Frühe Veränderungen der Nierenfunktion im experimentellen und klinischen hämorrhagischen Schock

Dissertation zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät der Universität Ulm

Vorgelegt von
Fabian Schäfer
Geboren in Frankfurt am Main
2020
Amtierender Dekan: Prof. Dr. Thomas Wirth

1. Berichterstatter: Prof. Dr. Markus Huber-Lang

2. Berichterstatter: Prof. Dr. Rolf Brenner

Tag der Promotion: 15.10.2021
Diese Seite wurde aus Gründen des Datenschutzes entfernt.
Teile dieser Dissertation wurden bereits in folgenden Fachartikeln veröffentlicht:

Inhaltsverzeichnis

1 Einleitung ... 1
 1.1 Pathophysiologie des hämorrhagischen Schocks 1
 1.2 Auswirkungen des hämorrhagischen Schocks auf die Nierenfunktion .. 3
 1.3 Parameter zur Einschätzung der Nierenfunktion und Nierenschädigung ... 5
 1.4 Tyrosine kinase non receptor 1 6
 1.5 Ziele dieser Arbeit .. 7

2 Material und Methoden ... 9
 2.1 Chemikalien und Reagenzien 9
 2.2 Materialien .. 10
 2.3 Antikörper und Standards 11
 2.4 Kits ... 11
 2.5 Geräte .. 12
 2.6 Software ... 12
 2.7 Puffer .. 13
 2.8 Mausmodell des hämorrhagischen Schocks 13
 2.9 Western Blot ... 16
 2.10 Urinelektrophorese ... 17
 2.11 Immunhistochemie ... 18
 2.12 Färbung mit Hämatoxylin und Eosin 19
 2.13 Polytrauma-Studie am Universitätsklinikum Ulm 19
 2.14 ELISA .. 20
 2.15 Kreatinin und Harnstoff .. 20
 2.16 Statistik ... 21

3 Ergebnisse .. 23
 3.1 Hämodynamik .. 23
 3.1.1 Mittlerer arterieller Druck, Herzfrequenz, Temperatur 23
 3.1.2 Hämoglobin .. 25
 3.1.3 Reperfusion ... 25
 3.2 Interleukin-6 .. 27
 3.3 Protein und Albumin ... 27
 3.4 Biomarker der Nierenfunktion und Nierenschädigung 29
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Vollständiger Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ACK1</td>
<td>Activated CDC42 kinase 1</td>
</tr>
<tr>
<td>AKI</td>
<td>Acute kidney injury</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance (Varianzanalyse)</td>
</tr>
<tr>
<td>ANV</td>
<td>Akutes Nierenversagen</td>
</tr>
<tr>
<td>AP</td>
<td>Alkalische Phosphatase</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>ATN</td>
<td>Akute Tubulusnekrose</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninsäure</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
</tr>
<tr>
<td>DAMP</td>
<td>Damage-associated molecular pattern</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECL</td>
<td>Elektrochemilumineszenz</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>H</td>
<td>Stunde</td>
</tr>
<tr>
<td>Hb</td>
<td>Hämoglobin</td>
</tr>
<tr>
<td>HE</td>
<td>Hämatoxylin/Eosin</td>
</tr>
<tr>
<td>HF</td>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase (Meerrettichperoxidase)</td>
</tr>
<tr>
<td>HS</td>
<td>Hämorrhagischer Schock</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IRF-1</td>
<td>Interferon regulatory factor 1</td>
</tr>
<tr>
<td>IRI</td>
<td>Ischemia-reperfusion injury (Ischämie-Reperfusions-Verletzung)</td>
</tr>
<tr>
<td>ISS</td>
<td>Injury severity score</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>KIM-1</td>
<td>Kidney injury molecule 1</td>
</tr>
<tr>
<td>MAP</td>
<td>Mittlerer arterieller Druck</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
<tr>
<td>MOF</td>
<td>Multiple organ failure (Multiorganversagen)</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NGAL</td>
<td>Neutrophil-gelatinase associated lipocalin</td>
</tr>
<tr>
<td>PAP</td>
<td>Peroxidase-Anti-Peroxidase</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline (phosphatgepufferte Salzlösung)</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethlysulfonylfluorid</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
</tr>
<tr>
<td>RIPA</td>
<td>Radio immunoprecipitation assay</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species (reaktive Sauerstoffspezies)</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate (Natriumdodecylsulfat)</td>
</tr>
<tr>
<td>Sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>STAT1</td>
<td>Signal transducer and activator of transcription 1</td>
</tr>
<tr>
<td>TBS(T)</td>
<td>Tris-buffered saline (Tween®) (trisgepufferte Salzlösung)</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethlyendiamin</td>
</tr>
<tr>
<td>TGX™</td>
<td>Tris-Glycine eXtended</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumornekrosefaktor alpha</td>
</tr>
<tr>
<td>TNK1</td>
<td>Tyrosine kinase non receptor 1 (alternativ: Thirty-eight negative kinase 1)</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
</tbody>
</table>
Einleitung

Unfallbedingte Verletzungen haben nach wie vor eine hohe klinische und auch gesellschaftliche Relevanz. Unfälle kosteten im Jahr 2016 weltweit fast fünf Millionen Menschen das Leben [29]. Insbesondere schwere Verletzungen spielen eine entscheidende Rolle. Dabei wird die Verletzungsschwere häufig mit anatomischen Klassifikationen wie dem Injury Severity Score (ISS) beschrieben [7]. In der Forschung wird in der Regel ein ISS ≥ 16 zur Definition eines Schwerverletzten verwendet [63], während die Deutsche Gesellschaft für Unfallchirurgie vereinfachend alle Patienten, die über den Schockraum auf die Intensivstation aufgenommen wurden, in ihr Traumaregister einschließt [17]. Im Jahr 2017 waren dies über 30.000 Unfallopfer, von denen knapp 20 % ein Multiorganversagen entwickelten, während die Krankenhausletalität 11 % betrug [17]. Nicht nur diese klinischen Endpunkte, sondern auch die finanzielle Belastung der Gesellschaft ist von Bedeutung: So beliefen sich die Behandlungskosten dieser Patienten auf über 450 Millionen Euro [17].

Zu den häufigsten Todesursachen bei Unfällen zählen der hämorrhagische Schock (HS) und das Schädel-Hirn-Trauma [40, 81]. Zwischen 2015 und 2017 entwickelten 12 % aller Traumapatienten in Deutschland einen HS, wobei diese Subgruppe durchschnittlich den höchsten ISS – und damit die schwersten Verletzungen – sowie die höchste Sterblichkeit aufwies [17]. Ein erheblicher Anteil derjenigen Patienten, die an einem HS versterben, verstorben innerhalb von 24 h [81]. Darüber hinaus ist ein HS auch mit einem höheren Risiko für die Entwicklung eines Multiorganversagens (MOF) verbunden [25]. Dieses manifestiert sich typischerweise in den ersten zwei Tagen, wobei insbesondere ein protrahierter Verlauf mit einem erhöhten Risiko für Infektionen und Mortalität assoziiert ist [74].

1.1 Pathophysiologie des hämorrhagischen Schocks

Pathophysiologisch führt der Blutverlust in Rahmen eines HS zu einer kompromittierten Sauerstoffversorgung der Zellen und damit zu einem Sauerstoffdefizit [70]. Es kommt zu einer Verschiebung von aerobem zu anaerobem Metabolismus, was in einer Akkumulation von Laktat und Protonen und damit einer metabolischen Azidose resultieren kann [70]. Der Sauerstoffmangel führt unter anderem zu einer Dysfunktion der Mitochondrien [13], was die Bildung reaktiver Sauerstoffspezies (reactive oxygen species, ROS) begünstigt, die zu einer
Zellschädigung führen können [78]. Sind die hypoxischen Schädigungen ausgeprägt genug, können Zellen zugrunde gehen, was die Freisetzung von Gefahrenmolekülen (danger-associated molecular patterns, DAMPs) wie High Mobility Group Protein 1 oder mitochondrialer DNA zur Folge hat [15, 92]. Diese Gefahrenmoleküle werden auch durch direkte traumatische Gewebeschäden freigesetzt, was die prognostisch ungünstige Kombination eines Traumas mit einem HS erklären kann. DAMPs können über bestimmte Rezeptoren Leukozyten aktivieren und damit eine inflammatorische Reaktion in Gang setzen [65, 92].

In Leukozyten kommt es daraufhin zu mannigfaltigen Veränderungen der Signaltransduktion und Genexpression [88]. Folge ist die Initiierung einer Immunantwort, die sowohl pro- als auch anti-inflammatorische Komponenten aufweist [36]. Diese Immunantwort ist nicht per se negativ, sondern vielmehr essentiell, um Zellträümmer zu beseitigen und Heilungsprozesse zu initiieren. Bei schweren Traumata oder beim Vorhandensein eines HS kann diese Immunantwort allerdings überschießen und für den Organismus überwältigend werden. Pathophysiologisch stehen dabei eine Endotheliopathie, Koagulopathie und Komplementopathie im Vordergrund.

Zytokine wie Interleukin-1 (IL-1) oder IL-6 führen zu einer vermehrten Expression von Adhäsionsmolekülen auf Endothelzellen [82]. Mediatoren wie Tumornekrosefaktor α (TNFα) oder Komplementfaktor C5a induzieren die Freisetzung von Gewebefaktor aus Leukozyten [47], wodurch die ohnehin bereits durch Gewebeverletzung in Gang gesetzte Bildung von Thrombin weiter verstärkt wird. Thrombin hat, neben seiner integralen Stellung in der Koagulationskaskade, weitere Effekte. Dazu gehört beispielsweise die Erhöhung der Expression von Adhäsionsmolekülen und die Erhöhung der parazellulären Permeabilität [52, 69].

