Einfluss der Mutation T109M auf die Proteinbindungseigenschaften von Profilin1

- weiterführende Untersuchung der ALS-assozierten Mutation -

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät
der Universität Ulm

vorgelegt von
Marcel Schöpflin
geb. in Emmendingen
Ulm, Mai 2015
Amtierender Dekan: Prof. Dr. T. Wirth
1. Berichterstatter: Prof. Dr. J. Weishaupt
2. Berichterstatter: Prof. Dr. W. Just
Tag der Promotion: 16.06.2016
Teile dieser Dissertation wurden bereits in der Publikation:

Inhaltsverzeichnis

Inhaltsverzeichnis .. iii
Abkürzungsverzeichnis .. vi

1 Einleitung ... 1

1.1 Amyotrophe Lateralsklerose ... 1

1.1.1 Allgemein .. 1

1.1.2 Geschichte ... 1

1.1.3 Epidemiologie ... 1

1.1.4 Diagnose .. 2

1.1.5 Klinik .. 3

1.1.6 Therapie ... 3

1.1.7 Ätiologie und Pathogenese ... 5

1.1.8 Molekulare Ursachen der familiären ALS 7

1.2 Profilin ... 11

1.2.1 Die Profilin-Familie ... 11

1.2.2 Aufbau von Profilin1 ... 11

1.2.3 Funktion von Profilin1 .. 12

1.2.4 Bindungspartner von Profilin1 .. 13

1.2.5 ALS-verursachende Mutationen in Profilin1 15

1.2.6 Die Mutation T109M in Profilin1 .. 17

1.3 Zielsetzung .. 18

2 Material und Methoden .. 19

2.1 Biologisches Material ... 19

2.2 Mikrobiologisches Material ... 20

2.3 Chemikalien ... 22

2.4 Verbrauchsmaterialien ... 24

2.5 Geräte .. 25

2.6 Computerprogramme .. 27

2.7 Ausgangsmaterialien ... 27

2.8 Mikrobiologische Methoden ... 27

2.9 Molekularbiologische Methoden .. 30

2.10 Klonierung von DNA-Fragmenten .. 39

2.11 Allgemeine proteinbiochemische Methoden 40
2.12 Zellbiologische Methoden ... 46
2.13 Statistische Methoden .. 52

3 Ergebnisse .. 53
3.1 Klonierung und Testexpression der V5-Profilin1-Konstrukte 53
3.2 Lokalisation und Aggregation der V5-Profilin1-Mutanten in HEK293-Zellen ... 56
3.3 Untersuchung der Proteinbindungseigenschaften der V5-Profilin1-Mutanten mit Hilfe einer Co-Immunpräzipitation 62
3.4 Untersuchung der Proteinbindungseigenschaften der Profilin1-Mutanten mit Hilfe des Gaussia Luciferase Complementation-Assay 64

4 Diskussion .. 71
4.1 Aggregation der Profilin1-Mutation T109M in HEK293-Zellen 71
4.2 Aktinbindung der Profilin1-Mutation T109M 72
4.3 Mögliche Ursachen der unterschiedlichen Expression der Profilin1-Mutanten ... 74
4.4 Hinweise auf eine veränderte Phosphorylierung der Profilin1-Mutation T109M ... 75
4.5 Rolle von Profilin im Zusammenhang mit ALS 75
4.6 Schlussfolgerung .. 78

5 Zusammenfassung ... 79

6 Literaturverzeichnis ... 81

Anhang .. 95

Danksagung .. 98
Lebenslauf ... 99
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>3' oder 5'</td>
<td>Bezeichnung des DNA-Strangendes, das die 3'- bzw. 5'-Hydroxylgruppe des Zuckers des DNA-Rückgrats trägt.</td>
</tr>
<tr>
<td>A</td>
<td>Adenin</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung/en</td>
</tr>
<tr>
<td>AD</td>
<td>autosomal dominant</td>
</tr>
<tr>
<td>add.</td>
<td>Zusatz</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>AG</td>
<td>Aktiengesellschaft</td>
</tr>
<tr>
<td>ALS</td>
<td>Amyotrophe Lateralsklerose</td>
</tr>
<tr>
<td>ALS2</td>
<td>Alsin</td>
</tr>
<tr>
<td>ANG</td>
<td>Angiogenin</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AR</td>
<td>autosomal rezessiv</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginin</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriposphat</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninsäure</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
</tr>
<tr>
<td>c</td>
<td>Konzentration</td>
</tr>
<tr>
<td>C</td>
<td>Cytosin</td>
</tr>
<tr>
<td>C9orf72</td>
<td>chromosome 9 open reading frame 72</td>
</tr>
<tr>
<td>ca.</td>
<td>zirka</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calciumchlorid</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre DNA, die durch revers transkribierte mRNA erhalten wird.</td>
</tr>
<tr>
<td>Clal</td>
<td>Restriktionsenzym aus Caryophanon latum L</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalievirus</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlenstoffdioxid</td>
</tr>
<tr>
<td>C-terminus</td>
<td>Carboxy-terminus</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Cys=C</td>
<td>Cystein</td>
</tr>
<tr>
<td>D</td>
<td>Asparaginsäure</td>
</tr>
<tr>
<td>DAO</td>
<td>d-amino acid oxidase</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’,6-Diamidin-2-phenylindol</td>
</tr>
<tr>
<td>DBPS</td>
<td>Dulbecco's Phosphate Buffered Saline</td>
</tr>
<tr>
<td>DCTN1</td>
<td>Dynactin1 Gen</td>
</tr>
<tr>
<td>ddH2O</td>
<td>bidestilliertes Wasser</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle's Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleosidtriphosphat</td>
</tr>
<tr>
<td>DpnI</td>
<td>Restriktionsenzym aus Diplococcus pneumoniae G41</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>E</td>
<td>Glutaminsäure</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EcoRV</td>
<td>Restriktionsenzym aus Escherichia coli J62 pLG74</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>EDV</td>
<td>Elektronische Datenverarbeitung</td>
</tr>
<tr>
<td>EMBL</td>
<td>European Molecular Biology Laboratory</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatisches Retikulum</td>
</tr>
<tr>
<td>F-Aktin</td>
<td>filamentöses Aktin</td>
</tr>
<tr>
<td>fALS</td>
<td>familiäre Form der Amyothrophen Lateralsklerose</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>Fc</td>
<td>crystallisable fragment</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FD</td>
<td>FastDigest</td>
</tr>
<tr>
<td>FIG4</td>
<td>Polyphosphoinositide phosphatase</td>
</tr>
<tr>
<td>FTD</td>
<td>frontotemporale Demenz</td>
</tr>
<tr>
<td>FTLD</td>
<td>frontotemporale Demenz</td>
</tr>
<tr>
<td>FUS</td>
<td>Fused in Sarcoma</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>G</td>
<td>Guanin</td>
</tr>
<tr>
<td>G</td>
<td>Glycin</td>
</tr>
<tr>
<td>G-Aktin</td>
<td>globuläres Aktin</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>GFP</td>
<td>grün fluoreszierendes Protein</td>
</tr>
<tr>
<td>GIMP</td>
<td>GNU Image Manipulation Program</td>
</tr>
<tr>
<td>GmbH</td>
<td>Gesellschaft mit beschränkter Haftung</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>GTPase</td>
<td>Guanosintriphosphatase</td>
</tr>
<tr>
<td>h</td>
<td>hour (Stunde)</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
<tr>
<td>H4-Zellen</td>
<td>Humane neuronale Gliomzelllinie</td>
</tr>
<tr>
<td>HBS</td>
<td>HEPES Buffered Saline</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>HEK293-Zellen</td>
<td>Human Embryonic Kidney-Zellen</td>
</tr>
<tr>
<td>HeLa-Zellen</td>
<td>erste permanente Zelllinie aus menschlichen Epithelzellen eines Zervixkarzinoms</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-(4-(2-Hydroxyethyl)- 1-piperazinyl)-ethansulfonsäure</td>
</tr>
<tr>
<td>hGLuc</td>
<td>humane Gaussia-Luciferase</td>
</tr>
<tr>
<td>HF</td>
<td>high fidelity</td>
</tr>
<tr>
<td>HSP</td>
<td>heat-shock protein</td>
</tr>
<tr>
<td>HTS</td>
<td>High-Throughput-Screening</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>jALS</td>
<td>juvenile Form der Amyotrophen Lateralsklerose</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo-Basenpaare</td>
</tr>
<tr>
<td>KCL</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KG</td>
<td>Kommanditgesellschaft</td>
</tr>
<tr>
<td>I</td>
<td>Liter</td>
</tr>
<tr>
<td>LB</td>
<td>lysogeny broth</td>
</tr>
<tr>
<td>M</td>
<td>Methionin</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MAPT</td>
<td>microtubule associated protein tau</td>
</tr>
<tr>
<td>max.</td>
<td>maximal</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Magnesiumsulfat</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>min.</td>
<td>mindestens</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mock=U</td>
<td>Leerwert</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonucleic Acid; Boten-Ribonukleinsäure</td>
</tr>
<tr>
<td>mSOD1</td>
<td>mutante Superoxiddismutase1</td>
</tr>
<tr>
<td>N</td>
<td>Basenlänge des Primers</td>
</tr>
<tr>
<td>N₂</td>
<td>Stickstoff</td>
</tr>
<tr>
<td>N2A-Zellen</td>
<td>Neuroblastoma Zelllinie aus der Maus</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>Dinatriumhydrogenphosphat</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natronlauge</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NEBcutter V2.0</td>
<td>Softwareprogramm von New England Biolabs</td>
</tr>
<tr>
<td>NF-H</td>
<td>Neurofilament (schwere Untereinheit)</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-Methyl-D-Aspartat</td>
</tr>
<tr>
<td>NP40</td>
<td>Nonylphenolethoxylat (40kDa)</td>
</tr>
<tr>
<td>N-terminus</td>
<td>Amino-terminus</td>
</tr>
<tr>
<td>O₂</td>
<td>Sauerstoff</td>
</tr>
<tr>
<td>O₂⁻</td>
<td>Superoxidanion</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>OD₆₀₀</td>
<td>Optische Dichte bei 600nm Wellenlänge</td>
</tr>
<tr>
<td>Opti-MEM</td>
<td>Reduced-Serum Medium</td>
</tr>
<tr>
<td>OPTN</td>
<td>Optineurin</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PBT</td>
<td>phosphate buffered saline mit tween</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson-Krankheit</td>
</tr>
<tr>
<td>PEG</td>
<td>perkutane endoskopische Gastrostomie</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylenglycol</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyd</td>
</tr>
</tbody>
</table>

ix
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFN</td>
<td>Profilin</td>
</tr>
<tr>
<td>PFN1</td>
<td>Profilin1</td>
</tr>
<tr>
<td>PFN2</td>
<td>Profilin2</td>
</tr>
<tr>
<td>PFN3</td>
<td>Profilin3</td>
</tr>
<tr>
<td>Pfu</td>
<td>thermostabile DNA-Polymerase aus Pyrococcus furiosus</td>
</tr>
<tr>
<td>Ponceau S</td>
<td>3-Hydroxy-4-(((2-sulfo-4-((4-sulfophenyl)azo)phenyl)azo)-2,7-naphthalindisulfonsäure Tetranaatriumsalz</td>
</tr>
<tr>
<td>POP</td>
<td>POP partner of profilin</td>
</tr>
<tr>
<td>prof</td>
<td>profilin</td>
</tr>
<tr>
<td>Profilaktin</td>
<td>Profilin-ATP-Aktin-Komplex</td>
</tr>
<tr>
<td>PtdIns(4,5)P₂</td>
<td>Phosphatidylinositol 4,5-bisphosphate</td>
</tr>
<tr>
<td>R</td>
<td>Arginin</td>
</tr>
<tr>
<td>RAN</td>
<td>RAN repeat-associated non-ATG</td>
</tr>
<tr>
<td>RIPA Puffer</td>
<td>Radioimmunoprecipitation assay buffer</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>ROCK</td>
<td>ROCK Rho-associated, coiled-coil protein kinase</td>
</tr>
<tr>
<td>ROS</td>
<td>ROS reactive oxygen Species</td>
</tr>
<tr>
<td>rpm</td>
<td>rpm revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>s</td>
<td>Sekunden</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>S1</td>
<td>Konstrukt mit dem N-Terminalen Teil der humanisierten Gaussia Luciferase</td>
</tr>
<tr>
<td>S2</td>
<td>Konstrukt mit dem C-Terminalen Teil der humanisierten Gaussia Luciferase</td>
</tr>
<tr>
<td>sALS</td>
<td>sporadische Form der Amyotropher Lateralsklerose</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-Polyacrylamidgelelektrophorese</td>
</tr>
<tr>
<td>SETX</td>
<td>Senataxin</td>
</tr>
<tr>
<td>SIGMAR1</td>
<td>σ non opioid receptor 1</td>
</tr>
<tr>
<td>SLA</td>
<td>Sclérose latérale amyotrophique</td>
</tr>
<tr>
<td>SMA</td>
<td>Spinale Muskelatrophie</td>
</tr>
<tr>
<td>SMN</td>
<td>Survival of Motor Neuron</td>
</tr>
<tr>
<td>snRNPs</td>
<td>small nuclear ribonucleic particles</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxiddismutase</td>
</tr>
<tr>
<td>SPG11</td>
<td>Spatacsin</td>
</tr>
<tr>
<td>T</td>
<td>Thymin</td>
</tr>
<tr>
<td>T</td>
<td>Threonin</td>
</tr>
<tr>
<td>T7</td>
<td>T7-Promotor aus Phagen T7</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>T<sub>Ann</sub></td>
<td>Annealingtemperatur</td>
</tr>
<tr>
<td>Taq</td>
<td>thermostabile DNA-Polymerase aus Thermus aquaticus</td>
</tr>
<tr>
<td>TBE-Puffer</td>
<td>TRIS-Borat-EDTA-Puffer</td>
</tr>
<tr>
<td>TBS-T</td>
<td>Tris-buffered Saline mit Tween</td>
</tr>
<tr>
<td>TC</td>
<td>tissue cultur</td>
</tr>
<tr>
<td>TDP-43 = TARDBP</td>
<td>TAR DNA-binding protein (43 kDa)</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethyldiamin</td>
</tr>
<tr>
<td>TLS</td>
<td>totally locked-in state</td>
</tr>
<tr>
<td>TLS</td>
<td>Translocated in liposarcoma = FUS</td>
</tr>
<tr>
<td>T<sub>m</sub></td>
<td>Schmelztemperatur</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>2-Amino-2-hydroxymethyl-propane-1,3-diol Chlorwasserstoff</td>
</tr>
<tr>
<td>TSS</td>
<td>transformation and storage solution</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Polyoxyethylenorbitan-monolaurat</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosin</td>
</tr>
<tr>
<td>ü.N.</td>
<td>über Nacht</td>
</tr>
<tr>
<td>U2OS-Zellen</td>
<td>Osteosarkomzellinie</td>
</tr>
<tr>
<td>UBQLN2</td>
<td>Ubiquilin</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>ÜNK</td>
<td>Übernachtkultur</td>
</tr>
<tr>
<td>Urea</td>
<td>Harnstoff</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolett</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumenprozent</td>
</tr>
<tr>
<td>V5-tag</td>
<td>Protein-tag</td>
</tr>
<tr>
<td>VAPB</td>
<td>Vesicle-associated membrane protein-associated protein B</td>
</tr>
<tr>
<td>VASP</td>
<td>vasodilator-stimulated phosphoprotein</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>VCP</td>
<td>Valosin-containing-protein</td>
</tr>
<tr>
<td>W</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>w/v</td>
<td>Massenprozent</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>X</td>
<td>beliebige Aminosäure</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Amyotrophe Lateralsklerose

1.1.1 Allgemein

1.1.2 Geschichte

1.1.3 Epidemiologie

Die Inzidenz der ALS beträgt 1,5 bis 2,7 auf 100.000 Menschen (Wijesekera and Leigh, 2009). Damit ist die ALS die häufigste Motoneuronerkrankung. Das mittlere Erkrankungsalter liegt zwischen 55 und 60 Jahren (Ferraiuolo et al., 2011). Ausnahme ist eine seltene juvenile Form der ALS (jALS), bei der die Patienten schon
vor dem 25. Lebensjahr erkranken. Diese Form der ALS verläuft aber weniger progressiv. Insgesamt sind mehr Männer als Frauen betroffen (Geschlechterverteilung 1,5:1; Ferraiuolo et al., 2011). Nach dem ersten Auftreten von Symptomen überleben die Patienten durchschnittlich 3 Jahre (Turner et al., 2013). Die Prävalenz der Erkrankung schwankt zwischen 2,7 bis 7,4 auf 100.000 Menschen (Wijesekera and Leigh, 2009). Durch bessere Diagnostik und aufgrund der gesteigerten Lebenserwartung nahm auch die Inzidenz der ALS in den letzten Jahren zu.

