Universitätsklinikum Ulm
Zentrum für Innere Medizin
Klinik Innere Medizin I
Kommissarischer Ärztlicher Direktor:
Prof. Dr. Götz von Wichert

Untersuchung der Rolle von Alkoholkonsum im Zusammenhang mit Steatosis Hepatis

DISSERTATION

zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät
der Universität Ulm

Anna Barbara Pangratz
Passau
2010
Amtierender Dekan: Prof. Dr. Thomas Wirth

1. Berichterstatter: Prof. Dr. Wolfgang Kratzer

2. Berichterstatter: PD. Dr. Georg von Boyen

Tag der Promotion: 28.10.2011
Meinen Eltern
Inhaltsverzeichnis

Abkürzungsverzeichnis ... II

1 Einleitung .. 1

1.1 Allgemeines .. 1
1.2 Steatosis Hepatis und die Rolle des Alkohols .. 1
1.3 Aktuelle Studien zum Thema Steatosis Hepatis und Alkoholkonsum 3
1.4 Fragestellung ... 5

2 Material und Methoden .. 6

2.1 Studienrahmen .. 6
2.2 Studienkollektiv .. 8
2.3 Studienablauf .. 9
2.4 Ultraschalluntersuchung ... 12
2.5 Statistische Auswertung ... 14
2.6 Kollektivzusammensetzung ... 16

3 Ergebnisse .. 19

3.1 Häufigkeit von Steatosis Hepatis und Einflussgrößen .. 19
3.2 Häufigkeit der Steatosis Hepatis in Abhängigkeit von der Alkoholmenge 23
3.3 Interagierende Effekte in den Alkoholkonsumklassen ... 25
3.4 Häufigkeit der Steatosis Hepatis bei verschiedenen Alkoholsorten 27

4 Diskussion .. 27

4.1 Häufigkeit von Steatosis Hepatis und Einflussgrößen .. 27
4.2 Häufigkeit der Steatosis Hepatis in Abhängigkeit von der Alkoholmenge 27
4.3 Interagierende Effekte in den Alkoholkonsumklassen ... 27
4.4 Häufigkeit der Steatosis Hepatis bei verschiedenen Alkoholsorten 27
4.5 Limitationen der Studie ... 27
4.6 Schlussfolgerung .. 27

5 Zusammenfassung .. 27

6 Literaturverzeichnis ... 27

7 Abbildungsverzeichnis ... 27

8 Tabellenverzeichnis ... 27

9 Anhang .. 27
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanin-Aminotransferase</td>
</tr>
<tr>
<td>AP</td>
<td>alkalische Phosphatase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartat-Aminotransferase</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CRP</td>
<td>creaktives Protein</td>
</tr>
<tr>
<td>evtl.</td>
<td>eventuell</td>
</tr>
<tr>
<td>χ^2</td>
<td>-Test</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomografie</td>
</tr>
<tr>
<td>C5–2</td>
<td>Convex-Array mit fünf bis zwei Megahertz Schallfrequenz</td>
</tr>
<tr>
<td>dB</td>
<td>Dezibel</td>
</tr>
<tr>
<td>DEGUM</td>
<td>Deutsche Gesellschaft für Ultraschall und Medizin</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung</td>
</tr>
<tr>
<td>EMIL-Studie</td>
<td>Echinococcus multilocularis in Leutkirch</td>
</tr>
<tr>
<td>FL</td>
<td>Fokale Läsion</td>
</tr>
<tr>
<td>GGT</td>
<td>gamma-Glutamyl-Transferase</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density Lipoprotein</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density Lipoprotein</td>
</tr>
<tr>
<td>M</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomografie</td>
</tr>
<tr>
<td>Met. Syndrom</td>
<td>Metabolisches Syndrom</td>
</tr>
<tr>
<td>n</td>
<td>Fallzahl</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>p</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>SH</td>
<td>Steatosis Hepatitis</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumornekrosefaktor alpha</td>
</tr>
<tr>
<td>US</td>
<td>Ultraschall</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Allgemeines

1.2 Steatosis Hepatis und die Rolle des Alkohols
Niedriger bis moderater Alkoholkonsum vermindert möglicherweise das Risiko für Diabetes Mellitus Typ II, das Metabolische Syndrom und die damit zusammenhängende allgemeine kardiovaskuläre Mortalität [10, 39, 46, 47, 10, 108, 116].
Der protektive Effekt von niedrigem oder moderatem Alkoholkonsum auf Diabetes Mellitus Typ II kann eventuell mit einer verbesserten Insulinsensitivität verknüpft
sein [62, 66, 78, 106]. Da Insulinresistenz eng mit Steatosis Hepatis verknüpft ist
cönnte niedriger bis moderater Alkoholkonsum daher auch das Risiko für
Steatosis Hepatis reduzieren [21, 76].

Eine allgemeine Bevölkerungsstudie in Norditalien ordnete den Stellenwert von
Alkohol als Risikofaktor für die Steatosis Hepatis deutlich hinter dem der
Adipositas ein [17]. Bei einer Studie mit Japanern, die an einem
Gesundheitscheck teilnahmen, konnte für einen niedrigen Alkoholkonsum von <20
g Alkohol/Tag kein erhöhtes Fettleberrisiko nachgewiesen werden [51]. Darüber
hinaus wurde in der Third National Health and Nutrition Survey bei moderatem
Weinkonsum sogar eine erniedrigte Häufigkeit von NAFLD nachgewiesen [41].
Eine ebenfalls in den USA durchgeführte Studie mit extrem adipösen Probanden
bewies bei niedrigem bis moderatem Alkoholkonsum eine Verbesserung bezüglich
Steatosis Hepatis, NASH und möglicherweise Insulinresistenz [38].
Ältere Studien schlossen meist Probanden mit regelmäßigem Alkoholkonsum oder
mit einem Alkoholkonsum ab 20 g/Tag aus. Man kann davon ausgehen, dass zum
Beispiel in Japan 54-70% der Männer und 13 % der Frauen mehr als 23 g
Alkohol/Tag konsumieren [61, 92]. Dabei scheint das Trinkverhalten bis zu einem
gewissen Grad auch von Polymorphismen der Gene für Alkoholmetabolismus
beeinflusst zu sein. Alkoholinduzierte Leberschäden könnten in Abhängigkeit zu
genetischen Variationen des Cytochrom P 4502E1 und der Alkoholdehydrogenase
stehen [23, 80, 107]. Deswegen stellt die Kategorisierung der
Alkoholkonsumenten eine Quelle für fehlerhafte Ergebnisse dar.
1.3 Aktuelle Studien zum Thema Steatosis Hepatis und Alkoholkonsum

Tab 1: Studien der aktuellen Literatur zum Thema Steatosis Hepatis und Alkoholkonsum

<table>
<thead>
<tr>
<th>Land</th>
<th>Studie</th>
<th>Probandenkollektiv</th>
<th>Untersuchte Zielvariable</th>
<th>Nachweis von protektivem Effekt bei Alkoholkonsum</th>
<th>Beschriebene Alkoholmenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Loomba 2009 [73]</td>
<td>n= 2364, Bevölkerungsquerschnittsstudie, retrospektive Auswertung der Rancho-Bernardo-Studie</td>
<td>erhöhte Transaminasen-Werte</td>
<td>nein</td>
<td>ab 30 g/Tag erhöhte Transaminasen-Werte bei Männern und Frauen</td>
</tr>
<tr>
<td>Japan</td>
<td>Suzuki 2007 [102]</td>
<td>n= 1177 Männer, Querschnittsstudie, Gesundheits-Check-up am Arbeitsplatz, davon 326 Probanden in subsequenter longitudinaler Studie</td>
<td>erhöhte Transaminasen-Werte</td>
<td>ja</td>
<td>Querschnitts-Studie: 140-280 g/Woche für jüngere Probanden, 70-140 g/Woche für ältere Probanden</td>
</tr>
<tr>
<td>USA</td>
<td>Dunn 2007 [41]</td>
<td>n= 8156, Bevölkerungsquerschnittsstudie, aus Third National Health and Nutrition Examination Survey</td>
<td>erhöhte Transaminasen-Werte</td>
<td>ja</td>
<td>1 alkoholisches Getränk/Tag *</td>
</tr>
<tr>
<td>China</td>
<td>Dai 2008 [33]</td>
<td>n= 653, Bevölkerungsquerschnittsstudie</td>
<td>über US nachgewiesene SH</td>
<td>nein</td>
<td>Alkoholkonsum > 5 Jahre zeigt verdoppeltes Risiko für SH gegenüber Alkoholkonsum < 5 Jahre</td>
</tr>
<tr>
<td>Land</td>
<td>Studie</td>
<td>Probandenkollektiv</td>
<td>Untersuchte Zielvariable</td>
<td>Nachweis von protektivem Effekt bei Alkoholkonsum</td>
<td>Beschriebene Alkoholmenge</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Brasilien</td>
<td>Cotrim 2008 [31]</td>
<td>n= 132 adipöse Patienten, Leberbiopsie bei chirurgischer Magenverkleinerung</td>
<td>Leberhistologie</td>
<td>nein, protektiver Effekt nur bzgl. Insulinresistenz</td>
<td>bei bis zu 20 g Alkohol/Tag protektiv bzgl. Insulinresistenz ab ca. > 50 g Alkohol/Tag 2,4-fach erhöhes Risiko</td>
</tr>
<tr>
<td>Italien</td>
<td>Loguercio 2007 [72]</td>
<td>n= 3306, randomisierte Bevölkerungsquerschnittsstudie, erhöhte Transaminasen-Werte</td>
<td>Leberhistologie</td>
<td>nein ab ca. > 50 g Alkohol/Tag 2,4-fach erhöhes Risiko</td>
<td></td>
</tr>
<tr>
<td>Finnland</td>
<td>Alatalo 2008 [3]</td>
<td>n= 2164, Querschnittsstudie mit Krankenhauspersonal und deren Angehörigen</td>
<td>erhöhte Transaminasen-Werte</td>
<td>nein bei < 40 g/Tag höhere Transaminasenwerte als bei Nicht-Konsumenten in Querschnittsstudie</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Yamada 2008 [110]</td>
<td>n= 63447 in Querschnittsstudie, n= 10424 in Längsschnittstudie bei Gesundheitskontrolluntersuchung</td>
<td>über US nachgewiesene SH</td>
<td>ja in Querschnittsstudie protektiver Effekt für Konsum bis zu 23 g/Tag, in longitudinaler Studie protektiver Effekt bis 23 g/Tag und bei 46-69 g/Tag für 10 g Alkohol/Tag</td>
<td></td>
</tr>
<tr>
<td>Spanien</td>
<td>Caballeria 2009 [22]</td>
<td>n= 766, Bevölkerungsquerschnittsstudie</td>
<td>über US nachgewiesene SH</td>
<td>ja</td>
<td></td>
</tr>
</tbody>
</table>

* Ein Getränk entspricht bei Bier 12 Unzen, bei Wein 4 Unzen und bei Spirituosen einer Unze; eine Unze enthält je 28,35 Gramm
Da viele dieser Studien retrospektiv durchgeführt wurden, ist oft kein sonographischer Untersuchungsbefund der Leber vorhanden. Einige Studien setzen erhöhte Transaminasenwerte mit Verdacht auf Steatosis Hepatis gleich, ohne andere bekannten Ursachen zu berücksichtigen. Die Kollektivzusammensetzung in den verschiedenen Studien ist sehr unterschiedlich da es sich zum Teil um Teilnehmer bei Gesundheitskontrolluntersuchungen oder um Krankenhauspersonal handelt. Außerdem ist erkennbar, dass die Einteilung in die verschiedenen Alkoholkonsumgruppen, sowie die Definition einer moderaten Alkoholkonsummenge unterschiedlich gehandhabt wird, was eine vergleichende Beurteilung dieser Studien untereinander zusätzlich erschwert.

1.4 Fragestellung

Ziel dieser prospektiven Studie an dem unselektionierten süddeutschen Bevölkerungskollektiv ist:

1. Die Ermittlung der Rolle von Alkoholkonsum als Einflussgröße für die Entwicklung von Steatosis Hepatis.

2. Die Untersuchung der nicht-alkoholischen Einflussgrößen für Steatosis Hepatis und die Ermittlung von eventuell interagierenden Effekten zwischen den verschiedenen Einflussgrößen der Steatosis Hepatis und Alkoholkonsum unter besonderer Berücksichtigung von:
 – Alter
 – Geschlecht
 – BMI
 – Metabolisches Syndrom

3. Die Untersuchung der eventuell unterschiedlichen Effekte verschiedener Alkoholsorten bezüglich Steatosis Hepatis für:
 – Bier
 – Wein
 – Schnaps
2 Material und Methoden

2.1 Studienrahmen

2.1.1 Studienziel

Hauptziele der EMIL-Studie waren:
2. Die Häufigkeit von positiven Antikörpern gegen FSME (Frühsommer-Meningoenzephalitis) zu ermitteln.

Nebenziele der EMIL-Studie waren:
1. Ermittlung von Häufigkeit und Risikofaktoren der Steatosis Hepatis
2. Untersuchung des Zusammenhangs zwischen Steatosis Hepatis und Alkoholkonsum vor dem Hintergrund des protektiven Effekts von moderatem Alkoholkonsum auf koronare Herzkrankheiten
3. Ermittlung von Häufigkeit und Risikofaktoren der nicht alkoholischen Steatohepatitis (NASH) sowie anderer Leberfunktionsstörungen
4. Untersuchung des Zusammenhangs zwischen Entzündungsparametern und Alkoholkonsum vor dem Hintergrund des protektiven Effekts von moderatem Alkoholkonsum auf koronare Herzkrankheiten
5. Ermittlung von sonographischen Normwerten für Leber, Milz und Nieren
6. Ermittlung von Häufigkeit und Risikofaktoren von Cholezystolithiasis und von Gallenblasenpolypen
7. Ermittlung der Häufigkeit eines bekannten und eines bisher nicht bekannten Diabetes mellitus als Risikofaktor für Infektionen

8. Ermittlung der Häufigkeit von Hepatitis B und C

9. Untersuchung der Cholezystolithiasis-Patienten auf spezifische Gene

10. Ermittlung der Häufigkeit und Einflussfaktoren fokaler Leberläsionen

2.1.2 Zielgrößen der Studie

1. Sonographischer Befund von morphologischen Leberveränderungen und Leberfunktionsstörungen (Steatosis Hepatis, Leberläsionen)

2. Sonographischer Befund von Erkrankungen der Gallenblase (Gallenblasenstein, Gallenblasenpolypen)

3. Blutzuckerwerte („random glucose“), HbA1c

4. Entzündungsparameter (C-reaktives Protein, IL-6, Fibrinogen, evtl. weitere Zytokine und Chemokine)

5. Antikörper gegen Zoonosen (Echinococcus multilocularis Rohantigen, spezifische Antigene von Echinococcus multilocularis, FSME-Antigen)

2.1.3 Bestandteile der Untersuchung

1. Befragung zu wichtigen Einflussfaktoren für die untersuchten Erkrankungen

2. Sonographische Untersuchung des Oberbauchs (Leber, Gallenblase, rechte Niere)

3. Blutprobenuntersuchung und Laboranalysen

4. Bestimmung von Körpergewicht und anthropologischen Messgrößen

2.1.4 Beteiligte Organisationen bei der Studiendurchführung

1. Landesgesundheitsamt Stuttgart

2. Abteilung für Innere Medizin I, II, III des Universitätsklinikums Ulm

3. Gesundheitsamt Ravensburg und die Außenstelle Leutkirch

4. Abteilung Virologie, klinische Chemie und der Abteilung für Biometrie und der medizinischen Dokumentation der Universität Ulm
2.2 Studienkollektiv

2.2.1 Studienpopulation

2.2.2 Probanden

2.2.3 Studienbeteiligung
Von den 4000 zufällig ausgewählten und eingeladenen Personen beteiligten sich 3893 an der Studie. 107 der angeschriebenen Personen konnten aus verschiedenen Gründen nicht in die Studie miteinbezogen werden (Einladungsschreiben nicht zustellbar, Wegzug in eine andere Gemeinde,

8
Unmündigkeit). Von den 3893 Personen haben sich schließlich 2445 (62,8%) beteiligt, davon waren 1265 Frauen und 1180 Männer.

2.3 Studienablauf

2.3.1 Organisation

2.3.2 Fragebogen
Folgende Parameter wurden mit standardisierter Interviewtechnik erfasst:
1. Angaben zum Probanden (Geschlecht, Nationalität, Familienstand, Schulabschluss, berufliche Tätigkeiten und Aufenthalt in Wald und Flur)
2. Freizeitverhalten (sportliche Aktivitäten, Tierhaltung, Aktivitäten mit Aufenthalt in Wald, Tätigkeiten im Freien)
3. Krankengeschichte (Magen-/Darmbeschwerden, Gallenblasensteine, Herz- und Kreislaufferkrankungen, Nierenerkrankungen, Atemwegserkrankungen, rheumatische Erkrankungen, Krebserkrankungen, Lebererkrankungen)
4. Medikamentenanamnese
5. Familienkrankengeschichte (Gallenblasensteine, Diabetes mellitus, Adipositas)
6. Einnahme von Kontraceptiva/Anzahl bisheriger Schwangerschaften (nur bei Frauen)
7. Essverhalten (Ernährungsgewohnheiten)
8. Genussmittel (Nikotin, Alkohol)

Bezüglich der Alkoholanamnese wurden die Probanden in folgende Gruppen eingeteilt: Ehemalige Alkoholkonsumenten und Personen, die keinen Alkohol konsumieren, Personen, die geringe Mengen Alkohol konsumieren (0-20 g/Tag), Personen mit moderatem Alkoholkonsum (20-40 g/Tag) und Personen mit hohem Alkoholkonsum (>40 g/Tag). Außerdem wurde die Art des konsumierten Alkohols erfragt: Bierkonsum wurde in Litern, Weinkonsum in Dezilitern (dL) und Schnapskonsum in Gläsern mit jeweils 0,2 Zentiliter (cl) dokumentiert.

