Derandomizing RP if Boolean Circuits are not Learnable

Johannes Köbler and Wolfgang Lindner and Rainer Schuler

June 8, 1999

Abstract

We show that every language in \mathcal{RP} has subexponential-time approximations for infinitely many input lengths if boolean circuits are not polynomial-time pac-learnable with membership queries under the uniform distribution.

1 Introduction

How to derandomize probabilistic computations, that is, how to efficiently simulate randomized computations by means of deterministic ones is an important and active research area in complexity theory. A central open question in this area regards the power of \mathcal{BPP}, the class of languages decidable in probabilistic polynomial time with small error. Obviously, $\mathcal{BPP} \subseteq \mathcal{EXP}$, but it is not known whether \mathcal{BPP} is in fact equal to \mathcal{EXP}. However, starting with the seminal work of Yao on pseudo-random generators [Yao82], there have been advances indicating that \mathcal{BPP} algorithms can be simulated significantly faster than by browsing through the whole underlying probability space. These results assume the existence of cryptographically secure one-way functions [Yao82, BH89], the hardness of problems in \mathcal{EXP} [BM84, NW94, BFNW93, IW97], or the existence of hitting set generators [ACR98], among others.

In this paper we build on yet another hypothesis regarding the learnability of boolean circuits, and show that \mathcal{RP}, the one-sided error version of \mathcal{BPP}, has
subexponential-time approximations if boolean circuits are not polynomial-time
pac-learnable with membership queries under the uniform distribution. This hy-
pothesis is known to follow from the existence of polynomially secure pseudoran-
dom generators [GGM86], and has $\mathsf{RP} \neq \mathsf{NP}$ as a consequence [BEHW87].

In the proof we use the well-known construction of a pseudorandom generator
based on a hard function due to Nisan and Wigderson [NW94]. This construction
is applied in a similar fashion as done by Impagliazzo and Wigderson [IW98] to
obtain subexponential-time approximations for $\mathcal{BP}^\mathcal{P}$, based on the assumption
$\mathcal{EXP} \not\subseteq \mathcal{BP}^\mathcal{P}$. The main departure from the arguments given in [IW98] is that
here we have to deal with a whole concept class rather than a single language.
We further make use of the equivalence of weak and strong learning under the
uniform distribution as shown by Boneh and Lipton [BL93].

2 Preliminaries

Probability. We follow the notation used in the book [Lub97]. In particular,
$f : \{0,1\}^{k(n)} \rightarrow \{0,1\}^{\ell(n)}$ denotes a function ensemble, that is, for each fixed n,
f_n is a mapping from $\{0,1\}^{k(n)}$ to $\{0,1\}^{\ell(n)}$.

We let $D : \{0,1\}^n$ denote a probability ensemble, where for each fixed n, D_n
is a probability distribution on $\{0,1\}^n$. Throughout the paper, the uniform dis-
tribution is denoted by U. We write $X \in_D \{0,1\}^n$ to indicate that X is a ran-
don variable on $\{0,1\}^n$ that is distributed according to D_n. A probability en-
semble $D : \{0,1\}^n$ is polynomial-time samplable if there is a function ensemble
$f : \{0,1\}^{r(n)} \rightarrow \{0,1\}^n$ such that f is computable in time polynomial in n, and
for $X \in_U \{0,1\}^{r(n)}$, $f(X)$ is distributed according to D_n.

Learning. A concept c over a predefined instance space U is a subset $c \subseteq U$.
A concept class over U is a collection of concepts over U. We identify a concept
$c \subseteq U$ with its characteristic function $c : U \rightarrow \{0,1\}$. A representation class is a
quadruple
\[
R = (\Sigma, \Delta, R, \Phi),
\]
where Σ and Δ are finite alphabets, $R \subseteq \Delta^*$ is the set of representations, and Φ is
a mapping from R to subsets of Σ^*. The concept class \mathcal{C} represented by R is the
set of concepts $\Phi(r) \subseteq \Sigma^*$ for $r \in R$. The size of a representation $r \in R$ is just its
length $|r|$. The size of a concept $c \in C$ is $|c| = \min_{\Phi(r)=c} |r|$, i.e., the size of the smallest representation of c. Concepts $c \notin C$ are defined to have infinite size.