Eine erhöhte Inzidenz wurde auch bei Sportlern, besonders Fußballspielern, entdeckt und spricht für die Hypothese, dass vermehrte körperliche Aktivität einen Risikofaktor der ALS darstellen könnte (Chiò et al., 2005).

1.1.4 Diagnose

Differenzialdiagnostisch sind hauptsächlich lymphoproliferative Erkrankungen, die mit einer Motoneuronerkrankung einhergehen, und Erkrankungen der Wirbelsäule wie zum Beispiel Spinalstenosen, Polymyositis, sowie die seltene spinale Muskelatrophie nach Polioinfektion abzugrenzen (Winkler and Ludolph, 2004).
1.1.5 Klinik
Zu Beginn der Krankheit treten meist unspezifische Symptome wie Muskelkrämpfe oder Faszikulationen auf, die von den Patienten aber nur retrospektiv geäußert werden (Winkler and Ludolph, 2004). Als nächstes treten bereits fokale Paresen und Atrophien auf, die sich im weiteren Verlauf auf benachbarte Körperregionen ausbreiten können. In den meisten Fällen sind dabei die kleinen Handmuskeln (30-40%) oder die unteren Extremitäten (30-40%) betroffen. Seltener sind zu Beginn die Kau- und Schluckmuskulatur (=bulbäre Symptomatik) (25%) beeinträchtigt. Initial ist fast nie die Rumpfmuskulatur betroffen (2%) (Winkler and Ludolph, 2004).

Neben den motorischen Symptomen kann es bei der ALS in einigen Fällen auch zu einer kognitiven Beeinträchtigung und Zeichen einer Demenz kommen. In ca. 5% der Fälle kann eine klinisch offensichtliche frontotemporale Demenz (FTLD) beobachtet werden (Winkler and Ludolph, 2004; Kiernan et al., 2011).

1.1.6 Therapie
Einleitung

Die respiratorische Insuffizienz führt zu einer beginnenden CO$_2$-Narkose mit nächtlichen Schlafstörungen, Kopfschmerzen und Unruhezuständen. In einigen Studien hat sich gezeigt, dass zu Beginn der Therapie nicht-invasive Beatmungs-techniken besser geeignet sind. Erst wenn diese nicht mehr ausreichen, sollte auf invasive Maßnahmen zurückgegriffen werden (Bourke et al., 2006; Bourke et al., 2003).

1.1.7 Ätiologie und Pathogenese

1.1.7.1 Oxidativer Stress

Oxidativer Stress entsteht, wenn das Gleichgewicht zwischen Bildung und Entfernung von sogenannten „reactive oxygen Species“ (ROS) zu Gunsten der Bildung überhandnimmt. ROS sind freie Sauerstoffradikale, die während der Atmungskette in Mitochondrien entstehen. Die Zelle versucht deren Konzentration über verschiedene Systeme möglichst gering zu halten, weil zu hohe Konzentrationen von ROS die Zelle auf unterschiedliche Art und Weise schädigen können. Wenn eines dieser abbauenden Systeme, wie z.B. die Superoxiddismutase (SOD), durch eine Mutation ausfällt, kann es besonders in nicht replizierenden alternden Neuronen zu erheblichen Zellschäden kommen, bis hin zum Zelltod (Ferraiuolo et al., 2011). Dies könnte dann zu neurodegenerativen Erkrankungen führen. Ein Hinweis darauf ist, dass Mutationen im SOD1-Gen für 20% der fALS-Fälle verantwortlich sind (Ferraiuolo et al., 2011; Rosen et al., 1993).

1.1.7.2 Mitochondrien

Mitochondrien spielen eine zentrale Rolle in der intrazellulären Energiegewinnung, Calciumhomöostase und in der Apoptosekontrolle. In der Mitochondrienmembran von transgenen Mäusen konnten Aggregate von ALS-assoziierten Proteinen entdeckt werden (Wong et al., 1995). Zusätzlich kann es, wie oben schon beschrieben, zur Anhäufung von toxischen ROS in Mitochondrien kommen. Beides kann zur Schädigung der Organellen und zur Dysfunktion von Motoneuronen führen. Außerdem kann es möglicherweise zu einem fehlerhaften Calziumhaushalt, ER-

1.1.7.3 Erregungstoxizität

1.1.7.4 Proteinaggregation und Einschlüsse
1 Einleitung

auch teilweise in sALS gefunden. Einen weiteren Hinweis auf die zentrale Rolle der Proteinaggregation zeigen die Mutationen in VCP und UBQLN2 als ALS-Gene (Johnson et al., 2010; Deng et al., 2011). Beide Proteine sind beim Proteinabbau beteiligt und schützen die Zelle vor der Anhäufung von fehlerhaften Proteinen (Ferraiuolo et al., 2011).

1.1.7.5 Neuroinflammation

Infiltrierte Lymphozyten und aktivierte Mikroglia bei ALS sind Hinweis auf eine Entzündungsreaktion im Bereich des ZNS. Im Liquor von ALS-Patienten ließen sich erhöhte Werte von Protein1 und Interleukin-8 messen (Kuhle et al., 2009). Diese sind bekannte chemotaktische Signale für Monozyten. Außerdem wird vermutet, dass Astrozyten in mSOD1-Mäusen mit höherer Wahrscheinlichkeit in den aktivierten proinflammatorischen Zustand übergehen als in Kontrolltieren ohne SOD1-Mutation (Ferraiuolo et al., 2011).

1.1.7.6 Transkription und RNA-Processing

Mit TDP-43 und FUS wurden zwei ALS-assoziierte Gene entdeckt, die sich entscheidend auf das RNA-Processing auswirken. TDP-43 ist dabei sowohl an der Regulation der Transkription, des alternativen Spleißen als auch des microRNA-Processing beteiligt (Ferraiuolo et al., 2011). FUS spielt auch in der Regulation der Transkription, dem RNA- und microRNA-Processing und dem mRNA-Transport eine wichtige Rolle (Kiernan et al., 2011). Ob dabei ein Verlust, eine verstärkte Wirkung der Proteine oder beides zur Schädigung der Motoneurone führt, ist unklar.

Dieses komplexe Zusammenspiel verschiedener molekularer Mechanismen führt bei jedem Patienten zu einem individuellen Phänotyp und stellt eine große Herausforderung für das Verständnis der ALS und die Entwicklung neuer Therapeutika dar.

1.1.8 Molekulare Ursachen der familiären ALS

Schon 1848 wurden die ersten familiären Häufungen von ALS-Erkrankungen beschrieben. Mit der Entdeckung einiger ALS-assoziiertem Gene im Jahre 1993 konnte ein erster Zusammenhang zwischen Genetik und ALS hergestellt werden. Seitdem wird die ALS in eine sporadische (sALS) und eine familiäre (fALS) Form aufgeteilt. Klinisch sind die beiden Formen aber nicht zu unterscheiden. Die Formen der Vererbung sind dabei sehr verschieden (dominant, rezessiv, x-chromosoimal, mit
und ohne vollständige Penetranz). Generell geht man davon aus, dass die fALS-Form aus verschiedenen Gründen bisher unterrepräsentiert ist und ihr wahrer Anteil höher ist (Andersen and Al-Chalabi, 2011).

Abbildung 1 gibt einen Gesamtüberblick über alle bisher bekannten ALS-assoziierten Gene und teilt diese nach ihrer Funktion ein.

<table>
<thead>
<tr>
<th>Genetic subtype</th>
<th>Chromosomal locus</th>
<th>Gene</th>
<th>Onset/inheritance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS1</td>
<td>21q22</td>
<td>SOD1</td>
<td>Adult/AD</td>
<td>Rosen (1993)</td>
</tr>
<tr>
<td>ALS4</td>
<td>9q34</td>
<td>SERT</td>
<td>Juvenile/AD</td>
<td>Chen et al. (2004)</td>
</tr>
<tr>
<td>ALS6</td>
<td>10p11.2</td>
<td>FUS</td>
<td>Adult/AD</td>
<td>Kwiatkowski et al. (2009), Vance et al. (2009)</td>
</tr>
<tr>
<td>ALS9</td>
<td>14q11.2</td>
<td>ANG</td>
<td>Adult/AD</td>
<td>Greenaway et al. (2006)</td>
</tr>
<tr>
<td>ALS10</td>
<td>1p36.2</td>
<td>TDP</td>
<td>Adult/AD</td>
<td>Sreedharan et al. (2008)</td>
</tr>
</tbody>
</table>

Abbildung 1: Bekannte familiäre ALS-assoziierte Gene (Ferraiuolo et al., 2011)

Reprinted by permission from Macmillan Publishers Ltd: [NATURE REVIEWS NEUROLOGY] (Ferraiuolo et al., 2011), copyright (2011)

Im Folgenden wird auf die in der westlichen Bevölkerung am häufigsten mit ALS-assoziierten Gene und die wichtigsten Mutationen näher eingegangen.
1.1.8.1 SOD1

1.1.8.2 TDP-43
Das TDP-43 (TAR-DNA-Binding Protein) spielt eine wichtige Rolle und ist bei 4-6% der fALS- und bei bis zu 2% der sALS-Fälle mutiert (Daoud et al., 2009; Kirby et al., 2010). Seit der Entdeckung des Proteins in zytoplasmatischen Einschlusskörperchen von Neuronen von ALS- und FTDL-Patienten 2008, (Kabashi et al., 2008; Sreedharan et al., 2008) sind 44 heterozygote Mutationen entdeckt worden. Fast alle Mutationen befinden sich im C-Terminus des 43kDa schweren Proteins und bis auf die nonsense-Mutation Tyr374X handelt es sich ausschließlich um missense-Mutationen (Daoud et al., 2009; Chiò et al., 2011). TDP-43 ist dabei sowohl bei der Regulation der Transkription, des alternativen Spleißen als auch des microRNA-Processing beteiligt.

1.1.8.3 FUS/TLS
Das Fused in sarcoma (FUS) bzw. Translocated in liposarcoma (TLS) Protein ähnelt dem TDP-43 und spielt ebenfalls in der Regulation der Transkription, dem RNA- und microRNA-Processing und dem mRNA-Transport eine wichtige Rolle (Kwiatkowski et al., 2009). Es wurden einige missense-Mutationen hauptsächlich im Exon 14 und 15 entdeckt. Die häufigste ist dabei die Arg521Cys Mutation (Vance et al., 2009). Auch FUS kann neben der typischen ALS, mit FTD oder Parkinson einhergehen (Van Langenhove et al., 2010). Deshalb gelten TDP-43 und FUS auch als Bindeglieder zwischen FTD und ALS. Epidemiologische Studien fanden FUS-Mutationen in 4-6% der fALS- und in 0,7-1,8% der sALS-Fälle (Yan et al., 2010; Millecamps et al., 2010). Zu den Interaktionspartnern von FUS gehört auch das spinale Muskelatrophie assoziierte Protein SMN (Survival of Motor Neuron) (Yamazaki et al., 2012).

1.1.8.4 C9ORF72
1.2 Profilin

1.2.1 Die Profilin-Familie

1.2.2 Aufbau von Profilin1

Profilin1 ist ein kleines, 140 Aminosäure langes Protein, das eine essentielle Funktion bei der Polymerisation von G-Aktin-Monomeren zu F-Aktin-Filamenten besitzt (Witke, 2004). Neben der Aktin-Bindungsdomäne besitzt Profilin eine Phosphoinositid- und eine poly-L-Prolin-Bindungsdomäne (Fan et al., 2012), welche sich aus den C- und N-terminalen Helices des Profilins zusammensetzen. Die Aktin- und poly-L-Prolin-

Abbildung 2: Die Bindungsdomänen des Profilins im Bändermodell

Das Protein Profilin (blau) besitzt drei Bindungsdomänen. Dazu gehört die Aktin-(rot) und die poly-L-Prolin-Bindungsdomäne (gelb), welche räumlich voneinander getrennt sind. Die Phosphoinositid-Bindungsdomäne (grüner Bereich) ist über die Oberfläche des ganzen Moleküls verteilt und kann sowohl die Aktin- als auch die poly-L-Prolin-Bindungsdomäne beeinflussen (Witke, 2004).

Abkürzungen: PtdIns(4,5)P$_2$=Phosphatidylinositol 4,5-bisphosphate

1.2.3 Funktion von Profilin1

Wichtigste bisher bekannte Funktion von Profilin1 ist die Regulation der Aktinpolymerisation und damit auch der Zellmotilität (Witke, 2004; Fan et al., 2012). Doch neben dieser Funktion zeigt sich immer mehr, dass Profilin an der Kontrolle eines komplexen Netzwerks von verschiedenen molekularen Interaktionen beteiligt ist (Witke, 2004). Die Rolle von Profilin in zellulären Prozessen wie membrane trafficking, in Signalwegen als kleine GTPase, die Beteiligung an Prozessen im
Einleitung

Zellkern, sowie die Beteiligung an neurologischen Krankheiten und Tumorentstehungen wird diskutiert (Witke, 2004). In die Aktinpolymerisation greift Profilin auf drei verschiedene Wege ein, die in Abbildung 3 dargestellt sind.

Abbildung 3: Die Rolle des Profilins bei der Polymerisation von Aktin-Filamenten

Abkürzungen: ADP= Adenosindiphosphat; ATP= Adenosintriphosphat

1.2.4 Bindungspartner von Profilin1

Obwohl schon lange bekannt war, dass Profilin Poly-L-Prolin-Bereiche binden kann, wurde erst 1995 das erste Poly-L-Prolin reiche Protein, das vasodilator-stimulated
phosphoprotein (VASP) als Bindungspartner von Profilin entdeckt (Reinhard et al., 1995). VASP ist Bestandteil von focal adhesions und ist ebenfalls an der Regulation der Aktinpolymerisation beteiligt (Krause et al., 2003; Walders-Harbeck et al., 2002). Danach hat die Anzahl der Profilinbindungspartner dramatisch zugenommen und bis jetzt sind über 50 Liganden in verschiedenen Organismen beschrieben. Das spricht für die zentrale Rolle von Profilin in zahlreichen komplexen Netzwerken der Zelle. Auf die Interaktionspartner im Nukleus und die Funktion des Profilins im Zellkern, sowie den Rac–Rho Signalweg wird genauer eingegangen.

Interaktionen im Nukleus

Ein wichtiger Interaktionspartner von Profilin im Zellkern stellt das Protein survival of motor neuron (SMN) dar (Ingre et al., 2013; Wu et al., 2012; Nölle et al., 2011). SMN ist bei der Spinalen Muskelatrophie (SMA) mutiert und colokalisiert mit Profilin1 und Profilin2 in sogenannten nuclear gems (Giesemann et al., 1999). SMN ist ein Teil des SMN-Komplexes, der an der Herstellung von snRNPs (small nuclear ribonucleic particles) beteiligt ist. Die snRNPs bilden mit der pre-mRNA und anderen Proteinen das Spleißosom. Der SMN-Komplex befindet sich bei den meisten Zellen im Zytoplasma und in den nuclear gems (Battle et al., 2006). Nuclear gems sind den Cajal bodys ähnlich und gehören zu den subnuklearen Strukturen. Sie besitzen im Vergleich zu Cajal bodys kein snRNPs, dafür aber das Protein SMN (Matera and Frey, 1998).

