Vergleich von klinischem und operativ-pathologischem Staging bei Patienten mit nicht-kleinzeligen Bronchialkarzinom im Stadium IIIA

Dissertation
zur Erlangung des Doktorgrades der Medizin
der medizinischen Fakultät der Universität Ulm

vorgelegt von
Caren Nicola Wehrmann
aus Stuttgart

2013
Amtierender Dekan: Prof. Dr. Thomas Wirth

1. Gutachter: Prof. Dr. Bernd Mühling

2. Gutachter: Prof. Dr. Thomas Barth

Tag der Promotion: 05. Juni 2014
Für Papa, Ann-Kristin & Florian
Inhaltsverzeichnis

Inhaltsverzeichnis ... I
Abkürzungsverzeichnis .. II
Einleitung .. 1
 1.1 Diagnostik und Staging ... 3
 1.2 Prognose und Therapie ... 6
 1.3 Zielsetzung der Studie ... 7
2 Material und Methoden ... 10
 2.1 Studienkollektiv ... 10
 2.2 Methoden ... 10
 2.2.1 Methodik des klinischen und operativ-pathologischen Stagings .. 10
 2.2.2 Methodik der Datenerhebung 11
 2.2.3 Statistische Analysen .. 11
3 Ergebnisse .. 13
 3.1 Gesamtauswertung von klinisch und operativ-pathologischem Staging der T-/N-Stadien und des UICC-Stadiums ... 15
 3.2 Genauigkeit des Stagings .. 16
 3.3 Kontingenztafel für das klinische Staging von T4 Tumoren, N1- und N2-Beteiligung .. 17
 3.4 Sensitivität, Spezifität positiv-prädiktiver und positiv-negativer Wert der klinischen Staginguntersuchungen .. 18
 3.5 Überlebensdaten/ Überlebenszeitanalyse 19
4 Diskussion .. 20
 4.1 Nicht-invasive und invasive Methoden des klinischen Stagings... 22
 4.2 Gesamtauswertung des klinisch und pathologischen Stagings ... 25
 4.3 Intraoperatives Lymphknotenstaging 26
 4.4 Genauigkeit, Über- beziehungsweise Unterschätzung des klinischen Stagings............................. 27
 4.5 Sensitivität, Spezifität, positiv-prädiktiver und negativ-prädiktiver Wert der klinischen Staginguntersuchungen ... 30
 4.6 Überlebenszeitanalyse .. 30
 4.7 Schlussfolgerung .. 31
5 Zusammenfassung .. 33
6 Literaturverzeichnis .. 35
7 Danksagung ... 46
8 Lebenslauf .. 47
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Arterie</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Ao</td>
<td>Aorta</td>
</tr>
<tr>
<td>BRD</td>
<td>Bundesrepublik Deutschland</td>
</tr>
<tr>
<td>c</td>
<td>Clinical/klinisch</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CREDOS-B</td>
<td>Cancer retrieval evaluation and documentation system= Krebs Abfrage Evaluierung und Dokumentationssystem: B=Basisversion</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>EBUS-TBNA</td>
<td>endobronchiale ultraschallgesteuerte Feinnadelaspirationszytologie</td>
</tr>
<tr>
<td>Et al.</td>
<td>Et alii</td>
</tr>
<tr>
<td>EUS-FNA</td>
<td>Endoscopic ultrasound-guided fine needle aspiration = endoskopisch ultraschall-gesteuerte Feinnadelbiopsie</td>
</tr>
<tr>
<td>FDG-PET</td>
<td>Fluorodesoxyglucose- Positronen- Emissions- Tomographie</td>
</tr>
<tr>
<td>FNAB</td>
<td>Feinnadelaspirationsbiopsie</td>
</tr>
<tr>
<td>IASLC</td>
<td>International Association for the Study of Lung Cancer</td>
</tr>
<tr>
<td>Inf.pulm.lig.</td>
<td>Inferiores pulmonares Ligament</td>
</tr>
<tr>
<td>JÜR</td>
<td>Jahresüberlebensrate</td>
</tr>
<tr>
<td>L</td>
<td>Links</td>
</tr>
<tr>
<td>LA</td>
<td>Lymphadenektomie</td>
</tr>
<tr>
<td>LK</td>
<td>Lymphknoten</td>
</tr>
<tr>
<td>L. pulmonary a.</td>
<td>Left pulmonary artery = Linke Pulmonalarterie</td>
</tr>
<tr>
<td>n</td>
<td>Number: engl. Anzahl</td>
</tr>
<tr>
<td>n.</td>
<td>Nerv</td>
</tr>
<tr>
<td>NPV</td>
<td>Negativ prädiktiver Wert</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Non-small cell lung cancer</td>
</tr>
<tr>
<td>p</td>
<td>Pathological/pathologisch</td>
</tr>
<tr>
<td>Pa</td>
<td>Pulmonalarterie</td>
</tr>
<tr>
<td>PAS-Reaktion</td>
<td>Periodic Acid Schiff-Reaktion (histochemische Färbung zum Nachweis kohlenhydrathaltiger Komponenten)</td>
</tr>
<tr>
<td>PET</td>
<td>Positronen-Emissions-Tomographie</td>
</tr>
<tr>
<td>PPV</td>
<td>Positiv prädiktiver Wert</td>
</tr>
<tr>
<td>R</td>
<td>Rechts</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>SCLC</td>
<td>Small-cell lung cancer</td>
</tr>
<tr>
<td>Sentinelnode</td>
<td>Wächterlymphknoten</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TBNA</td>
<td>Transbronchiale Nadelspiration</td>
</tr>
<tr>
<td>TNM</td>
<td>T=Tumor; N=Nodes=Lymphknoten; M=Metastasen</td>
</tr>
<tr>
<td>UICC</td>
<td>Union internationale contre le cancer</td>
</tr>
<tr>
<td>v.</td>
<td>Vene</td>
</tr>
<tr>
<td>Vs.</td>
<td>Versus</td>
</tr>
</tbody>
</table>
Einleitung