2.3.3 Laborwerte

genannten Laborbestimmungen in einem Routinelabor der Universität Ulm durchgeführt, das regelmäßig an Ringversuchen teilnimmt.

2.3.4 Anthropometrische Daten

Der Body-Mass-Index (BMI) bzw. die Waist-to-Hip-Ratio wurden nach folgenden Formeln berechnet:

\[
\text{BMI} = \frac{\text{Körpergewicht (kg)}}{\text{Körpergröße}^2 (m^2)}
\]

\[
\text{WHR} = \frac{\text{waist (Bauchumfang in cm)}}{\text{hip (Hüftumfang in cm)}}
\]
2.4 Ultraschalluntersuchung

2.4.1 Geräte und Einstellungen

Abb 1: Das HDI 5000 Sonographie-Gerät als diagnostisches Mittel in der Studie der Universität Ulm zu Echinococcus multilocularis in Leutkirch 2002

2.4.2 Untersuchungsablauf und Datenerfassung bei der Ultraschalluntersuchung
Die vier Ultraschallgeräte standen in vier voneinander getrennten Kabinen und wurden von jeweils 2 Untersuchern, die ein Team bildeten, bedient. Alle Untersuchungen wurden entweder von Doktoranden durchgeführt, die mehrere Monate im Ultraschall ausgebildet wurden oder von einem sehr erfahrenen Ultraschaller und DEGUM-Ausbilder, der zusätzlich jeden unklaren Befund verifizierte, durchgeführt.

2.4.3 Beurteilung der Leber
Die Leber wurde vor allem in Hinblick auf Lebergröße, Parenchymstruktur, fokale Läsionen sowie auf eine Steatosis Hepatis untersucht.

2.4.4 Ultraschallkriterien für Steatosis Hepatis

2.4.5 Beurteilung der Gallenblase

In der Probandenvorgeschichte durchgeführte Cholezystektomien wurden im Protokoll vermerkt. Die Gallenblase wurde in größter Längsausdehnung vermessen, die Gallenblasenwand beurteilt und das Lumen auf Steine, Sludge und Polypen untersucht, sowie der Ductus Hepaticocholedochus beurteilt. Eine Untersuchung im Stehen erleichterte die Unterscheidung zwischen Steinen und Polypen bei Differenzierungsschwierigkeiten.

2.4.6 Beurteilung der Nieren und Milz

Die Patienten nahmen zur Untersuchung der linken Niere und Milz den Arm über den Kopf und erweiterten so die Interkostalräume. Die hierzu relevanten Dokumentationskriterien der sonographischen Untersuchung können dem Protokoll im Anhang entnommen werden.

2.5 Statistische Auswertung

Von den einzelnen Arbeitsgruppen wurden die unterschiedlichen Daten erfasst und in ein einheitliches Format, in eine Microsoft Excel-Datei bzw. in eine SAS Datenbank-Format gebracht. Außerdem wurde von jeder Arbeitsgruppe bei den

2.6 Kollektivzusammensetzung

Ausschluss von Minderjährigen (< 18) n=258
Ausschluss von Alkoholkonsum Fehlwerten n=67
Ausschluss von Body-Mass-Index Fehlwerten n=11
Ausschluss von Aspartat-Aminotransferase Fehlwerten n=27
Ausschluss von Alanin-Aminotransferase Fehlwerten n=26
Ausschluss von γ-Glutamyltransferase Fehlwerten n=26
Ausschluss von C-reaktives Protein Fehlwerten n=42
Ausschluss von Alkalische Phosphatase Fehlwerten n=26
Ausschluss von Triglyceride Fehlwerten n=198
Ausschluss von High-density Lipoprotein Fehlwerten n=81
Ausschluss von Low Density Lipoprotein Fehlwerten n=365
Ausschluss von Cholesterin Fehlwerten n=26
Ausschluss von Waist-To-Hip-Ratio Fehlwerten n=11
Ausschluss von Probanden mit Hämochromatose n=1

EMIL-Studienkollektiv n = 2445

Ausschluss
Abb. 2: Kollektivzusammensetzung der Studie der Universität Ulm zu Echinococcus multilocularis in Leutkirch 2002 zur Untersuchung von Steatosis Hepatis und Alkoholkonsum

Probanden mit bekannter chronischer Hepatitis B oder C mussten ausgeschlossen werden, weil aufgrund der Hepatitis pathologische Leberparameter zu erwarten waren. Außerdem wurde ein Proband mit Eisenspeicherkrankheit ausgeschlossen, nachdem diese sowohl im Labor als auch im MRT bestätigt worden war.
3 Ergebnisse

3.1 Häufigkeit von Steatosis Hepatis und Einflussgrößen

3.1.1 Steatosis Hepatis im Gesamtkollektiv
Insgesamt haben von den 1542 berücksichtigten Probanden 1140 Personen (73,9%) einen negativen Befund für Steatosis Hepatis und 402 Personen (26,1%) einen positiven Befund für Steatosis Hepatis.

3.1.2 Steatosis Hepatis im Frauenkollektiv und im Männerkollektiv
Das Gesamtkollektiv setzt sich aus 835 Frauen (54,2%) und 707 Männern (45,9%) zusammen. Bei den Frauen wird in 683 Fällen (81,8%) eine Steatosis Hepatis ausgeschlossen und in 152 Fällen (18,2%) festgestellt. Bei den Männern wird in 457 Fällen (64,6%) eine Steatosis Hepatis ausgeschlossen und in 250 Fällen (35,4%) bestätigt.

Abb. 3: Häufigkeit der Steatosis Hepatis bei beiden Geschlechtern der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch
3.1.3 Steatosis Hepatis und die Einflussgröße Alter
Im Durchschnitt sind unsere Probanden 42,0 Jahre (± 12,7) alt, wobei Probanden mit einem positiven Fettleberbefund mit 48,5 Jahren (± 11,3) im Schnitt älter sind, als Probanden mit einem negativen Fettleberbefund mit 39,7 Jahren (± 12,3). Bei den Frauen ohne Steatosis Hepatis liegt der Altersdurchschnitt bei 40,3 Jahren (± 12,1) und bei den Frauen mit Steatosis Hepatis bei 51,3 Jahren (± 10,6). Bei den Männern ohne Steatosis Hepatis liegt der Altersdurchschnitt bei 38,7 Jahren (± 12,5) und bei den Männern mit Steatosis Hepatis bei 46,8 Jahren (± 11,4).

3.1.4 Steatosis Hepatis und die Einflussgröße BMI
Der durchschnittliche BMI liegt innerhalb des untersuchten Kollektivs bei 25,5 kg/m² (± 4,6). Bei einem positiven Befund für Steatosis Hepatis liegt der Durchschnitts-BMI bei 29,5 kg/m² (± 4,5). Die Probanden ohne Steatosis Hepatis haben dagegen einen Durchschnitts-BMI von nur 24,1 kg/m² (± 3,7).

3.1.5 Steatosis Hepatis und die Einflussgröße Metabolisches Syndrom
Bei 1123 Probanden ohne Fettleber (98,5%) kann ein Metabolisches Syndrom ausgeschlossen und bei 17 Probanden (1,5%) bestätigt werden. Bei den Probanden mit Fettlebernachweis wird in 348 Fällen (86,6%) ein Metabolisches Syndrom ausgeschlossen und bei 54 Personen (13,4%) bestätigt.

3.1.6 Steatosis Hepatis und die Einflussgröße Alkoholkonsum
Innerhalb des gesamten Kollektivs werden durchschnittlich 11,6 g Alkohol/Tag (±16,7) konsumiert. Probanden mit Fettleber konsumieren dabei 13,5 g Alkohol/Tag (±18,6), Probanden ohne Fettleber 10,9 g Alkohol/Tag (±16,3). Alkoholkonsum wird von uns zusätzlich in verschiedene Kategorien eingeteilt, wobei unter den Probanden ohne Fettleber 34,7 % (n= 395) keinen Alkohol, 47,8 % (n= 545) 0-20g/Tag, 11,9 % (n= 136) 21-40g/Tag und 5,6 % (n= 64) >40g/Tag konsumieren. Von den Probanden mit Fettleber konsumieren 34,8 % der Probanden (n=140 Personen) keinen Alkohol, 40,6 % (n= 163) 0-20g/Tag, 15,7 % (n= 63) 21-40g/Tag und 9 % (n= 36) >40g/Tag.
Abb. 4: Häufigkeit der Steatosis Hepatis in verschiedenen Alkoholkonsumgruppen bei Frauen und Männern der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

3.1.7 Steatosis Hepatis und ihre Einflussfaktoren bei Frauen und Männern
Die geschlechtsspezifischen Unterschiede innerhalb des Kollektivs werden in den beiden folgenden Tabellen dargestellt:
Tab. 2: Einflussfaktoren im Frauenkollektiv der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

<table>
<thead>
<tr>
<th>Alter</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
<th>p-Wert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-30</td>
<td>4(2,6)</td>
<td>151(97,4)</td>
<td>155(18,6)</td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>24(10,3)</td>
<td>208(89,7)</td>
<td>232(27,8)</td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>31(15,3)</td>
<td>172(84,7)</td>
<td>203(24,3)</td>
<td></td>
</tr>
<tr>
<td>51-65</td>
<td>93(38,0)</td>
<td>152(62,0)</td>
<td>245(29,3)</td>
<td><0,0001</td>
</tr>
<tr>
<td>Stetig</td>
<td>51,3 ±10,6</td>
<td>40,3 ±12,1</td>
<td>42,3 ±12,6</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body-Mass-Index</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
<th>p-Wert*</th>
</tr>
</thead>
<tbody>
<tr>
<td><18,5</td>
<td>0(0)</td>
<td>31(100,0)</td>
<td>31(3,7)</td>
<td></td>
</tr>
<tr>
<td>18,5-25</td>
<td>13(2,8)</td>
<td>451(97,2)</td>
<td>464(55,6)</td>
<td></td>
</tr>
<tr>
<td>25-30</td>
<td>64(29,9)</td>
<td>150(70,1)</td>
<td>214(25,6)</td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td>53(56,4)</td>
<td>41(43,6)</td>
<td>94(11,3)</td>
<td></td>
</tr>
<tr>
<td>35-40</td>
<td>17(70,8)</td>
<td>7(29,2)</td>
<td>24(2,9)</td>
<td></td>
</tr>
<tr>
<td>>40</td>
<td>5(62,5)</td>
<td>3(37,5)</td>
<td>8(1,0)</td>
<td><0,0001</td>
</tr>
<tr>
<td>Stetig</td>
<td>30,4 ± 4,7</td>
<td>23,7 ± 4,0</td>
<td>24,9 ± 4,9</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alkoholkonsum</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
<th>p-Wert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>keI Alkohol</td>
<td>80(22,3)</td>
<td>279(77,7)</td>
<td>359(43,0)</td>
<td></td>
</tr>
<tr>
<td>0-20 g/Tag</td>
<td>58(14,5)</td>
<td>341(85,5)</td>
<td>399(47,8)</td>
<td></td>
</tr>
<tr>
<td>21-40 g/Tag</td>
<td>11(17,2)</td>
<td>53(82,8)</td>
<td>64(7,7)</td>
<td></td>
</tr>
<tr>
<td>>40 g/Tag</td>
<td>3(23,1)</td>
<td>10(76,9)</td>
<td>13(1,6)</td>
<td>0,0509</td>
</tr>
<tr>
<td>Stetig</td>
<td>31,5 ± 5,0</td>
<td>27,6 ± 5,0</td>
<td>29,7 ± 5,0</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metabolisches Syndrom</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
<th>p-Wert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>127(83,6)</td>
<td>671(98,2)</td>
<td>798(37,0)</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>25(16,5)</td>
<td>12(1,8)</td>
<td>37(4,4)</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

Tab. 3: Einflussfaktoren im Männerkollektiv der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

<table>
<thead>
<tr>
<th>Alter</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
<th>p-Wert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-30</td>
<td>18(12,5)</td>
<td>126(87,5)</td>
<td>144(20,4)</td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>67(32,2)</td>
<td>141(67,8)</td>
<td>208(29,4)</td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>55(36,2)</td>
<td>97(63,8)</td>
<td>152(21,5)</td>
<td></td>
</tr>
<tr>
<td>51-65</td>
<td>110(54,2)</td>
<td>93(45,8)</td>
<td>203(28,7)</td>
<td><0,0001</td>
</tr>
<tr>
<td>Stetig</td>
<td>46,8 ±11,4</td>
<td>38,7 ±12,5</td>
<td>41,5 ±12,7</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body-Mass-Index</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
<th>p-Wert*</th>
</tr>
</thead>
<tbody>
<tr>
<td><18,5</td>
<td>1(25,0)</td>
<td>3(75,0)</td>
<td>4(0,6)</td>
<td></td>
</tr>
<tr>
<td>18,5-25</td>
<td>34(11,4)</td>
<td>265(88,6)</td>
<td>299(42,3)</td>
<td></td>
</tr>
<tr>
<td>25-30</td>
<td>126(43,3)</td>
<td>165(56,7)</td>
<td>291(41,2)</td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td>71(78,0)</td>
<td>20(22,0)</td>
<td>91(12,9)</td>
<td></td>
</tr>
<tr>
<td>35-40</td>
<td>14(82,4)</td>
<td>3(17,6)</td>
<td>17(2,4)</td>
<td></td>
</tr>
<tr>
<td>>40</td>
<td>4(80,0)</td>
<td>1(20,0)</td>
<td>5(0,7)</td>
<td><0,0001</td>
</tr>
<tr>
<td>Stetig</td>
<td>28,9 ± 4,3</td>
<td>24,7 ± 3,1</td>
<td>26,2 ± 4,1</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alkoholkonsum</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
<th>p-Wert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein Alkohol</td>
<td>60(34,1)</td>
<td>116(65,9)</td>
<td>176(24,9)</td>
<td></td>
</tr>
<tr>
<td>0-20 g/Tag</td>
<td>105(34,0)</td>
<td>204(66,0)</td>
<td>309(43,7)</td>
<td></td>
</tr>
<tr>
<td>21-40 g/Tag</td>
<td>52(38,5)</td>
<td>83(61,5)</td>
<td>135(19,1)</td>
<td></td>
</tr>
<tr>
<td>>40 g/Tag</td>
<td>33(37,9)</td>
<td>54(62,1)</td>
<td>87(12,3)</td>
<td>0,7481</td>
</tr>
<tr>
<td>Stetig</td>
<td>18,0 ±20,7</td>
<td>17,0 ±21,0</td>
<td>17,3 ±11,0</td>
<td>0,5446</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metabolisches Syndrom</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
<th>p-Wert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
<td>221(88,4)</td>
<td>452(98,9)</td>
<td>673(95,2)</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>29(11,6)</td>
<td>5(1,1)</td>
<td>34(4,8)</td>
<td>0,0001</td>
</tr>
</tbody>
</table>
3.2 Häufigkeit der Steatosis Hepatis in Abhängigkeit von der Alkoholmenge

3.2.1 Alkoholkonsumklassen im Gesamtkollektiv

Bei der Einteilung des Kollektivs in verschiedene Alkoholkonsumgruppen zeigen sich Häufigkeitsunterschiede bezüglich der Steatosis Hepatis. Es wird wie folgt differenziert: Nicht-Konsumenten mit einem Alkoholkonsum von 0 g/Tag, geringer Alkoholkonsum mit 0-20 g/Tag, moderater Alkoholkonsum mit 21-40 g/Tag und hoher Alkoholkonsum mit > 40 g/Tag. In allen Alkoholkonsumklassen hat die Mehrheit der Probanden keine Steatosis Hepatis. Die meisten positiven Befunde bezüglich einer Fettleber zeigen sich mit 36,0 % in der Gruppe der Probanden, die einen täglichen Alkoholkonsum von >40 g/Tag angaben, gefolgt von 31,7 % positiver Befunde in der Gruppe der moderaten Alkoholkonsumenten mit 21-40 g/Tag. In der Gruppe der keinen Alkohol Konsumierenden findet sich bei 26,2 % eine Steatosis Hepatis, in der Gruppe der geringfügig Alkohol Konsumierenden bei 23,0 % der Fälle eine Steatosis Hepatis.

Innerhalb des Gesamtkollektivs zeigt Alkoholkonsum insgesamt eine Signifikanz (p= 0,0083). Bei leichtem Alkoholkonsum ist das Risiko gegenüber keinem Alkoholkonsum um das 0,8-fache reduziert (OR=0,844, 95-%-KI [0,650-1,095], p=0,2012), bei moderatem Alkoholkonsum um das 1,3-fache erhöht (OR=1,307, 95-%-KI [0,913-1,865], p=0,1399) und bei einem Konsum von > 40 g/Tag um das 1,6-fache erhöht (OR=1,588, 95-%-KI [1,011-2,494], p=0,0488).

3.2.2 Alkoholkonsumklassen im Frauenkollektiv

Im Frauenkollektiv ist der Anteil an negativen Fettleberbefunden in allen Alkoholkonsumklassen deutlich höher als der Anteil an positiven Fettleberbefunden. Die niedrigste Häufigkeit für Steatosis Hepatis lässt sich hier in der Gruppe der geringfügig und moderaten Alkoholkonsumentinnen mit jeweils 14,5 % und 17,2 % nachweisen. Der Häufigkeitswert in der Gruppe der Frauen, die keinen Alkohol zu sich nehmen, ist mit 22,3 % nah an dem Häufigkeitswert der Frauen, die viel Alkohol konsumieren. Hier findet sich bei 23,1 % eine Fettleber.

Innerhalb des Frauenkollektivs zeigt Alkoholkonsum ebenfalls eine Signifikanz (p= 0,0488).
[0,361-1,451], p=0,3621). Bei einem Konsum von > 40 g/Tag ist das Risiko mit dem Risiko der Nicht-Konsumentinnen vergleichbar (OR=1,046, 95-%-KI [0,281-3,893], p=0,9461).