Des Weiteren konnte nachgewiesen werden, dass SMN am axonalen Transport beteiligt ist (Fallini et al., 2012). SMN hat zusätzlich eine wichtige Rolle beim Spleiß von mRNA (Nölle et al., 2011). Außerdem konnte gezeigt werden, dass FUS und SMN direkt in den nuclear gems interagieren (Yamazaki et al., 2012). Dabei haben
beide zusammen eine wichtige Funktion beim Axonwachstum (Groen et al., 2013). Es scheint also einen gemeinsamen biochemischen Zusammenhang zwischen den Motoneuronerkrankungen SMA und ALS zugeben. Außerdem stören Anti-Profilin Antikörper in vitro das Spleißen von RNA, was auf eine Funktion des Profilins beim mRNA-Processing hindeuten könnte (Skare et al., 2003).

Der Rac-Rho Signalweg

1.2.5 ALS-verursachende Mutationen in Profilin1

Experimente in Zellkulturen konnten zeigen, dass die Profilin1-Mutanten zur Aggregation neigen. In den mit mutiertem Profilin1 transfizierten N2A-Zellen konnte mit Hilfe der Fluoreszenzmikroskopie in 15–61% der Zellen zytoplasmatische Aggregate des Profilin1 detektiert werden (Wu et al., 2012). Dabei zeigte die C71G-

Eine Strukturanalyse des Profilin1 zeigte, dass sich die 4 Mutationen alle im näheren Bereich der Aktinbindungsstelle (Abb. 4) befinden (Wu et al., 2012; Ingre et al., 2013). In einer Co-Immunpräzipitation konnte dann für die Varianten C71G, G118V und M114T eine reduzierte Bindung zu Aktin gegenüber dem WT gezeigt werden (Wu et al., 2012). Des Weiteren konnte in diesem Zusammenhang noch eine signifikante Abnahme des Axon-Auswuchses und ein um 43-52% verkleinerter Wachstumskegel für diese Mutationen gezeigt werden (Wu et al., 2012). Die innere Struktur des Kegels ist dabei diffus, was durch ein geringeres F-Aktin:G-Aktin Ratio bestätigt wird. Die E117G Variante war dabei überall unauffällig bzw. wurde nicht mehr weiter untersucht (Wu et al., 2012).

Damit konnte gezeigt werden, dass mutiertes Profilin1 die Pathogenese der ALS durch veränderte Aktin-Dynamik und durch Hemmung des axonalen Auswuchses beeinflussen kann. Bei Mutationen im SOD1- und TDP-43-Gen kommt es ebenfalls zu einem reduzierten axonalen Auswuchs (Takeuchi et al., 2002; Duan et al., 2011) und bei FUS-defizienten Mäusen konnte eine reduzierte Anzahl an Spines nachgewiesen werden (Fujii et al., 2005). Dies stellt einen gemeinsamen Mechanismus der verschiedenen ALS-verursachenden Gene dar (Wu et al., 2012).

In der Zwischenzeit wurden auch in anderen Kohorten Sequenzanalysen durchgeführt (Yang et al., 2013; Ingre et al., 2013; Chen et al., 2013; Zou et al., 2013; Lattante et al., 2013). Bis auf eine neue entdeckte T109M-Mutation in einer deutschen ALS-Familie (Ingre et al., 2013) und einer R136W Mutation in einer chinesischen sALS-Patientin (Chen et al., 2013) konnten aber bisher keine weiteren neuen Mutationen in Profilin1 entdeckt werden. Außerdem zeigte sich, dass Profilin1-Mutationen wohl nur in wenigen Fällen die Ursache einer fALS oder sALS sind (Yang et al., 2013).
1.2.6 Die Mutation T109M in Profilin1

Neben Profilin1 sind noch 4 weitere fALS-verursachende Mutationen in Peripherin, Spastin, NF-H und DCTN1 bekannt, die Einfluss auf die Zytoskelettsorganisation haben (Figlewicz et al., 1994; Münch et al., 2004). Motoneurone sind wohl aufgrund ihrer langen axonalen Projektion für Störungen im Zytoskelett sehr empfindlich (Ingre et al., 2013). Unter den mehr als 50 Liganden befinden sich noch drei weitere, die eine entscheidende Rolle bei neurodegenerativen Erkrankungen spielen. Das Valosin-containing protein (VCP) ist bei ALS mit FTLD, der Einschlußkörpermyositis und bei Morbus Page verändert. Das SMN-Protein spielt eine wichtige Rolle bei der Spinalen Muskelatrophie (SMA) und Huntingtin ist bei Chorea Huntington verändert (Ingre et al., 2013; Wu et al., 2012). Die biologische Funktion der Phosphorylierungsstelle 109 ist bisher noch unbekannt, lässt aber vermuten, dass eine veränderte Phosphorylierung zur Pathogenese von ALS oder sogar zur Neurodegeneration im Allgemeinen führen kann (Ingre et al., 2013). Interessanterweise führt eine Phosphorylierung durch eine ROCK-Kinase an einer anderen bekannten Phosphorylierungsstelle, dem Tyrosin 137 in Profilin1, zu einer reduzierten Bildung von Polyglutaminaggregation durch Huntingtin beim Krankheitsbild der Chorea Huntington (Shao et al., 2008).
1.3 Zielsetzung

2 Material und Methoden

2.1 Biologisches Material

2.1.1 Bakterienstämmle

E. coli DH5α (life technologies™)

2.1.2 Eukaryotische Zellen

HEK293-Zellen

2.1.3 Antikörper

Tabelle 1: Verwendete Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5 Mouse Monoclonal Antibody</td>
<td>Western Blot: 1:4000 Immunfärbung: 1:500</td>
<td>life technologies</td>
</tr>
<tr>
<td>anti-PFN-1 (Profilin1) rabbit</td>
<td>Western Blot: 1:1000</td>
<td>SIGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>anti-β-actin rabbit</td>
<td>Western Blot: 1:1000</td>
<td>Cell Signaling Technology</td>
</tr>
<tr>
<td>goat-anti-mouse IgG horseradish peroxygenase conjugated</td>
<td>Western Blot: 1:1000</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>goat-anti-rabbit IgG horseradish peroxygenase conjugated</td>
<td>Western Blot: 1:1000</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>goat-anti-mouse Dylight 594</td>
<td>Immunfärbung: 1:750</td>
<td>Pierce, Thermo Scientific</td>
</tr>
<tr>
<td>goat-anti-rabbit Dylight 488</td>
<td>Immunfärbung: 1:750</td>
<td>Pierce, Thermo Scientific</td>
</tr>
<tr>
<td>anti-TARDBP (TAR DNA-binding protein) rabbit PolyAntibody</td>
<td>Western Blot: 1:2000</td>
<td>Proteintech Group</td>
</tr>
</tbody>
</table>
2.2 Mikrobiologisches Material

2.2.1 Plasmidvektoren

pcDNA3.1/nV5-DEST™ Gateway™ Vector Pack (Invitrogen)

S1 und S2

Diese eukaryotischen Expressionsvektoren basieren ebenfalls auf dem pcDNA3.1 Vektor von Invitrogen und wurden an unserem Institut hergestellt (Danzer et al., 2011). Sie basieren ursprünglich auf den Ergebnissen von Dr. Stephen Michnick (University of Montreal, Montreal, QC, Canada; Remy and Michnick, 2006). S1 codiert für die N-terminale Hälfte der humanisierten Gaussia Luciferase, die C-terminal mit einem gewünschten Protein fusioniert wird. S2 codiert für die entsprechende C-terminale Hälfte der Luciferase, die ebenfalls C-terminal mit einem gewünschten Protein fusioniert wird. Durch Doppeltransfektion mit beiden Vektoren, also S1 und S2, können Protein-Interaktionen im Gaussia Luciferase Complementation-Assay nachgewiesen werden (s.2.12.6). Zu Beginn wurde Profilin1 in den S1-Vektor und β-Aktin in den S2-Vektor kloniert.

2.2.2 Enzyme und Proteine

In der folgenden Tabelle sind alle verwendeten Enzyme/Proteine mit Hersteller aufgelistet, die für diese Arbeit verwendet wurden und nicht Bestandteil eines Kits waren.
Tabelle 2: Verwendete Proteine und Enzyme

Abkürzungen: DNA= Desoxyribonukleinsäure

<table>
<thead>
<tr>
<th>Enzym/Protein</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovines Serumalbumin (BSA)</td>
<td>PAA Laboratories</td>
</tr>
<tr>
<td>Dynabeads® ProteinG for Immunoprecipitation</td>
<td>life technologies</td>
</tr>
<tr>
<td>Lysozyme Biochemica</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Phusion™ High-Fidelity DNA-Polymerase</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Restriktionsenzym(EcoRV, Cial, DpnI)</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>T4 DNA-Ligase</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Taq DNA-Polymerase</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Pfu DNA-Polymerase</td>
<td>Thermo Scientific</td>
</tr>
</tbody>
</table>

2.2.3 Oligonukleotide

Die nachfolgende Tabelle listet alle in dieser Arbeit verwendeten Oligonukleotide, die als Primer für PCR-Reaktionen und Sequenzierungen benötigt wurden und die nicht Bestandteil eines Kits waren, auf. Dabei sind mutierte Tripletts in rot und Restriktionsschnittstellen in grün dargestellt. Zusätzlich ist die Annealingtemperatur (T_{Ann}) angegeben. Alle Oligonukleotide wurden von biomers.net GmbH in Ulm bezogen.

Tabelle 3: Verwendete Oligonukleotide

Abkürzungen: T_{Ann}= Annealingtemperatur

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz 5' nach 3'</th>
<th>T_{Ann}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutagenese Primer S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro_T109M_5'</td>
<td>CTGTCACCAAGACACGACAGATGCTAGTCTCCATTGATGGGC</td>
<td>55°C</td>
</tr>
<tr>
<td>Pro_T109M_3'</td>
<td>GCCCATCAGCAGGACTAGCATCTTTGCAGTTTGGTACAG</td>
<td>55°C</td>
</tr>
<tr>
<td>Pro_T109A_5'</td>
<td>CTGTCACCAAGACACGACAGGCGCTAGTCTCCATTGATGGGC</td>
<td>55°C</td>
</tr>
<tr>
<td>Pro_T109A_3'</td>
<td>GCCCATCAGCAGGACTAGCGCCTTTGCAGTTTGGTACAG</td>
<td>55°C</td>
</tr>
<tr>
<td>Pro_T109D_5'</td>
<td>CTGTCACCAAGACACGACAGGATCTAGTCTCCATTGATGGGC</td>
<td>55°C</td>
</tr>
<tr>
<td>Pro_T109D_3'</td>
<td>GCCCATCAGCAGGACTAGCCTTTGCAGTTTGGTACAG</td>
<td>55°C</td>
</tr>
<tr>
<td>Aktb_5'</td>
<td>ATGGATGATGATGATGCTCGGCTGCG</td>
<td>60°C</td>
</tr>
<tr>
<td>Aktb_3'</td>
<td>CGGATCGATGATGATGCTGCCGC</td>
<td>60°C</td>
</tr>
<tr>
<td>Primer Klonierung S2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktb_3'</td>
<td>ATGGATGATGATGATGCTGCCGC</td>
<td>60°C</td>
</tr>
<tr>
<td>Aktb_3'</td>
<td>CGGATCGATGATGATGCTGCCGC</td>
<td>60°C</td>
</tr>
</tbody>
</table>

21
2.2.4 Kits und Kitbestandteile
Die Tabelle zeigt alle Fertigkits, sowie einzeln erhältliche Kitbestandteile samt Hersteller, die in dieser Arbeit verwendet wurden.

Tabelle 4: Verwendete Kits

<table>
<thead>
<tr>
<th>Kit</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierce® BCA (Bicinchoninsäure) Protein Assay kit</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>QIAprep® Spin Miniprep Kit (250)</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>QIAGEN® Plasmid Maxi Kit (25)</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>SuperSignal® West Pico Chemiluminescent Substrat</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Wizard® SV Gel and PCR (Polymerase Chain Reaction) Clean-Up System</td>
<td>Promega</td>
</tr>
</tbody>
</table>

2.3 Chemikalien

Tabelle 5: Verwendete Chemikalien

Abkürzungen: DNA= Desoxyribonukleinsäure; dNTP= Desoxyribonukleosidtriphosphat; HEPES= 2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure

<table>
<thead>
<tr>
<th>Chemikalien</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceton</td>
<td>SIGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>6xDNA-Ladepuffer</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Ammoniumpersulfat</td>
<td>Roth</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Ampuwa Spüllösung 1000ml</td>
<td>Fresenius</td>
</tr>
<tr>
<td>Bradford Solution for protein determination</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Bromphenolblau Natrium-Salz</td>
<td>Roth</td>
</tr>
<tr>
<td>Calciumchlorid</td>
<td>SiGMA-Aldrich</td>
</tr>
<tr>
<td>Coelenterazin(native-ctz)</td>
<td>P.J.K</td>
</tr>
<tr>
<td>Dextrose=Glukose</td>
<td>SiGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>Dulbecco’s Modified Eagle’s Medium (mit Phenolrot)</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>Dulbecco’s Modified Eagle’s Medium (ohne Phenolrot)</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>DMSO(Dimethylsulfoxid)</td>
<td>SiGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>dNTP Mix, 10mM each</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>D-Sorbitol</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Dulbecco’s Phosphate Buffered Salin</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>EDTA (Ethylendiamintetraacetat)</td>
<td>SiGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>SiGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Apotheke der Uniklinik Ulm</td>
</tr>
<tr>
<td>Materialien</td>
<td>Hersteller</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Ethidiumbromidlösung 1% (10mg/ml)</td>
<td>Roth</td>
</tr>
<tr>
<td>FBS (fetal bovine serum) superior</td>
<td>Biochrom</td>
</tr>
<tr>
<td>FCS (fetal calf serum) Gold, 500ml</td>
<td>PAA Laboratories</td>
</tr>
<tr>
<td>flüssiger Stickstoff</td>
<td>VWR International</td>
</tr>
<tr>
<td>GeneRuler 1kb DNA ladder</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>GeneRuler 100bp DNA ladder</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Glycerin anhydrous</td>
<td>Merck</td>
</tr>
<tr>
<td>Glycin p.A.</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Salzsäure 37%</td>
<td>VWR International</td>
</tr>
<tr>
<td>HEPES</td>
<td>SIGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Apotheke der Uniklinik Ulm</td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td>SIGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>lysogeny broth -Medium (Lennox)</td>
<td>Roth</td>
</tr>
<tr>
<td>lysogeny broth -Medium (Luria/Miller)</td>
<td>Roth</td>
</tr>
<tr>
<td>Methanol</td>
<td>Apotheke der Uniklinik Ulm/VWR</td>
</tr>
<tr>
<td>Magnesiumchlorid</td>
<td>Roth</td>
</tr>
<tr>
<td>Milchpulver</td>
<td>Roth</td>
</tr>
<tr>
<td>Mowiol 4-88</td>
<td>Roth</td>
</tr>
<tr>
<td>Natronlauge</td>
<td>Merck</td>
</tr>
<tr>
<td>Natrumchlorid p.A.</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Natriumdihydrogenphosphat</td>
<td>Roth</td>
</tr>
<tr>
<td>Nonidet® P40 (NP-40= Nonylphenolethoxylat)</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Opti-MEM</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>PageRuler™ Prestained Protein Ladder</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>PEG (Polyethylenglycol) 3350 oder 8000 Rotipuran®</td>
<td>Roth</td>
</tr>
<tr>
<td>PFA (Paraformaldehyd) 4%</td>
<td>Roth</td>
</tr>
<tr>
<td>Poly-D-lysine hydrobromide</td>
<td>SIGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>PonceauS</td>
<td>Roth</td>
</tr>
<tr>
<td>Protease Inhibitor complete Mini 25 tablets</td>
<td>Roche Diagnostics</td>
</tr>
<tr>
<td>Pufferlösung pH 10</td>
<td>WTW</td>
</tr>
<tr>
<td>Pufferlösung pH 4</td>
<td>Roth</td>
</tr>
<tr>
<td>Pufferlösung pH 7</td>
<td>Roth</td>
</tr>
<tr>
<td>Rotiphorese® Gel 30</td>
<td>Bio-Rad Laboratories</td>
</tr>
<tr>
<td>SeaKem LE AGAROSE 500G</td>
<td>Lonza Group</td>
</tr>
<tr>
<td>sodiumdeoxycholate</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Sodiumdodecylphosphat (SDS) pure</td>
<td>AppliChem</td>
</tr>
<tr>
<td>ß-Mercaptoethanol</td>
<td>Merck</td>
</tr>
<tr>
<td>Tetramethylethyldiamin (TEMED) 99% p.a.</td>
<td>Roth</td>
</tr>
<tr>
<td>Trichloressigsäure 20%</td>
<td>Roth</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (Tris(hydroxymethyl)-aminomethan)</td>
<td>AppliChem</td>
</tr>
<tr>
<td>TrisHCL (2-Amino-2-hydroxymethyl-propane-1,3-diol Chlorwasserstoff)</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>SIGMA-Aldrich Chemie</td>
</tr>
<tr>
<td>Trypan Blue Stain 0.4%</td>
<td>Gibco, Life Technologies</td>
</tr>
<tr>
<td>TrypLE Express (Trypsin normal, Zellkultur)</td>
<td>Gibco, Life Technologies</td>
</tr>
<tr>
<td>Tween 20</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Urea 99.5%</td>
<td>Roth</td>
</tr>
</tbody>
</table>

