, IgG2a</td>
<td>1:1000 in 0,01 M PBS</td>
<td>45 Min, RT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-HA, Kaninchen</td>
<td>1:250 in blocking solution</td>
<td>60 Min, RT</td>
<td>Ziege anti-Kaninchen Alexa Fluor®, 647, IgG</td>
<td>1:1000 in 0,01 M PBS</td>
<td>45 Min, RT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAPI</td>
<td>1:3000 in 0,01 M PBS</td>
<td>45 Min, RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.4 Wachstumsanalyse
Um das Wachstum der mittels BAC-Mutagense generierten Mutanten zu analysieren wurden die transfizierten Zellen 5 Tage, 12 Tage, 19 Tage und 26 Tage nach Transfektion fixiert und wie unter Abschnitt 2.2.3.1 beschrieben gefärbt. IE-positive Zellen wurden für die folgenden Wachstumsanalysen mit dem Axio-Observer Z1 detektiert. Bei Infektion von Zellen mit dem HCMV bilden sich charakteristische Infektionsfoci aus, die als Plaques bezeichnet werden. Ein Plaque wurde hierbei als eine Anhäufung von ≥4 IE-positiven Zellen in enger räumlicher Beziehung zueinander definiert. Die Auszählung der Zellen erfolgte mit
der ImageJ sowie der Zen 2.3 pro Software und die statistische Analyse mit dem Programm GraphPad Prism.

2.2.5 Untersuchung der Zirkularität des vAC
Um die Form des vAC zu analysieren, wurden HFF Zellen, wie unter 2.2.2.3 beschrieben, mit dem Merlin Wildtyp Virus sowie mit der Merlin UL132Stop-Mutante infiziert und mit einer Dichte von 2,3*104 Zellen/Well auf ein iBIDI-8-well in MEM *complete* Medium ausgesät. Nach 5 Tagen Inkubationszeit im 37°C Brutschrank wurden die Zellen, wie unter 2.2.3.2 erläutert, gefärbt. Hierbei diente GM130, um die Ränder des vAC sichtbar zu machen [21, 61], das major capsin protein (MCP) um Zellen, die sich in der späten Phase der Infektion befinden, zu identifizieren und DAPI, um den Nucleus anzufärben. Für die Auswertung wurden Aufnahmen mit dem Axio-Observer Z1 in 20-facher Vergrößerung erstellt. Die Bilder wurden durch einen anderen Mitarbeiter des Labors verschlüsselt, um eine verblindete Auswertung zu ermöglichen. Das vAC wurde dann mit dem ImageJ circularity tool umkreist und gemessen. Die Zirkularität wird hierbei definiert als:

\[4\pi \times \left(\frac{\text{Fläche}}{\text{Umfang}^2} \right)\]

wobei ein Wert von 1 einem perfekten Kreis entspricht, ein Wert von 0 keiner Zirkularität. Ab einem Wert von 0,8 wurde das vAC als rund angesehen. Die Zirkularitätswerte wurden mit dem Programm GraphPad Prism 5.0.1 als Punktauftragung visualisiert und statistisch ausgewertet.

2.2.6 Statistik
Die statistische Auswertung erfolgte in der vorliegenden Arbeit mit Hilfe des Programms GraphPad Prism 5.0.1. Die statistische Analyse wurde mittels one-way ANOVA Kruskal-Wallis-Test (nichtparametrisch) und Dunn’s Post-Test sowie Mann-Whitney-U-Test durchgeführt.
3. Ergebnisse

3.1 Untersuchung der Bedeutung der viralen Proteine pUL71 und pUL103 für das Viruswachstum eines klinischen Isolats

In dieser Arbeit soll die Bedeutung der viralen Tegumentproteine pUL71 und pUL103 für das Viruswachstum eines klinischen Isolats untersucht werden. Es soll hierbei die Relevanz dieser Proteine bezogen auf das klinische Setting und deren Tauglichkeit als antivirale Zielstrukturen weiter untersucht werden. Von Interesse ist, ob sich im Hintergrund eines solchen Virusstammes ein Wachstumsdefekt feststellen lässt, oder sogar ein völliges Ausbleiben des viralen Wachstums zu beobachten ist (letal Defekt).