Das erleichtert die Extravasation von Albumin und Leukozyten und führt im Endothel insgesamt zu einem thromboinflammatorischen Milieu. Extravasierte Leukozyten schütten unter anderem ROS und Proteasen aus [27], die direkt schädigend wirken können. Davon betroffen können beispielsweise Tight junctions sein, was die parazelluläre Permeabilität erhöhen und somit zu einem durchlässigen Endothel mit Barrierestörung und Ödembildung beitragen kann [20]. Außerdem führt das zu einer vermehrten Freisetzung von DAMPs, die wiederum die Immunreaktion verstärken und damit einen Circulus vitiosus auslösen können. Dies definiert die Trauma-induzierte Endotheliopathie [41].

1.2 Auswirkungen des hämorrhagischen Schocks auf die Nierenfunktion
Besonders häufig betroffen von einer Organdysfunktion im Rahmen eines Traumas sind die Nieren. Die Inzidenz einer akuten Nierenverletzung (acute kidney injury, AKI) beträgt hierbei bei Traumapatienten, abhängig von der Verletzungsschwere, etwa 13 % bis 26 %, wobei die Inzidenz bei Vorhandensein eines HS auf über 40 % ansteigt [8, 35]. Eine Laktaterhöhung sowie ein hoher Transfusionsbedarf, beides Indikatoren eines Schocks, stellen unabhängige Risikofaktoren für die Entwicklung einer AKI dar [8, 35].
Klinisch ist eine Einteilung der AKI in eine prärenale, intrarenale oder postrenale Genese üblich [80]. Durch den HS kommt es zu einer renalen Minderperfusion und damit zu einer sinkenden glomerulären Filtrationsrate (GFR), dementsprechend

Eine posttraumatische AKI erhöht sowohl das Risiko für ein Multiorganversagen als auch die Mortalität [22]. Das liegt unter anderem daran, dass eine AKI andere Organe wie die Lunge, das Gehirn oder das Herz durch Induktion pro-inflammatoryer Prozesse und Vermittlung von oxidativem Stress negativ beeinflussen kann [90]. Außerdem birgt eine AKI nicht nur akute Gefahren, sondern
auch langfristige Folgen wie ein erhöhtes Risiko für die Entwicklung einer chronischen Niereninsuffizienz [14].

1.3 Parameter zur Einschätzung der Nierenfunktion und Nierenschädigung

1.4 Tyrosine kinase non receptor 1

Tyrosine kinase non receptor 1 (TNK1, alternativ auch Thirty-eight negative kinase 1) ist eine Nicht-Rezeptor-Tyrosinkinase [67], die primär zytoplasmatisch lokalisiert ist [61]. TNK1 ist konstitutiv aktiv, sodass die Aktivität vermutlich durch die Expression reguliert wird [3]. Die Funktion von TNK1 ist bis heute nicht eindeutig geklärt. TNK1 scheint eine das Zellwachstum hemmende und tumorsuppressive Wirkung zu haben. Mäuse, die kein TNK1 exprimieren, entwickelten vermehrt Tumoren, vor allem Lymphome [39]. Diese Wirkung wird durch eine indirekte Hemmung der Ras-Aktivität erklärt [53]. Ras ist ein kleines G-Protein, das in Signalwegen involviert ist, welche das Zellwachstum und -überleben vermitteln [48]. Auf der anderen Seite konnten mehrere Studien in verschiedenen Zelllinien einen potenziell onkogenen Effekt von TNK1 nachweisen [30, 37], sodass die Wirkung von TNK1 möglicherweise vom zellulären Kontext abhängig ist.
Eine Studie schreibt TNK1 eine antivirale Funktion durch Phosphorylierung von Signal Transducer and Activator of Transcription 1 (STAT1) zu, welches ein integraler Bestandteil der Interferon-Signalwege ist [61]. In einer anderen Studie wurde festgestellt, dass TNK1 die TNFα-induzierte Apoptose vermitteln konnte [3]. Dieser Effekt schien durch eine Hemmung der NF-κB-Aktivität direkt am transkriptionellen Apparat bedingt zu sein. In der Tat konnte kürzlich gezeigt werden, dass eine induzierte TNK1-Expression in Mäusen zu intestinalen Apoptosen führte, wodurch intestinale Inflammation und Schädigung, Zusammenbruch der Darmbarriere und letztendlich ein Multiorganversagen vermittelt wurden [1]. Ein weiterer Hinweis auf eine Interaktion zwischen TNK1 und TNFα war eine erhöhte Expression von TNFα im Darm 24 h nach Induktion von TNK1. Zusätzlich zeigten sowohl ein Mausmodell von Polytrauma und HS als auch ein Schweinemodell eines HS eine vermehrte intestinale TNK1-Expression [1]. In einem HS-Experiment mit Cynomolgus-Affen wurden die Effekte einer Gabe von CP40, einem C3-Komplement-Inhibitor, untersucht [83]. Dabei zeigten Tiere, die nicht mit CP40 behandelt wurden, eine Tendenz zu einer Verschlechterung der histopathologischen Veränderungen in der Niere. Diese Tiere hatten eine erhöhte renale Expression von TNK1 [33]. Möglicherweise ist also auch in den Nieren eine vermehrte TNK1-Expression mit einer Organschädigung verbunden.

1.5 Ziele dieser Arbeit
Der Hauptbestandteil dieser Arbeit besteht darin, die Auswirkungen eines HS auf die Nierenfunktion und auf eine eventuelle Nierenschädigung zu untersuchen. Der Fokus liegt dabei auf den frühen, also die ersten Stunden betreffenden Veränderungen und insbesondere auf der Charakterisierung des mutmaßlichen Schadensmarkers TNK1. Folgende Hypothesen sollen in einem murinen Modell eines HS konkret untersucht werden:

- Es kommt bereits früh nach einem HS zu einer Einschränkung der Nierenfunktion, wobei die Biomarker Kreatinin und Harnstoff im Blut sowieAlbumin und Gesamtprotein im Urin erhöht sind.
- Darüber hinaus tritt bereits früh nach einem HS eine manifeste Schädigung der Niere auf, wobei die Biomarker NGAL und KIM-1 im Plasma und im Urin erhöht sind.
- Der Biomarker TNK1 wird in den Nieren früh nach einem HS vermehrt exprimiert, ist mit vermehrtem histologisch sichtbarem Organschaden verbunden und zeigt sich sowohl im Plasma als auch im Urin erhöht. Außerdem finden sich Assoziationen zwischen TNK1 und Biomarkern der Nierenfunktion und der Nierenschädigung.

Zusätzlich soll bei Polytrauma-Patienten folgende Hypothese überprüft werden:
2 Material und Methoden

2.1 Chemikalien und Reagenzien

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Mercaptoethanol</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Ammoniumpersulfat (APS)</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Ampuwa®</td>
<td>Fresenius Kabi, Bad Homburg, Deutschland</td>
</tr>
<tr>
<td>Arterenol® 1 mg/ml</td>
<td>Sanofi-Aventis, Frankfurt, Deutschland</td>
</tr>
<tr>
<td>Bovines Serumalbumin (BSA)</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Eosin 1 %</td>
<td>Morphisto, Frankfurt, Deutschland</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Gibco™ DBPS</td>
<td>Thermo Fisher Scientific, Dreieich, Deutschland</td>
</tr>
<tr>
<td>Glycin</td>
<td>neoFroxx, Einhausen, Deutschland</td>
</tr>
<tr>
<td>Hämatoxylin nach Gill</td>
<td>Morphisto, Frankfurt, Deutschland</td>
</tr>
<tr>
<td>Hämatoxylin nach Mayer</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Heparin-Natrium Braun “Multi” 10000 I.E./ml</td>
<td>B. Braun, Melsungen, Deutschland</td>
</tr>
<tr>
<td>IGEPAL® CA-630</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>VWR, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Jonosteril®</td>
<td>Fresenius Kabi, Bad Homburg, Deutschland</td>
</tr>
<tr>
<td>Laemmli-Puffer</td>
<td>Bio-Rad Laboratories, München, Deutschland</td>
</tr>
<tr>
<td>Medizinischer Sauerstoff</td>
<td>Linde, Dublin, Irland</td>
</tr>
<tr>
<td>Methanol</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Milchpulver</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Natriumchlorid 0,9 %</td>
<td>Fresenius Kabi, Bad Homburg, Deutschland</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>Merck, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Natriumcitrat-Dihydrat</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Natriumdodecylsulfat (SDS)</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Natriumorthovanadat</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Neo-Mount®</td>
<td>Merck, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Phenylmethylsulfonylfluorid (PMSF)</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Proteaseinhibitor-Cocktail</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Salzsäure 37 %</td>
<td>VWR, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Sevorane®</td>
<td>AbbVie, Wiesbaden, Deutschland</td>
</tr>
<tr>
<td>Materialien</td>
<td>Hersteller/Ort</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Temgesic®</td>
<td>Movianto, Neunkirchen, Deutschland</td>
</tr>
<tr>
<td>Tetramethylethylen diamin (TEMED)</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Tris(hydroxymethyl)-aminomethan (Tris)</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Tris Fertigpulver</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Tween® 20</td>
<td>Sigma-Aldrich, Steinheim, Deutschland</td>
</tr>
<tr>
<td>Xylocain 2 %</td>
<td>AstraZeneca, London, England</td>
</tr>
<tr>
<td>Xylocain 2 %</td>
<td>VWR, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>2.2 Materialien</td>
<td></td>
</tr>
<tr>
<td>Amersham™ Hybond™ 0,45 µm PVDF-Membran</td>
<td>GE Healthcare, Freiburg, Deutschland</td>
</tr>
<tr>
<td>Anästhesieröhre Maus</td>
<td>FMI, Seeheim-Jugenheim, Deutschland</td>
</tr>
<tr>
<td>Chirurgische Schere</td>
<td>B. Braun, Melsungen, Deutschland</td>
</tr>
<tr>
<td>Deckgläser 24 x 60 mm</td>
<td>Thermo Fisher Scientific, Dreieich,</td>
</tr>
<tr>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Dreiewegehahn</td>
<td>B. Braun, Melsungen, Deutschland</td>
</tr>
<tr>
<td>Dumont Inox D8 5/45 Pinzette</td>
<td>WPI, Friedberg, Deutschland</td>
</tr>
<tr>
<td>Einmalkanüle, 27 G</td>
<td>B. Braun, Melsungen, Deutschland</td>
</tr>
<tr>
<td>Filterpapier</td>
<td>Bio-Rad Laboratories, München, Deutschland</td>
</tr>
<tr>
<td>Foliodrape®</td>
<td>Hartmann, Heidenheim, Deutschland</td>
</tr>
<tr>
<td>Gesichtsmaske Maus</td>
<td>WPI, Friedberg, Deutschland</td>
</tr>
<tr>
<td>Mini-PROTEAN® Glasplatten</td>
<td>Bio-Rad Laboratories, München, Deutschland</td>
</tr>
<tr>
<td>Nunc™ MicroWell™ 96 Well Mikrotiterplatte</td>
<td>Thermo Fisher Scientific, Dreieich,</td>
</tr>
<tr>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Objekträger 76 x 26 mm</td>
<td>Thermo Fisher Scientific, Dreieich,</td>
</tr>
<tr>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>PAP-Pen Liquid Blocker</td>
<td>Science Services, München, Deutschland</td>
</tr>
<tr>
<td>Perfusorleitung 150 cm</td>
<td>B. Braun, Melsungen, Deutschland</td>
</tr>
<tr>
<td>Perfusorspritze 10 ml</td>
<td>B. Braun, Melsungen, Deutschland</td>
</tr>
<tr>
<td>Polyethylen-Katheter</td>
<td>FMI, Seeheim-Jugenheim, Deutschland</td>
</tr>
<tr>
<td>Qubit™ Reaktionsgefäß</td>
<td>Thermo Fisher Scientific, Dreieich,</td>
</tr>
<tr>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Reaktionsgefäß, 0,5 ml, 1,5 ml und 2,0 ml</td>
<td>Eppendorf, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Silkam® 5/0</td>
<td>B. Braun, Melsungen, Deutschland</td>
</tr>
</tbody>
</table>
S-Monovette® EDTA K 1,2 ml Sarstedt, Nümbrecht, Deutschland
S-Monovette® EDTA K 7,5 ml Sarstedt, Nümbrecht, Deutschland
S-Monovette® Serum-Gel 7,5 ml Sarstedt, Nümbrecht, Deutschland
Sterican® 30 G B. Braun, Melsungen, Deutschland
Vasofix® Safety 24 G B. Braun, Melsungen, Deutschland
Zentrifugenröhrchen, 15 ml und 50 ml BD Biosciences, Heidelberg, Deutschland