3.2.3 Alkoholkonsumklassen im Männerkollektiv
Im Männerkollektiv ist der Anteil an negativen Fettleberbefunden ebenfalls in allen Alkoholkonsumklassen höher als der Anteil an positiven Fettleberbefunden, wobei hier die Häufigkeit für Steatosis Hepatis insgesamt höher als bei den Frauen ist. Die höchsten Häufigkeitswerte werden in der Gruppe für moderaten Alkoholkonsum mit 38,5 % und bei den Probanden mit hohem Alkoholkonsum mit 37,9 % nachgewiesen. In der Gruppe der Probanden mit geringfügigem Alkoholkonsum sinkt die Häufigkeit auf 34,0 %; sowie in der Gruppe der Probanden ohne Alkoholkonsum auf 34,1 %.

Innerhalb des Männerkollektivs zeigt Alkoholkonsum keine Signifikanz (p-Wert=0,7477). Bei leichtem Alkoholkonsum ist das Risiko mit dem Risiko der Probanden, die nie Alkohol konsumieren, vergleichbar (OR=0,995, 95-%-KI [0,673-1,471], p=0,9803), bei moderatem Alkoholkonsum um das 1,2-fache erhöht (OR=1,211, 95-%-KI [0,760-1,931], p=0,3621) und bei einem Konsum von > 40 g/Tag auch um das 1,2-fache erhöht (OR=1,181, 95-%-KI [0,693-2,014], p=0,5401).

Abb. 5: Häufigkeit der Steatosis Hepatis in % jeweils im Männerkollektiv, im Frauenkollektiv und im Gesamtkollektiv der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch
3.3 Interagierende Effekte in den Alkoholkonsumklassen

3.3.1 Interaktion zwischen Steatosis Hepatis und Geschlecht
Frauen zeigen für Alkoholkonsum keine Signifikanz hinsichtlich Steatosis Hepatis (p-Wert= 0,0509). Für leichten Alkoholkonsum zeigt sich ein um das 0,6-fache reduziertes Risiko (OR=0,593, 95-%-KI [0,408-1,139], p=0,862), für moderaten Alkoholkonsum zeigt sich ein um das 0,7-fache reduziertes Risiko (OR=0,724, 95-%-KI [0,361-1,451], p=0,3621) und für Alkoholkonsum von >40 g/Tag ein mit den nie Alkohol Konsumierenden vergleichbares Risiko (OR=1,046, 95-%-KI [0,281-3,893], p=0,9461).

Männer zeigen für Alkoholkonsum ebenfalls keine Signifikanz (p= 0,7481). Bei leichem Alkoholkonsum bleibt das Risiko für Steatosis Hepatis mit dem Risiko der nie Alkohol Konsumierenden vergleichbar (OR=0,995, 95-%-KI [0,673-1,471], p=0,9803). Für moderaten Alkoholkonsum erhöhte sich das Risiko um das 1,2-fache (OR=1,211, 95-%-KI [0,760-1,931], p=0,4204). Für Alkoholkonsum von >40 g/Tag erhöht sich das Risiko auch um das 1,2-fache (OR=1,181, 95-%-KI [0,693-2,014], p=0,5401).

3.3.2 Interaktion zwischen Steatosis Hepatis und Alter
Probanden mit einem Alter unterhalb des Medians zeigen für Alkoholkonsum hinsichtlich Steatosis Hepatis keine Signifikanz (p-Wert= 0,6434). Für leichten Alkoholkonsum zeigt sich ein mit den nie Alkohol Konsumierenden vergleichbares Risiko (OR=0,968, 95-%-KI [0,617-1,518], p=0,8864). Für moderaten Alkoholkonsum zeigt sich ein um das 1,4-fache erhöhtes Risiko (OR=1,378, 95-%-KI [0,718-2,643], p=0,3348) und für Alkoholkonsum von >40 g/Tag auch ein 1,4-fach erhöhtes Risiko (OR=1,335, 95-%-KI [0,603-2,958], p=0,4760).

Probanden, deren Alter auf oder oberhalb des Medians liegt zeigen für Alkoholkonsum eine Signifikanz (p-Wert= 0,0066). Für leichten Alkoholkonsum reduziert sich das Risiko für Steatosis Hepatis um das 0,7-fache (OR=0,682, 95-%-KI [0,488-0,953], p=0,0248). Bei moderatem Alkoholkonsum bleibt das Risiko mit dem der nie Alkohol Konsumierenden vergleichbar (OR=1,020, 95-%-KI [0,654-1,590], p=0,9309) und für Alkoholkonsum von >40 g/Tag erhöht sich das Risiko um das 1,7-fache (OR=1,675, 95-%-KI [0,919-3,053], p=0,0922).
3.3.3 Interaktion zwischen Steatosis Hepatis und BMI
Probanden mit einem BMI unterhalb des Medians zeigen für Alkoholkonsum eine Signifikanz (p= 0,0003). Für leichten Alkoholkonsum zeigt sich ein 2,0-fach erhöhtes Risiko (OR=1,926, 95-%-KI [0,797-4,650], p= 0,1453), für moderaten Alkoholkonsum zeigt sich ein um das 4,4-fache erhöhtes Risiko (OR=4,446, 95-%-KI [1,672-11,827], p=0,0028) und für Alkoholkonsum von >40 g/Tag ein um das 7,9-fache erhöhtes Risiko (OR=7,905, 95-%-KI [2,704-23,112], p=0,0002).
Im Vergleich dazu zeigen Probanden deren BMI auf oder oberhalb des Medians liegt, für Alkoholkonsum keine Signifikanz (p= 0,2993). Für leichten Alkoholkonsum reduziert sich das Risiko für Steatosis Hepatis um das 0,8-fache (OR=0,815, 95-%-KI [0,592-1,121], p=0,2081) und für moderaten Alkoholkonsum erhöht sich das Risiko um das 1,2-fache (OR=1,189, 95-%-KI [0,753-1,879], p=0,4576). Für Alkoholkonsum von >40 g/Tag erhöht sich das Risiko um das 1,1-fache (OR=1,098, 95-%-KI [0,618-1,949], p=0,7502).

3.3.4 Interaktion zwischen Steatosis Hepatis und Metabolischem Syndrom
Probanden ohne Metabolisches Syndrom zeigen für Alkoholkonsum eine Signifikanz (p= 0,0141). Für leichten Alkoholkonsum zeigt sich ein um das 0,9-fache reduziertes Risiko (OR=0,864, 95-%-KI [0,656-1,139], p=0,3002), für moderaten Alkoholkonsum zeigt sich ein um das 1,4-fach erhöhtes Risiko (OR=1,355, 95-%-KI [0,934-1,967], p=0,1099) und für Alkoholkonsum von > 40 g/Tag ein um das 1,6-fache erhöhtes Risiko (OR=1,608, 95-%-KI [0,999-2,589], p=0,0505).
Im Vergleich dazu zeigen Probanden mit Metabolischem Syndrom für Alkoholkonsum keine Signifikanz (p= 0,2247). Für leichten Alkoholkonsum reduziert sich das Risiko für Steatosis Hepatis um das 0,3-fache (OR=0,275, 95-%-KI [0,068-1,118], p=0,0712) und für moderaten Alkoholkonsum erhöht sich das Risiko um das 1,1-fache (OR=1,050, 95-%-KI [0,093-11,823], p=0,9685). Für Alkoholkonsum von >40 g/Tag reduziert sich das Risiko um das 0,8-fache (OR=0,750, 95-%-KI [0,064-8,834], p=0,8192).

3.3.5 Interaktion von Alter und BMI innerhalb der Alkoholkonsumklassen
Wir berechnen für alle Probanden den Median sowohl für den BMI, mit 24,8 kg/m², und Alter, mit 41,0 Jahren, und unterteilen das Kollektiv in 4 Klassen. Die Gruppe der Probanden, deren Alter oder BMI unter dem Median liegt, hat in der
Alkoholkonsumgruppe von >40 g/Tag mit 14,3% die höchste Häufigkeit für Steatosis Hepatis. In den anderen Alkoholkonsumgruppen liegt die Häufigkeit deutlich niedriger mit 1,2% in der Gruppe der nie Alkohol Konsumierenden Probanden, 2,0% in der Gruppe der Probanden mit geringfügigen Alkoholkonsum und 4,4% in der Gruppe der Probanden mit moderatem Alkoholkonsum.

Bei den Probanden, deren BMI unterhalb des Medians liegt und deren Alter ebenfalls unterhalb des Medians liegt, zeigt Alkoholkonsum eine Signifikanz (p=0,0055). Bei leichtem Alkoholkonsum erhöht sich das Risiko für eine Steatosis Hepatis um das 1,7-fache (OR=1,694 95-%-KI [0,306-9,363], p=0,5459). Bei moderatem Alkoholkonsum erhöht sich das Risiko um das 3,9-fache (OR=3,860, 95-%-KI [0,528-28,193], p=0,1831). Bei einem Alkoholkonsum von >40 g/Tag erhöht sich das Risiko signifikant um das 13,8-fache (OR=13,835, 95-%-KI [2,403-79,647], p=0,0033).

In der Gruppe der Probanden deren Alter unter dem Median liegt, oder deren BMI auf oder über dem Median liegt, ist die Häufigkeit der Steatosis Hepatis in der Gruppe der Probanden mit moderatem Alkoholkonsum mit 39,4% am höchsten. Die Häufigkeitswerte für nie Alkohol Konsumierende mit 34,2% und für die geringfügig Alkohol Konsumierenden mit 33,6% sind hier vergleichbar. Die niedrigste Häufigkeit für Steatosis Hepatis zeigen in dieser Gruppe die, die viel Alkohol konsumieren mit 25,0%.

In der logistischen Regression zeigt Alkoholkonsum hier keine Signifikanz (p=0,7623). Bei leichtem Alkoholkonsum ist das Risiko für eine Steatosis Hepatis mit dem der nie Alkohol Konsumierenden vergleichbar (OR=0,974 95-%-KI [0,573-1,654], p=0,9218). Bei moderatem Alkoholkonsum erhöht sich das Risiko für eine Steatosis Hepatis um das 1,3-fache (OR=1,251, 95-%-KI [0,565-2,773], p=0,5810). Bei einem Alkoholkonsum von >40 g/Tag reduziert sich das Risiko um das 0,6-fache (OR=0,642, 95-%-KI [0,218-1,893], p=0,4217).

Die Gruppe mit den Probanden, deren BMI unter dem Median und deren Alter auf oder über dem Median liegt, zeigt bei den viel Alkohol Konsumierenden die höchste Häufigkeit mit 25%. Am niedrigsten ist die Häufigkeit bei den Probanden, die nie Alkohol konsumieren mit 5,7 % und bei denen, die wenig Alkohol trinken mit 8,8 %. Die Häufigkeit für Steatosis Hepatis liegt bei den moderaten Alkoholkonsumenten mit 16,7 % wieder deutlich höher.

In der logistischen Regression zeigt Alkoholkonsum hier eine Signifikanz (p = 0,0335). Bei leichtem Alkoholkonsum ist das Risiko für eine Steatosis Hepatis gegenüber den nie Alkohol Konsumierenden um das 1,6-fache erhöht (OR = 1,606 95-%-KI [0,564-4,575], p = 0,3747). Bei moderatem Alkoholkonsum erhöht sich das Risiko für eine Steatosis Hepatis um das 3,3-fache (OR = 3,320, 95-%-KI [1,049-10,505], p = 0,0412). Bei einem Alkoholkonsum von >40 g/Tag erhöht sich das Risiko um das 5,5-fache (OR = 5,533, 95-%-KI [1,301-23,529], p = 0,0205).

In der logistischen Regression zeigt Alkoholkonsum hier keine Signifikanz (p=0,7623). Bei leichtem Alkoholkonsum ist das Risiko für eine Steatosis Hepatis gegenüber der nie Alkohol Konsumierenden um das 0,7-fache reduziert (OR=0,687, 95-%-KI [0,455-1,039], p=0,0751). Bei moderatem Alkoholkonsum bleibt das Risiko für eine Steatosis Hepatis unverändert (OR=1,033, 95-%-KI [0,580-1,840], p=0,9111). Bei einem Alkoholkonsum von >40 g/Tag erhöht sich das Risiko um das 1,3-fache (OR=1,313, 95-%-KI [0,621-2,773], p=0,4760).

Abb. 7: Häufigkeit der Steatosis Hepatis in % für Probanden der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch, die innerhalb des Kollektivs ein Alter im Bereich oder oberhalb des Medians aufweisen und in Body-Mass-Index-Gruppen oberhalb oder unterhalb des Medians unterteilt werden
3.3.6 Interaktion von Geschlecht und BMI innerhalb der Alkoholkonsumklassen

Das Kollektiv wird außerdem getrennt für Männer und Frauen, deren BMI unterhalb bzw. auf und oberhalb des Medians ist, betrachtet.

Frauen deren BMI unterhalb des Medians liegt zeigen die niedrigste Steatose-Häufigkeit in der Gruppe der viel Alkohol konsumierenden Probanden mit 0,0 %. In dieser Gruppe befinden sich allerdings insgesamt nur fünf Frauen. Ebenfalls eher wenige Frauen enthält hier die Gruppe der Frauen für moderaten Alkoholkonsum mit 42 Personen. Hier beträgt die Häufigkeit für Steatosis Hepatitis 4,8 % und liegt damit über den Häufigkeitswerten der 246 Probanden, die wenig Alkohol konsumieren mit 2,9 % und der 190 Probanden, die nie Alkohol konsumieren mit 2,1 %.

In der logistischen Regression zeigt Alkoholkonsum hier keine Signifikanz (p=0,5472). Bei leichtem Alkoholkonsum ist das Risiko für eine Steatosis Hepatitis gegenüber den Probanden, die keinen Alkohol trinken, um das 1,4-fache erhöht (OR=1,362, 95-%-KI [0,393-4,722], p=0,6263). Bei moderatem Alkoholkonsum erhöht sich das Risiko für eine Steatosis Hepatitis um das 2,3-fache (OR=2,325, 95-%-KI [0,412-13,133], p=0,3395). Bei Alkoholkonsum von >40 g/Tag sind die Fallzahlen für eine logistische Regression zu niedrig.

In der Gruppe der Frauen mit BMI-Werten auf oder oberhalb des Medians kann der höchste Wert für Steatosis Hepatis in der Gruppe der Probandinnen, die keinen Alkohol trinken, mit 45,0 % festgestellt werden. Die Probandinnen mit moderatem Alkoholkonsum haben in 40,9 % der Fälle eine Steatosis Hepatitis, diejenigen mit hohem Alkoholkonsum in 37,5 % der Fälle und jene mit geringem Alkoholkonsum in 33,3 % der Fälle.

In der logistischen Regression zeigt Alkoholkonsum hier keine Signifikanz (p-Wert=0,1931). Bei leichtem Alkoholkonsum ist das Risiko für eine Steatosis Hepatis gegenüber den Frauen, die nie Alkohol konsumieren, um das 0,6-fache reduziert (OR=0,612, 95-%-KI [0,389-0,962], p=0,0334). Bei moderatem Alkoholkonsum reduziert sich hier das Risiko für eine Steatosis Hepatitis um das 0,8-fache (OR=0,847, 95-%-KI [0,344-2,089], p=0,7186). Bei Alkoholkonsum von >40 g/Tag reduziert sich das Risiko um das 0,7-fache (OR=0,734, 95-%-KI [0,170-3,171], p=0,6790).
Abb. 8: Häufigkeit der Steatosis Hepatis in % für Frauen der Studie der Universität Ulm 2002 zu Echinococcus multiloculais in Leutkirch mit Body-Mass-Index oberhalb oder unterhalb des Medians

Bei den Männern deren BMI sich unterhalb des Medians befindet wird der höchste Häufigkeitswert für Steatosis Hepatis mit 20,5 % in der Gruppe derjenigen, die viel Alkohol konsumieren, festgestellt. Es folgen diejenigen, mit moderatem Alkoholkonsum mit einer Häufigkeit von 15,8 %, diejenigen mit geringem Alkoholkonsum mit einer Häufigkeit von 9,7 % und die, die keinen Alkohol konsumieren mit einer Häufigkeit von 4,6 %.

In der logistischen Regression zeigt bei den Männern Alkoholkonsum hier eine Signifikanz (p= 0,0460). Bei leichtem Alkoholkonsum ist das Risiko für eine Steatosis Hepatis gegenüber Probanden, die keinen Alkohol konsumieren, um das 2,3-fache erhöht (OR=2,250, 95-%-KI [0,612-8,275], p=0,2223). Bei moderatem Alkoholkonsum erhöht sich hier das Risiko für eine Steatosis Hepatis um das 3,9-fache (OR=3,937, 95-%-KI [1,011-15,334], p=0,0482). Bei Alkoholkonsum von >40 g/Tag erhöht sich das Risiko um das 5,4-fache (OR=5,419, 95-%-KI [1,343-21,863], p=0,0176).

Bei den Männern, deren BMI sich auf oder oberhalb des Medians befindet, ist der höchste Häufigkeitswert in der Gruppe der Probanden mit moderatem Alkoholkonsum mit 55,1 % vertreten. Der Häufigkeitswert in der Gruppe der
Probanden, die viel Alkohol trinken, mit 52,1 %, sowie in der Gruppe der Probanden, die wenig Alkohol trinken, mit 50,3 %, sowie bei jenen, die keinen Alkohol trinken, mit 51,8 % ist hiermit vergleichbar. In der logistischen Regression zeigt bei den Männern Alkoholkonsum hier keine Signifikanz (p= 0,9120). Bei leichtem Alkoholkonsum ist das Risiko für eine Steatosis Hepatis gegenüber jenen, die keinen Alkohol trinken, um das 0,9-fache reduziert (OR=0,940, 95-%-Kl [0,586-1,507], p=0,7971). Bei moderatem Alkoholkonsum erhöht sich hier das Risiko für eine Steatosis Hepatis um das 1,1-fache (OR=1,142, 95-%-Kl [0,638-2,045], p=0,6541). Bei Alkoholkonsum von >40 g/Tag bleibt das Risiko im Vergleich zu Probanden, die keinen Alkohol trinken, unverändert (OR=1,011, 95-%-Kl [0,513-1,992], p=0,9755).

