Mögliche Biomarker des abdominellen Aortenaneuryssmas – Matrix Metalloproteinasen-2/9 und Osteoprotegerin

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät der Universität Ulm

vorgelegt von
Mario Herkommer
aus Schwäbisch Gmünd

2010
Amtierender Dekan: Prof. Dr. rer. nat. Thomas Wirth

1. Berichterstatter: PD Dr. med. Bernd Mühling

2. Berichterstatter: Prof. Dr. med. Thomas Barth

Tag der Promotion: 18.11.2010
Meinen Eltern.
Inhaltsverzeichnis

INHALTSVERZEICHNIS...I

ABKÜRZUNGSVERZEICHNIS...II

1 EINLEITUNG ..1
 1.1 DAS ABDOMINELLE AORTANEURYSMA ..1
 1.2 MATRIX METALLOPROTEINASEN 2 UND 9 ..4
 1.3 OSTEOPROTEGERIN ...5
 1.4 ABDOMINELLES AORTANEURYSMA UND STATINTHERAPIE ..7
 1.5 FRAGESTELLUNG ..7

2 MATERIAL UND METHODEN ..9
 2.1 PATIENTENKOLLEKTIV ..9
 2.2 REAGENZIEN, CHEMIKALIEN UND GERÄTE ..9
 2.3 PROBENFORDERUNG ..11
 2.4 ENZYME LINKED IMMUNO SORBENT ASSAY ..12
 2.5 IMMUNHISTOCHEMISCHE FÄRBUNGEN ..16
 2.6 HÄMATOXYLIN-EOSIN-FÄRBUNG ..19
 2.7 STATISTISCHE METHODEN ..19

3 ERGEBNISSE ..21
 3.1 SERUMMARKERAKTIVITÄT ALS FUNKTION DER ANEURYSMAGRÖßE21
 3.2 AKTIVITÄT DER SERUMMARKER PRÄ- UND POSTINTERVENTIONELL23
 3.3 IMMUNHISTOCHEMISCHE UNTERSUCHUNGEN DER ANEURYSМАWAND26
 3.4 SERUMMARKERAKTIVITÄT ALS FUNKTION DER STATINTHERAPIE30

4 DISKUSSION ..34
 4.1 EINFLUSS DER ANEURYSMAGRÖßE AUF DIE SERUMAKTIVITÄT34
 4.2 ZEITLICHER VERLAUF DER SERUMMARKERAKTIVITÄT ...36
 4.3 IMMUNHISTOCHEMISCHE UNTERSUCHUNGEN DER ANEURYSМАWAND38
 4.4 EFFEKTEN EINER STATINTHERAPIE ...39
 4.5 SCHLUSSFOLGERUNG ..43

5 ZUSAMMENFASSUNG ..45

6 LITERATURVERZEICHNIS ...47

DANKSAGUNG ..59

LEBENSLAUF ..60
Abkürzungsverzeichnis

AAA abdominalnes Aortaneurysma
Abb. Abbildung
AEC Aminoethylcarbazol
aHT arterielle Hypertonie
Aqua dest. destilliertes Wasser
AT-II Angiotensin-II
AVK arterielle Verschlusskrankheit
bFGF Basic Fibroblast Growth Factor
bspw. beispielsweise
bzgl. bezüglich
Ca^{2+} 2-fach positiv geladenes Calcium-Ion
CFU-M Colony-forming Unit Macrophage
cm Zentimeter
DDH Death Domain Homologous
ELISA Enzyme Linked Immuno Sorbent Assay
et al. et alii
EVAR Endovascular Aneurysm Repair
EZM extrazelluläre Matrix
g Gramm
H_{2}O Wasser
H_{2}O_{2} Wasserstoffperoxid
HE Hämatoxylin-Eosin
HMG-CoA 3-Hydroxy-3-Methylglutaryl-Koenzym-A
HRP Horseradish Peroxidase
Ig Immunglobulin
IL Interleukin
KCl Kaliumchlorid
KH_{2}PO_{4} Kaliumhydrogenkarbonat
KHK koronare Herzerkrankung
KO Knockout
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>λ</td>
<td>Lambda</td>
</tr>
<tr>
<td>M</td>
<td>molar, Molarität</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix Metalloproteinase</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>μl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>μm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>N</td>
<td>normal, Normalität</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>Natriumhydrogenkarbonat</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natriumhydroxid</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>OAR</td>
<td>Open Aneurysm Repair</td>
</tr>
<tr>
<td>OP</td>
<td>Operation</td>
</tr>
<tr>
<td>OPG</td>
<td>Osteoprotegerin</td>
</tr>
<tr>
<td>p</td>
<td>Irrtumswahrscheinlichkeit</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet Derived Growth Factor</td>
</tr>
<tr>
<td>pg</td>
<td>Picogramm</td>
</tr>
<tr>
<td>pH</td>
<td>potentia Hydrogenii</td>
</tr>
<tr>
<td>proMMP</td>
<td>inaktive Vorstufe der Matrix Metalloproteinase</td>
</tr>
<tr>
<td>RANK</td>
<td>Receptor Activator of Nuclear Factor-κB</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor Activator of Nuclear Factor-κB-Ligand</td>
</tr>
<tr>
<td>rhOPG</td>
<td>rekombinantes menschliches OPG</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>sog.</td>
<td>so genannte</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>THP-1-Zellen</td>
<td>eine humane, monozytäre, leukämische Zelllinie</td>
</tr>
<tr>
<td>TIMP</td>
<td>Tissue Inhibitor of MMP</td>
</tr>
<tr>
<td>TMB</td>
<td>Tetramethylbenzidin</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumornekrosefaktor</td>
</tr>
<tr>
<td>TNFR</td>
<td>Tumornekrosefaktor-Rezeptor</td>
</tr>
<tr>
<td>U/min</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Das abdominelle Aortenaneurysma