Die Früherkennung des Bronchialkarzinoms ist schwierig, da Symptome entweder gering ausgeprägt oder sehr unspezifisch sind.

Die Hauptursache für die Entstehung des Bronchialkarzinoms sind inhalative Noxen; das Zigarettenrauchen kann für 85% der Bronchialkarzinome verantwortlich gemacht werden, wobei das Tumorsiko positiv mit der Anzahl der gerauchten Zigaretten korreliert. Auch Passivrauchen kann wesentlich zur Tumorentstehung beitragen (Taylor et al. 2007).

Weitere ursächliche Faktoren sind das natürlich vorkommende Radon, sowie berufsbedingte Kanzerogene wie Arsen, Schwermetalle und polyzyklische aromatische Kohlenwasserstoffe (Hecht 1999).

gleichzeitig eine Abnahme der Inzidenz des Plattenepithelkarzinoms zu beobachten ist (Gabrielson 2006).

Abbildung 1: Regionale Lymphknoten des Bronchialkarzinoms (Mountain 1997); R: Rechts; L: Links; a: Arterie; v: Vene; n.: Nerv; Inf. pulm. ligt.: Inferiores pulmonares Ligament; Ao: Aorta; PA: Pulmonalarterie; L.pulmonary a.: Linke Pulmonalarterie

Die frühzeitige lymphogene Metastasierung stellt eine große Herausforderung an das klinische Staging dar. Um zu beurteilen, ob ein mediastinaler Lymphknotenbefall vorliegt, werden Untersuchungsmethoden mit hoher Sensitivität benötigt. Durch Klärung der N2-Situation kann die Wahl der richtigen Therapie, operativ vs. nicht-operativ, getroffen werden.
1.1 Diagnostik und Staging

Das Tumorstadium bestimmt das therapeutische Vorgehen und die Prognose beim NSCLC (Mountain 2000).

Korrekttes Staging ist deshalb entscheidend für die Wahl der richtigen therapeutischen Vorgehensweise und dessen Erfolg. Zum präoperativen-klinischen Staging werden nicht-invasive bildgebende Methoden wie Röntgen in 2 Ebenen, CT, PET und PET-CT angewandt, als auch invasive Verfahren wie Bronchoskopie mit FNAB (Feinnadelaspirationsbiopsie), Thorakoskopie, Mediastinoskopie und Mediastinitomie (De Leyn et al. 2007).