In this paper we will only consider boolean concepts c. This means that for some positive integer n, c is a subset of the finite instance space $\{0,1\}^n$. A boolean concept class consists only of boolean concepts. A boolean representation class \mathcal{R} is a representation class representing a boolean concept class C. We use C_n to denote the set of concepts $c : \{0,1\}^n \rightarrow \{0,1\}$ in C, and we use $C_{n,s}$ to denote all concepts $c \in C_n$ of size at most s.

Let \mathcal{R} be a boolean representation class, and let $D : \{0,1\}^n$ be a probability ensemble. In the pac-learning model [Val84], a learning algorithm attempts to determine an unknown target concept \hat{c} from the boolean concept class C represented by \mathcal{R}. The learning algorithm may make calls to an oracle $EX(\hat{c}, D)$ which in unit time returns a labeled example $(x, \hat{c}(x))$, where x is drawn randomly and independently according to D. The goal of the learning algorithm is to output a representation of a concept that approximates the target well, where the quality of the approximation is measured w.r.t. D. The boolean representation class \mathcal{R} is polynomial-time pac-learnable on the distribution D if there exists a probabilistic algorithm A with the following property: for all integers n and s, for every target concept $\hat{c} \in C_{n,s}$, for all rationals $\epsilon > 0$ and $\delta > 0$, A runs in time polynomial in $n, s, 1/\epsilon$ and $1/\delta$, and if A is given inputs n, s, ϵ, δ and access to $EX(\hat{c}, D)$, then with probability at least $1 - \delta$, A outputs a hypothesis $h \in \mathcal{R}$ satisfying

$$\Pr(h(X) = \hat{c}(X)) \geq 1 - \epsilon,$$

where $X \in_D \{0,1\}^n$. We refer to the algorithm A as the learning algorithm for \mathcal{R}. Further we refer to the input ϵ as the error parameter, and to the input δ as the confidence parameter.

The representation class \mathcal{R} is polynomial-time pac-learnable with membership queries on the distribution D if the learning algorithm for \mathcal{R} has additionally access to the oracle \hat{c}.

Kearns and Valiant [KV94] studied the weak variant of pac-learning where the hypothesis produced by the learning algorithm is required to perform only slightly better than a random guess. The boolean representation class \mathcal{R} is weakly polynomial-time pac-learnable on the distribution D if there exists a probabilistic algorithm A and a polynomial p such that for all integers n and s, for every target concept $\hat{c} \in C_{n,s}$, and for all rationals $\delta > 0$, A runs in time polynomial in n, s and $1/\delta$, and if A is given inputs n, s, δ and access to $EX(\hat{c}, D)$, then with probability
at least $1 - \gamma$, A outputs a hypothesis $h \in R$ satisfying
\[
\Pr(h(X) = \hat{c}(X)) \geq \frac{1}{2} + \frac{1}{p(n, s)},
\]
where $X \in D \{0, 1\}^n$. Weak polynomial-time pac-learnability with membership queries is defined analogously.

Let the m-fold xor of a boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be the function $f^{\oplus(m)} : \{0, 1\}^{mn} \rightarrow \{0, 1\}$ defined as
\[
f^{\oplus(m)}(x_0, \ldots, x_{m-1}) = \bigoplus_{i=0}^{m-1} f(x_i),
\]
where $x_0, \ldots, x_{m-1} \in \{0, 1\}^n$. We say that a boolean representation class \mathcal{R} is polynomially closed under \oplus if there exists a polynomial p such that for all integers m and for all c in the concept class \mathcal{C} represented by \mathcal{R}, the concept $c^{\oplus(m)}$ has size at most $p(|c|, m)$.