2.4 Verbrauchsmaterialien

Tabelle 6: Verwendete Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Verbrauchsmaterial</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μl tip StackPack</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>10cm Ø Zellkultur Petrischalen</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>12-well Platten Flachboden</td>
<td>Becton Dickinson (BD)</td>
</tr>
<tr>
<td>24-Well Platten Flachboden</td>
<td>Becton Dickinson (BD)</td>
</tr>
<tr>
<td>Agarosegelkammern</td>
<td>Technik Uni Ulm</td>
</tr>
<tr>
<td>Alufolie</td>
<td>Toppits®, Cofresco Frischhalteprodukte</td>
</tr>
<tr>
<td>Aspirationspipetten 2ml</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Aspirationspipetten 2ml, einzel, steril</td>
<td>Roth</td>
</tr>
<tr>
<td>Autoklavierbeutel</td>
<td>VWR International</td>
</tr>
<tr>
<td>Bechergläser</td>
<td>VWR International</td>
</tr>
<tr>
<td>Biosphere FilterTip 20</td>
<td>Sarsted.</td>
</tr>
<tr>
<td>Biosphere FilterTip 200</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Biosphere FilterTip 1250µl, lang</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Cassetts 25/pk 1,5mm</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>cell culture dish,Ø 100mm,steril</td>
<td>Nunc™, Thermo Scientific.</td>
</tr>
<tr>
<td>Cellstar® Tubes 15ml</td>
<td>Greiner Bio-One</td>
</tr>
<tr>
<td>Centrifuge Tubes with scw caps 50ml</td>
<td>VWR International</td>
</tr>
<tr>
<td>CL-XPosure™Film (5x7 inches) Clear blue X-Ray Film</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Deckglas rund à 13mm Nr.11 1000St.</td>
<td>VWR International</td>
</tr>
<tr>
<td>Drigalskispatel</td>
<td>VWR International</td>
</tr>
<tr>
<td>Empty Gel Cassette Combs, Mini, 1,5mm, 10Well</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Falcon Tubes sterile 50ml</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Glasflaschen</td>
<td>DURAN Group</td>
</tr>
<tr>
<td>Gefrier -und Kochfolie</td>
<td>SEVERIN Elektrogeräte</td>
</tr>
<tr>
<td>Hard-Shell 96-well plates wht/clr</td>
<td>Bio-Rad Laboratories</td>
</tr>
<tr>
<td>HTS 96-well Platten, weiß/klar</td>
<td>Becton Dickinson (BD)</td>
</tr>
</tbody>
</table>
2 Material und Methoden

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebebänder</td>
<td>VWR International</td>
</tr>
<tr>
<td>Glaskolben</td>
<td>DURAN Group</td>
</tr>
<tr>
<td>Küchenrolle Violan</td>
<td>Fripa Papierfabrik Albert Friedrich</td>
</tr>
<tr>
<td>Küvetten Halbmikro</td>
<td>VWR International</td>
</tr>
<tr>
<td>Messzylinder</td>
<td>BRAND</td>
</tr>
<tr>
<td>Microscope slides ground edges frosted</td>
<td>VWR International</td>
</tr>
<tr>
<td>Micro-touch® Nitra-tex® Examination gloves</td>
<td>Ansell</td>
</tr>
<tr>
<td>Neubauer Zähkammer (0,1mm)</td>
<td>Paul Marienfeld</td>
</tr>
<tr>
<td>Parafilm</td>
<td>Bemis Company</td>
</tr>
<tr>
<td>Pasteur-Pipetten (Glas, ungestopft)</td>
<td>VWR International</td>
</tr>
<tr>
<td>Petrischalen</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Pinzette</td>
<td>Outils Rubis</td>
</tr>
<tr>
<td>Pipet Tips 1000µl Ultrafine™ Bulk</td>
<td>VWR International</td>
</tr>
<tr>
<td>Pipette tip 200µl yellow</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Plastikbecher</td>
<td>Roth</td>
</tr>
<tr>
<td>Reagenzreservoir, PS, weiß, steril, 25</td>
<td>Roth</td>
</tr>
<tr>
<td>SafeSeal micro tube 2,0ml</td>
<td>Sarsted</td>
</tr>
<tr>
<td>SafeSeal tube 1,5ml</td>
<td>Sarsted</td>
</tr>
<tr>
<td>Serologische Pipetten 5-25ml (einzel, steril und unsteril verpackt)</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Skalpell</td>
<td>Aesculap</td>
</tr>
<tr>
<td>Sponge pad Fox XCell II™ Blotting (8pk)</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Spritzennadel</td>
<td>Becton Dickinson (BD)</td>
</tr>
<tr>
<td>tissue culture-Schale 100x20mm Cell</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Whatman® Chromatography paper 3MM</td>
<td>GE Healthcare Europe</td>
</tr>
<tr>
<td>Whatman™ Membran Protran BA 83</td>
<td>GE Healthcare Europe</td>
</tr>
<tr>
<td>Zellkulturflasche 75cm²</td>
<td>VWR International</td>
</tr>
<tr>
<td>Zellkulturflaschen, Easyflask 175cm² mit Filterkappe steril</td>
<td>VWR International</td>
</tr>
<tr>
<td>Zellschaber 16cm 2-Pos.-Klinge</td>
<td>Sarstedt</td>
</tr>
</tbody>
</table>

2.5 Geräte

Tabelle 7: Verwendete Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20°C Gefrierschrank</td>
<td>comfort</td>
<td>Liebherr-International</td>
</tr>
<tr>
<td>4°C Kühlschrank</td>
<td>comfort</td>
<td>Liebherr-International</td>
</tr>
<tr>
<td>-80°C Gefrierschrank</td>
<td></td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Autoklav</td>
<td>VX-90</td>
<td>Systec</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>HERA cell</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunsenbrenner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labogaz 208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camping Gaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eismaschine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotsman Ice Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrophorese System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-cell GT Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad Laboratories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feinwaage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adventurer™ Feinwaage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohaus Europe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoreszenzmikroskop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observer A1 AX10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carl Zeiss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folienschweißgerät</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS 3602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEVERIN Elektrogeräte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geldokumentationssystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gel iX Imager Windows Version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intas Science Imaging Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelkämme (Agarose)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technik Uni Ulm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelkammern (Agarose)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technik Uni Ulm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizblock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomixer 5436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eppendorf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inkubator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFL Gesellschaft für Labortechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inkubator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heraeus Holding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichtmikroskop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leica Camera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The QuadroMACS™ Separator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miltenyi Biotec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetrührer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT classic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKA®-Werke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetständer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACS MultiStand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miltenyi Biotec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikrowelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWG 782</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clatronic International</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multilabel Reader</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victor®X 3 Multilabel Reader 2030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PerkinElmer LAS (Germany)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanodrop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NanodropTM 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermo Scientific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH-Meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ph 526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BioPhotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eppendorf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PowerWave 200™ Microplate Scanning Spectrophotometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Tek Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipetten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipetten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eppendorf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipettiergerät</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pipetus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirschmann Laborgeräte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Röntgenfilmkassette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amersham hypercassette™ autoradiography cassette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE Healthcare Europe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotator SB 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stuart® „Bibby Scientific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schüttler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edmund Bühle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schüttler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea-saw rocker SSL4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stuart® „Bibby Scientific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDS (Natriumdodecylsulfat) -Gelkammer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xcell SureLock™ Electrophoresis Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invitrogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherheitswerkbank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heraeus Holding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonifikator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonoplus GM70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANDELIN electronic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spannungsgerät</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spannungsgerät -- peqPower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEQLAB Biotechnologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocycler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biometra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermoschüttler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tmix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytik Jena</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tischwaage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scout II Waage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohaus Europe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Material und Methoden

<table>
<thead>
<tr>
<th>Tischzentrifuge</th>
<th>Biofuge pico</th>
<th>Heraeus Holding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vortexer</td>
<td>Vortex-Genie®-2</td>
<td>Scientific Industries</td>
</tr>
<tr>
<td>Wasseraufbereitung</td>
<td>Sartorius stedim arium® pro VF</td>
<td>Sartorius</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>GFL 1083</td>
<td>GFL (Gesellschaft für Labortechnik)</td>
</tr>
<tr>
<td>Western Blot-Module</td>
<td>Xcell II™ Blot Module</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Algegra™ 25R Centrifuge</td>
<td>Beckman Coulter</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Megafuge 1.0</td>
<td>Heraeus Holding</td>
</tr>
</tbody>
</table>

2.6 Computerprogramme

Tabelle 8: Verwendete Computerprogramme

Abkürzungen: DNA= Desoxyribonukleinsäure

<table>
<thead>
<tr>
<th>Programm</th>
<th>Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIMP (GNU Image Manipulation Program)</td>
<td>Bildbearbeitung</td>
</tr>
<tr>
<td>EMBL (European Molecular Biology Laboratory)</td>
<td>Datenbanken für DNA- und Proteininsequenzen</td>
</tr>
<tr>
<td>ImageJ</td>
<td>Bildbearbeitung</td>
</tr>
<tr>
<td>Microsoft Excel 2010</td>
<td>Tabellenbearbeitung</td>
</tr>
<tr>
<td>Microsoft Paint 2010</td>
<td>Bildbearbeitung</td>
</tr>
<tr>
<td>Microsoft Word 2010</td>
<td>Textbearbeitung</td>
</tr>
<tr>
<td>NCBI (National Center for Biotechnology Information)</td>
<td>Datenbanken für DNA- und Proteininsequenzen</td>
</tr>
<tr>
<td>NEBcutter V2.0 (New England Biolabs)</td>
<td>Restriktionsanalyse von DNA-Sequenzen</td>
</tr>
<tr>
<td>zotero</td>
<td>Zitier programm</td>
</tr>
</tbody>
</table>

2.7 Ausgangsmaterialien

Die Gensequenzen des Wildtyps und der Mutationen C71G und G118V von Profilin1 im Vektor pcDNA3.1/nV5-DEST™ wurden von John E. Landers vom Department of Neurology, University of Massachusetts freundlicherweise zur Verfügung gestellt (Wu et al., 2012).

2.8 Mikrobiologische Methoden

2.8.1 Anlegen von bakteriellen Übernachtkulturen

_Lösungen:

- LB-Medium: 25g/l LB-Medium (Luria/Miller)
 → autoklavieren und bei 4°C lagern;
- Antibiotika-Stammlösung (50mg/ml)
Das gewünschte Volumen LB-Medium wurde mit Ampicillin aus der Antibiotika-Stammlösung (50mg/ml) 1:1000 versetzt (Endkonzentration 50µg/ml) und mit etwas Bakterienmaterial aus einer Glycerinkultur oder von einer Agarplatte mit Hilfe einer sterilen Pipettenspitze angeimpft. Das Wachstum der Kulturen erfolgte über Nacht bei 37°C und Schütteln (180rpm) in einem Inkubator.

2.8.2 Glycerinkulturen von Bakterien
Um erfolgreich transformierte Bakterien aufzubewahren, wurden Glycerinkulturen angelegt. Dazu wurden 900µl einer Übernachtkultur mit 150µl 100% Glycerin (Endkonzentration ca.15%) vermischt und bei -80°C eingefroren. Dort waren die Kulturen dann jahrelang haltbar.

2.8.3 Agarplatten mit einer Bakterienkultur beimpfen
Lösungen:
- LB-Agar: 35g/l LB-Medium (Lennox) → autoklavieren; Lagerung bei 4°C;
- Antibiotika Stammlösungen (50mg/ml)

2.8.4 Herstellung chemisch kompetenter Bakterien
Lösungen:
- TSS („transformation and storage solution“)
 LB-Medium (siehe 2.8.1) mit
 10% (w/v) PEG 3350 oder 8000
 5% (v/v) DMSO
 40mM Mg^{2+} (MgSO_{4} oder MgCl_{2})
 → pH 6,5; steril filtrieren; Lagerung bei -20°C;
Damit Bakterien zur Transformation geeignet waren, mussten sie erst chemisch modifiziert werden. Dazu wurden 100ml LB-Medium mit 1ml Übernachtkultur des Bakterienstammes angeimpft. Diese Flüssigkultur wurde dann solange bei 37°C und Schütteln inkubiert, bis eine OD$_{600}$ von 0,3-0,4 gemessen wurde. Die Bakterienlösung wurde dann bei 4000rpm und 4°C für 10min pelletiert und der Überstand verworfen. Das Bakterienpellet wurde dann rasch in 2,5ml (= 1/40 des Kulturvolumens) eiskaltem TSS resuspendiert und sofort à 100µl auf 1,5ml Reaktionsgefäße verteilt. Dabei sollten die Reaktionsgefäße schon auf Eis stehen. Die Aliquots sollten direkt in flüssigen N$_2$ eingefroren werden und können dann mehrere Monate bei -80°C gelagert werden. Wichtig war, dass nach dem Resuspendieren der Bakterien zügig gearbeitet wurde, damit die Bakterien sich auf gar keinen Fall erwärmten. Dies hätte sich sonst negativ auf die Kompetenz der Bakterien ausgewirkt.

2.8.5 Transformation kompetenter Bakterien mit Plasmid-DNA

Als Transformation bezeichnet man das Einbringen von Plasmid-DNA in kompetente Bakterien. Zunächst wurde ein Aliquot (100µl) des kompetenten Bakterienstammes auf Eis aufgetaut und mit der Plasmid-DNA vermischt. Für eine erfolgreiche Transformation der *E.coli*-Stämme wurden etwa 5-10ng Plasmid-DNA benötigt. Bei Ligationen wurde immer der komplette Ansatz (~20µl) für die Transformation verwendet. Danach wurde alles min.45min auf Eis inkubiert. Anschließend folgte ein 30s langer Hitzeschock im vorgeheizten Thermoblock bei 42°C und sofortiges Rückstellen des Ansatzes auf Eis. Daraufhin gab man dem Ansatz noch 900µl LB-Medium zu und inkubierte ihn für 1h bei 37°C und leichtem Schütteln (400rpm) im Thermoblock. Anschließend pelletierte man die Bakterien für 5min bei 5000rpm in einer Tischzentrifuge und verwarf ca. 90% des Überstandes. Das Bakterienpellet wurde in den restlichen ~100µl resuspendiert und zur Selektion auf Agarplatten mit Ampicillinresistenz steril ausplattiert (s.2.8.3) und über Nacht bei 37°C im Brutschrank inkubierte.