Einleitung

Durchmesser von 5–5,5 cm eine operative oder endovaskuläre Behandlung erfolgen [20, 33]. Kleine AAAs (< 5 cm) werden durch regelmäßige Ultraschallkontrollen überwacht.

Abbildung 1: Schema einer aorto-bi-iliakalen Endoprothese zur Ausschaltung eines infrarenalen Aortenaneurysmas [85].

Abbildung 2: Transperitonealer Zugang zu einem infrarenalen abdominellen Aortenaneurysma. Der betroffene Abschnitt der Aorta wurde reseziert und durch eine Y-Prothese ersetzt.

Ein Aortenaneurysma entsteht typischerweise bei schwer atherosklerotisch vorgeschädigten Patienten [77]. Die gemeinsame Eigenschaft der Atherogenese und der Pathogenese des AAA ist eine Enzündungsreaktion und die Einlagerung von Lipiden, was zur Verdickung der Intima führt. Die Persistenz der Entzündung führt zur Aktivierung von T-Lymphozyten, die pro-inflammatorische Zytokine sezernieren und so eine Aktivierung von Endothelzellen, glatten Gefäßmuskelzellen und Makrophagen herbeiführen [50]. Diese sezernieren Entzündungsmediatoren, die die Einwanderung von Entzündungszellen, die Kollagenproduktion und somit eine weitere Expansion der Intima bewirken. Liegen äußere Einflüsse wie Rauchen und oxidativer Stress oder eine genetische Disposition vor, werden Makrophagen und glatte Gefäßmuskelzellen zur Bildung

1.2 Matrix Metalloproteininasen 2 und 9

Die Matrix Metalloproteininasen (MMPs) bilden eine Familie strukturverwandter, zinkhaltiger Endopeptidasen, die in der Lage sind, extrazelluläre Matrix (EZM) und Bindegewebsproteine zu spalten [25, 104]. Die Einteilung der gegenwärtig 23 bekannten menschlichen MMPs erfolgt aufgrund ihrer Struktur und Substratspezifität in Kollagenasen, Gelatinasen, Stromelysine, Matrilysine, membranständige MMPs und andere MMPs [76].

MMPs werden von verschiedenen Geweben und Zelltypen produziert, unter anderem auch von Zellen des Gefäßsystems. Sie spielen eine wichtige Rolle bei der Wundheilung, Embryogenese, Angiogenese und Organmorphogenese [76]. Wichtige Antagonisten der MMPs sind ihre Vorstufen (proMMPs) und die endogenen Tissue Inhibitors of MMPs (TIMPs), die für einen balancierten Abbau von EZM sorgen und somit deren exzessive Spaltung durch MMPs verhindern. Ein Ungleichgewicht zwischen MMPs und TIMPs kann eine massive Zunahme der MMP-Aktivität verursachen und zu pathologischen Veränderungen in Gefäßwänden und zu Gefäßkrankungen führen [104]. Zusätzlich unterliegen sie der Regulation inflammatorischer Zytokine wie IL-1β und IL-6, Wachstumsfaktoren (Platelet derived growth factor, PDGF), Hormonen (Steroide) und Osteoprotegerin (OPG) [61].

wird vor allem auf ihre proteolytischen Effekte auf Matrixproteine und die daraus folgende Schwächung der Aortenwand zurückgeführt [7]. Außerdem wird vermutet, dass die Auswirkungen von MMP-2/9 auf die Ca$^{2+}$-gesteuerte Kontraktion glatter Gefäßmuskulzellen eine Rolle in der frühen Entwicklung eines Aneurysmas spielen [9].