2.3 Antikörper und Standards
Ziege Anti-Kaninchen Antikörper, AP-gekoppelt, polyklonal Jackson ImmunoResearch, West Grove, USA
Ziege Anti-Kaninchen Antikörper, HRP-gekoppelt, polyklonal Cell Signaling, Frankfurt, Deutschland
Kaninchen Anti-Maus-Antikörper, unkonjugiert, polyklonal Jackson ImmunoResearch, West Grove, USA
Precision Plus™ Protein Unstained Standards Bio-Rad Laboratories, München, Deutschland
Precision Plus™ StrepTactin-HRP Konjugat Bio-Rad Laboratories, München, Deutschland
TNK1 Kaninchen Anti-Maus Antikörper, polyklonal Proteintech, Rosemont, USA
Ziegenserum Jackson ImmunoResearch, West Grove, USA

2.4 Kits
Albumin Maus ELISA Kit LifeSpan BioSciences, Seattle, USA
Clarity™ Western ECL Substrat Bio-Rad Laboratories, München, Deutschland
Dako REAL™ Detection System Agilent, Waldbronn, Deutschland
IL-6 Maus ELISA Kit BD Biosciences, Heidelberg, Deutschland
KIM-1 Maus Quantikine ELISA Kit R&D Systems, Minneapolis, USA
NGAL Maus ELISA Kit LifeSpan BioSciences, Seattle, USA
Pierce® BCA Protein Assay Kit Thermo Fisher Scientific, Dreieich, Deutschland
Streptavidin/Biotin Blocking Kit Vector Laboratories, Burlingame, USA
TGX Stain-Free™ FastCast™ Acrylamid Kit, 10 % Bio-Rad Laboratories, München, Deutschland
TNK1 Human ELISA Kit Aviva Systems Biology, San Diego, USA
TNK1 Maus ELISA Kit EIAab, Wuhan, China
2.5 Geräte

Axio Imager M1 Zeiss, Oberkochen, Deutschland
Blutdruckmessgerät ACQ-7700 DSI, New Brighton, USA
BD DTX Plus Druckwandler BD, Heidelberg, Deutschland
ChemiDoc™ XRS+ Bio-Rad Laboratories, München, Deutschland
Heizblock UBD1 Grant, Beaver Falls, USA
HemoCue® Plasma Low Hb Analyzer Radiometer, Krefeld, Deutschland
Mikrotom Cut 6062 Slee, Mainz, Deutschland
Mikrowelle NN-K101WM Panasonic, Hamburg, Deutschland
Mini-PROTEAN® Casting Stand Bio-Rad Laboratories, München, Deutschland
Mini-PROTEAN® Tetra Vertical Electrophoresis Cell Bio-Rad Laboratories, München, Deutschland
Original Perfusor® Line, Typ IV B. Braun, Melsungen, Deutschland
OP-Mikroskop Zeiss, Oberkochen, Deutschland
PowerPac™ HC power supply Bio-Rad Laboratories, München, Deutschland
Qubit™ 2.0 Thermo Fisher Scientific, Dreieich, Deutschland
Sevofluran Vet. Med. Vapor FMI, Seeheim-Jugenheim, Deutschland
Tecan Sunrise Microplate Reader Tecan, Crailsheim, Deutschland
Temperatur-Kontrollmodul TKM-0904 FMI, Seeheim-Jugenheim, Deutschland
Trans-Blot® Turbo™ Transfer System Bio-Rad Laboratories, München, Deutschland
Ultra-Turrax T25 basic IKA, Staufen, Deutschland

2.6 Software

AxioVision (Version 4.9.1.0) Zeiss, Oberkochen, Deutschland
Image Lab (Version 6.0) Bio-Rad Laboratories, München, Deutschland
Ponemah (Version 5.0) DSI, New Brighton, USA
SigmaPlot (Version 11.0) Systat Software, Erkrath, Deutschland
XFluor (Version 4.51) Tecan, Crailsheim, Deutschland
ZEN (Version 2.5) Zeiss, Oberkochen, Deutschland
2.7 Puffer

- Elektrophorese, Laufpuffer: 0,1 % SDS, 192 mM Glycin, 25 mM Tris, gelöst in Wasser.
- Elektrophorese/Western Blot, Transferpuffer: 0,0375 % SDS, 39 mM Glycin, 48 mM Tris, gelöst in Wasser mit 20 % Methanol.
- Elektrophorese/Western Blot, Trispuffer (TBS, TBST): 20 mM Tris, 137 mM NaCl, pH 7,6; TBST mit 0,01 % Tween® 20.
- Elektrophorese, Gele: Herstellung mithilfe des TGX Stain-Free™ Fastcast™ Acrylamid Kit, 10 %.
 - Trenngel: je 3 ml Resolver A und B, 3 µl TEMED, 30 µl APS 10 %
 - Sammelgel: je 1 ml Stacker A und B, 2 µl TEMED, 10 µl APS 10 %
- RIPA-Puffer: 1 % IGEPAL® CA-630, 0,5 % Natriumdesoxycholat, 0,1 % SDS gelöst in PBS, dazu pro ml 50 µl Proteaseinhibitor, 10 µl PMSF (10 mg/ml in Isopropanol) und 10 µl Natriumorthovanadat (100 mM)
- Immunhistochemie, Citratpuffer: 10 mM Citrat, pH 6, gelöst in Wasser.
- Immunhistochemie, Verdünnungsmittel: 3 µl/ml Tween® 20, 1 µl/ml Ziegenserum in TBS (50 mM Tris, 138 mM NaCl, 2,7 mM KCl, pH 8).
- Immunhistochemie, Blocklösung: 100 µl/ml Ziegenserum, 4 Tropfen pro ml Streptavidin, gelöst in obigem Verdünnungsmittel.
- Immunhistochemie, TBST: TBS mit 0,1 % Tween® 20.
- Immunhistochemie, Dako REAL™ Detection System: Pro 500 µl AP-Substratpuffer je 20 µl Chromogen Red 1, Chromogen Red 2 und Chromogen Red 3 sowie 1 µl Levamisol.

2.8 Mausmodell des hämorrhagischen Schocks

Verwendet für den Tierversuch wurden 18 C57BL/6J-Mäuse (Charles River Wiga GmbH, Sulzfeld, Deutschland) im Alter von 8-12 Wochen und einem mittleren Gewicht von 29,5 ± 1,6 g (Mittelwert ± Standardabweichung). Die Mäuse hatten freien Zugang zu Wasser und Futter und einen Tag-Nacht-Rhythmus von 14/10 h. Es wurden drei Gruppen gebildet: Die erste Gruppe erlitt einen HS, die zweite wurde
als Sham-Gruppe instrumentiert, ohne einen HS zu erhalten und die dritte Gruppe diente als unbehandelte Kontrollgruppe. Die HS-Gruppe umfasste 8 Mäuse, die Sham-Gruppe 6 Mäuse und die Kontrollgruppe 4 Mäuse.

Nachdem die Tiere in eine Einleitungsrohre verbracht wurden, wurde die Narkose durch Inhalation von einem Sevofluran-Sauerstoff-Gemisch mit einem Sevoflurananteil von 2,5 % induziert. Danach wurden die Tiere auf eine Platte transferiert, die über eine rektale Temperatursonde und ein Temperatur-Kontrollgerät die Temperatur konstant bei 37 °C halten sollte, um eine Hypothermie zu vermeiden. Die Narkose wurde ab diesem Moment als Maskennarkose bis zum Ende des Experiments weitergeführt. Als Analgetikum wurde Buprenorphin (Temgesic®) subkutan in einer Dosis von 0,03 mg/kg Körpergewicht verabreicht.