Theorem 1 ([BL93]). Let \mathcal{R} be a boolean representation class which is polynomially closed under \oplus. Then the following are equivalent:

1. \mathcal{R} is weakly polynomial-time learnable under the uniform distribution.
2. \mathcal{R} is polynomial-time learnable under the uniform distribution.

This equivalence also holds in the presence of membership queries.

Subexponential-time approximations.

Definition (cf. [IW98]). A language L has subexponential-time approximations if for all $\gamma > 0$, there exists a 2^{n^γ}-time bounded deterministic Turing machine M such that for all polynomial-time samplable probability ensembles D, for all polynomials p, for almost all n, and for X randomly chosen according to D_n,
\[
\Pr(L(X) \neq M(X)) < \frac{1}{p(n)}.
\]
If this holds only for infinitely many n, then L is said to have weak subexponential-time approximations.
3 Derandomization of \mathcal{RP}

In this section, we prove the following theorem.

Theorem 2. Suppose that boolean circuits are not weakly polynomial-time learnable with membership queries under the uniform distribution. Then \mathcal{RP} admits weak subexponential-time approximations.

We first recall some notation from [NW94].

Definition. A (ℓ, m, n, k)-design is a collection $\mathcal{D} = (D_0, \ldots, D_{\ell-1})$ of sets $D_i \subseteq \{0, \ldots, m - 1\}$, each of which has cardinality n, such that for all $i \neq j$, $|D_i \cap D_j| \leq k$. Given a function $f : \{0,1\}^n \rightarrow \{0,1\}$, the nearly disjoint sets generator (based on f and \mathcal{D}), $f^\mathcal{D} : \{0,1\}^m \rightarrow \{0,1\}^\ell$, is for every seed $x = x_0 \cdots x_{m-1}$ of length m defined by

$$f^\mathcal{D}(x) = f(x[D_0]) \cdots f(x[D_{\ell-1}]),$$

where $\mathcal{D} = \{D_0, \ldots, D_{\ell-1}\}$, and $x[D_i]$, for $0 \leq i \leq \ell - 1$, denotes the restriction of x to $D_i = \{i_0 < \cdots < i_n\}$ defined as $x[D_i] = x_{i_0} \cdots x_{i_{n-1}}$.

We also need the following lemma.

Lemma 3 ([NW94]). For all integers n and ℓ with $\ell \leq 2^n$, there exists a $(\ell, 4n^2, n, \lceil \log \ell \rceil)$-design \mathcal{D}. Moreover, there is an algorithm which for every n and ℓ computes \mathcal{D} in time polynomial in n and ℓ.

Remark 1. In the following, we will refer to the design \mathcal{D} computed by the algorithm in the previous lemma as the generic $(\ell, 4n^2, n, \lceil \log \ell \rceil)$-design.

Nisan and Wigderson showed that if the function f is hard to approximate by polynomial-size circuits, then the generator $f^\mathcal{D}$ has polynomial non-uniform security. This means that if there is a polynomial-size test T with sufficiently large distinguishing probability for $f^\mathcal{D}$, then there is a polynomial-size circuit C approximating f. Impagliazzo and Wigderson [IW98] showed that C can be uniformly obtained from T with polynomially many membership queries to f.

Lemma 4 (cf. [IW98]). There is a probabilistic oracle algorithm A with the following property: For all integers n and $\ell \leq 2^n$, for every probabilistic circuit C with input length ℓ, and for every function $f : \{0,1\}^n \rightarrow \{0,1\}$, for all rationals
\(\epsilon > 0, \gamma > 0, \) if \(A \) gets inputs \(n, \ell, \epsilon, \gamma, C \) and oracle \(f \), then \(A \) runs in time polynomial in \(n, \ell, |C|, 1/\epsilon, \) and \(\log(1/\gamma) \), and with probability at least \(1 - \gamma \), \(A \) outputs a deterministic circuit \(D \) which for \(Z \in U \{0,1\}^n \) satisfies

\[
\Pr(D(Z) = f(Z)) \geq \frac{1}{2} + \delta/\ell - \epsilon,
\]

where for \(X \in U \{0,1\}^{4n^2} \) and \(Y \in U \{0,1\}^\ell \),

\[
\delta = |Pr(C(f^D(X)) = 1) - Pr(C(Y) = 1)|
\]

and \(D \) is the generic \((\ell, 4n^2, n, \log \ell)\)-design.