3.1.1 Vorstellung der zur Untersuchung der viralen Proteine pUL71 und pUL103 verwendeten Viren

3.1.1.1 Merlin Wildtyp

Der Virusstamm Merlin wurde als klinisches Isolat für die experimentelle Arbeit ausgewählt. Dieser ist, unter Konservierung der Wachstumseigenschaften des ursprünglich gewonnenen Virusträgers, als BAC kloniert verfügbar [74]. Er unterscheidet sich somit maßgeblich von anderen häufig im Labor verwendeten Viren, welche die natürlichen Wachstumseigenschaften durch Kultivierung in vitro verloren haben [94].

In der pUL71-Proteinsequenz findet sich an Position 81 im Virusstamm AD169 die Aminosäure Lysin anstelle der Aminosäure Prolin, welche in den Proteinsequenzen der Virusstämme TB40/E und Merlin an dieser Stelle zu finden ist. An Position 209 trägt der Virusstamm Merlin die Aminosäure Serin, AD169 und TB40/E dagegen die Aminosäure Prolin (siehe Abbildung 5).
Abbildung 5: Unterschiede in der Aminosäuresequenz des Proteins pUL71 zwischen den Virusstämmen AD169, TB40/E und Merlin: Verglichen wurden die Aminosäuresequenzen des Proteins pUL71 anhand von Daten, die über die Datenbank des National Center for Biotechnology Information (NCBI) bereitgestellt werden. Rote Buchstaben zeigen Abweichungen im Vergleich zu den beiden anderen Virusstämmen. Quelle: Bradley et al., 2009 [7], Gatherer et al., 2011 [32], Sinzger et al., 2008 [70], eigene Darstellung

Abbildung 6: Unterschiede in der Aminosäuresequenz des Proteins gpUL132 zwischen den Virusstämmen AD169, TB40/E und Merlin: Verglichen wurden die Aminosäuresequenzen des Proteins gpUL132 anhand von Daten, die über die Datenbank des National Center for Biotechnology Information (NCBI) bereitgestellt werden. Rote Buchstaben zeigen Abweichungen im Vergleich zu den beiden anderen Virusstämmen. Quelle: Bradley et al., 2009 [7], Gatherer et al., 2011 [32], Sinzger et al., 2008 [70], eigene Darstellung

Ausgehend vom klinischen Isolat Merlin wurden Mutanten generiert, um die Bedeutung der bereits vorgestellten Proteine pUL71 und pUL103 für das virale Wachstum dieses Stammes zu untersuchen. Hierfür wurde die unter 2.2.1.2 ausführlich beschriebene Methodik der markerlosen BAC-Mutagenese eingesetzt, welche das gezielte Einführen von Mutationen unter rückstandsfrei loser Entfernung des positiven Selektionsmarkers ermöglicht. Die Methode nach Tischer et al. [79] findet im Labor regelmäßig Anwendung und ist dort für andere HCMV-Stämme bereits langjährig etabliert.
3.1.1.3 Merlin UL71mutY23A

Merlin UL71mutY23A

pUL71 (Aminosäuresequenz 1-50)

Vor Rekonstitution dieser Virusmutante und der im folgenden beschriebenen Viren wurde mittels Sequenzierung des für die Mutagenese relevanten Bereichs die korrekte Einführung der Mutation verifiziert. Zusätzlich wurde die aus Bakterien isolierte BAC-DNA durch eine RFLA auf unerwünschte Veränderungen überprüft.
3.1.1.5 Merlin UL71mutK348-351A

Im C-terminalen Bereich des Proteins pUL71 befindet sich an den Positionen 348 bis 351 jeweils die Aminosäure Lysin, wodurch hier ein sogenanntes Tetralysin-Motiv entsteht. Da in vorangegangenen Untersuchungen bei Veränderung dieses Motifs ein Wachstumsdefekt feststellbar war [60], sollte dessen Bedeutung für das Viruswachstum des klinischen Isolats ebenfalls getestet werden. Hierfür wurden, durch Veränderung der Genregion UL71 des Virusstammes Merlin, die vier Lysinreste in pUL71 gegen Alaninreste ausgetauscht (siehe Abbildung 8).