Nach erfolgter Instrumentierung erfolgte bei den HS-Tieren die Induktion des HS durch eine Abnahme von Blut aus der Arteria femoralis. Zielwert war ein mittlerer arterieller Druck (MAP) von 30 ± 5 mmHg, wobei für das Erreichen dieses Zielwerts maximal 40 % des Blutvolumens abgenommen werden sollten. Der so induzierte HS dauerte 60 min an. Während dieser Zeit wurden die Sham-Tiere lediglich beobachtet. Danach begann die Reperfusionsphase, in der sowohl den HS- als auch den Sham-Tieren zum Ausgleich eines eventuellen Blutverlustes bei der Katheterisierung ein Bolus von 400 µl Jonosteril® über die Vena jugularis infundiert wurde.

2.9 Western Blot

Die Analyse der Expression von TNK1 in den Nieren auf Proteinebene wurde mittels Western Blot durchgeführt. Hierfür wurden die Nieren zunächst homogenisiert. Es befand sich je eine Niere in einem Eppendorfgefäß. Diesen wurden jeweils 200 µl RIPA-Puffer zugesetzt. Die Proben wurden auf Eis gelegt und dann mit einem Dispergierer homogenisiert. Die Homogenisate wurden bei 16000 x g und 4 °C für 15 min zentrifugiert und der Überstand abgenommen. Dieser wurde bis zur weiteren Verwendung bei -80 °C gelagert.

Für die Elektrophorese wurden jeweils 30 µg Protein pro Bahn geladen. Das für diese Menge notwendige Volumen einer jeden Probe wurde in ein Eppendorfgefäss pipettiert und mit Wasser auf 15 µl aufgefüllt. Dann wurden jeweils 5 µl eines vierfach konzentrierten Laemmli-Puffers hinzugefügt, der zur Reduktion der Disulfidbrücken 2-Mercaptoethanol enthielt. Dies führte zu einem Gesamtvolumen von 20 µl pro Probe. Als Marker wurden 5 µl vom Precision Plus Protein™ Unstained Standard verwendet. Marker und Proben wurden zur Denaturierung der Proteine für

2.10 Urinelektrophorese
Zur qualitativen Evaluation der Proteine im Urin der Versuchstiere wurde eine Elektrophorese durchgeführt. Dafür wurden pro Probe 30 µg Protein geladen. Das Gesamtprotein im Urin wurde dabei aufgrund möglicher Interferenzen durch Harnstoff nicht mit dem BCA Protein Assay, sondern mit dem Qubit™ Fluorometer bestimmt. Dafür wurden jeweils 10 µl der Standards und 10 µl der Urinproben in ein
Qubit™-Gefäß pipettiert und mit der Arbeitslösung (bestehend aus Qubit™-Reagenz in Qubit™-Puffer, 1:200 verdünnt) auf 200 µl aufgefüllt. Nach 15 min Inkubationszeit wurden die Proben in das Fluorometer verbracht und die Proteinkonzentrationen bestimmt.

2.11 Immunhistochemie

2.12 Färbung mit Hämatoxylin und Eosin (HE)
Die HE-Färbungen wurden nach einem Standardprotokoll durchgeführt. Die Schnitte wurden zunächst zum Entparaffinisieren zweimal in Xylol inkubierte, gefolgt von einer absteigenden Ethanolreihe (96 %, 80 %, 70 %, 60 %) und Wasser zur Rehydrierung. Danach folgte die Färbung mit Hämatoxylin nach Gill, ein Spülen mit Wasser und ein kurzes Eintauchen in Salzsäure (0,1 %). Nach Eintauchen in Wasser wurden die Schnitte mit Eosin (1 %) gefärbt und nochmals in Wasser eingetaucht. Abschließend wurden die Schnitte zur Dehydrierung zweimal in Ethanol (96 %), in Isopropanol und zweimal in Xylol inkubierte und mit Neo-Mount® eingedeckt. Nach vollständigem Trocknen konnten die nun HE-gefärbten Schnitte lichtmikroskopisch untersucht werden.

2.13 Polytrauma-Studie am Universitätsklinikum Ulm
waren neben dem oben genannten ISS eine unterzeichnete Einwilligung des Patienten beziehungsweise eines gesetzlichen Betreuers bei nicht einwilligungsfähigen Patienten. Ausschlusskriterien waren eine Lebenserwartung < 24 h, eine präklinisch notwendige kardiopulmonale Reanimation, Versterben unmittelbar nach Klinikaufnahme, Alter < 18 Jahren, Patientinnen mit bestehender Schwangerschaft, Patienten mit einer Chemo- und/oder Strahlentherapie in den letzten 3 Monaten, eine Behandlung mit Immunsuppressiva sowie eine bereits vor dem Trauma notwendige Dialyse. Blut wurde an den Zeitpunkten 0 h (Schockraum), 8 h, 24 h, 48 h, 120 h und 240 h nach Trauma entweder durch Abnahme aus einem zentralen Venenkatheter oder durch eine periphere Venenpunktion in Serum- und EDTA-Monovetten gewonnen. Die zeitliche Toleranz der Abnahmezeitpunkte betrug maximal ± 10%. Die Monovetten wurden nach der Abnahme sofort auf Eis gelegt und im Falle des EDTA-Blutes schnellstmöglich, im Falle des Serums nach erfolgter Gerinnung (30 bis 120 min) bei 2200 x g und 4 °C für 15 min zentrifugiert. Der Überstand wurde abgenommen, aliquotiert und bis zur weiteren Verwendung bei -80 °C gelagert. Als Kontrollen diente Blut von 7 gesunden, freiwilligen Probanden.

2.14 ELISA

2.15 Kreatinin und Harnstoff
50 µl einer internen Standardlösung bestehend aus 5 µg/ml ²H₃-Kreatinin (CDN Isotopes, Pointe-Claire, Kanada) und 100 µg/ml N-Methylharnstoff wurden 10 µl Plasma hinzugefügt. Nach Mischen wurden die Proben 10 min bei Raumtemperatur äquilibriert, durch Hinzufügen von 500 µl Acetonitril deproteinisiert und bei 13000 x g zentrifugiert. 25 µl des Überstands wurden für die Messung von Harnstoff
Die restliche Probe wurde verdampft, mit 500 µl Ameisensäure 0,01 % rekonstituiert und über eine Anionenaustauschersäule (Phenomenex, Aschaffenburg, Deutschland) extrahiert. Nach Waschen mit Wasser und Methanol wurde Kreatinin mit Methanol/Ameisensäure (9:1) gewonnen. Harnstoff wurde zum tert-Butyldimethylsilyl-Derivat konvertiert. Nach Verdampfung des Lösungsmittels wurden 100 µl Acetonitril/N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamid (2:1) hinzugefügt und für 60 min auf 80 °C erhitzt. Beim Kreatinin wurde das Trimethylsilyl-Derivat durch Hinzufügen von 100 µl Acetonitril/N,O-Bis(trimethylsilyl)trifluoroacetamid (2:1) und Erhitzen für 60 min bei 80 °C gewonnen. Die Analysen wurden mit einem Agilent 5890/5970 Gaschromatografie-Massenspektrometrie-System und einer MN Optima-5MS Kapillarsäule (Macherey-Nagel, Düren, Deutschland) durchgeführt. Für die Bestimmung von Harnstoff wurden die Ionen m/z 231 und 245 für Analyt und internen Standard aufgezeichnet, für die Bestimmung von Kreatinin die Ionen m/z 329 und 332 als Analyt und internen Standard. Zur Quantifizierung wurden Sechs-Punkt-Kalibrierungskurven verwendet [75, 76].

2.16 Statistik
Für die Prüfung der Korrelation zweier Variablen wurde der Pearson-Korrelationskoeffizient angewendet. In allen Fällen wurde das Signifikanzniveau auf p < 0,05 festgelegt. Falls nicht anders angegeben, sind die Daten als Mittelwert ± Standardfehler dargestellt. Die im Plasma gemessenen Parameter wurden größtenteils auf das Gesamtprotein bezogen dargestellt, um mögliche Effekte einer Verdünnung auf die Konzentrationen zu minimieren.
3 Ergebnisse
3.1 Hämodynamik
3.1.1 Mittlerer arterieller Druck, Herzfrequenz und Temperatur
Der MAP und die HF wurden kontinuierlich invasiv über einen arteriellen Katheter gemessen und in regelmäßigen zeitlichen Abständen dokumentiert. Den HS-Tieren wurden durchschnittlich 760 ± 49 µl Blut abgenommen, um den HS zu induzieren. Der MAP der HS-Gruppe sank dadurch mit Beginn der Induktion des HS ab und lag bis zum Ende der HS-Phase zu jedem Zeitpunkt im Zielbereich von 30 ± 5 mmHg (Abb. 2 A). Mit Beginn der Reperfusionsphase stieg der MAP an und erreichte innerhalb von 15 min den im Versuchsprotokoll geforderten Mindestwert von 50 mmHg. Dieser wurde mit Ausnahme einer kurzen Phase von 10 min nach Ende der Reperfusion nicht unterschritten. Der MAP erreichte in und nach der Reperfusionsphase zu keinem Zeitpunkt bis zum Versuchsende den Ausgangswert der HS-Gruppe von 72 ± 1 mmHg oder den korrespondierenden Durchschnittswert der Sham-Gruppe.
Die HF der HS-Gruppe verhielt sich invers zum MAP. In der HS-Phase stieg die HF bis zu einem Maximalwert von 543 ± 18 /min an und sank mit Beginn der Reperfusion wieder (Abb. 2 B). Nach der Reperfusionsphase war die HF bei 432 ± 2 /min relativ stabil. Der Ausgangswert der HS-Gruppe von 402 ± 14 /min oder die jeweils entsprechenden Werte der Sham-Gruppe wurden dabei bis zum Versuchsende nicht erreicht.
Die Temperatur wurde mittels einer rektalen Sonde gemessen, wobei die Temperatur der Versuchstiere über eine Heizplatte durch einen Feedback-Mechanismus weitestgehend konstant gehalten werden sollte. Dennoch waren in der HS- und in der Sham-Gruppe Oszillationen um bis zu 0,9 °C und 0,8 °C, respektive, zu beobachten (Abb. 2 C). Während der Dauer der HS-Phase lagen die durchschnittlichen Temperaturen der HS-Tiere jederzeit unter jenen der Sham-Tiere. Über den gesamten Versuchszeitraum betrachtet lagen die Temperaturen der HS-Tiere an den meisten Messzeitpunkten etwas unter den korrespondierenden Werten der Sham-Tiere, was allerdings nicht statistisch signifikant war.
Abb. 2: Verläufe von mittlerem arteriellem Druck (MAP), Herzfrequenz (HF) und Körpertemperatur. Zeitlicher Verlauf (in Minuten (min) nach Ende der Instrumentierung) von A, MAP, B, HF und C, Temperatur in der Schock-Gruppe (n = 8) und der Sham-Gruppe (n = 6).
3.1.2 Hämoglobin