For the proof of our theorem we also need the following two lemmas.

Lemma 5. For functions \(f : \{0,1\}^n \to \{0,1\} \) and \(g : \{0,1\}^n \times \{0,1\}^r \to \{0,1\} \), and for \(y \in \{0,1\}^r \) and \(X \in U \{0,1\}^n \), let

\[
\sigma(y) = Pr(g(X,y) = f(X)).
\]

and let \(\sigma \) be the expected value of \(\sigma(Y) \), where \(Y \in U \{0,1\}^r \). Furthermore, for an integer \(q \), for \(x_0, \ldots, x_{q-1} \in \{0,1\}^n \) and \(y_0, \ldots, y_{q-1} \in \{0,1\}^r \), define

\[
h(x_0, \ldots, x_{q-1}, y_0, \ldots, y_{q-1}) \]

is the smallest index \(j \in \{0, \ldots, q-1\} \) such that the cardinality

\[
|\{i \in \{0, \ldots, q-1\} : g(x_i, y_j) = f(x_i)\}|
\]

is maximal. Then there exists a polynomial \(p \) such that for all functions \(f : \{0,1\}^n \to \{0,1\} \) and \(g : \{0,1\}^n \times \{0,1\}^r \to \{0,1\} \), for all rationals \(\epsilon > 0, \gamma > 0, \) for \(q = p(1/\epsilon, \log(1/\gamma)) \), and for independently chosen \(X_0, \ldots, X_{q-1} \in U \{0,1\}^n \) and \(Y_0, \ldots, Y_{q-1} \in U \{0,1\}^r \), it holds that

\[
\sigma(Y_{h(X_0,\ldots,X_{q-1},Y_0,\ldots,Y_{q-1})}) \geq \sigma - \epsilon,
\]

with probability at least \(1 - \gamma \).

Proof. For \(Y \in U \{0,1\}^r \), \(\sigma(Y) \) is a random variable that takes only values in the interval \([0,1]\). Since the expectation of \(\sigma(Y) \) is \(\sigma \), this implies that \(\sigma(Y) < \sigma - \epsilon/3 \) with probability at most \(1 - \epsilon/3 \). Hence, for \(t \geq 3/\epsilon \ln(2/\gamma) \) independently chosen \(Y_0, \ldots, Y_{t-1} \in U \{0,1\}^r \), it holds that \(\sigma(Y_j) < \sigma - \epsilon/3 \) for all \(j \in \{0, \ldots, t-1\} \) with probability at most

\[
(1 - \epsilon/3)^t \leq e^{-t\epsilon/3} \leq \gamma/2.
\]
For \(x_0, \ldots, x_{s-1} \in \{0, 1\}^n\) and \(y \in \{0, 1\}^r\) define
\[
\tilde{\sigma}(x_0, \ldots, x_{s-1}, y) = \left| \left\{ i \in \{0, \ldots, s-1\} : g(x_i, y) = f(x_i) \right\} \right|.
\]

For every \(y \in \{0, 1\}^r\) and for \(X_0, \ldots, X_{s-1} \in \mathcal{U}\ \{0, 1\}^n\), the expected value of \(\tilde{\sigma}(X_0, \ldots, X_{s-1}, y)\) is \(\sigma(y)\). Applying Chernoff Bounds, it is possible to choose \(s\) polynomial in \(1/\epsilon\) and \(\log (t/\gamma)\) such that for every \(y\),
\[
|\tilde{\sigma}(X_0, \ldots, X_{s-1}, y) - \sigma(y)| > \epsilon/3
\]
holds with probability at most \(\gamma/(2t)\). Hence, for \(Y_0, \ldots, Y_{t-1} \in \mathcal{U} \ \{0, 1\}^r\), the probability that