2.8.6 Photometrische Bestimmung der Bakteriendichte

Für die Herstellung von chemisch kompetenten Bakterien ist es wichtig die Bakteriendichte in einer Flüssigkultur zu bestimmen, um die Bakterien in der richtigen Wachstumsphase zu behandeln. Dazu wurde die Extinktion (optische Dichte) von 1ml Flüssigkeitskultur bei einer Wellenlänge von 600nm gemessen. Als Leerwert diente
1ml des verwendeten Mediums. Bei einer Schichtdicke der Küvette von 1cm errechnete sich mit Hilfe des Lambert-Beerschen Gesetzes bei einer OD$_{600}$ von 1 eine Bakteriendichte von 8×10^8 Zellen.

2.9 Molekularbiologische Methoden

2.9.1 Konzentrationsbestimmung von DNA

2.9.2 Isolierung von Plasmid-DNA aus *E.coli*

Wurden größere Mengen Plasmid-DNA benötigt wie z.B. für die Transfektion von HEK293-Zellen, wurde ausgehend von 100-200ml *E.coli* ÜNK mit dem QIAGEN® Plasmid Maxi Kit (Qiagen) nach Herstellerangaben gearbeitet. Die Plasmid-DNA wurde in 200µl H$_2$O eluiert und erreichten Konzentrationen von 1-4µg/µl. Die Plasmid-DNA wurde dann jeweils bei -20°C gelagert.

2.9.3 PCR (Polymerase-Kettenreaktion)

Mit Hilfe einer PCR lassen sich DNA-Sequenzen selektiv vervielfältigen. Durch Erhitzen lösen sich die Wasserstoffbrückenbindungen, die die doppelsträngige DNA zusammenhalten, auf und die DNA liegt einzelsträngig vor. An diese Einzelstränge können nun hitzestabile Polymerasen, meist aus thermophilen Bakterien, einen neuen DNA-Strang synthetisieren. Dabei dient der alte Strang als Matrize. Da die
DNA-Polymerase für ihre Arbeit ein freies 3’OH Ende braucht, werden sogenannte Primer benötigt. Dies sind kurze einzelsträngige Oligonukleotide die mit dem 5‘ bzw. 3’ Ende hybridisieren und von der DNA-Polymerase in 5’→ 3’ Richtung verlängert werden. Dabei hybridisiert der 3’Primer mit dem Hauptstrang und der 5’Primer mit dem Gegenstrang um eine Verdopplung der Zielsequenz zu erreichen. Die Abläufe Schmelzen der template-DNA (Denaturierung), Hybridisierung der Primer (Annealing) und Synthese eines neuen DNA-Stranges (Elongation) wiederholen sich mehrfach und sorgen so für eine exponentielle Vermehrung der Zielsequenz. Da in jeder der drei Phasen unterschiedliche optimale Arbeitstemperaturen benötigt werden, läuft die Reaktion in einem Thermocyler ab. Außer der template-DNA und den spezifischen 3’ und 5’ Primern werden noch dNTPs für die Synthese neuer DNA-Stränge und Mg²⁺ Ionen für die Aktivität der DNA-Polymerase benötigt.

2.9.3.1 Primergestaltung

Die verwendeten Oligonukleotide bzw. Primer sind für eine erfolgreiche PCR mit entscheidend. Zunächst einmal sollte ihre komplementäre Sequenz nur einmal in der template-DNA vorkommen. Sie sollten nicht mit sich selbst oder dem zweiten Primer hybridisieren, keine intramolekularen Schleifen bilden und die Annealingtemperatur der verwendeten Primer sollte etwa gleich sein und idealerweise zwischen 50-60°C liegen. Diese lässt sich mit folgender Formel berechnen, wobei nur die Basen mitgezählt werden dürfen die hybridisieren.

\[T_{\text{Ann}} = 2^\circ \text{C} \cdot (A + T) + 4^\circ \text{C} \cdot (G + C) \]

DNA-Sequenzen, auch die Primer, werden nach einer Konvention immer von 5‘ nach 3‘ angegeben. Folglich lässt sich der 5’Primer, dieser hybridisiert mit dem Gegenstrang, einfach aus der der Zielsequenz abschreiben. Der 3’Primer dagegen muss rückwärts-komplementär zur Zielsequenz geschrieben werden.
2 Material und Methoden

2.9.3.2 PCR mit der Phusion™ DNA-Polymerase

Um bestimmte Zielsequenzen, die für Klonierungen benötigt wurden, zu vermehren, wurde die Phusion™ High-Fidelity DNA-Polymerase verwendet. Diese zeichnet sich durch eine hohe Arbeitsgeschwindigkeit bei niedriger Fehlerquote aus. Als template-DNA diente meist cDNA aus H4-Zellen. Mg^{2+}-Ionen waren bereits im Reaktionspuffer enthalten. Standardmäßig wurde ein Ansatz von 50µl verwendet und alles auf Eis pipettiert.

Pipettierschema für eine Phusion™- PCR (50µl):

- template-DNA
- 10µl 5x Phusion™ Reaktionspuffer HF
- 1µl dNTPs (je 10mM)
- 1µl 5’Primer (10µM)
- 1µl 3’Primer (10µM)
- 0,5µl Phusion™ DNA-Polymerase
- add. H₂O

50µl insgesamt

Als letztes wurde immer die Phusion DNA-Polymerase hinzupipettiert und gemischt. Anschließend lief die Reaktion im Thermocycler nach dem in Tab.9 dargestellten Programm ab.

Tabelle 9: PCR-Programm für die Phusion™ DNA-Polymerase

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale Denaturierung</td>
<td>2min</td>
<td>98°C</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>30s</td>
<td>98°C</td>
</tr>
<tr>
<td>Annealing</td>
<td>30s</td>
<td>Primer abhängig</td>
</tr>
<tr>
<td>Elongation</td>
<td>ca.20s/1000bp</td>
<td>72°C</td>
</tr>
<tr>
<td>finale Elongation</td>
<td>7min</td>
<td>72°C</td>
</tr>
<tr>
<td>Kühlung</td>
<td></td>
<td>4°C</td>
</tr>
</tbody>
</table>

Zur Kontrolle der Reaktion wurde anschließend eine Agarose-Gelelektrophorese durchgeführt.
2.9.3.3 Kolonie-PCR mit der Taq DNA-Polymerase

Pipettierschema für eine Kolonie-PCR (25μl):

- 0,5μl dNTPs (10mM)
- 2,5μl Taq DNA-Polymerase 10x Reaktionspuffer mit KCl
- 1,5μl MgCl₂ (25mM)
- 0,25μl 3′Primer (10μM)
- 0,25μl 5′Primer (10μM)
- 0,5μl Taq DNA-Polymerase
- Add. H₂O

25μl insgesamt

Die zu untersuchenden Kolonien wurden zunächst mit Hilfe einer sterilen Pipette auf eine weitere Agarplatte mit Ampicillin übertragen, um mögliche positive Klone später identifizieren zu können, und dann direkt in den PCR-Ansatz gegeben. Die Platte wurde dann mehrere Stunden bis teilweise über Nacht bei 37°C inkubiert, damit zum Animpfen einer ÜNK Kolonien zur Verfügung standen. Als letztes wurde immer die Taq-Polymerase hinzupipettiert und gut gemischt. Anschließend lief die Reaktion im Thermocycler nach folgendem Programm in Tab.10 ab.
Tabelle 10: PCR-Programm für Kolonie-PCR

Abkürzungen: PCR= Polymerase Chain Reaction, min= Minute, s= Sekunde; bp= Basenpaare; °C= Grad Celsius

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale Denaturierung</td>
<td>2min</td>
<td>95°C</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>30s</td>
<td>95°C</td>
</tr>
<tr>
<td>Annealing</td>
<td>30s</td>
<td>Primer abhängig</td>
</tr>
<tr>
<td>Elongation</td>
<td>1min/1000bp</td>
<td>72°C</td>
</tr>
<tr>
<td>finale Elongation</td>
<td>10min</td>
<td>72°C</td>
</tr>
<tr>
<td>Kühlung</td>
<td></td>
<td>4°C</td>
</tr>
</tbody>
</table>

Zur Kontrolle der Reaktion wurde anschließend eine Agarose-Gelelektrophorese durchgeführt.

2.9.3.4 Mutagenese-PCR

\[T_m=81.5 + 0.41(\%GC) - 675/N - %\text{mismatch} \]

\(N=\text{Basenlänge des Primers} \)

Die gewünschte Mutation sollte sich in der Mitte der Primer befinden, so dass davor und danach 10-15 korrekte Basen folgen. Als template-DNA diente hier der zur Verfügung stehende pcDNA3.1/nV5-DEST™-Vektor mit der Profilin1-Wildtypsequenz (s.2.7). Die Primer sollten außerdem min. einen GC-Gehalt von 40% haben und auf ein oder mehrere G oder C Basen enden.
Pipettierschema für eine Mutagenese-PCR (50μl):

- 1μl template-DNA (ca. 20ng)
- 5μl 10x Reaktionspuffer
- 1μl 5’Primer (10μM)
- 1μl 3’Primer (10μM)
- 1μl dNTPs (je 10mM)
- 1μl *Pfu* DNA-Polymerase (2.5U/μl)
- add. H$_2$O

50μl insgesamt

Als letztes wurde wie immer die *Pfu* DNA-Polymerase hinzugefügt. Alle Ansätze wurden auf Eis pipettiert. Anschließend lief die Reaktion im Thermocycler nach folgendem Programm in Tab.11 ab.

Tabelle 11: PCR-Programm für Mutagenese-PCR

Abkürzungen: PCR= Polymerase Chain Reaction, min= Minute, s= Sekunde; bp= Basenpaare; °C= Grad Celsius

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale Denaturierung</td>
<td>30s</td>
<td>95°C</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>30s</td>
<td>95°C</td>
</tr>
<tr>
<td>Annealing</td>
<td>1min</td>
<td>55°C</td>
</tr>
<tr>
<td>Elongation</td>
<td>1min/500bp</td>
<td>68°C</td>
</tr>
<tr>
<td>Kühlung</td>
<td></td>
<td>4°C</td>
</tr>
</tbody>
</table>

12-18 Zyklen

Abschließend wurde das PCR-Produkt mit dem Wizard® SV Gel and PCR Clean-Up System (Promega) nach Herstellerangaben aufgereinigt (s.2.9.5). Um den jetzt noch vorhandenen ursprünglichen Matrizenstrang, der die Mutation nicht enthält, zu entfernen, bediente man sich dem Restriktionsenzym *DpnI*. Diese Endonuclease ist spezifisch für methylierte und hemimethylierte DNA und baut den elterlichen Strang ab. Wichtig ist also, dass das Plasmid aus einem *dam methylierenden E.coli Stamm* kommt. Dabei nahm man das komplette aufgereinigte PCR-Produkt und führte einen Restriktionsverdau mit *DpnI* durch (s.2.9.4). Nach anschließender erfolgreicher Transformation und Animpfen einer ÜNK ließ sich mit einer Sequenzierung der Erfolg der Mutagenese-PCR kontrollieren.
2.9.4 Restriktionsverdau

Standardansatz Restriktionsverdau (40μl):
- bis zu 6μg DNA
- 4μl Fast Digest 10x Reaktionspuffer
- 1μl Restriktionsenzym
- Add H₂O

40μl insgesamt

2.9.5 Aufreinigung von DNA-Fragmenten und Vektoren in Lösung
Während der Klonierungsschritte musste man die DNA-Fragmente und Vektoren oft von Puffern und Enzymen aus vorher stattgefunden Reaktionen befreien. Dazu wurde das Wizard® SV Gel and PCR Clean-Up System (Promega) nach Herstellerangaben benutzt und standardmäßig in 30μl H₂O eluiert. Danach waren die Vektoren und DNA-Fragmente für die nächsten Klonierungsschritte aufgereinigt.
2.9.6 Agarose-Gelelektrophorese

Lösungen:

- 10x TAE-Puffer: 2M Tris
 1M Essigsäure
 50mM EDTA
 → ph 8

- 6x DNA-Ladepuffer
- Ethidiumbromid-Stammlösung 10mg/ml

Tabelle 12: Trennbereiche und optimale Agarosekonzentrationen
Abkürzungen: bp= Basenpaare; w/v= Massenprozent

<table>
<thead>
<tr>
<th>Fragmentgröße (bp)</th>
<th>Agarosekonzentration (w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-30000</td>
<td>0,50%</td>
</tr>
<tr>
<td>800-12000</td>
<td>0,70%</td>
</tr>
<tr>
<td>500-7000</td>
<td>1,00%</td>
</tr>
<tr>
<td>400-6000</td>
<td>1,20%</td>
</tr>
<tr>
<td>200-3000</td>
<td>1,50%</td>
</tr>
<tr>
<td>100-2000</td>
<td>2,00%</td>
</tr>
</tbody>
</table>

Routinemäßig wurden hier 1%ige Agarosegele verwendet, da sich die meisten zu untersuchenden Fragmente im Größenbereich von 100-8000bp befanden. Dabei löste man je nach Gelgröße 0,4-1,2g Agarose in 40-120ml TAE-Puffer und kochte diese in der Mikrowelle auf, bis sich die Agarose vollständig gelöst hatte. Damit die DNA später detektiert werden konnte, wurde der Agaroselösung nach Abkühlen auf ca.50°C noch Ethidiumbromid in einer Verdünnung von 1:30.000 hinzugefügt. Ethidiumbromid interkaliert in die DNA und fluoresziert unter UV Licht. Die noch flüssige Lösung goss man in vorgefertigte Gelkammern und fügte noch einen Kamm, in dessen Vertiefungen später die Proben aufgetragen wurden, ein. Nach erstarrer der Agaroselösung (ca.20min) wurde der Kamm und die Dichtungen entfernt. Das Gel wurde nun in eine Elektrophoresekammer gelegt und mit TAE-Puffer gefüllt. Dabei musste darauf geachtet werden, dass das Gel vollkommen von Puffer umgeben ist.
Die aufzutragenden Proben wurden mit mind. 1/6 des entsprechenden Volumens 6xDNA-Ladepuffer versetzt und vorsichtig in die Taschen pipettiert. Zusätzlich wurden 10µl eines DNA-Markers, der ein Gemisch aus definierten DNA-Fragmenten verschiedener Größen enthält, aufgetragen. Je nach zu erwartender Größe der Fragmente wurde der 100bp (100-1500bp) oder der 1kb (500-10000bp) DNA ladder aufgetragen.

Die Elektrophorese fand dann standardmäßig bei konstanten 120V statt. Mit Hilfe eines UV-Transilluminators konnte die DNA im Gel detektiert werden und mit einer CCD-Kamera dokumentiert werden.

2.9.7 Gelextraktion

2.9.8 Ligation

Bei Klonierungen wurde die Ligation benutzt um ein DNA-Fragment kovalent in ein Plasmid einzufügen. Dafür wurde die T4 DNA-Ligase benutzt, da diese sowohl „sticky ends“ als auch „blunt ends“ miteinander verbinden kann. Die Ansätze wurden auf Eis pipettiert.

Pipettierschema eines Ligationsansatzes (20µl):

- 100-150ng vorbereiteter DNA-Vektor
- ca. 3-20x molarer Überschuss des Inserts (ca. 5-10µl bei Inserts ≤ 500bp bzw. 10-15µl bei Inserts > 500bp)
- 2µl T4 DNA-Ligase 10x Reaktionspuffer
- 1µl T4 DNA-Ligase
- add. H₂O

20µl insgesamt
Zuletzt wurde immer die DNA-Ligase hinzugefügt. Die Ansätze wurden für 1-3h bei Raumtemperatur inkubiert. Für die Transformation in einen *E. coli* Klonierungstamm wurde immer der komplette Ligationsansatz verwendet.

2.9.9 DNA-Sequenzierung

2.10 Klonierung von DNA-Fragmenten

Die Sequenz der jeweiligen DNA-Fragmente ist in verschiedenen Datenbanken wie z.B. NCBI oder EMBL frei zugänglich. Bevor man mit der Klonierungsarbeit beginnt, wurden die Sequenzen mit Hilfe des Programms NEBcutter V2.0 auf eventuell vorhandene Restriktionsschnittstellen überprüft.