Das Hämoglobin (Hb) wurde innerhalb weniger Minuten nach Versuchsende mit einem Point-of-Care-Messgerät gemessen, wobei bei jeweils einem Sham- und einem HS-Tier aufgrund einer geronnenen Probe kein Hb-Wert ermittelt werden konnte. Das Hb der HS-Gruppe betrug durchschnittlich 5,7 g/dl und war damit, verglichen mit der Sham-Gruppe und den Kontrollen, um mehr als die Hälfte verringert (Abb. 3 A). Diese Unterschiede waren jeweils statistisch signifikant. Verglichen mit den Kontrollen war der Hb-Wert auch in der Sham-Gruppe minimal niedriger. Relativ zum Gesamtprotein im Plasma war nur das Hb der HS-Gruppe signifikant erniedrigt, während zwischen Sham-Tieren und Kontrollen kein Unterschied bestand (Abb. 3 B).

![Graph A: Hämoglobin (Hb) der Versuchsgruppen](image)

Abb. 3: Hämoglobin (Hb) der Versuchsgruppen. Vergleich des nach Versuchsende gemessenen Hb zwischen der hämorrhagischen-Schock-(HS-)Gruppe (n = 5 bei A, n = 6 bei B), der Sham-Gruppe (n = 5) und den Kontrollen (Ctrl) (n = 4). Test auf statistisch signifikante Unterschiede mittels Varianzanalyse und Student-Newman-Keuls-Test. ***, p < 0,001.

3.1.3 Reperfusion

Während der Reperfusionsphase wurden den HS-Tiere 3040 ± 196 µl Flüssigkeit infundiert, was exakt dem Vierfachen des abgenommenen Blutvolumens entsprach. Weitere 1870 ± 600 µl wurden im Zuge der Noradrenalin-Gabe verabreicht, sodass sich das gesamte applizierte Volumen auf 4910 ± 424 µl belief. Die Sham-Tiere erhielten lediglich den allen Tieren verabreichten Bolus von 400 µl. Zudem benötigten die Tiere der HS-Gruppe deutlich mehr Noradrenalin als jene der Sham-Gruppe, wobei die drei HS-Tiere, denen zur Induktion des HS am wenigsten Blut abgenommen wurde, am meisten Noradrenalin benötigten. Um den Effekt der – in Relation zum Körpergewicht der Mäuse – großen Mengen verabreichter Flüssigkeit
anschaulich darstellen und eine eventuelle Ödembildung evaluieren zu können, wurde der Bauchumfang der HS-Tiere und der Sham-Tiere jeweils am Versuchsanfang und am Versuchsende gemessen und die Differenz untersucht. Dabei zeigte sich mit 0,6 ± 0,1 cm eine deutliche Zunahme des Bauchumfangs bei den HS-Tieren, während dieser bei den Sham-Tieren minimal abnahm. Alle genannten Unterschiede zwischen den beiden Gruppen waren statistisch signifikant (Abb. 4 A–C). Darüber hinaus wurde der Urin der HS- und Sham-Tiere über die Dauer des Experiments durch einen Blasenkatheter gesammelt. Urin der Kontrollen wurde beim Entnehmen der Organe gewonnen, wobei dies bei einem Tier nicht gelang. Die HS-Tiere wiesen die höchsten Urinvolumina auf, während zwischen den Sham-Tieren und den Kontrollen kein wesentlicher Unterschied bestand (Abb. 4 D).

Abb. 4: Reperfusion, Urinvolumen. Vergleich von A, infundierter Flüssigkeit, B, appliziertem Noradrenalin und C, Bauchumfangsdifferenz zwischen der hämorrhagischen-Schock-(HS-)Gruppe (n = 8 bei A und B, n = 6 bei C) und der Sham-Gruppe (n = 6 bei C, n = 5 bei A und B). D, Vergleich des während des Experiments gesammelten Urinvolumens zwischen der HS-Gruppe (n = 8), der Sham-Gruppe (n = 6) und den Kontrollen (Ctrl) (n = 3). Test auf statistisch signifikante Unterschiede mittels Mann-Whitney-Test (A), mittels t-Test (B, C) und mittels Kruskal-Wallis-Test (D). ***, p < 0,001; **, p < 0,01; *, p < 0,05.
3.2 Interleukin-6
Um die HS-induzierte Entzündungsreaktion zu untersuchen, wurde als proinflammatorischer Marker Interleukin-6 (IL-6) im Plasma der Versuchstiere bestimmt. In der HS-Gruppe konnte ein deutlicher Anstieg der IL-6-Konzentration verglichen mit den Sham-Tieren und den Kontrollen, bei welchen nur bei einem Tier minimale Konzentrationen gemessen wurden, festgestellt werden (Abb. 5). Dieser Anstieg war nur verglichen mit den Kontrollen statistisch signifikant. Auch bei den Sham-Tieren wurden, verglichen mit den Kontrollen, dezent erhöhte IL-6-Spiegel gemessen.

Abb. 5: Konzentration von Interleukin-6 (IL-6) im Plasma. Vergleich der IL-6-Konzentration zwischen hämorrhagischen-Schock-(HS-)Tieren (n = 8), Sham-Tieren (n = 6) und Kontrollen (Ctrl) (n = 4). Test auf statistisch signifikante Unterschiede mittels Kruskal-Wallis- und Dunn-Test. **, p < 0,01. Aus [33], um die Sham-Gruppe ergänzt, CC BY 4.0, https://creativecommons.org/licenses/by/4.0/

3.3 Protein und Albumin
Gesamtprotein und Albumin wurden bei den Versuchstieren sowohl im Plasma als auch im Urin gemessen. Das Gesamtprotein im Plasma war bei den HS-Tieren gegenüber den anderen beiden Gruppen deutlich und signifikant verringert (Abb. 6 A). Auch bei den Sham-Tieren zeigte sich, verglichen mit den Kontrollen, ein signifikant erniedrigtes Gesamtprotein, der Unterschied war allerdings weitaus weniger deutlich. Im Urin wurde bei den Sham-Tieren die höchste Proteinkonzentration gemessen, während die HS-Gruppe die niedrigste Konzentration aller Gruppen aufwies (Abb. 6 B). Darüber hinaus konnten aufgrund der bekannten Urinvolumina auch die absoluten Proteimengen bestimmt werden. Hier zeigten die Sham-Tiere ebenfalls die höchsten Werte, wobei die Unterschiede
weniger deutlich waren (Abb. 6 C). Zudem hatten die HS-Tiere tendenziell höhere Mengen an absolutem Protein im Urin als die Kontrollen.

![Abb. 6: Gesamtprotein im Plasma und im Urin. Vergleich des Gesamtproteins im A, Plasma, sowie B und C, Urin zwischen der hämorrhagischen-Schock-(HS-)Gruppe (n = 8), der Sham-Gruppe (n = 6 bei A und C, n = 5 bei B) und den Kontrollen (Ctrl) (n = 4 bei A, n = 3 bei B und C). Test auf statistisch signifikante Unterschiede mittels Varianzanalyse und Student-Newman-Keuls-Test. ***, p < 0,001; *, p < 0,05.](image)

die Sham-Tiere mehr Albumin als die Kontrollen im Urin (Abb. 7 C). Zuletzt wurde der Anteil vom Albumin am Gesamtprotein bestimmt. Hier zeigte die HS-Gruppe mit 3,4 % den höchsten Wert, während bei den Kontrollen das Albumin nur 0,3 % des Gesamtproteins im Urin ausmachte (Abb. 7 D).

![Graphen](image1.png)

Abb. 7: Albumin im Plasma und im Urin. Vergleich des Albumins im Plasma (A) und im Urin (B, C und D) zwischen der hämorrhagischen-Schock-(HS-)Gruppe (n = 8), der Sham-Gruppe (n = 6 bei A, B und D, n = 5 bei C) und den Kontrollen (Ctrl) (n = 4 bei A, n = 3 bei B-D). Test auf statistisch signifikante Unterschiede mittels Varianzanalyse und Student-Newman-Keuls-Test. **, p < 0,01; *, p < 0,05.

3.4 Biomarker der Nierenfunktion und Nierenschädigung

Als Biomarker für die Nierenfunktion wurden Kreatinin und Harnstoff im Plasma der Versuchstiere bestimmt. Sowohl beim Kreatinin als auch beim Harnstoff wurden die höchsten Konzentrationen bei den HS-Tieren gemessen (Abb. 8). Besonders ausgeprägt war der Unterschied beim Kreatinin; hier wiesen die HS-Tiere mehr als doppelt so hohe Konzentrationen als die Sham-Tiere und fast fünfmal höhere Konzentrationen als die Kontrolltiere auf. Außerdem wurde auch bei den Sham-
Tieren eine Erhöhung von Kreatinin und Harnstoff verglichen mit den Kontrollen festgestellt.