- there exists some \(j \in \{0, \ldots, t-1\}\) with \(\sigma(Y_j) \geq \sigma - \epsilon/3\), and
- for all \(j \in \{0, \ldots, t-1\}\), \(|\tilde{\sigma}(X_0, \ldots, X_{s-1}, Y_j) - \sigma(Y_j)| \leq \epsilon/3\)

is at least \(1 - \gamma\).

In the case that there exists some \(j \in \{0, \ldots, t-1\}\) with \(\sigma(y_i) \geq \sigma - \epsilon/3\) and that \(|\tilde{\sigma}(x_0, \ldots, x_{s-1}, y_i) - \sigma(y_i)| \leq \epsilon/3\) holds for all \(i \in \{0, \ldots, s-1\}\), we have
\[
\tilde{\sigma}(x_0, \ldots, x_{s-1}, y_h(x_0, \ldots, x_{s-1}, y_0, \ldots, y_{t-1})) \geq \sigma - 2\epsilon/3,
\]
implying that
\[
\sigma(y_h(x_0, \ldots, x_{s-1}, y_0, \ldots, y_{t-1})) \geq \sigma - \epsilon.
\]
Hence it follows that
\[
\sigma(Y_h(X_0, \ldots, X_{t-1}, Y_0, \ldots, Y_{t-1})) \geq \sigma - \epsilon
\]
holds with probability at least \(1 - \gamma\). Now the lemma follows by choosing \(q = s \geq t\).

Lemma 6. If boolean circuits of size at most \(2n\) are weakly polynomial-time pac-learnable under the uniform distribution, then boolean circuits of arbitrary size are weakly polynomial-time pac-learnable under the uniform distribution. This also holds in the presence of membership queries.
Proof. Let A be a weak polynomial-time learning algorithm for boolean circuits of size at most $2n$, i.e., for some polynomial p, any circuit $\hat{c} : \{0,1\}^n \rightarrow \{0,1\}$ of size at most $2n$, A on input n, δ outputs with probability at least $1 - \delta$ a circuit c satisfying
\[
\Pr(c(X) = \hat{c}(X)) \geq \frac{1}{2} + \frac{1}{p(n)},
\]
where $X \in_u \{0,1\}^n$. We describe the learning algorithm A' for boolean circuits of arbitrary size in two steps. In the first step, it uses A to compute a circuit C as follows.

For given inputs n, size s, confidence parameter δ, and with respect to a target $\hat{c} : \{0,1\}^n \rightarrow \{0,1\}$ computable by a circuit of size s, simulate A with parameters s for the domain of the target concept, $2s$ for the size and confidence parameter $\delta/2$. Whenever A requests a random labeled example, request a labeled example $(x, \hat{c}(x))$, choose $y \in_u \{0,1\}^{s-n}$, and provide A with $(xy, \hat{c}(x))$. In case A makes a membership query z of length s, then make a membership query x, where x consists of the first n bits of z, and provide A with the answer $\hat{c}(x)$. Let C be the circuit produced by A.

In other words, A is used by A' to compute a hypothesis C for the target $\hat{c} : \{0,1\}^s \rightarrow \{0,1\}$ defined as $\hat{c}(xy) = \hat{c}(x)$ for all $x \in \{0,1\}^n$ and all $y \in \{0,1\}^{s-n}$. Since the size of \hat{c} is at most $s + s - n \leq 2s$, it follows that with probability at least $1 - \delta/2$, the circuit C satisfies
\[
\Pr(C(X, Y) = \hat{c}(X)) \geq \frac{1}{2} + \frac{1}{p(s)},
\]
where $X \in_u \{0,1\}^n$ and $Y \in_u \{0,1\}^{s-n}$. Now let q and h be as in Lemma 5 with respect to the functions C and \hat{c}, and parameters $\epsilon = \frac{1}{2p(s)}$ and $\gamma = \delta/2$ and let the algorithm A' continue as follows.