Merlin UL71mutK348-351A

pUL71 (Aminosäuresequenz 311-361)

<table>
<thead>
<tr>
<th>348 - 351</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRHSPDVPREAVMSPTMVTIPPQIPFVGSARELRGBKKKPTAAALLSSA</td>
</tr>
<tr>
<td>↓↓↓↓</td>
</tr>
<tr>
<td>MRHSPDVPREAVMSPTMVTIPPQIPFVGSARELRGBVAAAAPTAAALLSSA</td>
</tr>
</tbody>
</table>

3.1.1.6 Merlin UL71mutL34-L41A

Ein weiteres in pUL71 vorhandenes und bereits untersuchtes Proteinmotiv ist eine an Aminosäureposition 34 und 41 lokalisierte Leucin-Zipper-Domäne [45]. Die beiden Leucine an diesen Positionen wurden durch Alanine ausgetauscht (siehe Abbildung 9), um die Funktionalität des Motivs gezielt zu unterbinden und somit auch dessen Funktion für das Viruswachstum des Virusstammes Merlin zu ergründen.
Merlin UL71mutL34-L41A
pUL71 (Aminosäuresequenz 1-50)

3.1.1.7 Merlin UL71Stop

Merlin UL71Stop
pUL71 (Aminosäuresequenz 1-50)

3.1.1.8 Merlin UL103Stop

Im kodierenden Bereich für das Protein pUL103 wurde ebenfalls ein Stopcodon in das Genom des Virusstammes Merlin eingeführt, wobei für diese Veränderung der Aminosäuresequenz im Hintergrund des Virusstammes TB40/E bereits ein Defekt in der Virusausbreitung festgestellt werden konnte [22]. An Position 24 wurde deshalb auch in die Sequenz des Merlin-Virusstammes ein Stopcodon eingebracht sowie eine Rasterschubmutation durch Deletion der beiden folgenden Nukleotide (siehe Abbildung 11).

Merlin UL103Stop

pUL103 (Aminosäuresequenz 1-42)

```
MEALMIRGVEVHTDFTRQVMIMEPQVLDFTRQVRKGLWLHT

MEALMIRGVEVHTDFTRQVMI*
```

Abbildung 11: Mittels markerloser BAC-Mutagenese in den Merlin Wildtyp eingeführte Mutation: In den für das Protein pUL103 kodierenden Bereich wurde ein Stopcodon an Position 24 eingeführt.

3.1.2 Rekonstitution und Wachstumsanalyse

Klinische Isolate, wie der verwendete Virusstamm Merlin, zeichnen sich durch ihr zellassoziertes Wachstum und eine geringere Freisetzung infektiöser Partikel aus [71, 82], weshalb sie sich insbesondere zur Untersuchung der in Abbildung 12 schematisch dargestellten zellulären Ausbreitung eignen.
Für klassische Wachstumsanalysen, wie häufig im Labor durchgeführt, ist dieses Virus jedoch nicht geeignet, da hierfür zunächst ausreichend infektiöser Überstand gewonnen werden muss. Um dennoch Erkenntnisse über die Bedeutung der viralen Proteine pUL71, pUL103 und gpUL132 für das Viruswachstum eines klinischen Isolats zu gewinnen, erfolgte die Wachstumsanalyse direkt nach Rekonstitution der Viren mittels Transfektion. Hierbei wurden HFF-Zellen mit der aus Bakterien isolierten BAC-DNS transfiziert, sodass diese Zellen entweder das Wildtyp-Virus oder die neu durch BAC-Mutagenese konstruierten Viren produzieren, wie ausführlich unter 2.2.2.2 beschrieben. Nach erfolgter Transfektion wurden die Zellen auf 24-Well-Platten umgesetzt und danach für die Dauer der Wachstumsanalyse keiner weiteren Manipulation ausgesetzt.