Gewinnung der Inserts

Die Inserts wurden durch PCR mit der Phusion™ High-Fidelity DNA-Polymerase (2.9.3.2) gewonnen. Als template-DNA diente dabei die cDNA aus H4-Zellen. Zur Kontrolle der PCR trennte man die PCR-Produkte durch Agarose-Gelelektrophorese (2.9.6) auf und gewann diese durch Gelextraktion (2.9.7) wieder zurück. Die so hergestellten Inserts wurden direkt mit dem entsprechenden Restriktionsenzym/en verdaut (2.9.4) und standen nach einer weiteren Aufreinigung (2.9.5) der Ligation (2.9.8) zur Verfügung.

Vorbereitung des Vektors

Mit dem Vektor wurde zunächst ein Restriktionsverdau (2.9.4) durchgeführt. Dabei wurden 5-6µg eingesetzt. Danach trennte man das Produkt mit Hilfe der Agarose-Gelelektrophorese (2.9.6) auf und gewann es durch Gelextraktion (2.9.7) wieder zurück. Da der Vektor in dieser Arbeit ausschließlich mit zwei verschiedenen
Restriktionsenzymen verdaut wurde, war dieser nun direkt bereit für die Ligation (2.9.8).

Ligation, Transformation und Kontrolle der Klone
Für die Transformation (2.8.5) in einen kompetenten E.coli-Klonierungsstamm (2.8.4) wurde immer der komplette Ligationsansatz verwendet und auf Agarplatten mit den entsprechenden Antibiotika ausplattiert (2.8.3). Die über Nacht angewachsenen Klone wurden mit einer Kolonie-PCR (2.9.3.3) überprüft und man legte von den Klonen mit nachgewiesenem Insert eine ÜNK (2.8.1) an. Die daraus isolierten Plasmide (2.9.2) wurden sequenziert (2.9.9) und kontrolliert, ob das Insert im gleichen Leseraste sowie N- oder C-terminale tags des Vektors vorlagen. Außerdem wurde die komplette Sequenz des Inserts nochmals überprüft (NCBI Blast) um mögliche Fehler der DNA-Polymerase auszuschließen. Waren diese Kontrollen alle fehlerfrei, wurden für eine langfristige Lagerung und Sicherung Glycerinkulturen (2.8.2) dieser Klone angelegt.

2.11 Allgemeine proteinbiochemische Methoden

2.11.1 SDS-PAGE nach Laemmli (1970)

Lösungen:

- Lösung A: Rotiphorese® Gel 30 (37,5:1; 30% (w/v) Acrylamid, 0,8% (w/v) Bisacrylamid; Roth) →Lagerung lichtgeschützt
- Lösung B: 1,5M Tris-HCl, pH 8,8
- Lösung D: 0,5M Tris-HCl, pH 6,8
- 20% (w/v) SDS (Natriumdodecylsulfat)
- 10% (w/v) APS (Ammoniumpersulfat, Lagerung kurzfristig 4°C; längerfristig -20°C)
- TEMED (Lagerung 4°C; Roth)
- Laufpuffer: 25mM Tris
 192mM Glycin
 1g/l SDS → keine Einstellung des pH notwendig;
- 1x Probenpuffer: 100mM Tris-HCl (pH 6,8)
 1% (w/v) SDS
 10% (v/v) Glycerin
5% (v/v) β-Mercaptoethanol
Spatelspitze Bromphenolblau, bis Lösung
tiefblau → Lagerung lichtgeschützt;

Gießen der Gele

Tabelle 13: Zusammensetzung für ein Trenngel
Abkürzungen: SDS= Natriumdodecylsulfat; APS= Ammoniumpersulfat; TEMED= Tetramethyl-ethylen diamin; H2O= Wasser; µl= Mikroliter; ml= Milliliter

<table>
<thead>
<tr>
<th></th>
<th>8%</th>
<th>10%</th>
<th>12%</th>
<th>15%</th>
<th>16%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösung A</td>
<td>2,5ml</td>
<td>3,125ml</td>
<td>3,75ml</td>
<td>4,5ml</td>
<td>4,8ml</td>
</tr>
<tr>
<td>Lösung B</td>
<td>5ml</td>
<td>5ml</td>
<td>5ml</td>
<td>5ml</td>
<td>5ml</td>
</tr>
<tr>
<td>20% SDS</td>
<td>50µl</td>
<td>50µl</td>
<td>50µl</td>
<td>50µl</td>
<td>50µl</td>
</tr>
<tr>
<td>10% APS</td>
<td>100µl</td>
<td>100µl</td>
<td>100µl</td>
<td>100µl</td>
<td>100µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>10µl</td>
<td>10µl</td>
<td>10µl</td>
<td>10µl</td>
<td>10µl</td>
</tr>
<tr>
<td>H2O</td>
<td>2,35ml</td>
<td>1,7ml</td>
<td>1,05ml</td>
<td>0,35ml</td>
<td>40µl</td>
</tr>
</tbody>
</table>

Tabelle 14: Zusammensetzung für ein Sammelgel
Abkürzungen: SDS= Natriumdodecylsulfat; APS= Ammoniumpersulfat; TEMED= Tetramethyl-ethylen diamin; H\textsubscript{2}O= Wasser; µl= Mikroliter; ml= Milliliter

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösung A</td>
<td>750µl</td>
</tr>
<tr>
<td>Lösung B</td>
<td>1,275ml</td>
</tr>
<tr>
<td>20% SDS</td>
<td>25µl</td>
</tr>
<tr>
<td>10% APS</td>
<td>50µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>5µl</td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
<td>2,925ml</td>
</tr>
</tbody>
</table>

Vorbereitung der Proben und beladen der Gele

Gelelektrophorese
Nach dem Beladen der Taschen wurde die Kammer verschlossen und die Gelelektrophorese bei konstanten 125V durchgeführt bis die Bromphenolblaufront das letzte untere Drittel erreicht hatte. Mit Hilfe eines Spachtels konnte die Gelkassette geöffnet und das Gel vorsichtig herausgeholt werden. Abschließend
wurden das Sammelgel und überstehende Ränder des Gels entfernt. Nun konnte das Gel für einen Western Blot (s. 2.11.2) weiter verwendet werden.

2.11.2 Western Blot
Mit Hilfe des Western Blots können sehr kleine Mengen eines Proteins hochspezifisch nach vorheriger Auftrennung durch SDS-PAGE nachgewiesen werden.

2.11.2.1 Proteintransfer auf eine Nitrocellulose-Membran

Lösungen:

- **WB-Puffer:**
 - 25mM Tris
 - 192mM Glycin
 - 20% Methanol
- **TBS-T:**
 - 150mM NaCl
 - 10mM Tris
 - 0,1% (v/v) Tween® 20
 → pH 7,4
- **10% (w/v) Milch in TBS-T** → pH 7,4-7,6
- **Ponceau S:** 0,2% (w/v) Ponceau S in 3% (v/v) Trichloressigsäure

Abbildung 5: Aufbau des XCell II™ Blot Modul von Life Technologies

2.11.2.2 Ponceau S-Färbung
Nach dem Transfer inkubierte man die Membran für ein paar Minuten in PonceauS und entfärbte sie mit ddH₂O um Proteine zu Färben und den Erfolg des Transfers zu überprüfen. Anschließend sättigte man die Membran in 10% Milchpulver in TBS-T 1-2h unter Schütteln bei Raumtemperatur ab (Blocken).

2.11.2.3 Proteinnachweis mit spezifischen Antikörpern
Als nächstes wurden die primären Antikörper nach entsprechender Verdünnung (Tab.1) in 2ml 10% Milchpulver in TBS-T verdünnt und mit der Membran eingeschweißt. Diese wurde über Nacht bei 4°C und Schütteln inkubiert. Der primäre Antikörper war spezifisch zum Nachweis des Proteins.
Am nächsten Tag wurde die Membran jeweils 3mal für 10min unter Schwenken mit TBS-T gewaschen. Der zum primären Antikörper passende sekundäre Antikörper (mouse/rabbit) wurde ebenfalls in 2ml 10% Milchpulver in TBS-T verdünnt (Tab.1) und mit der Membran eingeschweißt. Dies wurde dann anschließend für 1h bei Raumtemperatur und Schütteln inkubiert. Danach wurde die Membran wieder jeweils 3mal für 10min unter Schwenken mit TBS-T gewaschen.
Daraufhin wurde die Membran mit je 500μl Luminol/Enhancer und Stable Peroxide Buffer (SuperSignal® West Pico Chemiluminescent Substrate) inkubiert und in eine Plastikfolie, welche in einer Röntgenfilmkassette befestigt war, gelegt. Anschließend wurde ein lichtempfindlicher Film (CL-XPosure™Film Clear blue X-Ray Film) in der Dunkelkammer auf die Membran gelegt und die Kassette geschlossen. Je nach Signalstärke schwankte die Expositionsduer zwischen wenigen Sekunden bis zu
2 Material und Methoden

20 min und musste jedes Mal empirisch bestimmt werden. Danach wurde der Film in einer konventionellen Filmentwicklungsmaschine bearbeitet. Abschließend wurde noch der Längenmarker auf den Film übertragen.

2.11.3 Konzentrationsbestimmungen von Proteinen nach Bradford

2.11.4 Bestimmung der Proteinkonzentration mit dem Pierce® BCA Protein Assay Kit

2.11.5 Co-Immunpräzipitation mit Hilfe von Dynabeads® Protein G
Mit Hilfe einer Co-Immunkomplexierung können bestimmte Antigene (Proteine) mit Hilfe eines Antikörpers aus einer Lösung konzentriert werden. Dadurch lassen sich zum Beispiel Protein-Protein Interaktionen in vitro untersuchen. Dazu benötigt man zum einen einen spezifischen Antikörper für das Protein und zum anderen einen Interaktionspartner der an den Antikörper bindet. Bei dieser Arbeit wurde dabei auf das Dynabeads® Protein G von Life Technologies zurückgegriffen. Das Protein G stammt aus der Zellwand von bestimmten Streptokokkenstämmen und bindet mit hoher Spezifität die Fc-Region vom Immunoglobulin G. Dieses Protein G ist an
supermagnetische Partikel gebunden und lässt sich dann mit Hilfe eines Magneten aus der Lösung abtrennen.

Absättigen der Dynabeads
Als erstes wurden die HEK293-Zelllysate mit der Konzentration von 2mg/ml auf Eis aufgetaut. Da die Dynabeads in DBPS gelöst waren, konnte auf eine Äquilibrierung verzichtet werden. Das Dynabeads® Protein G wurde kurz gevortext und jeweils 10µl zu jeder Probe pipettiert. Daraufhin wurden die Proben 1h bei 4°C auf einem Rotator inkubiert. Danach wurde die Dynabeads mit Hilfe eines Magneten abgetrennt, um unspezifische Bindungen von Proteinen mit den Dynabeads vorher abzutrennen. Anschließend wurde den Proben jeweils 1µl des spezifischen V5-tag Antikörpers hinzugegeben und die Proben über Nacht auf einem Rotator bei 4°C inkubiert. Am nächsten Tag wurde den Proben dann jeweils 10µl Dynabeads hinzugefügt und die Proben ein erneutes Mal bei 4°C auf dem Rotator für 1h inkubiert.

Waschen mit DBPS
Jetzt wurden die Dynabeads mit Hilfe des Magneten abgetrennt und der Überstand verworfen. Die Dynabeads resuspendierte man in 200µl RIPA und inkubierte die Proben für 5min bei 4°C auf dem Rotator. Diesen Waschvorgang mit RIPA wiederholte man 4mal um weitere unspezifische Bindungen zu vermeiden.

Elution der Proteine
Danach wurden die Dynabeads in 15µl Harnstoff und 15µl 1xProbenpuffer (siehe SDS-PAGE) eluiert. Anschließend wurden die Proben zum Denaturieren der Proteine 5-10min auf 95°C erhitzt. Danach sollte keine Proteinbindung an die Dynabeads mehr bestehen und diese konnten mit Hilfe eines Magneten entfernt werden. Die Proben waren jetzt für eine SDS-PAGE mit anschließendem Western Blot vorbereitet (s.2.11.1 und 2.11.2). Zum Nachweis von Profilin1 wurde 1/5 der Co-Immunpräzipitation aufgetragen, die restliche Probe wurde zum Nachweis der Interaktionspartner von Profilin1 verwendet.

2.12 Zellbiologische Methoden
2.12.1 HEK293-Zellen kultivieren
HEK293-Zellen wurden im Nährmedium DMEM mit und ohne Phenolrot in verschiedenen großen Zellkulturflaschen kultiviert. Das Nährmedium war dabei mit 10% FCS versetzt. Die HEK293-Zellen wurden dann bei 37°C und 5% CO₂ inkubiert und
alle paar Tage, wenn die Oberfläche größtenteils lückenlos bedeckt war (vollständige Konfluenz), in neue Zellkulturflaschen passagiert.

2.12.2 Aussäen und Transfektion von HEK293-Zellen

Aussäen von HEK293-Zellen

Kammerfaktor (bei uns 10^4) x Verdünnung (2-4) x Zellzahl (Mittelwert der Quadranten) = Gesamtzahl der Zellen/ml

Nun konnte die Zellsuspension auf die passende Zellzahl eingestellt werden und je nach Format im entsprechenden Volumen, wie in Tab.15 zu sehen, ausgesät werden.

Tabelle 15: Schema zum Aussäen von HEK293-Zellen

<table>
<thead>
<tr>
<th>Format</th>
<th>Zellen aussä</th>
<th>DMEM 10%FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>96well Platte</td>
<td>10^4</td>
<td>100µl</td>
</tr>
<tr>
<td>24well Platte</td>
<td>5×10^5</td>
<td>500µl</td>
</tr>
<tr>
<td>12well Platte</td>
<td>10^5</td>
<td>800µl</td>
</tr>
<tr>
<td>Ø 6cm Schale</td>
<td>7×10^5</td>
<td>5ml</td>
</tr>
<tr>
<td>Ø 10cm Schale</td>
<td>$1,7 \times 10^6$</td>
<td>10ml</td>
</tr>
</tbody>
</table>

Abkürzungen: DMEM= Dulbecco's Modified Eagle's Medium; FCS= fetal calf serum; cm= Zentimeter; HEK293-Zellen= Human Embryonic Kidney-Zellen
Transfektion der HEK293-Zellen

Lösungen:

- **2xHBS:**
 - 280mM NaCl
 - 10mM KCl
 - 1,5mM Na$_2$HPO$_4$
 - 12mM Dextrose
 - 50mM HEPES

 → ph 7,04, steril filtriert; Lagerung -20°C

- **2,5M CaCl$_2$:** steril filtriert; Lagerung -20°C

24h nach dem Aussäen standen die Zellen zur Transfektion bereit. Dafür wurde zunächst ein Transfektionsansatz nach dem Schema in Tab.16 pipettiert.

Tabelle 16: Schema zur Transfektion von HEK293-Zellen

Abkürzungen: DNA= Desoxyribonukleinsäure; H$_2$O= Wasser; CaCl$_2$= Calciumchlorid; HBS= HEPES Buffered Saline; DMEM= Dulbecco’s Modified Eagle’s Medium; FCS= fetal calf serum; ng= Nanogramm; µg= Mikrogramm; µl= Mikroliter; ml= Milliliter

<table>
<thead>
<tr>
<th>DNA</th>
<th>Auf X mit H$_2$O auffüllen</th>
<th>CaCl$_2$</th>
<th>2xHBS</th>
<th>DMEM 2%FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>500ng</td>
<td>9µl</td>
<td>1µl</td>
<td>10µl</td>
<td>70µl</td>
</tr>
<tr>
<td>1µg</td>
<td>18µl</td>
<td>2µl</td>
<td>20µl</td>
<td>300µl</td>
</tr>
<tr>
<td>1,5µg</td>
<td>31,5µl</td>
<td>3,5µl</td>
<td>35µl</td>
<td>560µl</td>
</tr>
<tr>
<td>6µg</td>
<td>180µl</td>
<td>20µl</td>
<td>200µl</td>
<td>3,5ml</td>
</tr>
<tr>
<td>10µg</td>
<td>450µl</td>
<td>50µl</td>
<td>500µl</td>
<td>8ml</td>
</tr>
</tbody>
</table>

Der Reihenfolge nach begann man mit dem H$_2$O, pipettierte dann die DNA, das CaCl$_2$ und das 2xHBS dazu. Dies mischte man gut und lies es min. 50s bei RT stehen. Anschließend gab man das DMEM mit 2%FCS dazu, vortexte gut und ersetzte das vorherige Medium der Zellen mit dem erstellten Transfektionsmedium. Es war auch möglich eine Doppeltransfektion mit zwei unterschiedlichen DNA-Konstrukten durchzuführen. Dabei nahm man einfach die Hälfte der DNA-Menge nach Protokoll von jedem Konstrukt.