1.3 Osteoprotegerin

Einleitung

1.4 Abdominelles Aortenaneurysma und Statintherapie

OPG wird in glatter Gefäßmuskulatur und in Endothelzellen von Wachstumsfaktoren wie TNF-α, IL-1β, Basic Fibroblast Growth Factor (bFGF), PDGF und Angiotensin-II (AT-II) reguliert [5, 10, 112]. Statine hemmen sowohl die TNF-α-bedingte OPG-Bildung in Endothel- und glatten Gefäßmuskelzellen, als auch die IL-1β-gesteuerte Expression von OPG durch Endothelzellen [5].

1.5 Fragestellung

soll überprüft werden, ob die Serumaktivität auf eine Statintherapie anspricht. Eine Erniedrigung zirkulierender MMPs durch eine Statintherapie konnte bereits bei Patienten mit akutem Koronarsyndrom nachgewiesen werden [98]. Sollte sich zeigen, dass anhand dieser Marker die metabolische Aktivität und somit die Ausdehnungs- und Rückbildungsrate eines AAA beurteilt werden kann, stünde eine neue Möglichkeit zur Beurteilung des Erfolges einer medikamentösen Therapie, zur Risikostratifizierung und zum Follow-Up zur Verfügung.

Im Einzelnen sollen anhand der vorliegenden Arbeit folgende Fragen beantwortet werden:

1. Welche Korrelation besteht zwischen dem Serumspiegel von MMP-2/9 bzw. OPG und der Aneurysmagröße?
2. Besteht ein Unterschied in der Serumaktivität von MMP-2/9 und OPG prä- bzw. postoperativ?
3. Welche immunhistochemischen Merkmale von AAA-Gewebe zeigen sich hinsichtlich der Expression von MMP-2/9 und OPG?
4. Welchen Einfluss hat eine Therapie mit HMG-CoA-Reduktaseinhibitoren auf die Aktivität von MMP-2/9 bzw. OPG im Serum?
2 Material und Methoden

2.1 Patientenkollektiv

2.2 Reagenzien, Chemikalien und Geräte

Probengewinnung

<table>
<thead>
<tr>
<th>Ausgießgerät</th>
<th>Tissue Tek, Sakura, Torrance, CA, USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutschränke</td>
<td>UNB 100, Memmert, Schwabach, Deutschland</td>
</tr>
<tr>
<td>Einbettkassette</td>
<td>Histosette II, Simport, Bernard-Pilon, Kanada</td>
</tr>
<tr>
<td>Formalin</td>
<td>Mallinckrodt Baker, Deventer, Holland</td>
</tr>
<tr>
<td>Kanülen</td>
<td>S-Monovetten-Kanüle, Sarstedt, Nümbrecht, Deutschland</td>
</tr>
<tr>
<td>Kühlschrank</td>
<td>HERA freeze, Heraeus, Hanau, Deutschland</td>
</tr>
<tr>
<td>Mikrotom</td>
<td>Rotationsmikrotom, 2030 MOT, Leica, Wetzlar, Deutschland</td>
</tr>
<tr>
<td>Monovetten</td>
<td>Lithium-Heparin-Monovette und Serum-Monovette, Sarstedt</td>
</tr>
<tr>
<td>Objektträger</td>
<td>SuperFrost Plus, Menzel, Braunschweig, Deutschland</td>
</tr>
<tr>
<td>Pipetten</td>
<td>Research, Eppendorf, Hamburg, Deutschland</td>
</tr>
</tbody>
</table>
Reaktionsgefäße 0,5 ml Eppendorf
Wasserbad Paraffin-Streckbad 1052, GFL, Burgwedel, Deutschland
Zentrifuge Biofuge 28 RS, Heraeus

Enzyme Linked Immunosorbent Assay (ELISA)
Mehrkanalpipette Transferpette-8, Brand, Wertheim, Deutschland
Pipetten Research, Reference, Eppendorf
Reaktionsgefäße 2,0 ml Sarstedt
Schüttler Heidolph Instruments, Schwabach, Deutschland
Zentrifuge Centrifuge 5415 C, Eppendorf

Für den quantitativen OPG-Nachweis in Blutserum wurde der OPG-Kit der Firma OCT (Torrance, CA, USA) verwendet. Zur Bestimmung von MMP-2 und MMP-9 in Blutplasma wurden die entsprechenden Kits der Firma R&D Systems (Minneapolis, MN, USA) verwendet. Die Auswertung sämtlicher ELISAs erfolgte mit Hilfe des Mikrotiterplattenphotometers Sunrise der Firma Tecan (Männedorf, Schweiz).