Nach erfolgter Rekonstitution der vorgestellten Mutanten wurde eine Wachstumsanalyse, wie unter 2.2.4 dargestellt, jeweils an Tag 12, Tag 19 und Tag 26 nach Transfektion durchgeführt.
3.1.2.2 Wachstumsanalyse 12 Tage nach Transfektion

Abbildung 13: Wachstumsanalyse für pUL71Stop-Mutante 12 Tage nach Transfektion: Jeder Datenpunkt repräsentiert die Anzahl IE-positiver Zellen pro Fokus. Durchgezogene Linien markieren die Mittelwerte der beiden Populationen. Dargestellt sind normalisierte und kombinierte Werte aus zwei unabhängigen Experimenten. Die statistische Analyse wurde mittels Mann-Whitney-U-Test durchgeführt. Rechts werden beispielhaft Plaques an Tag 12 nach Transfektion für den Merlin Wildtyp (A) und die Merlin UL71Stop-Mutante (B) gezeigt. Zellkerne wurden mit DAPI angefärbt, IE-positive Zellkerne sind in orange zu sehen. Der Maßstabsbalken entspricht 100µM. *** = p < 0,001

Für die Merlin UL103Stop-Mutante sowie die Merlin UL71mutY23A-Mutante zeigte sich anhand der zusammengefassten Daten aus drei unabhängigen Experimenten

3.1.2.3 Wachstumsanalyse 19 Tage nach Transfektion

Abbildung 15: Wachstumsanalyse für pUL71Stop-Mutante 19 Tage nach Transfektion: Jeder Datenpunkt repräsentiert die Anzahl IE-positiver Zellen pro Fokus. Durchgezogene Linien markieren die Mittelwerte der beiden Populationen. Dargestellt sind normalisierte und kombinierte Werte aus zwei unabhängigen Experimenten. Die statistische Analyse wurde mittels Mann-Whitney-U-Test durchgeführt. Rechts werden beispielhaft Plaques an Tag 19 nach Transfektion für den Merlin Wildtyp (A) und die Merlin UL71Stop-Mutante (B) gezeigt. Zellkerne wurden mit DAPI angefärbt, IE-positive Zellkerne sind in orange zu sehen. Der Maßstabsbalken entspricht 100µM. * = p < 0,05

Abbildung 16: Wachstumsanalyse für pUL71/pUL103-Mutanten 19 Tage nach Transfektion: Jeder Datenpunkt repräsentiert die Anzahl IE-positiver Zellen pro Fokus. Durchgezogene Linien markieren die Mittelwerte der jeweiligen Population. Dargestellt sind normalisierte und kombinierte Werte aus drei unabhängigen Experimenten. Die statistische Analyse wurde mittels one-way ANOVA Kruskal-Wallis-Test (nichtparametrisch) und Dunn’s Post-Test durchgeführt. Von links nach rechts sind die Ergebnisse für das Merlin Wildtyp-Virus, die Viren Merlin UL71mutL34-41A, Merlin UL71mutY23A, Merlin UL71mutK348-51 und Merlin UL103Stop dargestellt. *** = p < 0,001; ** = p < 0,01.

3.1.2.4 Wachstumsanalyse 26 Tage nach Transfektion

Der späteste Zeitpunkt für die durchgeführte Wachstumsanalyse war Tag 26 nach Transfektion. Zu diesem Zeitpunkt konnten, im Gegensatz zum Merlin Wildtyp Virus, für das Merlin UL71Stop Virus in zwei unabhängigen Versuchen keine Plaques mehr gefunden werden (siehe Abbildung 17).

Für das Merlin UL71mutL34-41A Virus fanden sich an Tag 26 nach Transfektion in drei Experimenten ebenfalls keine Plaques mehr. Auch für das Merlin UL71mutY23A Virus waren keine Plaques mehr zu finden. Das Merlin UL71mutK348-51 Virus bildete insgesamt drei Plaques, welche 57,31% der Größe der Wildtyp-Plaques erreichten. Das UL103Stop Virus zeigte ebenfalls keine Plaque-Bildung mehr (siehe Abbildung 18).
Wachstumsanalyse 26 Tage nach Transfektion pUL71/pUL103-Mutanten