Abb. 9: Häufigkeit der Steatosis Hepatis in % für Männer der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch mit Body-Mass-Index oberhalb oder unterhalb des Medians

3.3.7 Interaktion von Alter und Metabolischem Syndrom innerhalb der Alkoholkonsumklassen

Desweiteren werden die Probanden in die Kategorien am Metabolischen Syndrom erkrankt bzw. an diesem nicht erkrankt, sowie in die Altersgruppen unterhalb bzw. auf und oberhalb des Medians, eingeteilt.

Probanden, deren Alter unterhalb des Medians liegt, und bei denen ein Metabolisches Syndrom ausgeschlossen werden kann, zeigen in der Gruppe der Probanden mit moderatem Alkoholkonsum mit 17,1 % und in der Gruppe der Probanden, die viel Alkohol trinken mit 17,0 % ähnliche Häufigkeitswerte für die
Steatosis Hepatis. Niedrigere Werte zeigten sich in der Gruppe derjenigen, die nie Alkohol konsumieren, mit 13,9 % und in der Gruppe derer mit geringem Alkoholkonsum mit 13,1 %.

Bei den Probanden ohne Metabolisches Syndrom und einem Alter unterhalb des Medians zeigt Alkoholkonsum keine Signifikanz (p= 0,7638). Bei leichtem Alkoholkonsum reduziert sich das Risiko für eine Steatosis Hepatis um das 0,9-fache (OR=0,934, 95-%-KI [0,584-1,492], p=0,7739). Bei moderatem Alkoholkonsum erhöht es sich um das 1,3-fache (OR=1,275, 95-%-KI [0,642-2,533], p=0,4873) und bei einem Alkoholkonsum von >40 g/Tag um das 1,3-fache (OR=1,268, 95-%-KI [0,551-2,915], p=0,5765).

Bei den an dem Metabolischen Syndrom erkrankten Probanden deren Alter ebenfalls unterhalb des Medians liegt, zeigt sich in der Gruppe der Probanden mit hohem Alkoholkonsum und in der Gruppe derer mit moderatem Alkoholkonsum eine Steatose-Häufigkeit von 100 %, gefolgt von 62,5 % in der Gruppe derer mit geringfügigen Alkoholkonsum und 60,0 % in der Gruppe der Probanden ohne Alkoholkonsum. Insgesamt können in die Gruppe der jungen Probanden mit Metabolischem Syndrom nur 16 Probanden eingeschlossen werden, weshalb die Berechnung einer logistischen Regression nicht möglich ist.

33
Bei den Probanden deren Alter auf bzw. oberhalb des Medians liegt und bei denen ein Metabolisches Syndrom ausgeschlossen werden kann, ist die Häufigkeit für Steatosis Hepatis in der Gruppe der Probanden mit hohem Alkoholkonsum mit 48,9 % am höchsten. In der Gruppe der Probanden mit moderatem Alkoholkonsum beträgt sie 37,4 % und in der Gruppe derer, die keinen Alkohol trinken, 34,9 %. Am niedrigsten ist die Steatosehäufigkeit mit 28,0 % in der Gruppe der geringfügig Alkohol Konsumierenden.

Bei den Probanden ohne Metabolisches Syndrom mit einem Alter auf oder oberhalb des Medians zeigt Alkoholkonsum eine Signifikanz (p= 0,0125). Bei leichtem Alkoholkonsum reduziert sich das Risiko für eine Steatosis Hepatis um das 0,7-fache (OR=0,724, 95-%-KI [0,507-1,033], p=0,0751). Bei moderatem Alkoholkonsum erhöht sich das Risiko für eine Steatosis Hepatis um das 1,1-fache (OR=1,113, 95-%-KI [0,700-1,771], p=0,6504) und bei einem Alkoholkonsum von >40 g/Tag um das 1,8-fache (OR=1,787, 95-%-KI [0,949-3,363], p=0,0721).

Probanden, deren Alter ebenfalls auf oder oberhalb des Medians liegt und bei denen ein Metabolisches Syndrom vorliegt, zeigen in der Gruppe der Probanden, die keinen Alkohol konsumieren, die höchste Häufigkeit für Steatosis Hepatis mit 94,4 %. Auch in den Gruppen der Probanden mit moderatem Alkoholkonsum und mit hohem Alkoholkonsum ist die jeweilige Steatosehäufigkeit mit 83,3 % und 80,0 % hoch. Am niedrigsten ist die Häufigkeit in der Gruppe der geringfügigen Konsumenten mit 65,4 %.

Bei den Probanden mit Metabolischem Syndrom und einem Alter auf dem oder oberhalb des Medians zeigt Alkoholkonsum keine Signifikanz (p= 0,0998). Bei leichtem Alkoholkonsum reduziert sich das Risiko für eine Steatosis Hepatis um das 0,1-fache (OR=0,111, 95-%-KI [0,013-0,976], p=0,0475). Bei moderatem Alkoholkonsum reduziert sich das Risiko für eine Steatosis Hepatis um das 0,3-fache (OR=0,294, 95-%-KI [0,015-5,595], p=0,4155) und bei einem Alkoholkonsum von >40 g/Tag um das 0,2-fache (OR=0,235, 95-%-KI [0,012-4,624], p=0,3410).
3 Ergebnisse

Abb. 11: Häufigkeit der Steatosis Hepatis in % für Probanden der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch deren Alter auf oder oberhalb des Medians liegt und bei denen ein Metabolisches Syndrom bestätigt oder ausgeschlossen werden kann

3.3.8 Interaktion von Geschlecht und Metabolischem Syndrom innerhalb der Alkoholkonsumklassen

Innerhalb der Alkoholkonsumklassen werden jeweils Frauen und Männer nach dem Kriterium am Metabolischen Syndrom erkrankt bzw. nicht erkrankt kategorisiert und dabei bezüglich der Häufigkeit der Steatosis Hepatis untersucht. Frauen ohne Metabolisches Syndrom zeigen in der Gruppe derer, die viel Alkohol konsumieren, mit 23,1 % die höchste Häufigkeit, gefolgt von der Gruppe derer, die keinen Alkohol konsumieren, mit 19,1 %. Die moderaten Trinker und die geringfügigen Konsumentinnen zeigen niedrigere Häufigkeitswerte mit jeweils 15,9 %, und 12,9 %.

Frauen, die an dem Metabolischen Syndrom erkrankt sind, haben in der Gruppe der moderaten Konsumentinnen eine Häufigkeit von 100 %. Diese Gruppe besteht aus nur einer Frau. In der Gruppe der Frauen, die keinen Alkohol trinken, haben 83,3 % eine Steatosis Hepatis, in der Gruppe der geringfügigen Konsumentinnen sind es 50 %.

Innerhalb des Frauenkollektivs ohne Metabolisches Syndrom zeigt Alkoholkonsum im Verhältnis zu abstinemem Verhalten keine Signifikanz (p= 0,1284).
Bei leichtem Alkoholkonsum ist das Risiko signifikant gegenüber abstinentem Verhalten um das 0,6-fache reduziert (OR=0,627, 95-%-KI [0,419-0,938], p=0,0233). Bei moderatem Alkoholkonsum ist das Risiko um das 0,8-fache reduziert (OR=0,801, 95-%-KI [0,387-1,659], p=0,5505). Bei einem Alkoholkonsum von >40 g/Tag erhöht sich das Risiko um das 1,3-fache (OR=1,274, 95-%-KI [0,341-4,760], p=0,7189).

Im Frauenkollektiv mit Erkrankung am Metabolischen Syndrom zeigt Alkoholkonsum gegenüber abstinenten Verhalten ebenfalls keine Signifikanz (p=0,0982). Wegen niedriger Fallzahlen kann hier die logistische Regression nicht für die verschiedenen Alkoholkonsumklassen durchgeführt werden.

![Graph: Häufigkeit der Steatosis Hepatis in % für Frauen der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch bei denen ein Metabolisches Syndrom bestätigt bzw. ausgeschlossen werden kann](image)

Abb. 12: Häufigkeit der Steatosis Hepatitis in % für Frauen der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch bei denen ein Metabolisches Syndrom bestätigt bzw. ausgeschlossen werden kann

Männer ohne Metabolisches Syndrom haben in allen Gruppe ähnliche Häufigkeitswerte. So ergibt sich in der Gruppe der moderaten Alkoholkonsumenten ein Häufigkeitswert von 35,9 %, in der Gruppe der Männer mit hohem Alkoholkonsum ein Wert von 34,5 %. Für die Gruppe derer, die keinen Alkohol trinken, ergibt sich ein Wert von 32,2 % und für die geringfügig Konsumierenden ein Wert von 31,4 %.
Männer mit Metabolischem Syndrom haben insgesamt deutlich höhere Häufigkeitswerte für Steatosis Hepatis und weisen in der Gruppe ohne Alkoholkonsum 100,0 %, in der Gruppe der moderaten Konsumenten 85,7 %, in der Gruppe der Probanden mit hohem Alkoholkonsum 83,3 %, sowie in der Gruppe der geringfügig Konsumierenden 81,3 % auf.

Innerhalb des Männerkollektivs ohne Metabolisches Syndrom zeigt Alkoholkonsum gegenüber den Nicht-Konsumenten keine Signifikanz (p = 0,8066). Bei leichtem Alkoholkonsum ist das Risiko mit den Nicht-Konsumenten vergleichbar (OR=0,965, 95-%-KI [0,644-1,447], p=0,8644). Bei den moderaten Konsumenten ist das Risiko um das 1,2-fache erhöht (OR=1,183, 95-%-KI [0,730-1,918], p=0,4950). Bei einem Alkoholkonsum von >40 g/Tag ist das Risiko um das 1,1-fache erhöht (OR=1,114, 95-%-KI [0,637-1,949], p=0,7046).

Im Männerkollektiv mit Erkrankung am Metabolischen Syndrom zeigt Alkoholkonsum gegenüber den Nicht-Konsumenten ebenfalls keine Signifikanz (p = 0,9094). Die Fallzahlen sind hier zu niedrig um eine logistische Regression durchführen zu können.

Abb. 13: Häufigkeit der Steatosis Hepatis in % für Männer der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch bei denen ein Metabolisches Syndrom bestätigt oder ausgeschlossen werden kann
3 Ergebnisse

3.4 Häufigkeit der Steatosis Hepatis bei verschiedenen Alkoholsorten

3.4.1 Häufigkeit der Steatosis Hepatis innerhalb von Bierkonsumklassen
Tab. 4: Häufigkeit der Steatosis Hepatis bei Bierkonsum, Weinkonsum und Schnapskonsum im Gesamtkollektiv der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

<table>
<thead>
<tr>
<th>Alkoholkonsum an Wochentagen</th>
<th>Alkoholkonsum an Wochenenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bier</td>
<td></td>
</tr>
<tr>
<td>Kein Bier</td>
<td>1075 (74,8)</td>
</tr>
<tr>
<td>1L Bier</td>
<td>52 (61,2)</td>
</tr>
<tr>
<td>2L Bier</td>
<td>14 (70,0)</td>
</tr>
<tr>
<td>3L Bier</td>
<td>1 (33,3)</td>
</tr>
<tr>
<td>4L Bier</td>
<td>2 (100)</td>
</tr>
<tr>
<td>Negative Befunde n (%)</td>
<td>357 (25,3)</td>
</tr>
<tr>
<td>Positive Befunde n (%)</td>
<td>33 (38,8)</td>
</tr>
<tr>
<td>Negative Befunde n (%)</td>
<td>6 (30,0)</td>
</tr>
<tr>
<td>Positive Befunde n (%)</td>
<td>0 (0,0)</td>
</tr>
<tr>
<td>Anzahl der fehlenden Angaben</td>
<td>18</td>
</tr>
</tbody>
</table>

Weinkonsum	
Kein Wein	984 (74,1)
2dL Wein	117 (73,6)
4dL Wein	30 (73,2)
6dL Wein	6 (54,6)
8dL Wein	3 (100)
Negative Befunde n (%)	344 (25,9)
Positive Befunde n (%)	42 (26,4)
Negative Befunde n (%)	11 (26,8)
Positive Befunde n (%)	5 (45,5)
Negative Befunde n (%)	0 (0,0)
Positive Befunde n (%)	19 (70,4)
Anzahl der fehlenden Angaben	16

Schnapskonsum	
Kein Schnaps	1085 (81,8)
1 Glas	28 (75,7)
2 Gläser	9 (75,0)
3 Gläser	1 (50,0)
4 Gläser	1 (100)
5 Gläser	2 (100)
6 Gläser	-
Negative Befunde n (%)	385 (26,2)
Positive Befunde n (%)	9 (24,3)
Negative Befunde n (%)	3 (25,0)
Positive Befunde n (%)	1 (50,0)
Negative Befunde n (%)	0 (0,0)
Positive Befunde n (%)	0 (0,0)
Negative Befunde n (%)	16 (84,2)
Positive Befunde n (%)	3 (15,4)
Negative Befunde n (%)	6 (75,0)
Positive Befunde n (%)	2 (25,0)
Negative Befunde n (%)	-
Positive Befunde n (%)	-
Anzahl der fehlenden Angaben	18

Anzahl der fehlenden Angaben: 18
Tab. 5: Häufigkeit der Steatosis Hepitis bei Bierkonsum, Weinkonsum und Schnapskonsum im Frauenkollektiv der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

Konsum der verschiedenen Alkoholsorten bei den Frauen

<table>
<thead>
<tr>
<th>Alkoholkonsum an Wochentagen</th>
<th>Steatosis Hepatis</th>
<th>Alkoholkonsum an Wochenenden</th>
<th>Steatosis Hepatis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative Befunde n (%)</td>
<td>Positive Befunde n (%)</td>
<td>Negative Befunde n (%)</td>
</tr>
<tr>
<td>Bier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kein Bier</td>
<td>666 (82,1)</td>
<td>145 (17,9)</td>
<td>638 (81,9)</td>
</tr>
<tr>
<td>1L Bier</td>
<td>4 (57,1)</td>
<td>3 (42,9)</td>
<td>25 (80,7)</td>
</tr>
<tr>
<td>2L Bier</td>
<td>1 (100)</td>
<td>0 (0,0)</td>
<td>9 (81,8)</td>
</tr>
<tr>
<td>3L Bier</td>
<td>-</td>
<td>-</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Wein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kein Wein</td>
<td>575 (81,2)</td>
<td>133 (18,8)</td>
<td>418 (79,9)</td>
</tr>
<tr>
<td>2dl Wein</td>
<td>82 (85,4)</td>
<td>14 (14,6)</td>
<td>145 (89,0)</td>
</tr>
<tr>
<td>4dl Wein</td>
<td>24 (85,7)</td>
<td>4 (14,3)</td>
<td>80 (79,2)</td>
</tr>
<tr>
<td>6dl Wein</td>
<td>1 (50,0)</td>
<td>1 (50,0)</td>
<td>31 (81,6)</td>
</tr>
<tr>
<td>8dl Wein</td>
<td>1 (100)</td>
<td>0 (0,0)</td>
<td>9 (90,0)</td>
</tr>
<tr>
<td>Schnaps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kein Schnaps</td>
<td>650 (81,8)</td>
<td>145 (18,2)</td>
<td>608 (81,5)</td>
</tr>
<tr>
<td>1 Glas</td>
<td>15 (88,2)</td>
<td>2 (11,8)</td>
<td>28 (73,7)</td>
</tr>
<tr>
<td>2 Gläser</td>
<td>4 (80,0)</td>
<td>1 (20,0)</td>
<td>11 (100)</td>
</tr>
<tr>
<td>3 Gläser</td>
<td>1 (100)</td>
<td>0 (0,0)</td>
<td>11 (100)</td>
</tr>
<tr>
<td>4 Gläser</td>
<td>1 (100)</td>
<td>0 (0,0)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>5 Gläser</td>
<td>1 (100)</td>
<td>0 (0,0)</td>
<td>5 (100)</td>
</tr>
<tr>
<td>6 Gläser</td>
<td>-</td>
<td>-</td>
<td>2 (66,7)</td>
</tr>
<tr>
<td>Anzahl der fehlenden Angaben</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 6: Häufigkeit der Steatosis Hepatis bei Bierkonsum, Weinkonsum und Schnapskonsum im Männerkollektiv der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

<table>
<thead>
<tr>
<th>Konsum der verschiedenen Alkoholsorten bei den Männern</th>
<th>Alkoholkonsum an Wochentagen</th>
<th></th>
<th></th>
<th>Alkoholkonsum an Wochenenden</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steatosis Hepatis</td>
<td>Negative Befunde n (%)</td>
<td>Positive Befunde n (%)</td>
<td>Steatosis Hepatis</td>
<td>Negative Befunde n (%)</td>
<td>Positive Befunde n (%)</td>
</tr>
<tr>
<td>Bier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kein Bier</td>
<td>391 (64,8)</td>
<td>212 (35,2)</td>
<td>270 (64,1)</td>
<td>151 (35,9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1L Bier</td>
<td>48 (61,5)</td>
<td>30 (38,5)</td>
<td>97 (63,8)</td>
<td>55 (36,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2L Bier</td>
<td>13 (68,4)</td>
<td>6 (31,6)</td>
<td>51 (65,4)</td>
<td>27 (34,6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3L Bier</td>
<td>1 (33,3)</td>
<td>2 (66,7)</td>
<td>22 (62,9)</td>
<td>13 (37,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4L Bier</td>
<td>2 (100)</td>
<td>0 (0,0)</td>
<td>14 (77,8)</td>
<td>4 (22,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der fehlenden Angaben</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kein Wein</td>
<td>409 (66,0)</td>
<td>211 (34,0)</td>
<td>345 (66,2)</td>
<td>176 (33,8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2dL Wein</td>
<td>35 (55,6)</td>
<td>28 (44,4)</td>
<td>47 (62,7)</td>
<td>28 (37,3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4dL Wein</td>
<td>6 (46,2)</td>
<td>7 (53,9)</td>
<td>39 (59,1)</td>
<td>27 (40,9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6dL Wein</td>
<td>5 (55,6)</td>
<td>4 (44,4)</td>
<td>16 (57,1)</td>
<td>12 (42,9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8dL Wein</td>
<td>2 (100)</td>
<td>0 (0,0)</td>
<td>10 (58,8)</td>
<td>7 (41,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der fehlenden Angaben</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schnaps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kein Schnaps</td>
<td>435 (64,4)</td>
<td>240 (35,6)</td>
<td>390 (63,2)</td>
<td>227 (36,8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Glas</td>
<td>13 (65,0)</td>
<td>7 (35,0)</td>
<td>24 (63,2)</td>
<td>14 (36,8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Gläser</td>
<td>5 (71,4)</td>
<td>2 (28,6)</td>
<td>16 (94,1)</td>
<td>1 (5,9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Gläser</td>
<td>0 (0,0)</td>
<td>1 (100)</td>
<td>4 (66,7)</td>
<td>2 (33,3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Gläser</td>
<td>-</td>
<td>-</td>
<td>5 (71,4)</td>
<td>2 (28,6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Gläser</td>
<td>1 (100)</td>
<td>0 (0,0)</td>
<td>1 (33,3)</td>
<td>2 (66,7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Gläser</td>
<td>-</td>
<td>-</td>
<td>14 (87,5)</td>
<td>2 (12,5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der fehlenden Angaben</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Innerhalb des Gesamtkollektivs ist Bierkonsum an einem durchschnittlichen Wochentag insgesamt signifikant (p = 0,0211).