Nach Inkubation der Zellen bei 37°C über Nacht tauschte man das Transfektionsmedium wieder gegen ein neues frisches DMEM mit 10% FCS aus. Für manche Versuche wurden die Zellen noch für 1-3h mit 400mM Sorbitol inkubiert. Dabei löste man das Sorbitol in DMEM mit 10% FCS und steril filtrierte es vor
Gebrauch. Nun standen die Zellen für verschiedene weitere Versuche wie Färbungen, Western Blots usw. zur Verfügung.

2.12.3 Herstellen von HEK293-Zelllysaten für Western Blots

Lösungen:
- Lyse Reagenz: 8M Urea
 50mM NaH$_2$PO$_4$
 \rightarrow pH 8,0

Für Western Blots wurden 12well Platten mit HEK293-Zellen ausgesät, transfiziert (s. 2.12.2) und nach 24h oder 48h geerntet. Dazu wurde das Medium vorsichtig mit einer Pipette aus jedem well entfernt und die Zellen mit 200µl DBPS gewaschen. Anschließend gab man 50-150µl Lyse-Reagenz, je nach Dichte der HEK293-Zellen, in ein well, ließ das Lyse-Reagenz ein paar Minuten inkubieren und resuspendierte die Zellen mit Hilfe einer sterilen Pipettenspitze. Nach Überführen in ein neues Reaktionsgefäß wurden die Proben kurz sonifiziert. Danach war manchmal noch eine Verdünnung mit Lysepuffer vor der Konzentrationsbestimmung der Proteine nach Bradford oder mit dem BCA Protein Assay Kit (2.11.3 und 2.11.4) nötig. Abschließend wurden die Proben auf die passende Konzentration, meist zwischen 0,5 und 10µg/µl, eingestellt, mit 1xProbenpuffer gemischt und bei -20°C eingefroren.

2.12.4 Herstellung von HEK293-Zelllysaten für die Co-Immunpräzipitation mit Hilfe von Dynabeads® Protein G

Lösungen:
- RIPA-Puffer: 150mM NaCl
 50mM Tris-HCL \rightarrow ph 7,5
 1% NP40
 0,5% Sodium deoxycholat
 0,1% SDS
 5mM EDTA

Da für die Co-Immunpräzipitation wesentlich höhere Proteinkonzentrationen nötig waren, wurden hierfür HEK293-Zellen in sterilen Schalen mit 10cm Durchmesser ausgesät und nach Protokoll transfiziert (s. 2.12.2). Nach 24h wurden die Zellen geerntet. Zuerst wurde das Medium vorsichtig mit Hilfe einer Pipette entfernt und die Zellen anschließend mit 5ml DBPS gewaschen. Zur Lyse löste man eine
Proteaseinhibitortablette von Roche Diagnostics GmbH in 10ml RIPA-Puffer und pipettierte davon jeweils 500µl in eine Schale. Mit Hilfe eines Zellschabers wurden die Zellen gelöst und in ein neues Reaktionsgefäß überführt. Danach wurden die Proben kurz sonifiziert und eine Konzentrationsbestimmung der Proteine nach Bradford (s.2.11.3) durchgeführt. Als Leerwert diente dabei eine Mischung aus RIPA-Puffer und Proteaseinhibitor ohne Zellen. Abschließend wurden die Proben auf eine Konzentration von 2mg/ml Protein eingestellt und bei -80°C eingefroren.

2.12.5 Immunchemische Färbung von Zellen

Lösungen:
- PBS + 4% PFA (pH 7,4)
- PBS+ 0,1% Triton X-100 + 100mM Glycin → pH 7,4
- PBT: PBS + 1,5% BSA + 0,1% Tween 20 → pH 7,4
- Primäre Antikörper: V5-Antikörper (mouse) und TDP-43 (rabbit)
- Sekundärer Antikörper: goat-anti-mouse Dylight 594
goat-anti-rabbit Dylight 488
→ lichtgeschützt aufbewahren

Für die immunchemische Färbung von Zellen wurden HEK293-Zellen auf Glasplättchen in 24well Platten ausgesät. Es war dabei darauf zu achten, dass die Zellen gut verteilt waren und nicht zu dicht wuchsen. Damit die HEK293-Zellen auch auf den Glasplättchen gut anwuchsen, wurden diese vorher mit Poly-D-Lysin beschichtet. Anschließend wurden die Zellen ganz normal nach Protokoll mit den passenden Konstrukten transfiziert (s.2.12.2). Für einen Teil der Färbungen wurden die Zellen noch 3h mit 400mM Sorbitol inkubiert. Dies setzte die Zellen einem osmotischem Stress aus (Dewey et al., 2011). 48h nach Transfektion wurden die Zellen aus dem Inkubator geholt und das Medium sehr vorsichtig mit einer Pipette aus den einzelnen wells entfernt. Danach gab man 500µl DBPS in jedes well, pipettierte es wieder ab und gab dann nochmal 1ml DBPS für 10min darauf um die Zellen gründlich zu waschen.

Vorbereiten, Fixieren und Färben der Zellen

Daraufhin folgte die Fixierung der Zellen mit jeweils 300µl PBS + 4% PFA (pH 7,4) für max.10 min. Anschließend gab man jeweils 300µl PBS+ 0,1% Triton X-100 + 100mM Glycin für ebenfalls 10min in ein well. Danach wurden die Zellen in jeweils 300µl PBT für 30-60min inkubiert. Jetzt waren die Zellen vorbereitet um mit dem ersten primären

Eindeckeln und Mikroskopieren der Zellen

2.12.6 Gaussia Luciferase Complementation-Assay
Durch den Gaussia Luciferase Complementation-Assay können Proteininteraktionen und Proteinaggregationen näher untersucht werden. Dazu wird ein Interaktionspartner mit dem N-Terminalen Teil der humanisierten Gaussia Luciferase (= S1) und der andere Interaktionspartner mit dem C-terminalen Teil (=S2) fusioniert. Kommen sich die beiden Interaktionspartner räumlich sehr nahe kann die dann vollständig vorhandene humanisierten Gaussia Luciferase ihre Tätigkeit aufnehmen und ihr Substrat Coelenterazin spalten, wodurch ein Fluoreszenzsignal entsteht (siehe Abbildung 6). Je stärker die Intensität des Fluoreszenzsignals, desto mehr
Material und Methoden

Interaktionen zwischen den S1 und S2-Partnern haben sehr wahrscheinlich stattgefunden.

Abbildung 6: Gaussia Luciferase Complementation-Assay (Quelle: Marisa Feiler, Mitarbeiterin am Institut, unveröffentlichte Grafik, persönliche Mitteilung 2014, modifiziert)

Abkürzungen: C-terminus = Carboxy-terminus; N-terminus = Amino-terminus; PFN1 = Profilin1

2.13 Statistische Methoden

Die statistische Auswertung wurde mit Hilfe von Microsoft Excel 2010 durchgeführt. Zum Vergleich zweier Datensätze wurde ein T-Test für Parallelgruppen mit zweiseitiger Verteilung ungepaart angewendet. Das Signifikanzniveau wurde mit p≤0,05 festgelegt. In den Abbildungen sind die Mittelwerte und Standardabweichungen dargestellt. Statistisch signifikante Ergebnisse sind mit Sternen gekennzeichnet. Die Anzahl der Sterne spiegelt die unterschiedlichen P-Level wider (* = p ≤ 0,05, ** = p ≤ 0,01 und *** = p ≤ 0,001).
3 Ergebnisse

3.1 Klonierung und Testexpression der V5-Profilin1-Konstrukte

Abbildung 7: Schematischer Aufbau der verwendeten V5-Profilin1-Konstrukte

Hinter einem T7-Promotor (rot), der eine mögliche Transkription in vitro gewährleistet und zur Sequenzierung hilfreich ist, befindet sich der V5-tag (oliv). Nach Transkription und Translation befindet sich diese 14 Aminosäuren lange Polypeptidsequenz am N-Terminus des eingebauten Fremdgens (Profilin1) (blaugrün). Eine zuverlässige Transkription in vivo wird durch einen CMV-Promotor (gelb) sichergestellt.

Abkürzungen: CMV= Zytomegalievirus; kDa= Kilodalton; T7= T7-Promotor aus Phagen T7; V5-tag= Protein-tag; 3’ oder 5’= Bezeichnung des DNA-Strangendes, das die 3’- bzw. 5’-Hydroxylgruppe des Zuckers des DNA-Rückgrats trägt.

Nach erfolgreicher Mutagenese-PCR und Kontrolle der Konstrukte durch Sequenzierung wurden HEK293-Zellen mit den verschiedenen V5-Profilin1-Konstrukten transfiziert und 24h bzw. 48h nach Transfektion lysiert. Es wurden dann jeweils 5µg bzw.15µg Protein der Lysate auf eine SDS-PAGE aufgetragen und anschließend ein Western Blot durchgeführt. Abbildung 8 zeigt die Ergebnisse dieser Western Blots.
3 Ergebnisse

a)
Abbildung 8a: Western Blots zur Überprüfung der V5-Profilin1-Expression

(a) Western Blot von V5-Profilin1 mit 15µg Lysat 48h nach Transfektion

48h nach Transfektion wurden die HEK293-Zellen lysiert und 15µg Protein des Lysats auf ein SDS-Polyacrylamidgel geladen, auf eine Nitrocellulosemembran überführt und das V5-Profilin1 mit dem V5 mouse monoclonal Antikörper detektiert. Man erkennt die Proteinbande des V5-Profilin1 auf der Höhe von ungefähr 20kDa. Zusätzlich ist bei den Mutationen C71G und G118V eine Proteinbande bei ungefähr 40kDa zu erkennen. Hierbei handelt es sich wahrscheinlich um Dimere des Profilin1

Abkürzungen: kDa= Kilodalton; Mock= Leerwert; PFN1= Profilin1; V5-tag= Protein-tag; WT= Wildtyp

b)
Abbildung 8b: Western Blots zur Überprüfung der V5-Profilin1-Expression

(b) Western Blot von V5-Profilin1 mit 5µg Lysat 48h nach Transfektion

Abkürzungen: kDa= Kilodalton; Mock= Leerwert; PFN1= Profilin1; V5-tag= Protein-tag; WT= Wildtyp
Abbildung 8c: Western Blots zur Überprüfung der V5-Profilin1-Expression

c) Western Blot von V5-Profilin1 mit 5µg Lysat 24h nach Transfektion

Hier wurde wie bei b) vorgegangen, außer, dass die HEK293-Zellen schon 24h nach Transfektion lysiert wurden. Die Proteinbande bei ca. 20kDa entspricht dem V5-Profilin1. Nach 24h zeigt sich eine fast gleichmäßig Verteilung von Profilin1 über alle Mutanten. Deshalb wurden für alle weiteren Western Blots die Zellen 24h nach Transfektion lysiert. Als Ladekontrolle diente ß-Aktin.

Abkürzungen: kDa= Kilodalton; Mock= Leerwert; PFN1= Profilin1; V5-tag= Protein-tag; WT= Wildtyp

Optimale Expressionsbedingungen zeigten sich 24h nach Transfektion und mit 5µg aufgetragenem Protein, da hier eine fast gleichmäßige Profilin1-Expression bei allen Mutanten vorliegt (siehe Abb.8c)). Dies ist eine wichtige Voraussetzung für weitere Experimente.
3.2 Lokalisation und Aggregation der V5-Profilin1-Mutanten in HEK293-Zellen

3.2.1 Immunfärbung von V5-Profilin1 transfizierten HEK293-Zellen

Abbildung 9a): Immunfärbung des Profilin1 WT und der Mutanten C71G und G118V

Abkürzungen: DAPI= 4′,6-Diamidin-2-phenylindol; PFN1= Profilin1; TDP-43= TAR DNA-binding protein (43 kDa); V5-tag= Protein-tag; WT= Wildtyp
b) Abkürzungen: DAPI= 4′,6-Diamidin-2-phenylindol; PFN1= Profilin1; TDP-43= TAR DNA-binding protein (43 kDa); V5-tag= Protein-tag; WT= Wildtyp

Das TDP-43-Protein konnte fast nur im Zellkern detektiert werden. Aufgrund des hauptsächlich im Zytoplasma der Zellen lokalisierter Profilin1, konnte keine Co-Lokalisation zwischen Profilin1 und TDP-43 beobachtet werden.

3.2.2 Immunfärbung von Profilin1 transfizierten HEK293-Zellen unter Stressbedingungen

Bei einer weiteren Immunfärbung sollte kontrolliert werden, ob sich die verschiedenen Profilin1-Varianten unter zellulärem Stress unterschiedlich verhalten. Dazu wurde dem Wachstumsmedium der HEK293-Zellen 3h vor der Immunfärbung 400mM Sorbitol hinzugefügt, was zu osmotischem Stress und zur Bildung von sogenannten Stressgranula führt (Dewey et al., 2011). Dies lässt sich beispielsweise durch eine Immunfärbung von TDP-43, einem Bestandteil der Stressgranula, verfolgen (Abb. 16 im Anhang). Ohne Sorbitol befindet sich das TDP-43 ausschließlich im Kern der Zelle. Nach 1h Behandlung mit Sorbitol wandert ein Teil des TDP-43 ins Zytoplasma und nach 3h erkennt man deutliche Stressgranula im Zytoplasma.

Abkürzungen: DAPI= 4′,6-Diamidin-2-phenylindol; PFN1= Profilin; TDP-43= TAR DNA-binding protein (43 kDa); V5-tag= Protein-tag; WT= Wildtyp

Abkürzungen: DAPI= 4′,6-Diamidin-2-phenylindol; PFN1= Profilin1; TDP-43= TAR DNA-binding protein (43 kDa); V5-tag= Protein-tag; WT= Wildtyp

3.3 Untersuchung der Proteinbindungseigenschaften der V5-Profilin1-Mutanten mit Hilfe einer Co-Immunpräzipitation

3.3.1 Untersuchung der Proteinbindungseigenschaften gegenüber Aktin

Abkürzungen: kDa= Kilodalton; Mock= Leerwert; V5-tag= Protein-tag; WT= Wildtyp

Quelle: Erstveröffentlichung in Freischmidt et al. (BMC Neuroscience, 16(1), 77 (2015), modifiziert), (Freischmidt et al., 2015)

Lizenz: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode)

3.3.2 Untersuchung der Proteinbindungseigenschaften gegenüber SMN und TDP-43

In einem anderen Versuchsansatz, bei dem mit rekombinanten Profilin1-Mutanten versucht wurde, Bindungspartner zu isolieren (His-Pulldown assay), konnte eine Interaktion zwischen SMN und Profilin1 nachgewiesen werden (durchgeführt von

3.4 Untersuchung der Proteinbindungseigenschaften der Profilin1-Mutanten mit Hilfe des Gaussia Luciferase Complementation-Assay

S1:

Abbildung 12: Schematischer Aufbau der verwendeten S1- und S2-Konstrukte

Am 5’Ende der Konstrukte befindet sich das gewünschte Fremdgen Profilin1 oder β-Aktin (rot). Über einen Linker (blaugrün) ist das Fremdgen entweder mit dem N-Terminalen (S1) oder dem C-Terminalen Teil (S2) der humanisierten Gaussia Luciferase (oliv) verbunden. Der Linker wird für eine optimale Aktivität der humanisierten Gaussia Luciferase benötigt (Remy and Michnick, 2006).