Immunhistochemische Färbungen
AEC Aminoethylcarbazol, Zymed Laboratories, San Francisco, CA, USA
Brutschrank UNB 100, Memmert
Citratpuffer pH 6,0; 10 mM; auf 1 l 1,9212 g Zitronensäure, Sigma-Aldrich, St. Louis, MO, USA
Deckgläser VWR International, Darmstadt, Deutschland
Ethanol Riedel-de Haën, Seelze, Deutschland
Glyceringelatine Aquatex, Merck, Darmstadt, Deutschland
\(\text{H}_2\text{O}_2 \text{ 30\%} \) Sigma-Aldrich
Hämalaun nach Mayer Merck, Darmstadt, Deutschland
Lipophiler Klebstoff PAP-Pen, SCI, München, Deutschland
Mikrowelle TEC Mikrowellenherd 5004, TEC-Company, Amberg, Deutschland
Material und Methoden

PBS-Puffer, pH 7,4

<table>
<thead>
<tr>
<th>PBS-Puffer</th>
<th>5 l:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,42 g Na$_2$HPO$_4$ x 2H$_2$O (Riedel-de Haën)</td>
<td></td>
</tr>
<tr>
<td>1 g KCl (Fluka, St. Gallen, Schweiz)</td>
<td></td>
</tr>
<tr>
<td>1 g KH$_2$PO$_4$ (Fluka)</td>
<td></td>
</tr>
<tr>
<td>40 g NaCl (AppliChem, Heidelberg, Deutschland)</td>
<td></td>
</tr>
</tbody>
</table>

Mit einem Plättchen NaOH (AppliChem) auf pH = 7,4 eingestellt

Pipetten

Research, Reference, Eppendorf

Primärantikörper MMP-2

polyklonaler anti-human MMP-2 Antikörper, Wirt: Kaninchen, Sigma-Aldrich

Primärantikörper MMP-9

polyklonaler anti-human MMP-9 Antikörper, Wirt: Kaninchen, Sigma-Aldrich

Primärantikörper OPG

monoklonaler anti-human OPG Antikörper, Wirt: Maus, R&D Systems

Sekundärantikörper

Goat anti-Rabbit-IgG-Antikörper, mit HRP (horseradish peroxidase) konjugiert, Zymed Laboratories

MMP-2/9

Sekundärantikörper OPG

Goat anti-Mouse-IgG-Antikörper, mit HRP konjugiert, Zymed Laboratories

Xylol

Mallinckrodt Baker

Ziegenserum

Vector Laboratories, Burlingame, CA, USA

Hämatoxylin-Eosin (HE)-Färbungen

HE-Automat

Tissue-Tek II, Färbeautomat Histo-Tek, Sakura, Heppenheim, Deutschland

Methanol

Riedel-de Haën

2.3 Probengewinnung

Die Serum- und Plasmaproben wurden jeweils präoperativ und sieben Tage nach der Operation entnommen. Anschließend wurden die Monovetten für 10 Minuten bei 4000 U/min und vier Grad Celsius zentrifugiert. Im nächsten Arbeitsschritt wurde der Serum-Überstand entnommen und in 0,5 ml-Reaktionsgefäße

2.4 Enzyme Linked Immuno Sorbent Assay

Material und Methoden

Analysatmenge proportional ist. Der Farbumschlag wird mit Hilfe eines Mikrotiterplattenphotometers quantifiziert, indem die Extinktion von Licht einer bestimmten Wellenlänge (hier 450 nm) gemessen wird. Anschließend wird eine Standardkurve erstellt, aus der die Konzentrationen ermittelt werden können (s. Abb. 5).

Abbildung 5: Schema des Sandwich Prinzip bei ELISA. TMB Tetramethylbenzidin, OPG Osteoprotegerin, MMP Metalloproteinase, ELISA Enzyme Linked Immunosorbent Assay.

Material und Methoden

MMP-9: Die Vobereitung der Proben und Reagenzien war mit den zuvor beschriebenen identisch. Die Plasmaproben wurden 1:25 mit Calibrator Diluent verdünnt. Die Stammstandard-Lösung (20 ng/ml) wurde durch Rekonstitution des lyophilisierten Standards (rekombinantes menschliches pro-MMP-9 in gepufferter Proteinbase) mit 1 ml Aqua dest. erstellt. Dieser Ansatz (20 ng/ml) wurde als höchster Standard eingesetzt und diente als Ausgangslösung für die weiteren Verdünnungen von 10 ng/ml, 5 ng/ml, 2,5 ng/ml, 1,25 ng/ml, 0,63 ng/ml und 0,31 ng/ml. Als Standard 0 ng/ml diente Calibrator Diluent. Die Mikrotiterplatte (96-well Polystyrol-Mikrotiterplatte, beschichtet mit polyklonalem Antikörper gegen menschliches MMP-9) wurde durch Pipettieren von je 100 µl Assay Diluent in die Kavitäten vorbereitet. Anschließend wurde die Platte mit jeweils 100 µl Standard oder Probe pro Kavität befüllt, abgedeckt und für zwei Stunden auf einem Schüttler bei RT inkubiert. Der anschließende Waschschritt war mit dem zuvor
beschrieben identisch. Im nächsten Schritt wurde die Platte mit je 200 µl MMP-9-Konjugat (polyklonaler Detektionsantikörper gegen menschliches MMP-9, mit HRP konjugiert) befüllt. Die anschließenden Schritte waren mit denen der MMP-2-Bestimmung identisch.