Abb. 8: Kreatinin und Harnstoff im Plasma. Vergleich von A, Kreatinin und B, Harnstoff zwischen der hämorrhagischen-Schock-(HS-)Gruppe (n = 8), der Sham-Gruppe (n = 6) und den Kontrollen (Ctrl) (n = 4). Test auf statistisch signifikante Unterschiede mittels Kruskal-Wallis- und Dunn-Test (A) oder Varianzanalyse und Student-Newman-Keuls-Test (B). ***, p < 0,001; **, p < 0,01.
A aus [33], um die Sham-Gruppe ergänzt und Einheit geändert, CC BY 4.0, https://creativecommons.org/licenses/by/4.0/

Als Marker für eine Schädigung der Niere wurden NGAL und KIM-1 sowohl im Plasma als auch im Urin der Versuchstiere bestimmt. KIM-1 war im Plasma der HS-Tiere mehr als doppelt so hoch verglichen mit den Sham- und Kontrolltieren, wobei dies statistisch nicht signifikant war (Abb. 9 A). NGAL zeigte im Plasma ebenfalls bei den HS-Tieren die höchsten Konzentrationen, was allerdings statistisch nicht signifikant war (Abb. 9 B).

Im Urin dagegen wurden bei den HS-Tieren die niedrigsten und bei den Sham-Tieren die höchsten Konzentrationen von KIM-1 gemessen (Abb. 9 C). Bei NGAL waren die Konzentrationen, verglichen mit den Kontrollen, bei den HS-Tieren und den Sham-Tieren leicht erhöht, wobei bei den Sham-Tieren die höchste Konzentration festgestellt wurde (Abb. 9 D). Wie bereits beim Gesamtprotein und Albumin wurden die absoluten Mengen von KIM-1 und NGAL im Urin bestimmt. Bei beiden Parametern wiesen die HS-Tiere die höchsten Werte auf, während bei NGAL auch die Sham-Tiere tendenziell höhere Werte als die Kontrollen zeigten (Abb. 9 E, F). Diese Unterschiede waren statistisch nicht signifikant.

A und B aus [33], um die Sham-Gruppe ergänzt, CC BY 4.0, https://creativecommons.org/licenses/by/4.0/
D aus [33], um die Sham-Gruppe ergänzt und Einheit geändert, CC BY 4.0, https://creativecommons.org/licenses/by/4.0/
Neben den Konzentrationen der genannten Parameter war auch von Interesse, ob und inwiefern diese in Zusammenhang miteinander standen. Zu diesem Zwecke wurden Korrelationsanalysen durchgeführt. Harnstoff und Kreatinin wiesen bei den HS-Tieren eine schwache positive, aber nicht signifikante Korrelation (r = 0,44; p = 0,28) miteinander auf. Kreatinin und Harnstoff als Marker der Nierenfunktion wurden außerdem mit jenen der Nierenschädigung, also KIM-1 und NGAL, korreliert. Hierbei zeigte lediglich KIM-1 im Plasma positive, wenn auch nicht signifikante Korrelationen mit Kreatinin (r = 0,58; p = 0,14) und Harnstoff (r = 0,52; p = 0,19).

Allerdings konnten positive und signifikante Korrelationen zwischen Plasma-NGAL und Plasma-KIM-1 sowie zwischen NGAL im Plasma und im Urin festgestellt werden (Abb. 10). Auch KIM-1 im Plasma korrelierte mit NGAL im Urin, allerdings nicht signifikant (r = 0,67; p = 0,07). Diese Korrelationen traten nur bei den HS-Tieren auf.

3.5 Urinelektrophorese

Im Rahmen dieser Studie waren nicht nur die Konzentrationen und absoluten Mengen verschiedener Proteine im Urin von Interesse, sondern auch, welche Proteine im Urin der Versuchstiere auftauchten. Insbesondere sollte mit der zu diesem Zweck durchgeführten Urinelektrophorese nach hochmolekularen Proteinen gefahndet werden, die im Urin gesunder Tiere normalerweise nicht nachweisbar sein sollten, um gegebenenfalls den Verdacht auf eine Dysfunktion des glomerulären Filters zu erhärten. Die Ergebnisse der Urinelektrophorese sind in Abb. 11 dargestellt. Bei etwa 130 bis 140 kDa befand sich eine Bande, die in dieser Intensität – mit Ausnahme eines Tieres – ausschließlich bei den HS-Tieren zu sehen war. Die Frage, um welches Protein es sich dabei handelte und welchen Ursprungs dieses Protein war, konnte anhand der Elektrophorese allerdings nicht beantwortet werden.

Knapp oberhalb des 50 kDa-Markers fanden sich bei fast allen Tieren Banden unterschiedlicher Intensität, deren molekulare Massen etwa 53 kDa und 57 kDa betrugen. Diese Banden fehlten bei den Kontrolltieren oder waren nur sehr schwach erkennbar. Bezüglich der molekularen Masse kam hier vor allem Albumin in Frage. Als Referenz lief auf einer Bahn bovines Serumalbumin mit, welches bei etwa 48 kDa zu erkennen war (Abb. 11 B). Zwischen den Intensitäten der Banden bei 53 kDa und 57 kDa und dem im Urin gemessenen Albumin bestand eine positive und signifikante Korrelation (r = 0,83; p < 0,0001).
Abb. 11: Urinelektrophorese. Urinelektrophoresen der Versuchstiere, wobei die eine Hälfte in A und die andere Hälfte in B dargestellt ist. Es wurden von jedem Versuchstier Urinmengen entsprechend jeweils 30 µg Protein geladen. Jeweils die ersten vier Bahnen sind hämorrhagischer Schock-(HS-)Tiere (n = 8), die nächsten drei Bahnen Sham-Tiere (n = 6) und die letzten zwei Bahnen Kontrollen (Ctrl) in A bzw. eine Kontrolle (n = 3) und 5 µg bovines Serumalbumin (BSA) in B. Die Pfeile befinden sich auf Höhe der Banden bei etwa 130-140 kDa, die nur bei den Schock-Tieren zu sehen sind, und der bei den Kontrollen fehlenden oder sehr schwachen Banden bei etwa 50-60 kDa.
3.6 TNK1

Um die eingangs postulierte These von TNK1 als neuen möglichen Marker für Organschädigung, hier insbesondere der Nierenschädigung, zu überprüfen, wurden vielfältige Analysen durchgeführt. Zunächst wurde TNK1 im Plasma und im Urin der Versuchstiere bestimmt. Außerdem wurde zur (Semi-)Quantifizierung der Expression von TNK1 in den Nieren ein Western Blot aus Nierenhomogenisaten durchgeführt und zuletzt zur Analyse des Expressionsmusters TNK1 auf histologischen Schnitten der Nieren gefärbt.

Es wurde des Weiteren überprüft, ob zwischen TNK1 und den oben genannten Markern der Nierenfunktion und Nierenschädigung ein Zusammenhang bestand. Bei der HS-Gruppe korrelierte Urin-TNK1 positiv und signifikant mit Plasma-NGAL (r = 0,76; p = 0,03) sowie mit Urin-NGAL (r = 0,78; p = 0,02). Zwischen Urin-TNK1 und Plasma-Kreatinin, Plasma-Harnstoff sowie KIM-1 konnten keine signifikanten Korrelationen festgestellt werden. Plasma-TNK1 korrelierte tendenziell negativ, aber nicht signifikant mit Markern der Nierenfunktion oder -schädigung. Zwischen Urin-TNK1 und Plasma-TNK1 gab es ebenfalls eine tendenziell negative, aber nicht signifikante Assoziation.
Abb. 12: Tyrosine kinase non receptor 1 (TNK1) im Plasma und im Urin. Vergleich von TNK1 im A, Plasma sowie B und C, Urin zwischen der hämorragischen-Schock-(HS-)Gruppe (n = 8), der Sham-Gruppe (n = 6 bei A und C, n = 5 bei B) und den Kontrollen (Ctrl) (n = 4 bei A, n = 3 bei B und C). Test auf statistisch signifikante Unterschiede mittels Varianzanalyse (A, C) oder Kruskal-Wallis-Test (B).

Beim Western Blot der Nierenhomogenisate wurden die durchschnittlichen Intensitäten der Banden der jeweiligen Versuchsgruppen miteinander verglichen. Hierbei wiesen die Kontrollen etwas höhere Werte auf als die beiden anderen Gruppen. Insgesamt bewegten die Werte sich aber auf einem sehr ähnlichen Niveau. Es lässt sich also konstatieren, dass bei der Expression von TNK1 in den Nieren mittels Western Blot keine wesentlichen Unterschiede zwischen den Gruppen festgestellt werden konnten (Abb. 13 A).
Abbildung 1: Tyrosine kinase non receptor 1 (TNK1) im Western Blot von Nierenhomogenisaten.

A, Vergleich der Intensitäten der TNK1 entsprechenden Banden (abstrakte Werte) zwischen der hämorrhagischen Schock-(HS-)Gruppe (n = 8), der Sham-Gruppe (n = 6) und den Kontrollen (Ctrl) (n = 4). Test auf statistisch signifikante Unterschiede mittels Varianzanalyse. B, Ausschnitt einer Membran des Western Blots. Die Bande unterhalb des 75 kDa-Markers entspricht TNK1. Eine zweite Bande unklarer Identität wurde konsistent bei etwa 120 kDa detektiert.