Bei der bivariaten Analyse zeigt Bierkonsum von einem Liter an einem durchschnittlichen Wochentag ein um das 1,9-fache erhöhtes Risiko für eine Steatosis Hepatis im Vergleich zu den Nicht-Konsumenten (OR=1,879, 95-%-KI [1,195-2,954], p=0,0063). Für jeweils zwei Liter erhöht sich das Risiko um das 1,3-fache (OR=1,269, 95-%-KI [0,484-3,327], p=0,6282) und für drei Liter Bier um das 5,9-fache (OR=5,922, 95-%-KI [0,535-65,500], p=0,1104). Für vier Liter Bierkonsum an einem durchschnittlichen Wochentag sind die Fallzahlen für die Durchführung einer logistischen Regression zu niedrig.

Innerhalb des Frauenkollektivs ist Bierkonsum an einem durchschnittlichen Wochentag insgesamt nicht signifikant (p = 0,2757).

Bei den Frauen werden an einem durchschnittlichen Wochentag bis zu maximal zwei Liter Bier konsumiert. Bei den Frauen sind hier allerdings bei einem Bierkonsum von zwei Litern die Fallzahlen für die Durchführung einer logistischen Regression zu niedrig. Bei einem Liter Bierkonsum erhöht sich gegenüber den Nicht-Konsumenten das Risiko um das 3,4-fache (OR=3,445, 95-%-KI [0,763-15,558], p=0,1079).

Innerhalb des Männerkollektivs ist Bierkonsum an einem durchschnittlichen Wochentag insgesamt ebenfalls nicht signifikant (p = 0,6560).

Bei den Männern wird an einem durchschnittlichen Wochentag Bier bis zu maximal vier Liter konsumiert, wobei in der Bierkonsumgruppe von 4 Litern die Fallzahlen für eine logistische Regression zu niedrig sind. Der Konsum von einem Liter Bier erhöht hier das Risiko für Steatosis Hepatis um das 1,2-fache (OR=1,153, 95-%-KI [0,709-1,874], p=0,5664). Beim Konsum von zwei Litern Bier reduziert sich das Risiko um das 0,9-fache (OR=0,851, 95-%-KI [0,319-2,272], p=0,7478). Beim Konsum von drei Litern ist das Risiko gegenüber den Nicht-Konsumenten um das 3,7-fache erhöht (OR=3,689, 95-%-KI [0,333-40,917], p=0,2877).
Abb. 14: Häufigkeit der Steatosis Hepatis in % bei Bierkonsum an einem durchschnittlichen Werktag der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

Innerhalb des Gesamtkollektivs ist Bierkonsum am Wochenende insgesamt signifikant (χ^2-Test, $p=0,0284$).

In der bivariaten Analyse zeigt Bierkonsum von einem Liter am Wochenende ein 1,6-faches erhöhtes Risiko im Vergleich zu den Nicht-Konsumenten (OR=1,555, 95-%-KI [1,113-2,173], $p=0,0091$), für jeweils zwei Liter erhöht sich das Risiko um das 1,5-fache (OR=1,503, 95-%-KI [0,947-2,387], $p=0,0841$), für drei Liter Bier um das 1,8-fache (OR=1,758, 95-%-KI [0,879-3,515], $p=0,1104$) und für vier Liter Bier reduziert sich das Risiko um das 0,9-fache (OR=0,888, 95-%-KI [0,290-2,720], $p=0,8359$).

Innerhalb des Frauenkollektivs ist Bierkonsum am Wochenende insgesamt nicht signifikant ($p=0,9541$).

Bei den Frauen wird am Wochenende Bier bis zu maximal drei Litern konsumiert. Gegenüber den Nicht-Konsumenten erhöht sich das Risiko bei einem Liter Bier am Wochenende um das 1,1-fache (OR=1,086, 95-%-KI [0,437-2,696], $p=0,8590$), bei zwei Liter Bier bleibt das Risiko vergleichbar mit den Nicht-Konsumenten (OR=1,006, 95-%-KI [0,215-4,704], $p=0,9944$). Für drei Liter Bierkonsum am Wochenende sind bei den Frauen die Fallzahlen für die Durchführung einer logistischen Regression zu niedrig.
Innerhalb des Männerkollektivs ist Bierkonsum am Wochenende insgesamt nicht signifikant ($p=0,8250$).

Bei den Männern wird am Wochenende Bier bis zu maximal vier Liter konsumiert. Der Konsum von einem Liter Bier erhöht hier das Risiko für Steatosis Hepatitis nicht (OR=1,014, 95-%-KI [0,689-1,492], $p=0,9443$). Beim Konsum von zwei Litern Bier reduziert sich das Risiko kaum (OR=0,947, 95-%-KI [0,570-1,572], $p=0,8322$). Beim Konsum von drei Litern ist das Risiko mit den Nicht-Konsumenten vergleichbar (OR=1,057, 95-%-KI [0,517-2,158], $p=0,8799$). Beim Konsum von vier Litern Bier reduziert sich das Risiko um das 0,5-fache (OR=0,511, 95-%-KI [0,165-1,580], $p=0,2436$).

![Diagramm](image)

Abb. 15: Häufigkeit der Steatosis Hepatitis in % bei Bierkonsum an einem durchschnittlichen Wochenende der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch
3.4.2 Häufigkeit der Steatosis Hepatis innerhalb von Weinkonsumklassen

Der Weinkonsum wird bei uns in Dezilitern (dL) erfasst und bei den Probanden getrennt nach Konsum an einem normalen Wochentag und an einem normalen Wochenende untersucht.

Innerhalb des Gesamtkollektivs zeigt Weinkonsum an einem durchschnittlichen Wochentag insgesamt keine Signifikanz (p= 0,5809).

In der bivariaten Analyse zeigt Weinkonsum von zwei dL an einem durchschnittlichen Wochentag ein mit den Nicht-Konsumenten vergleichbares Risiko für die Entwicklung einer Steatosis Hepatis (OR=1,027, 95-%-KI [0,707-1,492], p=0,8894). Bei vier dL Wein bleibt das Risiko ebenfalls vergleichbar (OR=1,049, 95-%-KI [0,520-2,116], p=0,8940). Für sechs dL Wein erhöht sich das Risiko um das 2,4-fache (OR=2,384, 95-%-KI [0,723-7,860], p=0,1536). Für acht dL Weinkonsum sind die Fallzahlen an einem durchschnittlichen Wochentag für die Durchführung einer logistischen Regression zu niedrig.

Innerhalb des Frauenkollektivs ist Weinkonsum an einem durchschnittlichen Wochentag nicht signifikant (p= 0,4897).

Bei den Frauen wird an einem durchschnittlichen Wochentag bis zu maximal acht dL Wein konsumiert. Bei den Frauen sind hier allerdings für einen Weinkonsum von acht dL die Fallzahlen für die Durchführung einer logistischen Regression zu niedrig. Bei zwei dL Wein reduziert sich gegenüber den Nicht-Konsumentinnen das Risiko um das 0,7-fache (OR=0,738, 95-%-KI [0,406-1,341], p=0,3191). Bei einem Konsum von vier dL Wein pro Tag ist das Risiko um das 0,7-fache vermindert (OR=0,721, 95-%-KI [0,246-2,112], p=0,5502). Bei sechs dL erhöht sich das Risiko um das 4,3-fache (OR=4,323, 95-%-KI [0,269-69,563], p=0,3017).

Innerhalb des Männerkollektivs ist Weinkonsum an einem durchschnittlichen Wochentag ebenfalls nicht signifikant (p= 0,1819).

Bei den Männern wird an einem durchschnittlichen Wochentag Wein bis zu maximal acht dL konsumiert, wobei in der Weinkonsumgruppe von acht dL die Fallzahlen für eine logistische Regression zu niedrig sind. Der Konsum von zwei dL Wein erhöht hier das Risiko für Steatosis Hepatis um das 1,6-fache (OR=1,551, 95-%-KI [0,918-2,619], p=0,1008). Beim Konsum von vier dL Wein erhöht sich das Risiko um das 2,3-fache (OR=2,261, 95-%-KI [0,751-6,814], p=0,1471). Beim
Konsum von sechs dL ist das Risiko gegenüber den Nicht-Konsumenten um das 1,6-fache erhöht (OR=1,551, 95-%-KI [0,412-5,835], p=0,5164).

Abb. 16: Häufigkeit der Steatosis Hepatis in % bei Weinkonsum an einem durchschnittlichen Werktag der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

Innerhalb des Gesamtkollektivs ist Weinkonsum am Wochenende insgesamt nicht signifikant (p-Wert= 0,1333).
Weinkonsum von zwei dL am Wochenende zeigt ein um das 0,7-fache reduziertes Risiko im Vergleich zu den Nicht-Konsumenten (OR=0,651 95-%-KI [0,459-0,923], p=0,0160), für jeweils vier dL erhöht sich das Risiko um das 1,1-fache (OR=1,095, 95-%-KI [0,763-1,573], p=0,6222), für sechs dL Wein um das 1,1-fache (OR=1,098, 95-%-KI [0,633-1,903], p=0,7398) und für acht dL Wein erhöht sich das Risiko um das 1,1-fache(OR=1,143, 95-%-KI [0,495-2,641], p=0,7539).

Innerhalb des Frauenkollektivs ist Weinkonsum am Wochenende insgesamt nicht signifikant (p= 0,1011).
Bei den Frauen wird am Wochenende ebenfalls Wein bis zu maximal acht dL konsumiert. Gegenüber den Nicht-Konsumenten reduziert sich das Risiko bei zwei dL Wein am Wochenende um das 0,5-fache (OR=0,494, 95-%-KI [0,290-0,843], p=0,0097), bei vier dL Wein bleibt das Risiko vergleichbar mit den Nicht-Konsumenten (OR=1,045, 95-%-KI [0,618-1,768], p=0,8697), bei sechs dL Wein reduziert sich das Risiko um das 0,9-fache (OR=0,899, 95-%-KI [0,385-2,098],
p=0,8054) und bei acht dL Wein reduziert sich das Risiko um das 0,4-fache (OR=0,442, 95-%-KI [0,055-3,530], p=0,4415).

Innerhalb des Männerkollektivs ist Weinkonsum am Wochenende insgesamt nicht signifikant (p= 0,6401).

Bei den Männern wird am Wochenende ebenfalls Wein bis zu maximal acht dL konsumiert. Der Konsum von zwei dL Wein erhöht hier das Risiko für Steatosis Hepatis um das 1,2-fache (OR=1,168, 95-%-KI [0,707-1,929], p=0,5447). Beim Konsum von vier dL Wein erhöht sich das Risiko um das 1,4-fache (OR=1,357, 95-%-KI [0,804-2,290], p=0,2527). Beim Konsum von sechs dL Wein ist hier das Risiko um das 1,5-fache erhöht (OR=1,470, 95-%-KI [0,681-3,176], p=0,3267). Beim Konsum von acht dL Wein erhöht sich das Risiko um das 1,4-fache (OR=1,372, 95-%-KI [0,514-3,666], p=0,5281).

![Diagramm]

Abb. 17: Häufigkeit der Steatosis Hepatis in % bei Weinkonsum an einem durchschnittlichen Wochenende der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch
3.4.3 Häufigkeit der Steatosis Hepatis innerhalb von Schnapskonsumklassen

Innerhalb des Gesamtkollektivs zeigt Schnapskonsum an einem durchschnittlichen Wochentag insgesamt keine Signifikanz (p= 0,9291).

In der bivariaten Analyse zeigt Schnapskonsum von einem Glas an einem durchschnittlichen Wochentag ein um das 0,9-fache reduzierte Risiko im Vergleich zu den Nicht-Konsumenten (OR=0,906, 95-%-KI [0,424-1,937], p=0,7987). Für jeweils zwei Gläser reduziert sich das Risiko auch um das 0,9-fache (OR=0,939, 95-%-KI [0,253-3,488], p=0,9256). Für drei Gläser erhöht sich das Risiko um das 2,8-fache (OR=2,818, 95-%-KI [0,176-45,166], p=0,4642). Für vier bzw. fünf Gläser sind an einem durchschnittlichen Wochentag die Fallzahlen der Schnapskonsumenten zu niedrig um eine logistische Regression durchzuführen.

Innerhalb des Frauenkollektivs zeigt Schnapskonsum an einem durchschnittlichen Wochentag ebenfalls keine Signifikanz (p= 0,9441).

Bei den Frauen kann wegen niedriger Fallzahlen für Schnapskonsum an einem durchschnittlichen Wochentag nur bezüglich der Menge ein und zwei Gläser eine multiple logistische Regression durchgeführt werden. Bei Schnapskonsum von einem Glas wird hier das Risiko für eine Steatosis Hepatis um das 0,6-fache vermindert (OR=0,598, 95-%-KI [0,135-2,642], p=0,4974). Bei einem Konsum von zwei Gläser Schnaps der Frauen an einem durchschnittlichen Wochentag erhöht sich das Risiko um das 1,1-fache (OR=1,121, 95-%-KI [0,124-10,101], p=0,9191).

Innerhalb des Männerkollektivs ist Schnapskonsum an einem durchschnittlichen Wochentag ebenfalls nicht signifikant (p= 0,8054).

Bei den Männern kann ebenfalls wegen niedriger Fallzahlen für Schnapskonsum an einem durchschnittlichen Wochentag nur bezüglich der Menge von ein und zwei Gläsern eine multiple logistische Regression durchgeführt werden. Bei Schnapskonsum von einem Glas ist hier das Risiko für eine Steatosis Hepatis mit den Nicht-Konsumenten vergleichbar (OR=0,976, 95-%-KI [0,384-2,479], p=0,9592). Bei einem Konsum von zwei Gläsern Schnaps an einem durchschnittlichen Wochentag reduziert sich das Risiko um das 0,7-fache (OR=0,725, 95-%-KI [0,140-3,765], p=0,7020).
Abb. 18: Häufigkeit der Steatosis Hepatis in % bei Schnapskonsum an einem durchschnittlichen Wochentag der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch

Innerhalb des Gesamtkollektivs ist Schnapskonsum am Wochenende insgesamt signifikant (p= 0,0293).
Schnapskonsum von einem Glas zeigt am Wochenende ein 1,3-faches erhöhtes Risiko im Vergleich zu den Nicht-Konsumenten (OR=1,262, 95-%-KI [0,767-2,007], p=0,3601). Für jeweils zwei Gläser reduziert sich das Risiko um das 0,1-fache (OR=0,101, 95-%-KI [0,014-0,748], p=0,0248), für drei Gläser um das 0,4-fache (OR=0,365, 95-%-KI [0,083-1,602], p=0,1815). Für vier Gläser reduziert sich das Risiko um das 0,5-fache (OR=0,497, 95-%-KI [0,110-2,254], p=0,3648), für fünf Gläser reduziert sich das Risiko um das 0,9-fache (OR=0,911, 95-%-KI [0,183-4,536], p=0,9098) und für sechs Gläser reduziert sich das Risiko um das 0,5-fache (OR=0,513, 95-%-KI [0,149-1,770], p=0,2905).

Innerhalb des Frauenkollektivs ist Schnapskonsum am Wochenende insgesamt nicht signifikant (p= 0,1601).
Bei den Frauen kann bezüglich Schnapskonsum wegen zu niedriger Fallzahlen in den einzelnen Schnapskonsumklassen keine logistische Regression durchgeführt werden, so dass wir in unserer Studie hier auf dem bereits oben beschriebenen deskriptiven Niveau bleiben müssen.
Innerhalb des Männerkollektivs zeigt Schnapskonsum am Wochenende eine Signifikanz (p= 0,0294).

Bei den Männern zeigt Schnapskonsum am Wochenende in Form von einem Glas ein mit Nicht-Konsumenten zu vergleichendes Risiko (OR=1,002, 95-%-KI [0,508-1,977], p=0,9949). Für jeweils zwei Gläser reduziert sich das Risiko um das 0,1-fache (OR=0,107, 95-%-KI [0,014-0,815], p=0,0310), für drei Gläser um das 0,9-fache (OR=0,859, 95-%-KI [0,156-4,727], p=0,8614). Für vier Gläser reduziert sich das Risiko um das 0,7-fache (OR=0,687, 95-%-KI [0,132-3,571], p=0,6555). Für fünf Gläser erhöht sich das Risiko um das 3,4-fache (OR=3,436, 95-%-KI [0,310-38,106], p=0,3147). Für sechs Gläser reduziert sich wiederum das Risiko um das 0,2-fache (OR=0,245, 95-%-KI [0,055-1,090], p=0,0647).