Request q random labeled examples $(x_0, \hat{c}(x_0)), \ldots, (x_{q-1}, \hat{c}(x_{q-1}))$.

Choose $y_0, \ldots, y_{q-1} \in_u \{0,1\}^{s-n}$, compute $j_0 = h(x_0, \ldots, x_{q-1}, y_0, \ldots, y_{q-1})$, and output the circuit C' that computes $C'(x) = C(x, y_{j_0})$ for all $x \in \{0,1\}^n$.

By Lemma 5, $\Pr(C(X, Y_h(x_0, \ldots, x_{q-1}, y_0, \ldots, y_{q-1})) = \hat{c}(X)) \geq \frac{1}{2} + \frac{1}{p(s)} - \frac{1}{2p(s)^2} = \frac{1}{2} + \frac{1}{2p(s)}$ holds with probability at least $1 - \delta/2$, where $X, X_0, \ldots, X_{q-1} \in_u \{0,1\}^n$.

8
and $Y_0, \ldots, Y_{q-1} \in \mathcal{U} \{0,1\}^{s-n}$, implying that C' satisfies
\[
\Pr (C'(X) = \hat{c}(X)) \geq \frac{1}{2} + \frac{1}{2p(s)}
\]
with probability at least $1 - \delta$.

Now we are ready to prove our main result.

\textbf{Proof of Theorem 2.} Let L be a language in \mathcal{RP}. Then, for some polynomial r there is a polynomial-time function ensemble $R : \{0,1\}^n \times \{0,1\}^{r(n)} \rightarrow \{0,1\}$ such that for all strings $x \in \{0,1\}^n$ and for $Y \in \mathcal{U} \{0,1\}^{r(n)}$,

1. $x \in L \implies \Pr (R(x, Y) = 1) \geq 2/3$, and
2. $x \notin L \implies \Pr (R(x, Y) = 1) = 0$.

For a given rational $\gamma > 0$ and input length n, let $k(n) = \lfloor n^{\gamma/2} \rfloor$ and let $m(n) = 4k(n)^2$. Consider a procedure that on input x of length n accepts if and only if there is a circuit $C : \{0,1\}^{k(n)} \rightarrow \{0,1\}$ of size at most $2k(n)$ and a seed z of length $m(n)$ such that $R(x, C^D(z)) = 1$, where D is the generic $(k(n), m(n), r(n), \lceil \log r(n) \rceil)$-design provided by Lemma 4. Since D can be computed in time polynomial in n and $r(n)$, and since $m(n) = O(n^\gamma)$, the procedure runs in time $2^{O(n^\gamma)}$.

We now assume that the procedure fails to weakly approximate L. Based on this assumption we give a learning algorithm for boolean circuits, contradicting the assumption of the theorem. So let p be a polynomial and let $D : \{0,1\}^n$ be a polynomial-time samplable probability ensemble such that for almost all n, the procedure disagrees with L with probability at least $1/p(n)$, if the input is chosen according to D_n. First we prove the following claim.

\textbf{Claim 1.} For almost all n, and for all functions $f : \{0,1\}^{k(n)} \rightarrow \{0,1\}$ computable by a circuit of size at most $2k(n)$,
\[
| \Pr (R(X, f^D(Z)) = 1) - \Pr (R(X, Y) = 1) | \geq \frac{2}{3p(n)},
\]
where $X \in_D \{0,1\}^n$, $Y \in \mathcal{U} \{0,1\}^{r(n)}$, $Z \in \mathcal{U} \{0,1\}^{m(n)}$, and D is the generic $(r(n), m(n), k(n), \lceil \log r(n) \rceil)$-design.
Proof. The procedure can only disagree with \(L \) on a string \(x \) of length \(n \), if \(x \) is in \(L \) but the procedure rejects. This means that \(\Pr (R(x, Y) = 1) \geq 2/3 \), but for all functions \(f : \{0, 1\}^{|k(n)|} \rightarrow \{0, 1\} \) computable by a circuit of size at most \(2k(n) \), and for all seeds \(z \) of length \(m(n) \), \(R(x, f^D(z)) = 0 \), implying that