3.1.3 Transfektionseffizienz und Plaqueanzahl

Als Indikator für das virale Wachstum könnte zusätzlich die Anzahl der gebildeten Plaques herangezogen werden. Hierbei muss allerdings beachtet werden, dass diese von der im jeweiligen Experiment erreichten Transfektionseffizienz abhängig sind. Um diese näherungsweise zu bestimmen, wurde an Tag 5 nach erfolgter Transfektion die unter 2.2.3.1 beschriebene Färbung zur Identifizierung IE-positiver Zellen durchgeführt und diese ausgezählt. In Abbildung 19 sind die gefundenen Werte, zusammen mit der Anzahl gebildeter Plaques, zum angegebenen Zeitpunkt im jeweiligen Experiment dargestellt. Es fällt auf, dass auch in Experimenten mit höherer Transfektionseffizienz für Mutanten im pUL71/pUL103-Komplex im Vergleich zum Wildtyp, die Mutante jeweils weniger Plaques bildete als der Wildtyp. So beispielsweise im 2. Experiment für die Merlin UL71Stop-Mutante, im 1. sowie 3. Experiment für die Merlin UL71mutY23A-Mutante, im 1. und 3. Experiment für die Merlin UL71mutK348-351A-Mutante und
im 3. durchgeführten Experiment für die Merlin UL103Stop-Mutante (siehe Abbildung 19).
Abbildung 19: Transfektionseffizienz und Plaqueanzahl: gezeigt sind die an Tag 5 nach Transfektion ausgezählten IE-positiven Zellen im jeweiligen Experiment, welche als Indikator für die Transfektionseffizienz herangezogen wurden, sowie die an den angegebenen Zeitpunkten gebildeten Plaques für die Viren Merlin UL71mutL34-41A, Merlin UL71mutY23A, Merlin UL71mutK348-351A, Merlin UL71Stop und Merlin UL103Stop jeweils im Vergleich zum Wildtyp. Exp. = Experiment
3.2 Untersuchung der Bedeutung des viralen Glykoproteins gpUL132 für das Viruswachstum im Hintergrund eines klinischen Isolats

3.2.1 Vorstellung der zur Untersuchung des Glykoprotein gpUL132 verwendeten Viren

3.2.1.1 Merlin UL132HA

3.2.1.2 Merlin UL132Stop

Merlin UL132Stop

gpUL132 (Aminosäuresequenz 1-81)

| MPAPRGPLRATFLALVAFGLLLQIDLSDVTNVTSTKVTPTSTSN | RNSVDNATSSGGPTTGINMTTTHESVHNRNNE|MKV|...........
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MPAPRGPLRATFLALVAFGLLLQIDLSDVTNVTSTKVTPTSTSN</td>
<td>RNSVDNATSSGGPTTGINMTTTHESVHNRNNE*</td>
</tr>
</tbody>
</table>

Abbildung 20: Mittels markerloser BAC-Mutagenese in das Merlin UL132HA Virus eingeführte Mutation: An Aminosäureposition 79 wurde ein Stopcodon eingeführt.

3.2.2 Rekonstitution und Wachstumsanalyse

Die Rekonstitution der Viren Merlin UL132HA und Merlin UL132Stop erfolgte nach demselben Prinzip, wie für die pUL71/pUL103-Mutanten ausführlich beschrieben.

3.2.2.1 Wachstumsanalyse 12 Tage nach Transfektion

3.2.2.2 Wachstumsanalyse 19 Tage nach Transfektion

3.2.2.3 Wachstumsanalyse 26 Tage nach Transfektion

Bei der zuletzt durchgeführten Analyse an Tag 26 nach Transfektion konnte in zwei unabhängigen Experimenten kein signifikanter Wachstumsunterschied mehr zwischen dem Merlin UL132HA-Virus und der Merlin UL132Stop-Mutante gefunden werden (siehe Abbildung 23).

3.2.3 Analyse der Zirkularität des vAC

Neben dem zellassozierten Wachstum sollte für die Merlin UL132Stop-Mutante ebenfalls die Zirkularität des vAC analysiert werden.