2.5 Immunhistochemische Färbungen

Material und Methoden

durch HRP umgesetztes Chromogen-Substrat (AEC)

im Gewebe befindliches OPG bzw. MMP-2/9

Abbildung 6: Schema des Funktionsprinzips der Immunhistochemie. AEC: Aminoethylcarbimazol, HRP Horseradish Peroxidase, OPG Osteoprotegerin, MMP Metalloproteinase, IgG Immunglobulin G.

OPG: Die in Paraffin eingebetteten Gewebeschnitte wurden drei mal für jeweils fünf Minuten in Xylol entparaffiniert und in einer absteigenden Ethanolreihe von 100%, 70% und 40% für jeweils 5 Minuten rehydriert. Anschließend wurden die Schnitte in Aqua dest. gespült. Im folgenden Schritt wurden die Gewebeschnitte in Citratpuffer überführt und in einer Mikrowelle bei 650 W für 20 Minuten gekocht, wobei immer nach vier Minuten die Plastikküvette mit Aqua dest. aufgefüllt wurde. Danach kühlten die Schnitte für 20 Minuten bei RT ab, um anschließend in phosphatgepufferter Salzlösung (PBS-Puffer) gespült zu werden. Die Cluster wurden mit lipophilen Klebstoff umrandet, um ein Verwischen der aufgebrachten Reagenzien zu verhindern. Es folgte die Inkubation der Präparate in H_2O_2 (3%). Letzteres war eine Verdünnung aus neun Teilen Methanol und einem Teil H_2O_2 (30%). Anschließend wurden die Schnitte für 20 Minuten in einer Lösung aus Ziegenserum und PBS-Puffer (Verdünnung 1:100) inkubiert. Der Primärantikörper

MMP-2: Die ersten Arbeitsschritte bis zum Einsatz des Primärantikörpers waren mit denen der OPG-Färbung identisch. Es wurde eine 1:50-Verdünnung des Primärantikörpers (polyklonaler anti-human MMP-2 Antikörper, Wirt: Kaninchen) mit Ziegen serum (1%) hergestellt und zu je 100 µl auf das Gewebe aufgebracht, die Negativkontrollen wurden mit Ziegen serum (1%) beschichtet. Anschließend folgte eine einstündige Inkubation bei RT. Nach einem weiteren Waschgang erfolgte eine 30-minütige Inkubation mit 1:200 verdünntem Sekundärantikörper bzw. Ziegen serum (1%) (Negativkontrollen). Nach erneutem Waschen wurden die Präparate für 30 min mit AEC inkubiert, wiederum gewaschen, für ca. 15 sec in Hämalaun gefärbt und 10 min lang in Leitungswasser gebläut. Am Ende wurden die Präparate wie oben beschrieben eingedeckt.

MMP-9: Auch hier waren die Arbeitsschritte bis zum Einsatz des Primärantikörpers identisch. Es wurde eine 1:20-Verdünnung des Primärantikörpers (polyklonaler anti-human MMP-9 Antikörper, Wirt: Kaninchen) mit Ziegen serum (1%) hergestellt und zu je 100 µl auf die Präparate aufgetragen, die Negativkontrollen wurden mit Ziegen serum (1%) beschichtet. Dann folgte eine einstündige Inkubation und nach einem weiteren Waschgang eine 30-minütige

2.6 Hämatoxylin-Eosin-Färbung

Für diese Färbung wurden die Gewebeproben umgehend nach deren Entnahme in Formalin (6%) fixiert und nach Entwässerung, Paraffineinlage und Schneiden am Mikrotom mit Hilfe eines HE-Automaten angefärbt.

2.7 Statistische Methoden

Die statistische Auswertung erfolgte mit dem Programm SPSS 16.0 der Firma SPSS Inc. (Chicago, USA). Für die normalverteilten Merkmale Patientenalter und Aneurysmadurchmesser wurden die Mittelwerte berechnet. Die Einflussgrößen Geschlecht, Rauchen, aHT, KHK und Diabetes mellitus wurden als absolute und relative Anzahlen der Grundgesamtheit angegeben. Es wurde von einer statistischen Signifikanz ausgegangen, wenn der Wert für die Irrtumswahrscheinlichkeit \(p < 0,05 \) betrug.