![Diagramm](image)

Abb. 19: Häufigkeit der Steatosis Hepatis in % bei Schnapskonsum an einem durchschnittlichen Wochenende der Studie der Universität Ulm 2002 zu Echinococcus multilocularis in Leutkirch
4 Diskussion

4.1 Häufigkeit von Steatosis Hepatis und Einflussgrößen

Die Häufigkeit von Steatosis Hepatis beträgt in unserem Kollektiv 26,1 % (n=402) und ist somit vergleichbar mit anderen Studien, welche die Fettleberhäufigkeit in westlichen Ländern auf ca. 20-30 % schätzen [15, 18, 20, 43, 81, 90].

In unserem Frauenkollektiv ist die Häufigkeit von Steatosis Hepatis mit 18,2 % deutlich niedriger als im Männerkollektiv mit 35,4 %. Auch in anderen Studien wurde eine vermehrte Fettleberhäufigkeit beim männlichen Geschlecht beobachtet, die, verglichen mit den Frauen, oft im doppelten Bereich anzusiedeln ist [29, 87].

13,4% unserer Probanden mit positivem Befund für Steatosis Hepatis haben ein Metabolisches Syndrom. Die Fettleber gilt als mit dem Metabolischen Syndrom eng verbunden, welches oft mit Adipositas, Insulin-Resistenz, Diabetes mellitus Typ II und Dyslipidämie einhergeht [7, 8, 24, 40, 51, 77].

Der durchschnittliche BMI von Probanden mit Steatosis Hepatitis liegt in unserer Studie mit 29,5 kg/m² deutlich über dem durchschnittlichen BMI von 24,1 kg/m² bei Probanden ohne Steatosis Hepatitis.

Bezüglich Alkoholkonsum lässt sich bei uns feststellen, dass 47,8 % der Probanden sich in der Gruppe der leichten Alkoholkonsumenten befinden und somit die Konsumgruppe mit den meisten Probanden bildet. Von den Probanden mit Fettleber befindet sich der größte Anteil ebenfalls in der Gruppe der Probanden mit geringfügigem Alkoholkonsum. Der durchschnittliche Alkoholkonsum von Probanden ohne Steatosis Hepatitis liegt mit 10,9 g (± 16,3) niedriger als der Konsum der Probanden mit Steatosis Hepatitis mit 13,5 g (± 18,6). Mehrere Studien gehen davon aus, dass bei Alkoholkonsum bis zu 30 g/Tag keine Leberschäden entstünden [1, 13, 16, 89, 103, 73].
Eine aktuelle Studie aus China ermittelte für Frauen die mehr als 20 g/Tag trinken und Männer die mehr als 40 g/Tag trinken ein um das 2,3-fach erhöhtes Risiko für Steatosis Hepatis [68]. Im Gegensatz zu Norton et al und Yuan et al [85, 114] welche die Alkoholkonsumgrenze pauschal bei 40 g/Tag festsetzen unterscheiden Becker et al hier nach Geschlecht und empfehlen Frauen einen Alkoholkonsum von maximal 12-24 g/Tag und Männern von maximal 24-36 g/Tag [13].

4.2 Häufigkeit der Steatosis Hepatis in Abhängigkeit von der Alkoholmenge

Innerhalb unseres Gesamtkollektivs und innerhalb unseres Frauenkollektivs zeigt Alkohol insgesamt eine Signifikanz bezüglich Steatosis Hepatis. Bei Betrachtung der einzelnen Alkoholkonsumgruppen lässt sich innerhalb des Gesamtkollektivs keine Signifikanz für Alkoholkonsum nachweisen. In der Gruppe der geringfügigen Alkoholkonsumenten lässt sich hier mit einem OR von 0,8 ein protektiver Effekt bezüglich der Entwicklung einer Steatosis Hepatis vermuten. Im Frauenkollektiv fallen in den Gruppen der leichten und moderaten Konsumenten deutlich niedrigere Häufigkeiten für Steatosis Hepatis auf, als in den Gruppen der Nicht-Konsumenten und derer mit hohem Alkoholkonsum. Geringer Alkoholkonsum zeigt hier sogar mit deutlicher Signifikanz einen protektiven Effekt und reduziert die Wahrscheinlichkeit für die Entwicklung einer Steatosis Hepatis um das 0,6-fache. Für moderaten Alkoholkonsum lässt sich das um das 0,7-fache reduzierte Risiko für eine Steatosis Hepatis nicht mehr im signifikanten Bereich nachweisen.

Innerhalb des Männerkollektivs lässt sich kein protektiver Effekt von Alkohol nachweisen. Entsprechend lässt sich in unserer Grafik ein U-förmiger Zusammenhang zwischen Steatosis Hepatis und Alkoholkonsum am besten im Frauenkollektiv, aber auch am Gesamtkollektiv zeigen. Der Tiefpunkt dieses U-förmigen Kurvenverlaufs liegt hier in beiden Fällen im Bereich des leichten Alkoholkonsums. Mengenangaben, die abgrenzend vom lebertoxischen auch einen protektiven Alkoholkonsum bezüglich Fettleber definieren, sind in nur wenigen Studien zu finden.

Da in vielen Studien unter anderem wegen ihres retrospektiven Charakters keine Ultraschallbefunde zur Leberbeurteilung vorhanden sind wird oft hierfür das
Kriterium der erhöhten Lebertransaminasenwerte herangezogen [73, 102]. Bei erhöhten Lebertransaminasewerten unbekannter Ursache kann in bis zu 90% von einer Steatosis Hepatis ausgegangen werden [8, 17, 87]. Deshalb halten wir es für angemessen, unsere Studie, die die Zielvariable Fettleber über einen Ultraschallbefund definiert, mit Studien, die über erhöhte Lebertransaminasenwerte auf eine Steatosis Hepatis schließen, vergleichend zu betrachten.

Loguercio et al. stellten 2007 in ihrer Studie an einem süditalienischen Bevölkerungskollektiv bei einem Alkoholkonsum von > 4 Drinks pro Tag ein 2,4-fach erhöhtes Risiko für erhöhte Lebertransaminasen fest. Hier wird als Richtlinie angegeben, dass 1 Drink dem Konsum von ca. 12,5 g reinem Ethanol entspricht. Auf Grund der Wohnregion und Mentalität der untersuchten Probanden ist hier bei einem Alter von über 30 Jahren im Großteil der Fälle Alkoholkonsum mit Rotweinkonsum gleichzusetzen. Die Mengenangaben beziehen sich hier ausschließlich auf das Gesamtkollektiv und werden nicht nach den Geschlechtern getrennt angegeben [72].

Loomba et al. ermitteln die Grenze für einen alkoholtoxischen Leberschaden bei ca. 3 Drinks/Tag, was hier mit 30 g/Tag gleichgesetzt wird. Für Probanden die oberhalb dieser Grenze Alkohol konsumieren, nennt die Studie Ergebnisse einer bivariaten Analyse. Demnach zeigen Männern dieser Gruppe ein gegenüber Männern, die nie Alkohol konsumieren, um das 3,2-fache erhöhtes Risiko für einen Leberschaden. Frauen dieser Gruppe haben ein um das 2,6-fache gesteigertes Risiko für erhöhte ALT-Werte. Bezüglich erhöhter AST-Werte steigt das Risiko für Männer, die mehr als 30 g/Tag trinken, im Vergleich zu Nicht-Konsumenten um das 2,5-fache, für Frauen um das 7,0-fache. Für Männer zeigt sich in dieser Studie außerdem eine statistisch signifikante lineare Assoziation zwischen Alkoholkonsum und erhöhten ALT-Werten und AST-Werten. Obwohl es sich um eine Bevölkerungsquerschnittsstudie handelt, wird die Aussagekraft durch den retrospektiven Charakter der Studie und durch das mit 70 Jahren hohe durchschnittliche Probandenalter eingeschränkt [73].

In einer japanischen Studie wurde 2008 im Rahmen der multiplen logistischen Regression einer Querschnittsanalyse eine inverse Assoziation für Steatosis Hepatis und gelegentlichem bis täglichem moderaten Alkoholkonsum (hier maximal 23 g/Tag) ermittelt. Dieses Ergebnis erreicht in dieser Studie für beide
Geschlechter eine statistische Signifikanz. Bei Probanden mit einem hohen Alkoholkonsum von mehr als 46 g/Tag zeigt sich im statistisch signifikanten Bereich ausschließlich bei den Männern eine inverse Assoziation mit Steatosis Hepatis. Eine hier ebenso ausgewertete longitudinale Analyse zeigt bei Männern mit moderatem Alkoholkonsum (23 g/Tag) und mit hohem Alkoholkonsum (>46 g/Tag) ebenfalls eine statistisch signifikante inverse Assoziation mit Steatosis Hepatis. Die Daten zeigen, verglichen mit den Nicht-Konsumenten, eindeutig Vorteile für Alkoholkonsumenten im Sinne einer protektiven Wirkung hinsichtlich Steatosis Hepatis. Die Daten dieser Studie wurden allerdings retrospektiv ausgewertet, was die Aussagekraft der Studie mindern könnte [110].

In einer spanischen Studie von 2009 wird zwischen Nicht-Konsumenten und Alkoholkonsumenten, die in einer Woche durchschnittlich 91,7 g/Woche Alkohol konsumieren, unterschieden. Hier kann ausschließlich für Männer mit einem OR von 0,93 ein leichter protektiver Effekt im signifikanten Bereich nachgewiesen werden [22].

Gunji et al können in ihrer retrospektiven Studie die bezüglich Alkoholkonsum ein männliches Bevölkerungskollektiv, das an einem Gesundheitscheck teilnahm, untersuchte ebenfalls einen protektiven Effekt von Alkoholkonsum nachweisen. Hier wird der Alkoholkonsum wöchentlich eruiert. Leichter Alkoholkonsum mit 40 – 140 g/Woche zeigt in einer multivariaten Analyse signifikant ein um das 0,82-fache reduziertes Risiko mit p= 0,004, moderater Alkoholkonsum mit 140 – 280 g/Woche zeigt ein um das 0,75 – fache reduziertes Risiko mit p= 0,008. Für Probanden mit einem hohen Alkoholkonsum von mehr als 280 g/Woche kann der protektive Effekt mit OR= 0,85 nicht mehr im signifikanten Bereich nachgewiesen werden. Durch die Alkoholkonsumangabe pro Woche und die ausschließliche Ermittlung der Konsummengen innerhalb eines Männerkollektivs ist die vergleichende Beurteilung dieser Ergebnisse mit den Ergebnissen unserer Studie erschwert [49].

Bei einer Studie, in der extrem adipöse Probanden leberbiopsiert und bezüglich ihres Alkoholkonsums befragt wurden, kann kein signifikanter Unterschied zwischen verschiedenen Alkoholkonsumklassen und den histologischen Leberbiopsieergebnissen eruiert werden. Für Alkohol kann hier keinerlei Einfluss auf die Häufigkeit einer Steatosis Hepatis nachgewiesen werden. Diese Studie ist mit unseren Ergebnissen ebenfalls nur eingeschränkt vergleichend zu beurteilen, da hier das Kollektiv der untersuchten Probanden aus nur 132 Personen besteht,
die maximal bis zu 40 g/Tag an Alkohol konsumierten und mindestens einen BMI von 35 kg/m² aufwiesen [31].

In einer von Suzuki im Jahr 2007 durchgeführten Studie kann ebenfalls ein protektiver Effekt für Alkoholkonsum nachgewiesen werden. In einer hier durchgeführten Querschnittsstudie sind in der deskriptiven Auswertung die Häufigkeiten für erhöhte Leberwerte am höchsten bei den Nicht-Konsumenten und am niedrigsten bei den Probanden mit einem hohem Alkoholkonsum von mehr als 280 g/Woche. Gegenüber den Nicht-Konsumenten sind hier ebenfalls die geringfügig Konsumierenden mit 70-140 g/Woche und auch die moderaten Konsumenten mit 140 – 280 g/Woche im Vorteil. In der multivariaten Analyse können hier Risikoveränderungen für erhöhte Leberwerte beobachtet werden, und zwar im Vergleich von Nicht-Konsumenten mit geringfügig Konsumierenden ein
um das 0,9-fache reduziertes Risiko mit p = 0,579 und im Vergleich von Nicht-Konsumenten mit Konsumenten mit exzessivem Trinkverhalten ein um das 1,4-fache erhöhtes Risiko mit p = 0,023.
In einer longitudinalen Studie ist moderater Alkoholkonsum gegenüber dem abstinenten Verhalten signifikant mit einer niedrigeren Inzidenz an erhöhten Transaminasen-Werten assoziiert [102].
In Übereinstimmung mit diesen Daten von Suzuki et al und unseren Ergebnissen ist eine dänische Studie, in der sich die Risikoveränderung für Leberzirrhose bei zunehmendem Alkoholkonsum J-förmig darstellt [13].
Im Unterschied zu unserer Studie werden hier in die Gruppe der Nicht-Konsumenten auch minimale Alkoholkonsumenten, die weniger als 70 g/Woche konsumierten, aufgenommen. Außerdem vermuten Suzuki et al die wahre Häufigkeit der Steatosis Hepatis in einem höheren Bereich als durch die erhöhten Transaminasen gezeigt wird. Das ausschließlich männliche Kollektiv schränkt die Aussagekraft dieser Studie um ein Weiteres ein [102].

4.3 Interagierende Effekte in den Alkoholkonsumklassen

4.3.1 Interaktion zwischen Steatosis Hepatis und Geschlecht
Die Einflussgröße weibliches Geschlecht zeigt in unserer Studie für die verschiedenen Alkoholkonsumklassen keine signifikante Risikoveränderung für die Entwicklung einer Steatosis Hepatis.
Für die Einflussgröße männliches Geschlecht zeigt sich in unserer Studie ebenfalls keine signifikante Risikoveränderung.
Dunn et al stellen in ihrer Studie bezüglich des Fettleber-Risikos keine signifikante Interaktion zwischen Geschlechtsmerkmal und Alkoholkonsum fest (p = 0,97) [41]. Diese Studie beschränkt ihre Untersuchung aber auf Weinkonsum und auf die Zielvariable der erhöhten ALT-Werte.
Diskussion

4 geschlechtsspezifischen Steroiden abhängige Enzymexpression und der Regulation von oxidativem Stress der Leber erklärt [83].

4.3.2 Interaktion zwischen Steatosis Hepatis und Alter

Gunji et al bezeichnen die Einflussgröße Alter verbunden mit Alkoholkonsum als unabhängigen signifikanten Faktor für eine Steatosis Hepatis, wobei sich diese Aussage auch hier auf ein ausschließlich männliches Kollektiv bezieht [49]. Dunn et al, die ihr Kollektiv nur bezüglich Weinkonsum und den dadurch eventuell erhöhten ALT-Werte untersuchten, können für die interagierenden Einflussgrößen Weinkonsum und Alter keinen signifikanten Effekt feststellen [41].

4.3.3 Interaktion zwischen Steatosis Hepatis und BMI

Loomba et al weisen in ihrer Studie auf einen multiplikativen Effekt von BMI und Alkoholkonsum für erhöhte Lebertransaminasenwerte hin, was sie mit einem berechneten Kombinations-Index von 0,39 untermauern. Obwohl sie hier keinen signifikanten p-Wert für die Interaktion nachweisen können, wird hier betont, dass sich für adipöse Probanden bereits bei niedrigeren Alkoholkonsummengen ein vermehrtes Risiko für erhöhte Transaminasenwerte zeigen lässt. Auf Grund dieser Ergebnisse halten die Autoren adipöse Personen bezüglich alkoholinduziertem Leberschaden für empfänglicher [73].

Bezüglich der pathophysiologischen Fettleberentstehung weisen Nagata et al in einer 2007 durchgeführten Studie auf die integrale Rolle von CYP2E1 bei gleichzeitiger Risikoexposition bezüglich Alkoholkonsum und Adipositas hin [82]. Es ist bekannt, dass sowohl die durch erhöhte Nahrungsaufnahme induzierte Adipositas, als auch erhöhter Alkoholkonsum zu einer CYP2E1-Induktion in der Leber führen, was den synergistischen Effekt bezüglich einer Fettleberentwicklung erklären könnte [69].

Im Widerspruch hierzu stehen die von Suzuki et al ermittelten Ergebnisse. Hier zeigen sich höhere Transaminasenwerte für Probanden, deren BMI auf oder oberhalb des Medians liegt, in Unabhängigkeit von der Alkoholkonsummenge. Ihre Aussage bezüglich Probanden, deren BMI unterhalb des Medians liegt, stimmt mit unseren Ergebnissen überein und zeigt hier auf ein erhöhtes Risiko für erhöhte
Transaminsenwere in Abhängigkeit der konsumierten Alkoholmengen hin. Demnach haben schlanke Probanden bei exzessivem Alkoholkonsum ein gegenüber adipösen Probanden deutlich erhöhtes Risiko für eine Steatosis Hepatis [102].

4.3.4 Interaktion zwischen Steatosis Hepatis und Metabolischem Syndrom
Durch den Alkohol wird das Glukoseangebot gesenkt und so die Glukoneogenese inhibiert [97].

4.3.5 Interaktion von Alter und BMI bezüglich Steatosis Hepatis

Auswertung erkennbar, indem die Kurve auf der Höhe der geringfügigen Konsumenten eine deutliche Senkung bei den älteren und adipösen Probanden zeigt und damit einen J-förmigen Kurvenverlauf darstellt.

Außerdem fällt in beiden Altersgruppen bei den adipösen Probanden, verglichen mit den schlanken Probanden, eine deutlich höhere Steatosehäufigkeit auf. Dieses Ergebnis untermauert die Annahme, dass der BMI einen wichtigen Risikofaktor hinsichtlich der Fettleberentwicklung darstellt.

Obwohl die diesen Ergebnissen zu Grunde liegenden Mechanismen der Interaktion sowohl Suzuki et al. als auch uns unbekannt sind, gehen wir davon aus, dass der Grenzwert für sicheren Alkoholkonsum multifaktoriell vom Alter, vom Geschlecht und vom Körpergewicht abhängt [102].

4.3.6 Interaktion von Geschlecht und BMI bezüglich Steatosis Hepatis

Bei Frauen mit einem BMI unterhalb des Medians zeigt Alkoholkonsum keine Signifikanz. Wegen zu niedriger Fallzahlen kann hier nur deskriptiv eine zunehmende Steatosehäufigkeit mit zunehmendem Alkoholkonsum festgestellt werden.