Für die Analyse des Expressionsmusters mittels Immunhistochemie wurden die Schnitte nach Färbung für TNK1 lichtmikroskopisch untersucht und die Intensitäten der Färbung densitometrisch quantifiziert. Hierbei wiesen die HS-Tiere dezent erhöhte Werte auf, während die Sham-Tiere und die Kontrollen in etwa die gleichen Werte zeigten (Abb. 14). Dieser Unterschied zwischen HS-Tieren und den beiden anderen Gruppen war statistisch nicht signifikant. Letztlich konnte damit immunhistochemisch, im Einklang mit dem Western Blot, keine relevant erhöhte Expression von TNK1 in den Nieren der HS-Tiere gezeigt werden.
Neben der Intensität der Färbung war zusätzlich die präferenzielle Lokalisation der Expression von Interesse. Dabei zeigten die Glomeruli konsistent in allen Tieren keinerlei Expression von TNK1. Hauptmanifestationsort der Expression von TNK1 waren die Tubulusepithelzellen, wobei sich ein zytosolisches Expressionsmuster zeigte (Abb. 15).

Abb. 14: Tyrosine kinase non receptor 1 (TNK1), Immunhistochemie der Nieren. Vergleich der densitometrisch gemessenen Intensitäten der Färbung für TNK1 (abstrakte Werte) zwischen der hämorrhagischen Schock-(HS-)Gruppe (n = 8), der Sham-Gruppe (n = 6) und den Kontrollen (Ctrl) (n = 4). Test auf statistisch signifikante Unterschiede mittels Varianzanalyse.

3.7 TNK1 im Plasma von Polytrauma-Patienten

TNK1 wurde nicht nur im Rahmen des bereits beschriebenen experimentellen HS im Mausversuch analysiert, sondern auch bei zwischen Mai 2015 und Juli 2016 ins Universitätsklinikum Ulm eingelieferten polytraumatisierten Patienten. Hierbei wurde TNK1 im Blut der Patienten zu definierten Zeitpunkten sowie zum Vergleich bei gesunden Kontrollen bestimmt. Es zeigte sich, dass TNK1 bei den Polytrauma-Patienten verglichen mit den Kontrollen zu allen Zeitpunkten deutlich erhöht war. Dabei bewegten sich die Werte in den ersten 48 h bei geringen Schwankungen auf einem Plateau, um zu den Zeitpunkten 120 und 240 h nach Trauma wieder zu fallen, wobei selbst 240 h nach Trauma noch erhöhte Werte verglichen mit den Kontrollen festzustellen waren (Abb. 17 A).

Darüber hinaus war von Interesse, ob Assoziationen zwischen TNK1 und Markern der Nierenfunktion sowie zwischen TNK1 und Indikatoren eines Schocks bestanden. Es wurden Korrelationsanalysen zwischen TNK1 und Kreatinin, Hämatokrit, dem initialen Basendefizit, dem initialen Laktatspiegel, der Bilanz in den ersten 24 h sowie der Anzahl der verabreichten Erythrozytenkonzentrate in den ersten 24 h durchgeführt.

Zwischen Kreatinin 24 h nach Trauma und TNK1 240 h nach Trauma bestand eine positive, signifikante Korrelation ($r = 0,66; p = 0,02$). Kreatinin zu den Zeitpunkten 0 h ($r = 0,54; p = 0,07$), 8 h ($r = 0,61; p = 0,1$) sowie 48 h nach Trauma ($r = 0,57; p = 0,06$) korrelierte ebenfalls positiv, jedoch nicht signifikant mit TNK1 240 h nach Trauma.

Zusätzlich fanden sich positive Korrelationen zwischen den transfundierten Erythrozytenkonzentraten in den ersten 24 h nach Trauma und TNK1 zu den Zeitpunkten 120 sowie 240 h nach Trauma (Abb. 17 B und C). Zwischen initialem Basendefizit sowie der initialen Laktatkonzentration als weiteren Indikatoren eines Schocks und TNK1 bestanden allerdings keine signifikanten Korrelationen, ebenso wenig korrelierten die Flüssigkeitsbilanz in den ersten 24 h nach Trauma oder der Hämatokrit mit TNK1.

Abgesehen davon korrelierten die initialen Laktatwerte signifikant mit dem Kreatinin zu den Zeitpunkten 24 h, 48 h und 120 h nach Trauma sowie das initiale Basendefizit signifikant mit Kreatinin zum Zeitpunkt 48 h nach Trauma (Abb. 18).
Abb. 17: Tyrosine kinase non receptor 1 (TNK1) im Plasma. A, Vergleich von TNK1 im Plasma zwischen den gesunden Kontrollen (Ctrl) (n = 7) und den Polytrauma-Patienten zu den jeweils beschriebenen Zeitpunkten (n = 13 bei 0 Stunden (h), n = 12 bei 48 h und 240 h, n = 11 bei 8 h, 24 h und 120 h). B und C, Korrelationen zwischen den Erythrozytentransfusionen in den ersten 24 h und den TNK1-Konzentrationen im Plasma der Polytrauma-Patienten an den Zeitpunkten 120 h (n = 11) und 240 h (n = 12). Test auf statistisch signifikante Unterschiede zwischen den einzelnen Zeitpunkten der Polytrauma-Patienten und der Kontrollgruppe mittels Kruskal-Wallis- und Dunn-Test. Korrelationen mittels Pearson-Korrelation. *, p < 0,05; r, Pearson-Korrelationskoeffizient. Übersetzt aus [33], CC BY 4.0, https://creativecommons.org/licenses/by/4.0/
Abb. 18: Korrelationen zwischen Kreatinin und Laktat sowie Basendefizit im Plasma. A bis C, Korrelationen zwischen initialem Laktat und Kreatinin zu den Zeitpunkten 24 Stunden (h) (n = 8), 48 h (n = 8) und 120 h (n = 7) nach Trauma sowie D, Korrelation zwischen initialem Basendefizit und Kreatinin zum Zeitpunkt 48 h (n = 8) nach Trauma. Korrelationen mittels Pearson-Korrelation. r, Pearson-Korrelationskoeffizient.
4 Diskussion

4.1 Mausmodell des HS

4.1.1 Hämodynamik und Inflammation

Im murinen Modell des HS wurden Blutdruck, Herzfrequenz und Temperatur nach Ende der Instrumentierung alle 5 min bestimmt. Die Körpertemperatur der HS-Tiere lag an der Mehrzahl der Messzeitpunkte unter jener der Sham-Tiere, allerdings war dieser Unterschied bereits zu Versuchsbeginn zu beobachten und demnach nicht methodenbedingt. Darüber hinaus waren die Unterschiede der Körpertemperatur zu keinem Zeitpunkt statistisch signifikant. Der während der Schockphase aufgetretene Anstieg der Herzfrequenz ist zwanglos auf die sympathoadrenerge Aktivierung zurückzuführen und eine physiologische Kompensationsreaktion, die bei einem Mausmodell einer Kombination aus HS und Abklemmen der Nierenarterien ebenfalls – in noch ausgeprägterem Maße – zu beobachten war [85]. Das im Plasma der Versuchstiere gemessene pro-inflammatorische Zytokin IL-6 war, wie in einer vorhergehenden Studie des murinen HS [19], in der HS-Gruppe deutlich erhöht. Ein HS allein kann somit eine ausgeprägte systemische Entzündungsreaktion induzieren, was insbesondere auch dahingehend von Bedeutung ist, als dass die inflammatorische Reaktion eine wichtige pathophysiologische Rolle bei der Kompromittierung der vaskulären Permeabilität spielt. In der vorliegenden Arbeit zeigte sich eine deutliche Zunahme des Bauchumfangs der HS-Tiere als mögliches Zeichen einer Ödembildung und damit einer möglichen Störung der endothelialen Schrankenfunktion.

4.1.2 Niere

Diese protokollgerecht zur Aufrechterhaltung des Ziel-MAPs > 50 mmHg entsprechend viel Volumen erhielten und dabei ein Verdünnungseffekt nicht ausschließbar war. Wichtig ist an der Stelle, dass neben der Kenntnis der Konzentrationen von KIM-1 und NGAL vor allem deren Kinetik und die Messzeitpunkte eine entscheidende Rolle spielen. Einige Studien führten daher sequenzielle Messungen durch. Bei KIM-1 konnten bei einem Mausmodell einer 30-minütigen, bilateralen Ischämie nach 3 h erstmals erhöhte Spiegel sowohl im Plasma als auch im Urin gemessen werden, wobei die höchsten Konzentrationen nach 24 bis 48 h erreicht wurden [71]. In der Studie eines 120-minütigen HS von Mayeur et al. dagegen konnte erst nach 12 h eine vermehrte Expression von KIM-1 auf mRNA-Ebene in den Nieren gezeigt werden [54]. Die Expression von NGAL stieg in einem Experiment einer 15-minütigen, bilateralen Ischämie nach 3 bis 6 h an und gipfelte bei etwa 12 h [64]. In einem anderen Mausmodell wurde 3 h nach 30-minütiger, bilateraler Ischämie eine erhöhte Expression von NGAL gemessen, während im Urin bereits nach 2 h erhöhte Konzentrationen festgestellt wurden [56]. Die Anstiege von NGAL waren bei dieser Studie, sowohl die Stärke als auch den zeitlichen Verlauf betreffend, abhängig von der Schwere des Insults. Nach 5-minütiger Ischämie war NGAL im Urin beispielsweise erst nach 6 h erhöht.

während ein 60-minütiger HS mit einem MAP von etwa 30 mmHg (entsprechend der vorliegenden Arbeit) einen Anstieg von NGAL im Plasma zur Folge hatte [19]. Auch wenn für NGAL und KIM-1 lediglich im Plasma Anstiege der Konzentrationen gemessen werden konnten, sprechen die vorliegenden Daten dennoch dafür, dass es bei den HS-Tieren zu einer Schädigung der Niere gekommen ist. NGAL im Plasma korrelierte signifikant mit KIM-1 im Plasma und mit NGAL im Urin, was bei den Sham-Tieren nicht beobachtet werden konnte. Bei den HS-Tieren wurde, gemessen anhand der IL-6-Konzentration, eine deutliche systemische Entzündungsreaktion induziert, im Rahmen derer ein Anstieg von NGAL grundsätzlich möglich ist [23]. Die sehr starke Korrelation von NGAL im Plasma und im Urin miteinander lässt sich allerdings nur durch eine renale Genese wirklich erklären, zumal NGAL im Urin größtenteils aus den Nieren stammt [64].