Zum Vergleich der unabhängigen Gruppen „Statin“ / „kein Statin“ bezüglich der Einflussgrößen wurden für die normalverteilten, stetigen Merkmale Alter und AAA-Durchmesser der t-Test nach Student herangezogen, bei den nominalen Einflussgrößen Geschlecht, Rauchen, aHT, KHK und Diabetes kam der exakte Fisher-Test zum Einsatz. Die graphische Darstellung des Zusammenhangs zwischen Statintherapie und Serummarkeraktivität erfolgte mit Hilfe von Boxplots. Die Box wird durch die 25%- und 75%- Quantile begrenzt, die Markierung in der Mitte repräsentiert den Median (50%-Quantil). Die Whiskers markieren das 10%-
3 Ergebnisse

Das mittlere Alter der Patienten lag bei 70 Jahren und in einem Intervall zwischen 52 und 88 Jahren. 38 Patienten (60%) hatten eine Statinmedikation mindestens vier Wochen vor der Operation. 27 der 63 Patienten (43%) litten zusätzlich an einer KHK, 9 (14%) an einem Diabetes und 51 (81%) an arterieller Hypertonie. 59 (94%) Patienten waren Männer, 29 (46%) gaben an, zum Zeitpunkt der Aufnahme zu rauchen bzw. früher schon einmal regelmäßig geraucht zu haben.

3.1 Serummarkeraktivität als Funktion der Aneurysmagröße

Die Korrelation zwischen der Aneurysmagröße und den Serumaktivitäten von MMP-2/9 und OPG erfolgte mit Hilfe der Spearman Rangkorrelation. Für keinen der drei Biomarker fand sich hierbei eine signifikante Korrelation. Für MMP-2 betrug der Korrelationskoeffizient $r = -0,005$, $p = 0,977$, für MMP-9 $r = -0,062$, $p = 0,698$ und für OPG betrug der Spearman Rangkorrelationskoeffizient $r = -0,064$, $p = 0,687$ (s. Abb. 7 – 9).
Ergebnisse

Abbildung 7: Korrelation des Aneurysmdiameters mit dem Serumspiegel von MMP-2. \(r = -0.005, \ p = 0.977 \). MMP Matrix Metalloproteinase, AAA abdominelles Aortaneurysma.

Abbildung 8: Korrelation des Aneurysmdiameters mit dem Serumspiegel von MMP-9. \(r = -0.062, \ p = 0.698 \). MMP Matrix Metalloproteinase, AAA abdominelles Aortaneurysma.
Ergebnisse

23

3.2 Aktivität der Serummarker prä- und postinterventionell

Beim Vergleich der Serumaktivität von MMP-2 in Bezug zum zeitlichen Verlauf gab es keinen statistisch signifikanten Unterschied zwischen beiden Gruppen, die Mediane betrugen 212,22 ng/ml einen Tag vor bzw. 207,50 ng/ml sieben Tage post OP, d.h. es gab einen schwachen Rückgang der Serumwerte. Der Wert der Irrtumswahrscheinlichkeit betrug p = 0,667. Untersucht wurden insgesamt 40 Patienten. In 20 Fällen zeigte sich ein Rückgang, in den andern 20 Fällen ein Anstieg der MMP-2-Konzentration (s. Abb. 10).

Ein ähnliches Resultat ergab sich bei den Konzentrationsbestimmungen für MMP-9: Auch hier zeigte sich kein signifikanter Unterschied beider Gruppen. Die Mediane waren 37,71 ng/ml einen Tag vor bzw. 38,01 ng/ml sieben Tage nach OP. Es kam also zu einem leichten Anstieg der Serumwerte, der p-Wert war
Ergebnisse

0,703. Untersucht wurden die Sera von 42 Patienten. Bei 23 Patienten fiel die Serumkonzentration ab, bei 19 Patienten stieg sie an (s. Abb. 11).

Bei den OPG-Bestimmungen hingegen fand sich ein signifikanter Anstieg der Serumwerte. Die Mediane betrugen präoperativ 425,99 ng/ml und 607,87 ng/ml postoperativ bei einer Irrtumswahrscheinlichkeit von \(p = 0,001 \). Untersucht wurden die Sera von 40 Patienten, in elf Fällen fiel die Serumkonzentration ab, 29 mal stieg sie an (s. Abb. 12).

Abbildung 10: Serumaktivität von MMP-2 im zeitlichen Verlauf. Die Mediane betrugen 212,22 ng/ml bzw. 207,50 ng/ml. \(n = 40 \), \(p = 0,667 \). MMP Matrix Metalloproteinase, OP Operation.
Abbildung 11: Serumaktivität von MMP-9 im zeitlichen Verlauf. Die Mediane betrugen 37,71 ng/ml bzw. 38,01 ng/ml. n = 42, p = 0,703. MMP Matrix Metalloproteinase, OP Operation.

Abbildung 12: Serumaktivität von OPG im zeitlichen Verlauf. Die Mediane sind 425,99 pg/ml vs. 607,87 pg/ml. n = 40, p = 0,001. OPG Osteoprotegerin, OP Operation.
3.3 Immunhistochemische Untersuchungen der Aneurysmawand

Abbildung 14: OPG positive Färbung von Plazentagewebe als Nachweis der korrekten Färbung. OPG Osteoprotegerin.