Frauen mit einem BMI auf oder oberhalb des Medians zeigen für Alkoholkonsum keine Signifikanz. Allerdings ist hier in der Gruppe der Nicht-Konsumenten die
Steatosehäufigkeit am höchsten, so dass sich innerhalb der anderen Alkoholkonsumgruppen ein protektiver Effekt bezüglich Steatosis Hepatis zeigt, mit bis zu einer signifikanten 0,6-fachen Risikoreduktion in der Gruppe der Probanden mit geringem Alkoholkonsum. Entsprechend ist in unserer Grafik hier eine deutliche Senke auf Höhe von leichtem Alkoholkonsum für das Kollektiv der dickeren Frauen erkennbar.

Bei den Männern mit BMI unterhalb des Medians ist Alkoholkonsum signifikant. Die Steatosehäufigkeit erhöht sich hier mit steigendem Alkoholkonsum.

Männer, deren BMI im Bereich oder oberhalb des Medians liegt, zeigen keine Signifikanz für Alkoholkonsum. Die niedrigste Steatosehäufigkeit findet sich hier in der Gruppe der Probanden mit geringem Alkoholkonsum, die ein gegenüber Nicht-Konsumenten um das 0,9-fache reduziertes Risiko für Fettleberentwicklung zeigt.

Hier fällt nicht nur auf, dass bei beiden Geschlechtern Probanden mit höherem BMI einen protektiven Effekt vermuten lassen, sondern auch, dass dies in beiden Fällen in der Gruppe der geringfügigen Konsumenten nachweisbar ist. Ebenfalls ist erkennbar, dass bei niedrigem BMI unabhängig vom Geschlecht kein protektiver Effekt von Alkoholkonsum gezeigt werden kann. Alatalo et al untersuchen ebenfalls die Triaktion von Geschlecht, Alkoholkonsum und BMI und beschränken sich auf die Aussage, dass man hier nicht zu einem signifikanten Ergebnis kommt.[3]

4.3.7 Interaktion von Alter und Metabolischem Syndrom bezüglich Steatosis Hepatis

Probanden mit einem Alter unterhalb des Medians und ohne Metabolisches Syndrom zeigen für Alkoholkonsum keine Signifikanz. Am niedrigsten ist die Steatosehäufigkeit in der Gruppe der geringfügigen Konsumenten, in der sich das Steatoserisiko um das 0,9-fache verringert.

In dem entsprechenden Probandenkollektiv mit Metabolischem Syndrom fallen sehr hohe Steatosehäufigkeitswerte mit 100% in der Gruppe der Probanden mit hohem Alkoholkonsum und mit moderatem Alkoholkonsum auf. Allerdings beträgt die Steatosehäufigkeit bei den Nicht-Konsumenten bereits 60%, was der Gewichtigkeit des Risikofaktors Metabolisches Syndrom zuzuordnen ist. Die Berechnung einer logistischen Regression ist hier wegen zu niedriger Fallzahlen nicht möglich.

Vergleichbare Berechnungen von anderen Autoren konnten nicht gefunden werden.

4.3.8 Interaktion von Geschlecht und Metabolischem Syndrom bezüglich Steatosis Hepatis

Im Frauenkollektiv ohne Metabolisches Syndrom zeigt Alkoholkonsum keine Signifikanz. Die höchste Steatosehäufigkeit findet sich in der Gruppe der Probanden mit hohem Alkoholkonsum. Bei leichtem und moderatem Alkoholkonsum ist das Steatoserisiko jeweils um das 0,6-fache im signifikanten Bereich und um das 0,8-fache im nicht-signifikanten Bereich reduziert. Das stützt unsere These, dass leichter bis mäßiger Alkoholkonsum einen protektiven Effekt hinsichtlich Fettleberentwicklung zeigt.

Die Fallzahlen für Frauen mit Erkrankung an dem Metabolischen Syndrom sind niedrig, so dass keine logistische Regression in den Alkoholkonsumgruppen durchgeführt werden kann. Für Alkoholkonsum allgemein zeigt sich keine Signifikanz. Insgesamt korreliert erhöhte Steatosehäufigkeit mit mäßigem und starkem Alkoholkonsum. Geringer Alkoholkonsum zeigt dagegen eine protektive
Wirkung, die sich in der Grafik durch eine U-förmige Absenkung der Kurve im Bereich der leichten Alkoholkonsumenten zeigt.

Im Männerkollektiv ohne Metabolisches Syndrom zeigt sich für Alkoholkonsum keine Signifikanz. Die Steatosehäufigkeit und das Steatoserisiko ist in allen Konsumgruppen vergleichbar.
Vergleichbare Berechnungen von anderen Autoren konnten nicht gefunden werden.

4.4 Häufigkeit der Steatosis Hepatis bei verschiedenen Alkoholsorten

4.4.1 Häufigkeit der Steatosis Hepatis bei Bierkonsum
Im Frauen- bzw. Männerkollektiv im Einzelnen, zeigt Bierkonsum an einem durchschnittlichen Wochentag jeweils keine Signifikanz. Das Risiko, eine Steatosis Hepatis zu entwickeln, steigt für Frauen schon ab einem Liter Bier/Tag. Für Männer zeigt sich bei einem Liter Bier/Tag ein gering erhöhtes Steatoserisiko, bei zwei Litern Bier/Tag ein gering reduziertes Risiko und ab drei Liter Bier/Tag ein start erhöhtes Steatoserisiko. Da keine statistische Signifikanz erreicht wird, wird hinsichtlich des Bierkonsums von zwei Litern/Tag nicht von einem protektiven Effekt ausgegangen.
Die Studie zeigt für das Gesamtkollektiv eine Signifikanz für Bierkonsum am Wochenende. Beim Konsum von einem Liter Bier am Wochenende zeigt sich eine signifikante Risikoerhöhung für Steatosis Hepatis, bei zwei bzw. drei Liter Bierkonsum steigt das Risiko entsprechend weiter an. Es sinkt dann bei einem Konsum von vier Litern wieder ab. Da für dieses Absinken keine statistische
Signifikanz erreicht wird, kann nicht von einem protektiven Effekt ausgegangen werden.

Die EMIL-Studie differenziert zwischen Probanden, die überwiegend nur am Wochenende Alkohol konsumieren und Probanden, die auch unter der Woche Alkohol trinken. Es wird davon ausgegangen, dass die Menge Alkohol eines Wochenendkonsumenten umgelegt auf die einzelnen Wochentage am ehesten einem moderatem Trinkverhalten entspricht. Insofern kann das mit den Nicht-Konsumenten vergleichbare Risiko vermutet werden, da moderater Alkoholkonsum das Steatoserisiko reduziert und damit grenzwertig protektiv wirkt.

Insgesamt zeigt die EMIL-Studie den protektiven Effekt mehr im Bereich des geringfügigen als des moderaten Alkoholkonsums. Daher lässt sich vermuten, dass sich bei noch genauerer Einteilung der Bierkonsumgruppen ein protektiver Effekt besser heraustrocken hätte.

Miura et al führen bei Mäusen den protektiven Effekt von Bier auf die nicht-alkoholischen bitteren Bestandteile (Isohumulone) zurück und weisen hier auch einen reduzierten Triacylgehalt und Cholesteringehalt in den Mäuselebern nach [79].

4.4.2 Häufigkeit der Steatosis Hepatis bei Weinkonsum

Die EMIL-Studie zeigt für das Gesamtkollektiv beim Weinkonsum an einem durchschnittlichen Wochentag keine Signifikanz. Beim Konsum von bis zu vier
4 Diskussion

Die Frage, ob Weinkonsum hinsichtlich der Entwicklung einer Steatosis Hepatis einen präventiven oder therapeutischen Effekt hat, ist nicht endgültig geklärt. Die EMIL-Studie und Studien von Athyros et al sprechen dem Wein die Hauptrolle beim protektiven Alkoholkonsum zu [9, 41].

4.4.3 Häufigkeit der Steatosis Hepatis bei Schnapskonsum

Schnapskonsum am Wochenende zeigt für das Gesamtkollektiv und das Männerkollektiv eine Signifikanz. Im Gesamtkollektiv ist ein Konsum von zwei Gläsern bis sechs Gläsern Schnaps/Tag immer mit einer Risikoreduktion bezüglich Fettleber verbunden, wobei sich die Risikoreduktion bei zwei Gläsern sogar im signifikanten Rahmen darstellt.
Im Frauenkollektiv kann nur deskriptiv beobachtet werden, dass gegenüber den Nicht-Konsumenten bei einem Glas Schnaps die Steatosehäufigkeit von 18,5 % auf 26,3 % ansteigt.
Die Grafik zeigt in allen drei Kollektiven eine deutliche Häufigkeitssenkung der Fettleber auf Höhe von zwei Schnapsgläsern/Wochenende.
Auch hier zeigt sich bei den Wochenend-Konsumenten ein deutlich stärkerer protektiver Effekt als bei den Wochentags-Konsumenten.
Gunji et al gehen davon aus, dass ihr japanisches Kollektiv vor allem Reisschnaps konsumierte und vermuten deshalb, dass der nachgewiesenen protektive Effekt von Alkoholkonsum hier neben Ethanol auch auf Getreideinkohlenhydrate zurückzuführen sei [49].
Insgesamt wird Schnaps der niedrigste Stellenwert für protektiven Alkoholkonsum verglichen mit Wein und Bier zugesprochen [9].

4.5 Limitationen der Studie

Da es sich bei der EMIL-Studie um eine Querschnittsstudie handelt kann bezüglich des protektiven Effekts von Alkohol auf die Steatosis Hepatis nicht abschließend beurteilt werden, ob geringer bis moderater Alkoholkonsum einen bereits vorliegenden Steatosebefund verbessert hat oder ob die Steatosentwicklung schon präventiv beeinflusst wurde. Die Daten der konsumierten Alkoholmengen wurden durch Eigenangabe der Probanden erhoben, so dass von einer Tendenz zu niedrigeren Mengenangaben ausgegangen werden muss. Desweiteren besteht durch die nicht stetigen Angaben für Alkoholkonsum und dessen Einteilung in vier Alkoholkonsumgruppen eine weitere

Die Steatosis Hepatis wurde mittels Ultraschall diagnostiziert. Die endgültige Bestätigung der Diagnose kann nur histologisch erbracht werden. Trotz hoher Diagnosesicherheit durch den Ultraschall, bleibt dies formell eine Limitation bezüglich der Aussagekraft der Studie.

4.6 Schlussfolgerung

5 Zusammenfassung

Insgesamt wurden nach dem Ausschlussverfahren 1542 Probanden der EMIL-Studie bei unseren Untersuchungen berücksichtigt. Es ergab sich ein Frauenanteil von 54,2 % (n=835) und ein Männeranteil von 45,9 % (n=707), sowie ein Durchschnitts-BMI von 25,5 kg/m² ± 4,6 kg/m². Die Häufigkeit von Steatosis Hepatis lag im Gesamtkollektiv bei 26,1 %.
Bezüglich der Alkoholkonsummenge wurden die Probanden vier Kategorien zugeordnet. Kein Alkoholkonsum, geringfügiger Alkoholkonsum (0-20 g/Tag), moderater Alkoholkonsum (20-40 g/Tag) und hoher Alkoholkonsum (>40 g/Tag). Außerdem wurde der Bier-, Wein- und Schnapskonsum an Wochenenden und während der Woche erfragt.
Die Menge des konsumierten Alkohols war bei Probanden mit Fettleber im Vergleich zu Probanden ohne Fettleber nur minimal erhöht. Ein protektiver Effekt bezüglich Fettleber im statistisch signifikanten Bereich ließ sich ausschließlich bei geringfügigem Alkoholkonsum und Probanden mit folgenden Charakteristika nachweisen: Weibliches Geschlecht, Probanden mit einem Alter von mindestens 41,0 Jahren, Frauen mit einem BMI von mindestens 24,8 kg/m², Probanden mit Metabolischem Syndrom und einem Alter von mindestens 41,0 Jahren und Frauen bei denen ein Metabolisches Syndrom ausgeschlossen werden konnte.
Protektive Effekte im nicht signifikanten oder grenzwertig signifikanten Bereich zeigten sich bei den leichten Alkoholkonsumenten mit folgenden Charakteristika: Probanden mit BMI-Werten von mindestens 24,8 kg/m², Probanden mit Metabolischen Syndrom, Probanden mit einem Alter von mindestens 41,0 Jahren und einem BMI von mindestens 24,8 kg/m², Männer mit einem BMI von mindestens 24,8 kg/m², Probanden mit einem Alter unter 41,0 Jahren und Ausschluss eines Metabolischen Syndroms und Probanden mit einem Alter von mindestens 41,0 Jahren und Ausschluss eines Metabolischen Syndroms.

Die deutlichsten protektiven Effekte der Studie ließen sich vor allem für Weinkonsum und im Kollektiv der Frauen nachweisen, wobei auffiel, dass die Frauen der EMIL-Studie Wein gegenüber Bier und Schnaps bevorzugen.

Auch wenn das Risiko bezüglich Steatosis Hepatis in unserer Studie bei leichtem Alkoholkonsum sinkt und bei moderatem oder exzessivem Alkoholkonsum nicht oder nur wenig steigt möchten wir in Hinblick auf die sonstigen vielfältigen toxischen Wirkungen von Alkohol nicht zu einem vermehrten Alkoholkonsum raten. Diese Studie soll vielmehr zur Aufklärung der Rolle von Alkohol bezüglich Steatosis Hepatis beitragen und aufzeigen, dass Alkohol die Häufigkeit von Steatosis Hepatis nicht nur erhöhen sondern auch senken kann.
6 Literaturverzeichnis

severitiy of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am J Gastroenterol 102: 2708-15 (2007)

60. Kasdallah-Grissa A, Mornagui B, Aouani E, Hammami M, El May M, Gharbi N, Kamoun A and El-Fazaa S: Resveratrol, a red wine polyphenol,
attenuates ethanol-induced oxidative stress in rat liver. Life Sci 80: 1033-1039 (2007)

63. Klatsky AL: Alcohol and cardiovascular health. Physiol Behav 100: 76-81

altered liver enzymes in the general population of a rural area in Southern Italy. Dig Liver Dis 39: 748-752 (2007)

73. Loomba R, Bettencourt R and Barrett-Connor E: Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: the Rancho Bernardo Study. Aliment Pharmacol Ther 30: 1137-1149 (2009)

81. Moore JB: Non-alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. Proc Nutr Soc 69: 211-220

86. Nozawa H: Xanthohumol, the chalcone from beer hops (Humulus lupulus L.), is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-A(y) mice. Biochem Biophys Res Commun 336: 754-761 (2005)

7 Abbildungsverzeichnis

Abb 1: HDI 5000 Sono-Gerät ..12
Abb. 2: Kollektivzusammensetzung ..17
Abb. 3: Häufigkeit der Steatosis Hepatis bei den verschiedenen Geschlechtern19
Abb. 4: Häufigkeit der Steatosis Hepatis in verschiedenen Alkoholkonsumgruppen
bei Frauen und Männern ...21
Abb. 5: Darstellung der Häufigkeit der Steatosis Hepatis in % jeweils im Kollektiv
für Männer, im Kollektiv für Frauen und im Gesamtkollektiv ...24
Abb. 6: Darstellung der Häufigkeit der Steatosis Hepatis in % für Probanden die
innerhalb des Kollektivs ein Alter unterhalb des Medians aufweisen und in
BMI-Gruppen oberhalb oder unterhalb des Medians unterteilt werden27
Abb. 7: Darstellung der Häufigkeit der Steatosis Hepatis in % für Probanden die
innerhalb des Kollektivs ein Alter im Bereich oder oberhalb des Medians
aufweisen und in BMI-Gruppen oberhalb oder unterhalb des Medians
unterteilt werden ...27
Abb. 8: Darstellung der Häufigkeit der Steatosis Hepatis in % für Frauen deren
BMI oberhalb oder unterhalb des Medians ist ..27
Abb. 9: Darstellung der Häufigkeit der Steatosis Hepatis in % für Männer deren
BMI oberhalb oder unterhalb des Medians ist ..27
Abb. 10: Darstellung der Häufigkeit der Steatosis Hepatis in % für Probanden
deren Alter unterhalb des Medians ist und bei denen ein metabolisches
Syndrom bestätigt oder ausgeschlossen werden kann ..27
Abb. 11: Darstellung der Häufigkeit der Steatosis Hepatis in % für Probanden
deren Alter auf oder oberhalb des Medians ist und bei denen ein
metabolisches Syndrom bestätigt oder ausgeschlossen werden kann27
Abb. 12: Darstellung der Häufigkeit der Steatosis Hepatis in % für Frauen bei
den denen ein metabolisches Syndrom bestätigt oder ausgeschlossen
werden kann ..27
Abb. 14: Darstellung der Häufigkeit der Steatosis Hepatis in % bei Bierkonsum an
einem durchschnittlichen Werktag ...27
Abb. 15: Darstellung der Häufigkeit der Steatosis Hepatis in % bei Bierkonsum an
einem durchschnittlichen Wochenende ..27

85
Abb. 16: Darstellung der Häufigkeit der Steatosis Hepatis in % bei Weinkonsum an einem durchschnittlichen Werktag ..27
Abb. 17: Darstellung der Häufigkeit der Steatosis Hepatis in % bei Weinkonsum an einem durchschnittlichen Wochenende...27
Abb. 18: Darstellung der Häufigkeit der Steatosis Hepatis in % bei Schnapskonsum an einem durchschnittlichen Wochentag27
Abb. 19: Darstellung der Häufigkeit der Steatosis Hepatis in % bei Schnapskonsum an einem durchschnittlichen Wochenende27
8 Tabellenverzeichnis

Tab 1: Studien zum Thema Steatosis Hepatis und Alkoholkonsum3
Tab. 2: Einflussfaktoren im Frauenkollektiv ...22
Tab. 3: Einflussfaktoren im Männerkollektiv ...22
Tab. 4: Häufigkeit der Steatosis Hepatis bei Bierkonsum, Weinkonsum und Schnapskonsum im Gesamtkollektiv ...27
Tab. 5: Häufigkeit der Steatosis Hepatis bei Bierkonsum, Weinkonsum und Schnapskonsum im Frauenkollektiv ...27
Tab. 6: Häufigkeit der Steatosis Hepatis bei Bierkonsum, Weinkonsum und Schnapskonsum im Männerkollektiv ...27
Epidemiologischer Fragebogen zur alveolären Echinokokkose

Angaben zur Person (bitte ankreuzen)

1. **Geschlecht**
 - [] männlich
 - [] weiblich

2. **Ihre Nationalität**
 - [] Deutsch
 - [] Türkisch
 - [] Österreichisch
 - [] Schweizerisch
 - [] andere

3. **Seit wie vielen Jahren leben Sie in Leutkirch?**
 - [] 0-1
 - [] >1-3
 - [] >3-5
 - [] >5-10
 - [] >10

4. **Haben Sie davor in einem Endemiegebiet gelebt? Karte**
 - [] ja
 - [] nein
 - [] weiß nicht

5. **Welchen höchsten Schulabschluss haben Sie?**
 - [] noch in der Schule
 - [] keinen Schulabschluss
 - [] Volksschule/Hauptschule
 - [] Mittlere Reife/Realschule
 - [] Abitur/Fachhochschulreife

6. **Sind Sie in den vergangenen 10 Jahren tätig gewesen, als Landwirt?**
 - [] ja, hauptberuflich
 - [] ja, nebenberuflich/Hobby
 - [] nein

 Fürster?
 - [] ja, hauptberuflich
 - [] ja, nebenberuflich/Hobby
 - [] nein

 Jäger?
 - [] ja, hauptberuflich
 - [] ja, nebenberuflich/Hobby
 - [] nein

 andere Tätigkeit in Garten/Wald?