Zusätzlich zu den bereits genannten Parametern sind auch Urinvolumen, -protein und -albumin relevant bezüglich der Evaluierung der Nierenfunktion und Nierenschädigung. Während des Experiments wurde der Urin der Versuchstiere

4.1.3 TNK 1

Ein wesentlicher Fokus dieser Arbeit lag auf der Untersuchung der Rolle von TNK1 in der schockinduzierten Pathophysiologie. Vor kurzem konnte gezeigt werden, dass in Tiermodellen von Polytrauma und/oder HS TNK1 vor allem intestinal vermehrt exprimiert wird [1]. Darüber hinaus deuten institutseigene Daten eines HS-Modells mit Cynomolgus-Affen darauf hin, dass eine vermehrte renale TNK1-Expression mit vermehrtem, histologisch sichtbarem Organschaden einhergeht [33, 83]. Auf Basis dessen wurde postuliert, dass mit TNK1 ein neuer Marker für Organschädigung zur Verfügung stünde. Um diese Hypothese weiter zu explorieren

Etwas genauer untersucht ist dagegen die Expression von TNK1. In der vorliegenden Arbeit konnte gezeigt werden, dass TNK1 in den Nieren exprimiert wird, und zwar vereinzelt in Tubulusepithelzellen. Die Literatur ist diesbezüglich nicht eindeutig. In einem Mausmodell mit durch Doxycyclin induzierbarer TNK1-Expression wurde 24 h nach Doxycyclin-Gabe keine renale Expression beobachtet [1]. In einer anderen Studie konnte dagegen eine Expression von TNK1 in Nieren von C57BL/6-Mäusen, die auch in der vorliegenden Arbeit verwendet wurden, nachgewiesen werden [61]. Darüber hinaus war von Interesse, ob ein HS eine erhöhte TNK1-Expression in den Nieren induzieren kann. Sowohl immunhistochemisch als auch mittels Western Blot waren 4 h nach Schock keine wesentlichen Unterschiede zwischen den Gruppen feststellbar. Im Einklang damit konnte in einem Mausmodell eines Polytraumas mit zusätzlichem HS auf mRNA-Ebene 2 h nach Schock keine vermehrte Induktion von...
TNK1 in den Nieren gezeigt werden [1]. Andererseits konnten wir in einer erneuten immunhistochemischen Untersuchung der HS- und Kontrolltiere mit einem monoklonalen Antikörper anstelle des in dieser Arbeit verwendeten polyklonalen Antikörpers gegen TNK1 eine erhöhte Expression von TNK1 vor allem in den Sammelrohren der HS-Tiere nachweisen [33]. Zusätzlich zeigte sich in einer nachträglichen Untersuchung auf mRNA-Ebene eine signifikant erhöhte TNK1-Expression in den Nieren der HS-Tiere verglichen mit den Kontrollen [33].

Die vorliegenden Daten werfen die Frage auf, welche Rolle TNK1 in der renalen Pathophysiologie nach Schock spielen könnte. TNK1 kann den Transkriptionsfaktor STAT1 phosphorylieren [61], der unter anderem Interferon regulatory factor 1 (IRF-1) induzieren kann [72]. Es konnte gezeigt werden, dass IRF-1 zu einer erhöhten TNFα-induzierten Zytotoxizität führte [77]. Dieser Effekt schien durch eine Hemmung der NF-κB-Aktivität direkt an der Transkriptionsmaschinerie bedingt zu sein. Der gleiche Effekt konnte, wie unter 1.4 beschrieben, auch für TNK1 gezeigt werden [3]. Eine mögliche Erklärung für die TNK1-Wirkung könnte also folgende sein: TNK1 phosphoryliert STAT1, wodurch die Bildung von IRF-1 induziert wird. IRF-1 wiederum hemmt die TNFα-induzierte NF-κB-Aktivität. Dies führt dazu, dass die TNFα-Wirkung nunmehr in Richtung Apoptose gebahnt wird. Eskaliert dieser Prozess, beispielsweise aufgrund einer massiven TNFα-Bildung im Rahmen von schweren Traumata und starken Blutverlusten, könnte diese Induktion von Apoptose überschießen und zu Schädigung von Organen mit weitreichenden Konsequenzen führen. An dieser Stelle stellt sich die Frage, ob und inwiefern Assoziationen der beschriebenen molekularen Prozesse mit den Nieren bestehen.

In der Tat wurde in einem IRI-Modell der Maus beobachtet, dass innerhalb von 4 h nach Reperfusion die Expression von IRF-1 auf Proteinebene erhöht war – interessanterweise in proximalen Tubuli, welche besonders vulnerabel im Hinblick auf ischämische Schädigungen sind [86]. IRF-1-Knockout-Mäuse hatten einen geringeren histologischen Schaden und eine geringere renale Funktionseinschränkung. In vitro wurde in der gleichen Studie gezeigt, dass ROS die Expression von IRF-1 induzieren konnten. Möglicherweise vermitteln ROS dies über TNK1, da zellulärer Stress zu einer Aufhebung der Repression der TNK1-Expression führt [38]. Ein Grund dafür, dass trotz dieser möglichen molekularen Mechanismen in der vorliegenden Arbeit keine wesentliche Erhöhung der renalen
TNK1-Expression gezeigt werden konnte, könnte jener sein, dass – analog zu NGAL und KIM-1 – ein HS-Modell im Allgemeinen nicht frühzeitig zu einem solch ausgeprägten Schaden wie ein IRI-Modell führt und somit eine Erhöhung der TNK1-Expression womöglich erst später nachweisbar ist. Abschließend soll kurz ein technischer Aspekt beleuchtet werden. Im Western Blot konnte, zusätzlich zu der TNK1 entsprechenden Bande, konsistent bei allen Tieren eine Bande bei etwa 120 kDa beobachtet werden. Eine mögliche Erklärung ist eine Kreuzreaktivität des polyklonalen Antikörpers gegen TNK1 mit ACK1 (Activated CDC42 kinase 1). ACK1, auch bekannt als TNK2, ist Namensgeber der ACK-Familie von Nicht-Rezeptor-Tyrosinkinasen, zu der auch TNK1 gehört [67]. TNK1 weist eine Homologie von etwa 46 % mit ACK1 auf. Darüber hinaus hat ACK1 eine Molekülmasse von 120 kDa, was in etwa der beobachteten Bande entspricht. Weitergehende Untersuchungen wurden allerdings nicht durchgeführt, sodass die Identität der zweiten Bande nicht zweifelsfrei geklärt werden konnte.

4.2 TNK1 bei Polytrauma-Patienten

zu konstatieren, dass diese eine der ersten Messungen von TNK1 im Blut von Menschen darstellt. Weitere, detailliertere Untersuchungen sind aufgrund der hier berichteten Ergebnisse sicherlich angebracht und notwendig, um die offenen Fragen beantworten zu können.

Davon abgesehen fand sich eine eindeutige Assoziation zwischen den initialen Laktatspiegeln und damit der Schwere des Schocks und einer darauffolgenden Nierenfunktionsstörung, was die unter 1.2 beschriebene Rolle von Laktat als Prädiktor für eine AKI untermauert.

4.3 Limitationen der Arbeit

4.4 Schlussfolgerung
Mit der vorliegenden Arbeit konnte in einem murinen Modell gezeigt werden, dass nach einem experimentellen HS bereits früh eine ausgeprägte renale Funktionsstörung sowie erste Anzeichen einer beginnenden Nierenschädigung feststellbar sind. In der Frühphase führt ein HS – zumindest in der vorliegenden
5 Zusammenfassung
Zu diesem Zwecke wurde in der vorliegenden Arbeit in einem Mausmodell eines hämorrhagischen Schocks die Nierenfunktion und insbesondere eine mögliche Schädigung der Niere in der Frühphase nach dem Schock evaluiert. Mit tyrosine kinase non receptor 1 (TNK1) wurde ein weiterer, mutmaßlicher Marker für Organschädigung mit Fokus auf der Niere sowohl im murinen Experiment als auch im Blut von Polytrauma-Patienten untersucht.

Die Expression von TNK1 war in den Nieren weder immunhistochemisch noch mittels Western Blot 4 h nach Schock erhöht. Offensichtlich führte der Schock zumindest in der Frühphase nicht zu einer renalen Induktion von TNK1. Dies sollte jedoch nicht dahingehend interpretiert werden, dass TNK1 renal grundsätzlich nicht durch einen Schock induziert wird, da spätere Zeitpunkte nicht untersucht wurden und somit eine Latenz bezüglich der Expression von TNK1 nicht ausgeschlossen
werden kann. Im Plasma war bei den Schock-Tieren die TNK1-Konzentration am höchsten, im Urin dagegen am niedrigsten. Der hämorrhagische Schock schien hier also durchaus Veränderungen zu bedingen, eine abschließende Bewertung ist aufgrund des explorativen Charakters der Messungen aber nicht möglich.

Als translationaler Ansatz wurde eine erste Evaluation von TNK1 im Blut von Polytrauma-Patienten durchgeführt und an allen beobachteten Zeitpunkten (von 0 bis 10 Tagen) erhöhte Konzentrationen gemessen. Außerdem fanden sich Hinweise auf eine Assoziation zwischen TNK1 und der Schwere des Schocks sowie der Nierenfunktion. Eine kausale Beziehung kann daraus freilich nicht abgeleitet werden; weitere, detailliertere Untersuchungen sind aufgrund dieser Ergebnisse aber sicherlich berechtigt.

6 Literaturverzeichnis

7 Danksagung
Diese Seite wurde aus Gründen des Datenschutzes entfernt.
8 Lebenslauf
Diese Seite wurde aus Gründen des Datenschutzes entfernt.
Diese Seite wurde aus Gründen des Datenschutzes entfernt.