Abbildung 15: Schnitt durch Aneurysmawand: A markiert Cholesterinablagerungen in der Media der Aortenwand; B zeigt eine OPG-positive Zelle im subintimalen Lymphozyteninfiltrat. OPG Osteoprotegerin.
Die immunhistochemische Anfärbung mit monoklonalen Kaninchen-anti-MMP-2-Antikörpern zeigt eine leicht positive Reaktion in adventitiellen Lymphozytenpolstern (s. Abb. 16 und 17).
Auch die Färbungen mit monoklonalem Kaninchen-anti-MMP-9-Antikörper zeigen eine deutlich positive Färbereaktionen v.a. in den medialen Wandabschnitten (s. Abb. 18 und 19).

Abbildung 16: Schnitt durch Aneurysmawand: Cholesterinablagerungen in der Intima (A); deutlich MMP-2-positives Entzündungsinfiltrat adventitiell (B). MMP Matrix Metalloproteinase.

3.4 Serummarkeraktivität als Funktion der Statintherapie

Das Patientenkollektiv wurde in zwei Gruppen eingeteilt. In Gruppe 1 (n = 25) befanden sich Patienten mit Statintherapie, Gruppe 2 (n = 38) beinhaltete Patienten ohne Statintherapie und war somit die Kontrollgruppe. 23 Patienten wurden mit Simvastatin bei einer Dosis von 10–40 mg täglich behandelt, zwei Patienten mit 80 mg Fluvastatin pro Tag, die Behandlung erfolgte mindestens vier Wochen vor Operation. Bezüglich der Einflussvariablen Alter, Geschlecht, Aneurysmadurchmesser, Rauchen, arterieller Hypertonie (aHT) und koronarer Herzkrankheit (KHK) gab es zwischen beiden Gruppen keine signifikanten Unterschiede (s. Tab. 1).

Ergebnisse

statistisch signifikanten Unterschied zwischen beiden Gruppen: Bei Gruppe 1 betrug der Median 417 pg/ml, bei Gruppe 2 430 pg/ml, der p-Wert war 0,369 (s. Abb. 22).

Tabelle 1: Demographische Daten der 63 Patienten, die zwischen 2005 und 2007 am Uniklinikum Ulm elektiv einer offenen AAA-Reparation unterzogen wurden, bezüglich der Statintherapie. Die Werte für Alter und AAA-Durchmesser sind als Median und Intervall angegeben; die übrigen Werte sind als absolute Zahlen und deren Prozentwerte angegeben. * t-Test nach Student, + Exakter Fisher-Test, AAA abdominelles Aortenaneurysma, aHT arterielle Hypertonie, KHK koronare Herzkrankheit.

<table>
<thead>
<tr>
<th></th>
<th>Statin n = 25</th>
<th>kein Statin n = 38</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittleres Alter (Jahre)</td>
<td>68 [52–80]</td>
<td>72 [55–88]</td>
<td>0,064*</td>
</tr>
<tr>
<td>AAA-Durchmesser (cm)</td>
<td>6 [4–9]</td>
<td>6 [5–9]</td>
<td>0,114*</td>
</tr>
<tr>
<td>Anzahl Männer</td>
<td>25 (100%)</td>
<td>34 (89%)</td>
<td>0,145+</td>
</tr>
<tr>
<td>Raucher</td>
<td>11 (44%)</td>
<td>18 (47%)</td>
<td>0,803+</td>
</tr>
<tr>
<td>aHT</td>
<td>23 (92%)</td>
<td>28 (74%)</td>
<td>0,103+</td>
</tr>
<tr>
<td>KHK</td>
<td>13 (52%)</td>
<td>14 (37%)</td>
<td>0,301+</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>4 (16%)</td>
<td>5 (13%)</td>
<td>0,732+</td>
</tr>
</tbody>
</table>
Abbildung 20: Serumaktivität von MMP-2 in Abhängigkeit von der Statintherapie. Die Mediane betrugen 211 bzw. 209 ng/ml, \(p = 0,394 \). MMP Matrix Metalloproteinase.

Abbildung 21: Serumaktivität von MMP-9 in Abhängigkeit von der Statintherapie. Die Mediane betrugen 37 bzw. 38 ng/ml, \(p = 0,868 \). MMP Matrix Metalloproteinase.
Ergebnisse