 Tätigkeit 1:
 - [] ja, hauptberuflich
 - [] ja, nebenberuflich/Hobby
 - [] nein

 Tätigkeit 2:
 - [] ja, hauptberuflich
 - [] ja, nebenberuflich/Hobby
 - [] nein
Fragen zum Freizeitverhalten

8. Wie oft treiben Sie Sport?
 □ Regelmäßig mehr als 2 Stunden in der Woche □ Regelmäßig 1 bis 2 Stunden in der Woche
 □ Weniger als 1 Stunde in der Woche □ Keine sportliche Betätigung

9. Hielten Sie in den vergangenen 10 Jahren einen Hund in Ihrem Haushalt?
 □ ja □ nein □ weiß nicht □ wenn ja, wie lange? □ 0-5 Jahre □ >5 Jahre

10. Hielten Sie in den vergangenen 10 Jahren eine Katze in Ihrem Haushalt?
 □ ja □ nein □ weiß nicht □ wenn ja, wie lange? □ 0-5 Jahre □ >5 Jahre

11. Hatten Sie jemals Zeckenstiche?
 □ ja □ nein □ weiß nicht

12. Sind Sie gegen Frühsommmer-Meningoenzephalitis (FSME) geimpft?
 □ ja □ nein □ weiß nicht

13. Sind Sie in den letzten 10 Jahren gegen Gelbfieber geimpft worden?
 □ ja □ nein □ weiß nicht

Angaben zur Krankengeschichte

14. Welche der folgenden Beschwerden traten bei Ihnen in den letzten 3 Monaten auf?
 Häufig (1x/Woche) manchmal (1x/Mo) selten (1x/3 Mo) nie
 Oberbauchschmerzen
 Übelkeit
 Erbrechen
 Blähungen
 Druck-/Völlegefühl
 Aufstoßen
 Sodbrennen
 Appetitlosigkeit
 Frühes Sättigungsgefühl bei den Mahlzeiten
 Mussten Sie wegen dieser Beschwerden einen Arzt aufsuchen?
 □ ja □ nein
16. Sind oder waren bei Ihnen Gallenblasensteine bekannt?

- Ja
- Nein
- Weiß nicht

Wenn ja, wie viel Jahre lang?

- <1
- 1-5
- >5 -10
- >10
- Weiß nicht

17. Sind oder waren bei Ihnen Gallenblasenpolypen bekannt?

- Ja
- Nein
- Weiß nicht

18. Wurde bei Ihnen eine Gallenblasen-Operation durchgeführt?

- Ja
- Nein
- Weiß nicht

19. Wurde bei Ihnen eine Operation am Magen-Darmtrakt durchgeführt?

- Ja
- Nein
- Weiß nicht

Wenn ja, an

- Dünndarm
- Dickdarm
- Beides
- Weiß nicht

20. Sind in Ihrer Familie Verwandte ersten Grades mit Übergewicht bekannt?

- Ja
- Nein
- Weiß nicht

Wenn ja,

- Vater
- Mutter
- Geschwister

21. Haben Sie innerhalb der letzten 12 Monate Durchblutungsstörungen am Herzen (Angina pectoris) gehabt?

- Ja
- Nein
- Weiß nicht

Wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?

- Ja
- Nein
- Weiß nicht

Wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?

- Ja
- Nein
- Weiß nicht
<table>
<thead>
<tr>
<th></th>
<th>Haben Sie innerhalb der letzten 12 Monate Durchblutungsstörungen an den Beinen gehabt?</th>
</tr>
</thead>
</table>
| | ☐ ja ☐ nein ☐ weiß nicht

wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?
☐ ja ☐ nein ☐ weiß nicht

wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?
☐ ja ☐ nein ☐ weiß nicht

<table>
<thead>
<tr>
<th></th>
<th>Haben Sie innerhalb der letzten 12 Monate Herzschwäche (Herzinsuffizienz) gehabt?</th>
</tr>
</thead>
</table>
| | ☐ ja ☐ nein ☐ weiß nicht

wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?
☐ ja ☐ nein ☐ weiß nicht

wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?
☐ ja ☐ nein ☐ weiß nicht

<table>
<thead>
<tr>
<th></th>
<th>Haben Sie innerhalb der letzten 12 Monate eine Nierenerkrankung gehabt?</th>
</tr>
</thead>
</table>
| | ☐ ja ☐ nein ☐ weiß nicht

wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?
☐ ja ☐ nein ☐ weiß nicht

wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?
☐ ja ☐ nein ☐ weiß nicht
<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwortmöglichkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>25. Haben Sie innerhalb der letzten 12 Monate Lungenasthma (Bronchialasthma) gehabt?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>Wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>Wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>26. Haben Sie innerhalb der letzten 12 Monate chronische Bronchitis, (d.h. Husten mit morgendlichem Auswurf an den meisten Tagen, mindestens 3 Monate im Jahr) gehabt?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>Wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>Wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>27. Haben Sie innerhalb der letzten 12 Monate Gelenkrheumatismus (Chronische Polyarthritis, Arthrose) gehabt?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>Wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>Wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?</td>
<td>□ ja □ nein □ weiß nicht</td>
</tr>
<tr>
<td>Anhang</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>28. Haben Sie innerhalb der letzten 12 Monate eine Krebserkrankung gehabt?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
<tr>
<td>wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
<tr>
<td>wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
<tr>
<td>29. Haben Sie innerhalb der letzten 12 Monate eine Lebererkrankung gehabt?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
<tr>
<td>wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
<tr>
<td>wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
<tr>
<td>30. Haben Sie innerhalb der letzten 12 Monate eine Gallenblasenerkrankung gehabt?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
<tr>
<td>wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
<tr>
<td>wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?</td>
<td></td>
</tr>
<tr>
<td>[] ja [] nein [] weiß nicht</td>
<td></td>
</tr>
</tbody>
</table>
31. Haben Sie innerhalb der letzten 12 Monate Diabetes (Zuckerkrankheit) gehabt?
 □ ja □ nein □ weiß nicht
 wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?
 □ ja □ nein □ weiß nicht
 wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?
 □ ja □ nein □ weiß nicht
 wenn ja, an welchem Diabetestyp sind Sie erkrankt?
 □ Typ 1 □ Typ 2 (Altersdiabetes) □ anderer □ weiß nicht

32. Haben Sie innerhalb der letzten 12 Monate Bluthochdruck gehabt?
 □ ja □ nein □ weiß nicht
 wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?
 □ ja □ nein □ weiß nicht
 wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?
 □ ja □ nein □ weiß nicht

33. Haben Sie innerhalb der letzten 12 Monate erhöhte Blutfettwerte (Cholesterin, Triglyzeride) gehabt?
 □ ja □ nein □ weiß nicht
 wenn ja, ist diese Erkrankung innerhalb der letzten 12 Monate zum ersten Mal aufgetreten?
 □ ja □ nein □ weiß nicht
 wenn ja, wurden Sie innerhalb der letzten 12 Monate wegen dieser Erkrankung behandelt?
 □ ja □ nein □ weiß nicht
34. Hatten Sie schon einmal einen von einem Arzt festgestellten Herzinfarkt?

☐ ja ☐ nein ☐ ich weiß nicht

wenn ja, wie viele Herzinfarkte hatten Sie?

☐ 1 ☐ 2 ☐ >2

wenn ja, geben Sie bitte bei welchem Herzinfarkt Sie stationär in einem Krankenhaus behandelt wurden?

beim 1. ☐ beim 2. ☐ bei mehr als 2 ☐

35. Hatten Sie schon einmal einen von einem Arzt festgestellten Schlaganfall (Gehirnschlag)?

☐ ja ☐ nein ☐ ich weiß nicht

wenn ja, wie viele Schlaganfälle hatten Sie?

☐ 1 ☐ 2 ☐ >2

wenn ja, geben Sie bitte bei welchem Schlaganfall Sie stationär in einem Krankenhaus behandelt wurden?

beim 1. ☐ beim 2. ☐ bei mehr als 2 ☐

36. Hatten Sie in den letzten 4 Wochen:

☐ Grippe/grippaler Infekt ☐ Husten, Auswurf ☐ Bronchitis ☐ Fieber

37. Bestand bei Ihnen jemals eine Leberentzündung? (Infektiöse Gelbsucht)

☐ ja ☐ nein ☐ weiß nicht

wenn ja, handelt es sich hierbei um

☐ Hepatitis A ☐ Hepatitis B ☐ Hepatitis C ☐ weiß nicht

38. Sind Sie schon einmal gegen eine Form der Hepatitis geimpft worden?

☐ ja ☐ nein ☐ weiß nicht

wenn ja, handelt es sich hierbei um

☐ Hepatitis A ☐ Hepatitis B

39. Haben Sie schon einmal eine Blutübertragung (Bluttransfusion) erhalten?

☐ ja ☐ nein

40. Haben Sie sich tätowieren, piercen oder akupunkturieren lassen?

☐ ja ☐ nein
41. Essen Sie Salat, Kräuter, Beeren aus eigenem Anbau oder von Erzeugern aus der Umgebung?
- [] häufig
- [] gelegentlich
- [] selten
- [] nie

42. Essen Sie selbst gesammelte Beeren, Pilze, Kräuter von Wald oder Wiese?
- [] häufig
- [] gelegentlich
- [] selten
- [] nie

43. Rauchen Sie?
- [] ja, ich rauche zur Zeit
- [] nein, ich rauche zur Zeit nicht, habe aber früher geraucht
- [] nein, ich habe noch nie geraucht

Wenn ja, wie viel rauchen Sie oder haben Sie durchschnittlich geraucht (Zigaretten pro Tag)?
- [] ≤10
- [] >10-20
- [] >20-30
- [] >30-40
- [] >40

44. Wie lange rauchen Sie schon oder haben Sie geraucht?
- [] ≤1 Jahr
- [] >1-3 Jahre
- [] >3-5 Jahre
- [] >5-10 Jahre
- [] >10-20 Jahre

45. Wie häufig essen / trinken Sie folgende Lebensmittel?
- mehrmals täglich
- mehrmals pro Woche
- mehrmals pro Monat
- selten
- nie

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>täglich</th>
<th>pro Woche</th>
<th>pro Monat</th>
<th>selten</th>
<th>nie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Süßigkeiten</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Cola / Pepsi</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Most</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Kaffee/schwarzen Tee</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

wenn Sie täglich Kaffe oder schwarzen Tee trinken machen Sie bitte Angaben zur Menge:
- [] 1-3 Tassen täglich
- [] >3 Tassen täglich

und wie trinken Sie Ihren Kaffee/schwarzen Tee?
- [] mit Milch
- [] ohne Milch

46. Sind Sie Vegetarier?
- [] ja
- [] nein

Wenn ja seit wann?
- [] <1 Jahr
- [] 1-5 Jahre
- [] >5 Jahre

47. Haben Sie jemals in Ihrem Leben Alkohol getrunken?
- [] ja
- [] nein
Wenn nein, warum nicht?

☐ aus weltanschaulichen Gründen ☐ aus religiösen Gründen
☐ aus familiären Gründen ☐ aus gesundheitlichen Gründen

48. Wie oft trinken Sie durchschnittlich alkoholische Getränke?

☐ täglich ☐ mehrmals pro Woche ☐ mehrmals pro Monat ☐ weniger als 1 x
Monat ☐ nie

49. Wie viel Bier, Wein und Schnaps haben Sie am letzten Wochenende, also am Samstag und Sonntag getrunken?

<table>
<thead>
<tr>
<th>Angaben in Liter</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>,</th>
<th>0</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bier (auf 0,5 l genau)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Leichtbier</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Alkoholfreies Bier</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Most</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

| 0 | 1 | 2 | 3 | , | 0 | 2 | 4 | 6 | 8 |
| Wein / Sekt (auf 0,2 l genau) | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |

50. Wie viel Bier, Wein und Schnaps haben Sie am letzten Werktag getrunken?

<table>
<thead>
<tr>
<th>Angaben in Liter</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>,</th>
<th>0</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bier (auf 0,5 l genau)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Leichtbier</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Alkoholfreies Bier</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Most</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

| 0 | 1 | 2 | 3 | , | 0 | 2 | 4 | 6 | 8 |
| Wein / Sekt (auf 0,2 l genau) | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |

Wie viel Gläser Schnaps (2 cl) haben Sie am letzten Wochenende, also am Samstag und Sonntag getrunken?

☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ ≥ 6

Wie viel Gläser Schnaps (2 cl) haben Sie am letzten Werktag getrunken?

☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ ≥ 6
51. Haben Sie früher alkoholische Getränke getrunken?
 □ ja □ nein
 wenn ja, aus welchem Grund haben Sie aufgehört alkoholische Getränke zu trinken?
 □ aus weltanschaulichen Gründen □ aus religiösen Gründen
 □ aus familiären Gründen □ aus gesundheitlichen Gründen

52. Was trinken Sie zu gesellschaftlichen Anlässen?
 □ Alkoholische Getränke □ Saft □ Wasser
 □ Kaffee/Tee □ Softdrinks □ Sonstiges

53. Sind Ihnen in Ihrer Familie, bei Verwandten ersten Grades Herzinfarkte bekannt?
 Vater □ ja □ nein □ weiß nicht
 Mutter □ ja □ nein □ weiß nicht
 Geschwister □ ja □ nein □ weiß nicht
 Kinder □ ja □ nein □ weiß nicht

54. Sind Ihnen in Ihrer Familie, bei Verwandten ersten Grades Schlaganfälle bekannt?
 Vater □ ja □ nein □ weiß nicht
 Mutter □ ja □ nein □ weiß nicht
 Geschwister □ ja □ nein □ weiß nicht
 Kinder □ ja □ nein □ weiß nicht

55. Sind Ihnen in Ihrer Familie, bei Verwandten ersten Grades, Arterienverschlusskrankheiten (pAVK) oder Beinamputationen bekannt?
 Vater □ ja □ nein □ weiß nicht
 Mutter □ ja □ nein □ weiß nicht
 Geschwister □ ja □ nein □ weiß nicht
 Kinder □ ja □ nein □ weiß nicht

56. Sind Ihnen in Ihrer Familie, bei Verwandten ersten Grades Gallenblasensteine bekannt?
 Vater □ ja □ nein □ weiß nicht
 Mutter □ ja □ nein □ weiß nicht
 Geschwister □ ja □ nein □ weiß nicht
 Kinder □ ja □ nein □ weiß nicht

57. Leidet ein Familienmitglied an der Zuckerkrankheit?
 Vater □ ja □ nein □ weiß nicht
 Mutter □ ja □ nein □ weiß nicht
 Geschwister □ ja □ nein □ weiß nicht
 Kinder □ ja □ nein □ weiß nicht

Folgende Fragen sind nur von Frauen auszufüllen
58. Wie viele Schwangerschaften hatten Sie bisher? Aborte
- keine
- 1
- 2
- 3
- 4
- 5 oder mehr

59. Haben Sie jemals die Pille genommen?
- ja
- nein

 wenn ja, wie alt waren Sie, als Sie mit der Pilleneinnahme begonnen haben?
- < 15 Jahre alt
- 15-20 Jahre alt
- > 20 Jahre alt

60. Wie viele Jahre haben Sie insgesamt die Pille genommen?
- < 1
- 1-3
- >3-5
- >5-10
- >10

61. Haben Sie regelmäßig Blutungen?
- ja
- nein
Danksagung

Ich danke allen, die zum Gelingen dieser Dissertation beigetragen haben:

Herrn Prof. Dr. W. Kratzer für die sehr herzliche und hervorragende Betreuung und die ausgesprochen angenehme Zusammenarbeit.

Frau K. Mihr für die freundliche Beantwortung vieler Fragen zur äußeren Form der Dissertation.

Frau Sümayra Oeztuerk für die ausgezeichnete Unterstützung bei der statistischen Auswertung und das sehr angenehme und motivierende Arbeitsklima.

Frau Monika Patzak für die ihre freundliche Art und die Unterstützung bei der Erstellung unserer Dissertationen.

Frau Ursula Wolter und Frau Dr. Isgard Gadau für ihre moralische Unterstützung.

Meinen Eltern für ihre Anteilnahme und die finanzielle Unterstützung, die mir das Freisemester für diese Arbeit ermöglichte.
Der Lebenslauf wurde aus Gründen des Datenschutzes entfernt.