Abkürzungen: C-terminus= Carboxy-terminus; hGLuc= humane Gaussia-Luciferase; N-terminus= Amino-terminus; S1= Konstrukt mit dem N-Terminalen Teil der humanisierten Gaussia Luciferase; S2= Konstrukt mit dem C-Terminalen Teil der humanisierten Gaussia Luciferase; 3’ oder 5’= Bezeichnung des DNA-Strangendes, das die 3’- bzw. 5’-Hydroxylgruppe des Zuckers des DNA-Rückgrats trägt.

HEK293-Zellen wurden mit jeweils einem Profilin1 S1-Konstrukt und einem S2-Konstrukt (Aktin, TDP-43 bzw. SMN) transfiziert (Doppeltransfektion) und 24h nach Transfektion ein Gaussia Luciferase Complementation-Assay mit Hilfe des Multilabel Reader Victor X3 (Perkin Elmer) durchgeführt. Mit Hilfe des Gaussia Luciferase Complementation-Assay konnte die in vivo Interaktion von Profilin1 mit dem
jeweils Partner untersucht werden. Als Negativkontrolle dienten dabei wieder HEK293-Zellen die nur mit dem Vektor pcDNA3 ohne Fremdgen transfiziert wurden.

3.4.1 Interaktion der unterschiedlichen Profilin1-Varianten mit β-Aktin

Abbildung 13: Ergebnisse des Gaussia Luciferase Complementation-Assay von Profilin1 S1 und ß-Aktin S2

Die Signifikanz im T-Test für Parallelgruppen ist gegenüber der WT-Variante angegeben mit * = p ≤ 0,05 , ** = p ≤ 0,01 und *** = p ≤ 0,001.

Abkürzungen: Mock= Leerwert; S1= Konstrukt mit dem N-Terminalen Teil der humanisierten Gaussia Luciferase; S2= Konstrukt mit dem C-Terminalen Teil der humanisierten Gaussia Luciferase; WT= Wildtyp

3.4.2 Überprüfung der Proteinexpression von Profilin1 S1 und ß-Aktin S2
Um zu überprüfen, ob alle Konstrukte gleichmäßig exprimiert werden und ob die unterschiedlichen Signalstärken auf unterschiedliche Expressionen zurückzuführen sind, wurden Western Blots von S1 und S2 transfizierten HEK293-Zellen durchgeführt. In Abbildung 14 ist jeweils einer dieser Western Blots exemplarisch dargestellt. Ein anderer befindet sich im Anhang (Abbildung 20).

a)

Abbildung 14 a): Western Blots zur Überprüfung der Expression von Profilin1 S1 und ß-Aktin S2

a) HEK293-Zellen wurden 24h nach Doppeltransfektion mit Profilin S1 und ß-Aktin S2 lysiert und 5µg Protein der Lysate auf eine SDS-PAGE aufgetragen. Danach auf eine Nitrocellulosemembran überführt und Aktin mit spezifischen Antikörpern detektiert. Es lässt sich eine Proteinbande bei ca. 60kDa detektieren. Dabei handelt es sich um das ß-Aktin S2, welches sich aus dem ß-Aktin (40kDa) und der C-terminalen Hälfte der humanisierten Gaussia Luciferase (=S2) zusammensetzt. Es zeigt sich, dass die ß-Aktin S2 Expression unter den Mutanten unterschiedlich ist. Als Ladekontrolle diente endogenes ß-Aktin.

Abkürzungen: kDa= Kilodalton; Mock= Leerwert; S1= Konstrukt mit dem N-Terminalen Teil der humanisierten Gaussia Luciferase; S2= Konstrukt mit dem C-Terminalen Teil der humanisierten Gaussia Luciferase; WT= Wildtyp
Abbildungen 14 b): Western Blots zur Überprüfung der Expression von Profilin1 S1 und ß-Aktin S2

b) Hier wurde vorgegangen wie bei a), außer, dass Profilin1 mit spezifischen Antikörpern detektiert wurde. Es lässt sich eine Proteinbande bei ca. 35kDa detektieren. Dabei handelt es sich um das Profilin1 S1, welches sich aus dem Profilin1 (15kDa) und der C-terminalen Hälfte der humanisierten Gaussia Luciferase (=S2) zusammensetzt. Es zeigt sich, dass die Profilin1 S1 Expression annähernd gleichmäßig ist unter den Mutanten. Als Ladekontrolle diente endogenes Profilin1.

Abkürzungen: kDa= Kilodalton; Mock= Leerwert; S1= Konstrukt mit dem N-Terminalen Teil der humanisierten Gaussia Luciferase; S2= Konstrukt mit dem C-Terminalen Teil der humanisierten Gaussia Luciferase; WT= Wildtyp

Profilin1 S1 wird annähernd gleichmäßig in allen Mutanten exprimiert. ß-Aktin S2 hingegen wird nicht gleichmäßig von allen Mutanten exprimiert. Die ß-Aktin S2 Expression der Mutante G118V ist z.B. im Vergleich zu den anderen Mutanten erhöht. Um diese kleinen Abweichungen in den Ergebnissen des Gaussia Luciferase Complementation-Assay (siehe 3.4.1) zu berücksichtigen, wurden die Ergebnisse auf die Expression normalisiert (siehe 3.4.3).

3.4.3 Normalisierung der Gaussia Luciferase Complementation-Assay Ergebnisse auf die Proteinexpression von Profilin1 S1 und ß-Aktin S2

Da sich bei der Überprüfung der Expression der Profilin1 S1-Kostrukte als auch der ß-Aktin S2-Konstrukte Unterschiede in der Expression der einzelnen Mutationen zeigten, wurden die Ergebnisse auf die Expression von Profilin1 S1 und ß-Aktin S2 angepasst. Die normalisierten Mittelwerte und Standardabweichung sind in Abbildung 15 dargestellt.
Abbildung 15: Ergebnisse des Gaussia Luciferase Complementation-Assay normalisiert auf die Expression von Profilin1 S1 und β-Aktin S2

Die Western Blots zur Überprüfung der Profilin1 S1 und β-Aktin S2 Proteinexpression (Abbildung 15 und 20 im Anhang) wurden eingescannt und mit Hilfe der Software ImageJ ausgewertet. Die Ergebnisse des Gaussia Luciferase Complementation-Assays (Abbildung 14) wurden dann zunächst auf die Profilin1 S1 und dann auf die β-Aktin S2 Proteinexpression (Mittelwerte aus den Western Blots) normalisiert. Es zeigt sich für die Mutanten C71G und G118V ein weitgehend unverändertes Ergebnis. Die Mutation T109M zeigt jetzt hingegen keine signifikante Veränderung mehr gegenüber dem WT.

Die Signifikanz im T-Test für Parallelgruppen ist gegenüber der WT-Variante angegeben mit * = \(p \leq 0.05 \), ** = \(p \leq 0.01 \) und *** = \(p \leq 0.001 \).

Abkürzungen: S1 = Konstrukt mit dem N-Terminalen Teil der humanisierten Gaussia Luciferase; S2 = Konstrukt mit dem C-Terminalen Teil der humanisierten Gaussia Luciferase; WT = Wildtyp

3.4.4 Interaktion der unterschiedlichen Profilin1-Varianten mit SMN und TDP-43

4 Diskussion

4.1 Aggregation der Profilin1-Mutation T109M in HEK293-Zellen

Die Mutation T109M (Ingre et al., 2013) scheint eine niedrigere Pathogenität zu haben als die Mutationen aus Wu et al. (2012). Zum Beispiel ist das durchschnittliche Erkrankungsalter später (Ingre et al., 2013). Möglicherweise zeigen sich Veränderungen in der Verteilung und Aggregation erst nach einer viel längeren Zeit.

Die durch Mutagenese generierten Profilin1-Mutanten T109A und T109D zeigten keine Unterschiede zur T109M-Mutante. Die Phosphorylierung scheint keinen Einfluss auf die Lokalisation und Aggregation des Profilin1 zu haben. Es kann aber auch sein, dass die Mutanten den jeweiligen Phosphorylierungszustand nicht oder nur unzureichend imitieren. Die hier verwendete Methode zur Untersuchung einer Phosphorylierung ist unter anderem beim Protein Tau bekannt, scheint aber nicht bei allen Proteinen gleich gut zu funktionieren (Léger et al., 1997; Haase et al., 2004).

4.2 Aktinbindung der Profilin1-Mutation T109M

Die Co-Immunpräzipitation mit Hilfe von Dynabeads® Protein G eignet sich gut um Proteinbindungseigenschaften zu untersuchen. Proteine wie β-Aktin, die sich in großer Menge in der Zelle befinden, lassen sich gut nachweisen. Die Bindung von SMN oder TDP-43 ist möglicherweise aber zu gering um detektiert zu werden. Hier
hat sich gezeigt, dass sich ein Pulldown mit rekombinant hergestellten Proteinen besser eignet.

4.3 Mögliche Ursachen der unterschiedlichen Expression der Profilin1-Mutanten

4.4 Hinweise auf eine veränderte Phosphorylierung der Profilin1-Mutation T109M

4.5 Rolle von Profilin im Zusammenhang mit ALS

Durch die Ergebnisse von Wu et al. (2012) wurde zum ersten Mal gezeigt, dass Mutationen im Profilin1-Protein eine mögliche Ursache für ALS darstellen. Dabei wirken sich die Mutationen direkt auf die Aktinbindung aus und greifen so in die Struktur und Dynamik des Zytoskeletts ein. Besonders in Neuronen mit ihren sehr langen Axonen könnten schon kleinste Veränderungen in diesem Netzwerk die Funktion und Struktur stark beeinflussen. In der Zwischenzeit sind nun Ergebnisse veröffentlicht worden (Yamazaki et al., 2012; Groen et al., 2013), die noch weitere Möglichkeiten zeigen, wie das Protein Profilin1 mit anderen bekannten ALS-Proteinen in Verbindung steht und wie sich Profilin1 in das ALS-Netzwerk verschiedenster Proteine einordnen lässt.

Eine zentrale Rolle könnte dabei das Protein SMN darstellen. Bis vor kurzem stand das Protein SMN hauptsächlich mit der Muskelkrankheit SMA (Spinale
Muskelatrophie) in Verbindung. Inzwischen hat sich jedoch gezeigt, dass das Protein SMN auch bei der ALS eine wichtige Rolle spielt (Yamazaki et al., 2012; Groen et al., 2013; Tsuiji et al., 2013). Es könnte sein, dass die beiden neurologischen Krankheiten SMA und ALS teilweise gemeinsame molekulare Ursachen haben.

Es scheint hier also eine zweite Möglichkeit zu geben, wie sich Profilin-Mutationen über SMN und FUS auf die Pathogenese von ALS auswirken können, neben der bereits von Wu et al. beschriebenen verringerten Proteinbindung gegenüber Aktin.

Auch wenn der Nachweis der veränderten SMN-Bindung der Profilin1-Mutation T109M noch fehlt, deuten die Ergebnisse dieser Arbeit daraufhin, dass Mutationen im Protein Profilin1 auf zwei unterschiedliche Arten in den Mechanismus der ALS-Pathogenese eingreifen können. Je nachdem in welchem Bereich sich die Mutationen befinden, sind die Bindung zu β-Aktin oder die Bindungen über den Poly-L-Prolin Bereich zu SMN beeinflusst.

Weitere Untersuchungen werden benötigt, um zu klären, wie Profilin in den Mechanismus der Stressgranula eingreift. Es zeigt sich aber, dass Profilin1, sowie auch andere bekannte ALS-assozierte Proteine, wie TDP-43 und FUS, die Dynamik der Stressgranula verändern kann (Liu-Yesucevitz et al., 2010; Baron et al., 2013).

4.6 Schlussfolgerung

Mit Hilfe des Gaussia Luciferase Complementation-Assays konnten die Ergebnisse aus Wu et al. (2012) auch in vivo bestätigt werden. Die T109M-Mutation scheint dabei eine wesentlich geringere Pathogenität aufzuweisen als die Mutationen C71G und G118V. In immunchemischen Färbungen zeigten sich jedenfalls nach 48h noch keine Proteinaggregate oder ähnliches.
5 Zusammenfassung

Die Ergebnisse dieser Arbeit deuten daraufhin, dass die Aktinbindung des Profilin1 durch die Mutation T109M nicht beeinträchtigt wird. Dies bedeutet, dass der pathologische Mechanismus der zur Profilin1 verursachten ALS führt, sich wohl von den bisher bekannten unterscheidet. Die SMN-Bindung (survival of motor neuron) der T109M-Mutante scheint verändert zu sein, was eventuell durch den Phosphorylierungsstatus an dieser Profilin1-Position beeinflusst wird. Der endgültige Beweis für die verminderte Interaktion des SMN (survival of motor neuron) mit der T109M-Mutante des Profilin1 steht noch aus. Profilin1 könnte damit eine wichtige Rolle im Netzwerk der ALS-assoziierten Proteine einnehmen, da es mit mehreren Proteinen wie Aktin, survival of motor neuron (SMN), Fused in Sarcoma (FUS) etc. in direkter oder indirekter Verbindung steht.
6 Literaturverzeichnis

76. Southwick, F.S., and Young, C.L. (1990). The actin released from profilin–actin complexes is insufficient to account for the increase in F-actin in

Abbildung 16: Wirkung von Sorbitol auf die Lokalisation von TDP-43 in HEK293-Zellen (Quelle: Dr. rer. nat. Axel Freischmidt, Mitarbeiter am Institut, unveröffentlichte Ergebnisse, persönliche Mitteilung 2014)

Abkürzungen: DAPI= 4′,6-Diamidin-2-phenylindol; h= hour; mM= Millimolar; Mock= Leerwert; TDP-43= TAR DNA-binding protein (43 kDa)
Abbildung 17: Western Bot nach His-Pulldown assay zur Analyse des Interaktionspartners SMN (Quelle: Ann-Katrin Fleck, Mitarbeiterin am Institut, unveröffentlichte Ergebnisse, persönliche Mitteilung 2014)

Abkürzungen: kDa= Kilodalton; Mock= Leerwert; SMN= Survival of Motor Neuron; WT= Wildtyp
Abbildung 18: Western Blots zur Überprüfung der Expression von Profilin1 S1 und ß-Aktin S2

a) HEK293-Zellen wurden 24h nach Doppeltransfektion mit Profilin S1 und ß-Aktin S2 lysiert und 5µg Protein der Lysate auf eine SDS-PAGE aufgetragen. Danach auf eine Nitrocellulosemembran überführt und Aktin mit spezifischen Antikörpern detektiert. Es lässt sich eine Proteinbande bei ca. 60kDa detektieren. Dabei handelt es sich um das ß-Aktin S2, welches sich aus dem ß-Aktin (40kDa) und der C-terminalen Hälfte der humanisierten Gaussia Luciferase (=S2) zusammensetzt. Es zeigt sich, dass die ß-Aktin S2 Expression unter den Mutanten unterschiedlich ist. Als Ladekontrolle diente endogenes ß-Aktin.

b) Hier wurde vorgegangen wie bei a), außer, dass Profilin1 mit spezifischen Antikörpern detektiert wurde. Es lässt sich eine Proteinbande bei ca. 35kDa detektieren. Dabei handelt es sich um das Profilin1 S1, welches sich aus dem Profilin1 (15kDa) und der C-terminalen Hälfte der humanisierten Gaussia Luciferase (=S2) zusammensetzt. Es zeigt sich, dass die Profilin1 S1 Expression halbwegs gleichmäßig ist unter den Mutanten. Als Ladekontrolle diente endogenes Profilin1.

Abkürzungen: kDa= Kilodalton; Mock= Leerwert; S1= Konstrukt mit dem N-Terminalen Teil der humanisierten Gaussia Luciferase; S2= Konstrukt mit dem C-Terminalen Teil der humanisierten Gaussia Luciferase; WT= Wildtyp
Danksagung

Schöpflin, Marcel

Ulm, 08. Mai 2015
Lebenslauf

Der Lebenslauf wurde aus Gründen des Datenschutzes entfernt.