Wie unter 2.2.2.3 ausführlich beschrieben, wurden hierzu Zellen durch Co-Seeding mit der Merlin UL132Stop-Mutante infiziert und auf einem iBIDI-8-well ausgesät. Nach 5 Tagen Inkubation bei 37°C wurde die unter 2.2.3.2 detailliert erläuterte Färbung zur Darstellung des vAC durchgeführt (siehe Abbildung 24).
deutliche Verschiebung der Werte in Richtung des Wertes 0, also eines weniger runden vAC.

4. Diskussion

4.1 Bedeutung der viralen Proteine pUL71 und pUL103 für das Viruswachstum im Hintergrund eines klinischen Isolats

Es fiel des Weiteren auf, dass für die Mutanten im Vergleich zum Wildtyp insgesamt nur in sehr geringem Ausmaß Plaques gebildet wurden, was für eine deutliche Beeinträchtigung des viralen Wachstums und eine eintretende Selbstlimitierung der Infektion in den verwendeten Fibroblasten-Zellen spricht. Dennoch muss hierbei beachtet werden, dass die Anzahl der gebildeten Plaques, wie unter 3.1.3 beschrieben, von der Transfektionseffizienz abhängig ist und ein Vergleich dieser Größe allein deshalb wenig aussagekräftig ist, auch da es nicht gelang die Transfektionseffizienz über alle Experimente hinweg exakt konstant zu halten. Es zeigte sich allerdings, dass zum Teil auch in Experimenten mit deutlich höherer Transfektionseffizienz für die Mutanten im pUL71/pUL103-Komplex im Vergleich zum Wildtyp, die Mutante jeweils weniger Plaques bildete als der Wildtyp, was in diesen Experimenten eine geringe Transfektionseffizienz als Ursache für die geringe Plaqueanzahl ausschließt.

Das Wachstum der Mutanten im pUL71/pUL103-Komplex ist basierend auf den in dieser Arbeit dargestellten Ergebnissen insgesamt im Vergleich zum Merlin
Wildtyp Virus als deutlich eingeschränkt zu bewerten. Dies stützt die Hypothese, dass dieser Proteinkomplex für die Verbreitung des HCMV von Zelle zu Zelle von entscheidender Bedeutung ist. Da man vermutet, dass sich dieser Ausbreitungsprozess der Neutralisation durch zirkulierende Antikörper entzieht [26, 49] und somit einen wichtigen viralen Evasionsmechanismus darstellen könnte, ist er für die erfolgreiche pharmakologische Kontrolle einer Infektion mit HCMV von besonderem Interesse. Der pUL71/pUL103-Proteinkomplex selbst, beziehungsweise die Proteininteraktion zwischen pUL103 und pUL71 könnte, wie bereits diskutiert [22], als neue antivirale Zielstruktur in Betracht gezogen werden.

4.2 Bedeutung des viralen Glykoproteins gpUL132 für das Viruswachstum im Hintergrund eines klinischen Isolats

Ausbreitung klinischer Isolate als entscheidend angesehen wird [71, 82], deutet dies darauf hin, dass gpUL132 für den Mechanismus der zellulären Ausbreitung keine entscheidende Bedeutung besitzt.

Als Maß für die korrekte Bildung des vAC wurde die Zirkularität herangezogen, da das vAC in mit dem HCMV-Wildtyp infizierten Zellen als zirkuläre Struktur beschrieben wird [19, 67]. Die Analyse der Zirkularität des vAC offenbarte einen signifikanten Unterschied zwischen dem Merlin Wildtyp und der Merlin UL132Stop-Mutante. In Zellen, die mit der Merlin UL132Stop-Mutante infiziert wurden, konnte eine deutliche Reduktion der Zirkularität des vACs beobachtet werden. Auch in mit einer TB40/E UL132Stop-Mutante oder einer AD169 UL132Stop-Mutante infizierten Zellen konnten signifikant weniger runde vACs gefunden werden [52, 63]. Es bleibt unklar, warum eine auch im klinischen Isolat gefundene veränderte Struktur des vAC keinen deutlichen Ausbreitungssdefekt zur Folge hat, obwohl in der Vergangenheit gezeigt wurde, dass die Struktur des vAC für die Bildung infektiöser Partikel scheinbar von Bedeutung ist [18, 67, 90]. Eine mögliche Erklärung ist, dass in vorangegangenen Untersuchungen die Struktur des vAC durch Inhibition zellulärer Proteine gestört wurde [18, 90], was auch zu einer Beeinträchtigung weiterer Zellvorgänge, die für die Bildung infektiöser Partikel von Bedeutung sind, geführt haben könnte.