4 Diskussion

4.1 Einfluss der Aneurysmegröße auf die Serumaktivität

4.2 Zeitlicher Verlauf der Serummarkeraktivität

Mit Hilfe dieser Untersuchung sollte gezeigt werden, wie sich die metabolische Aktivität eines AAA nach offener Ausschaltung verhält. Sollte sich hierbei ein signifikanter Rückgang zeigen, so stünde ein neuer Marker zur Beurteilung einer suffizienten Aneurysmaausschaltung zur Verfügung und könnte somit als Erfolgskontrolle dienen. Generell gibt es zwei Möglichkeiten der Sanierung eines AAA: zum einen die operative Ausschaltung via Laparotomie (OAR, Open Aneurysm Repair), und zum anderen interventionell durch die endovaskuläre Aneurysmareparation (EVAR), bei der über kleine Inzisionen an der Leiste Stentgrafts über die Oberschenkelgefäße bis in den betroffenen Schnitt der Aorta platziert werden. Letztere Methode hat den Vorteil eines geringeren Blutverlusts, einer kürzeren Aufenthaltsdauer auf Intensivstation sowie einer geringeren Morbidität und Mortalität [30, 74]. Andererseits sind nach EVAR nach dem vierten postoperativen Jahr in 9% der Fälle Re-Interventionen nötig aufgrund Rezidivaneurysmata oder Leckagen (sog. Endo-Leaks); wohingegen die Re-Interventionsrate nach OAR im vierten postoperativen Jahr nur 1,7% beträgt [81]. Aus diesem Grund wäre es von Vorteil, einen einfach zu bestimmenden Marker für die suffiziente Aneurysmaausschaltung zu finden, um frühzeitig Komplikationen zu

In zukünftigen Untersuchungen sollte der längerfristige Verlauf evaluiert werden um zu klären, ob sich diese Marker zur Verlaufsbeurteilung eignen. Auch ein Vergleich im Hinblick auf den Operationsmodus (OAR vs. EVAR) würde Klarheit schaffen, ob mit Hilfe dieser Parameter der Verlauf nach minimalinvasiver Behandlung beurteilt werden kann.

4.3 Immunhistochemische Untersuchungen der Aneurysmawand

verschiedener Metalloproteininasen in Aortengewebe untersucht. Es zeigte sich hierbei eine geringere Expression von MMP-12, jedoch nicht von MMP-2 und -9 [87].

4.4 Effekte einer Statintherapie

Statine üben einen protektiven Einfluss auf die Entwicklung und den Progress eines AAA aus, indem sie dessen Wachstum verlangsamen [84, 87]. Daher wird ihr Einsatz in der konservativen Therapie des AAA mittlerweile empfohlen [27]. Das Aneurysmawachstum zu verlangsamen, könnte dem Patienten möglicherweise eine potentiell tödliche und kostenintensive Operation ersparen. Es wäre also wünschenswert, neue klinische Parameter zu definieren, anhand derer sich der Erfolg einer medikamentösen Therapie (z.B. Statintherapie) beurteilen ließe. Über die Auswirkungen einer Statintherapie auf eben diese Marker gibt es in diesem Kontext bisher nur sehr wenige Daten [29, 41]. Bei Patienten mit akutem Koronarsyndrom führt die Applikation von Statinen zu einer signifikanten Erniedrigung zirkulierender MMPs [98].

Eine schwache Korrelation wurde zwischen der OPG-Serumaktivität und der Expansionsrate des AAA nachgewiesen [61]. Im Hinblick auf den Aneurysmadurchmesser und die Auswirkungen einer medikamentösen Therapie auf die Serum- und Gewebeaktivitäten wurde OPG bisher noch nicht untersucht. Unseren Ergebnissen zufolge bleibt es auch hier weiterhin fraglich, ob sich OPG als Marker zur Beurteilung der Effizienz einer medikamentösen Therapie eignet, denn in unserer Untersuchung führte eine Statintherapie nicht zu einem signifikanten Effekt auf die Serumaktivität.

Im Gegensatz zur Serumaktivität führt eine Statinbehandlung jedoch zu deutlichen Auswirkungen auf die Aktivität im Aneurysmagewebe. Abisi et al. [1] wiesen eine signifikant verminderte MMP-9-Aktivität in Aneurysmagewebe von zuvor mit Statin behandelten Patienten nach. Außerdem konnten erniedrigte Werte für Kathepsin-

4.5 Schlussfolgerung

5 Zusammenfassung

6 Literaturverzeichnis

20. Dubost C, Allary M, Oeconomos N. Resection of an aneurysm of the abdominal aorta: Reestablishment of the continuity by a preserved arterial graft, with result after five months. AMA Arch Surg 64: 405–408 (1952)

29. Gottsäter A, Flondell-Site D, Kölbel T, Lindblad B: Associations between statin treatment and markers of inflammation, vasoconstriction, and

58. McMillan WD, Patterson BK, Keen RR, Shively VP, Cipollone M, Pearce WH: In situ localization and quantification of mRNA for 92-kD type IV collagenase

87. Shiraya S, Miyake T, Aoki M, Yoshikazu F, Ohgi S, Nishimura M, Ogihara T, Morishita R: Inhibition of development of experimental aortic abdominal

Danksagung

Diese Seite wurde in der Onlinefassung aus Datenschutzgründen entfernt.
Lebenslauf

Diese Seite wurde in der Onlinefassung aus Datenschutzgründen entfernt.