\[
| \Pr (R(x, f^D(Z)) = 1) - \Pr (R(x, Y) = 1) | \geq \frac{2}{3},
\]

where \(Z \in \mathcal{U} \{0, 1\}^{m(n)} \) and \(Y \in \mathcal{U} \{0, 1\}^{r(n)} \). The claim follows, since the procedure disagrees with \(L \) on a randomly chosen string (according to \(D_n \)) with probability at least \(1/p(n) \).

Let \(C_n \) be a probabilistic circuit that for \(y \in \{0, 1\}^{r(n)} \), computes \(C(y) = R(X, y) \), where \(X \in D \{0, 1\}^n \). Based on the claim we give an algorithm that weakly learns any target circuit \(\hat{c} : \{0, 1\}^k \rightarrow \{0, 1\} \) of size at most \(2k \).

On input \(k \) and confidence parameter \(\delta \), choose \(n \) to be the smallest integer such that \(k = k(n) \) and compute the generic \((r(n), m(n), k, \lceil \log r(n) \rceil)\)-design \(D \). Run the algorithm of Lemma 4 with the circuit \(C_n \), oracle \(\hat{c} \), and parameters \(\epsilon = 1/(2r(n)p(n)) \) and \(\gamma = \delta \). Output the resulting circuit \(C'' \).

Because \(D : \{0, 1\}^n \) is polynomial-time sampleable, the probabilistic circuit \(C_n \) can be obtained from (finite) descriptions of the Turing machines computing \(R \) and \(D \), respectively. Since the target \(\hat{c} \) has size at most \(2k \), it follows from the claim that the distinguishing probability of \(C_n \) for \(\hat{c}^D \) is at least \(2/3p(n) \), i.e., for \(Y \in \mathcal{U} \{0, 1\}^{r(n)} \) and \(Z \in \mathcal{U} \{0, 1\}^{m(n)} \), \(C_n \) satisfies

\[
| \Pr (C_n(\hat{c}^D(Z)) = 1) - \Pr (C_n(Y) = 1) | \geq \frac{2}{3p(n)}.\]

Hence, the algorithm of Lemma 4 produces with probability at least \(1 - \delta \) a circuit \(C'' \) such that

\[
\Pr (C''(W) = \hat{c}(W)) \geq \frac{1}{2} + \frac{1}{6r(n)p(n)},
\]

where \(W \in \mathcal{U} \{0, 1\}^k \). Thus we have shown that the class of circuits \(c : \{0, 1\}^k \rightarrow \{0, 1\} \) of size \(2k \) is weakly polynomial-time learnable with membership queries under the uniform distribution, provided that there is some language \(L \) in \(\mathcal{R}P \) for which the procedure given above fails to weakly approximate \(L \). Therefore, the theorem follows by applying Lemma 6. \(\square \)
From Theorem 1 we immediately get the following corollary.

Corollary 7. Suppose that boolean circuits are not polynomial-time learnable with membership queries under the uniform distribution. Then \mathcal{RP} admits weak subexponential-time approximations.

Since the existence of weak subexponential-time approximations for a language class \mathcal{C} implies that \mathcal{C} has \mathcal{EXP}-measure zero (in the sense of resource bounded measure as introduced by Lutz [Lut92]) we additionally get the following corollary.

Corollary 8. Suppose that boolean circuits are not polynomial-time learnable with membership queries under the uniform distribution. Then \mathcal{RP} has \mathcal{EXP}-measure zero.

References