Für den Virusstamm AD169 hingegen ist ein Defekt im zellassozierten Wachstum in Abwesenheit von gpUL132 beschrieben [52]. Diese bereits zuvor im Labor aufgefallenen Unterschiede im viralen Wachstum der gpUL132-defizienten Mutanten bezogen auf die verschiedenen Virusstämme könnten an der unter 3.1.1 dargestellten geringfügig abweichenden Sequenz im UL132-Genlocus des Virusstammes AD169 im Vergleich zu den Virusstämmen TB40/E und Merlin liegen oder aber an der generell unterschiedlichen genetischen Ausstattung, insbesondere bezogen auf die viralen Genbereiche UL128, UL130 und UL131a, welche das Wachstumsverhalten in Fibroblasten-Zellen entscheidend beeinflussen [33, 52].
4.3 Verwendung des HCMV-Virusstammes Merlin zur besseren Übertragbarkeit von Ergebnissen auf das klinische Setting

Das auf dem Merlin BAC vorliegende Genom, welches unter Berücksichtigung der ursprünglichen klinischen Probe durch Stanton et al. rekonstruiert wurde, enthält zudem die Wildtyp-Form des UL128- und RL13-Genloci [74]. Dies ist bei Durchführung von Wachstumsanalysen von entscheidender Bedeutung, da die Passage in Zellkultur vor allem in diesen Bereichen regelhaft Mutationen induziert, was für das Wachstum des HCMV in Fibroblasten förderlich scheint [50, 74, 85]. In der Vergangenheit wurde zudem deutlich, dass klinische Isolate des HCMV im Vergleich zu anderen Herpesviren genetisch wesentlich heterogener sind [8, 62]. Verschiedene HCMV-Virusstämme enthalten beispielsweise einen unterschiedlich hohen Gehalt an gH/gL/UL128-131 und gH/gL/gO auf ihrer Oberfläche, was sich auf die Infektiosität der Virionen auswirkt [91–93]. Die alleinige Verwendung von bestimmten, an Laborbedingungen angepassten Virusstämmen kann deshalb die reale Infektionssituation nur bedingt wiederspiegeln.

Im Hinblick auf die Entwicklung von effektiven Therapeutika, die auch im Patienten eine wirksame Waffe gegen HCMV-Infektionen darstellen, ist die Verwendung klinischer Isolate deshalb von großer Bedeutung. Auch um die Wirksamkeit neuer
Wirkstoffe gegen HCMV zu untersuchen erscheint der Einsatz dieser Virusstämmes sinnvoll.
5. Zusammenfassung

6. Literaturverzeichnis:

43. Martinez-Martin N, Marcandalli J, Huang C S, Arthur C P, Perotti M,

52. Nikolaenko D: Elucidating the function of gpUL132 during human cytomegalovirus infection. Masterarbeit, Medizinische Fakultät, Universität Ulm (2018)

63. Rogg R: Role of human cytomegalovirus in virus morphogenesis. Masterarbeit, Medizinische Fakultät, Universität Ulm (2017)

74. Stanton R J, Baluchova K, Dargan D J, Cunningham C, Sheehy O, Seirafian

84. White E A, Del Rosario C J, Sanders R L, Spector D H: The IE2 60-Kilodalton and 40-Kilodalton Proteins Are Dispensable for Human

93. Zhou M, Yu Q, Wechsler A, Ryckman B J: Comparative Analysis of gO Isoforms Reveals that Strains of Human Cytomegalovirus Differ in the Ratio of gH/gL/gO and gH/gL/UL128-131 in the Virion Envelope. J Virol 87: 9680–
9690 (2013)

Die Danksagung wurde aus Gründen des Datenschutzes entfernt.
Der Lebenslauf wurde aus Gründen des Datenschutzes entfernt.