Entsprechend des klinischen Stadiums wird folgender Therapiealgorithmus gewählt (Tab. 1).

Tabelle 1: Allgemeines Vorgehen bei der Behandlung des NSCLC entsprechend des Stadiums; LK: Lymphknoten; NSCLC: Non small-cell-lung cancer (Spira et al. 2004)

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Primäre Therapie</th>
<th>Adyuvante Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Chirurgische Resektion</td>
<td>Chemotherapie</td>
</tr>
<tr>
<td>II</td>
<td>Chirurgische Resektion</td>
<td>Chemotherapie mit/ohne Chemotherapie</td>
</tr>
<tr>
<td>IIIA (resektabel)</td>
<td>Chirurgische Resektion oder neoadyuvante Chemotherapie gefolgt von chirurgischer Resektion (bevorzugt)</td>
<td>Radiotherapie mit Chemotherapie (wenn nicht davor gegeben) oder ohne Chemotherapie</td>
</tr>
<tr>
<td>IIIA (nicht-resektabel)</td>
<td>Chemotherapie plus gleichzeitige Radiotherapie (bevorzugt) oder Chemotherapie gefolgt von Radiotherapie</td>
<td>Keine</td>
</tr>
<tr>
<td>IIIB (Beteiligung der kontralateralen oder supraklavikulären LK)</td>
<td>Chemotherapie mit 2 Chemotherapeutika für 3 oder 4 Zyklen (bevorzugt)</td>
<td>Keine</td>
</tr>
<tr>
<td>IIIB (Pleuraerguss) oder IV</td>
<td>Chirurgische Resektion einzelner Hirnmetastasen oder des T1 Primärtumors</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Die Tumorausdehnung wird an Hand der 7. Edition der TNM-Klassifikation festgelegt, wobei T die Ausdehnung des Primärtumors, N den Lymphknotenbefall und M das Fehlen oder Vorhandensein von Fernmetastasen beschreibt. So ist z.Bsp. ein Bronchialkarzinom im St. IIIA der Klassifikation T1N2M0 ein Primärtumor ≤ 3 cm in größter Ausdehnung, umgeben von Lungengewebe oder viszeraler Pleura, ohne Infiltration des Hauptbronchus (T1), Metastasen in ipsilateralen mediastinalen und/oder subkarinalen Lymphknoten (N2) und ohne Fernmetastasen (M0).

Folgende vereinfachte klinische Stadieneinteilung der UICC wird anhand der TNM-Klassifikation vorgenommen (s. Tab. 2).

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Primärtumor</th>
<th>Lymphknoten</th>
<th>Metastasen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okkultes Karzinom</td>
<td>TX</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IA</td>
<td>T1a, T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIA</td>
<td>T1a, T1b, T2a</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2b</td>
<td>N0, N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T2b</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIA</td>
<td>T1a, T1b, T2a, T2b</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N1, N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N0, N1</td>
<td>M0</td>
</tr>
<tr>
<td>IIIB</td>
<td>Jedes T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Jedes T</td>
<td>Jedes N</td>
<td>M1</td>
</tr>
</tbody>
</table>

Das Stadium IIIA ist eine sehr heterogene Gruppe, die Patienten mit Tumorgröße T1-T4 und Lymphknotenbeteiligung N0-N2 umfasst. Knapp ein Viertel (22%) aller Patienten mit NSCLC gehören diesem lokal fortgeschrittenen Stadium an (_Cancer of the Lung and Bronchus - SEER Stat Fact Sheets_).
Einleitung

Ruckdeschel et al. unterteilen IIIA-Patienten mit N2-Situation in Bezug auf das therapeutische Vorgehen in die Untergruppen IIIA₁-4 (Ruckdeschel 1997).

Diese Unterteilung hilft bei der Wahl des korrekten therapeutischen Vorgehens in den verschiedenen IIIA(N2)-Situationen (Robinson et al. 2007).

Tabelle 3: Unterguppen des IIIA (N2)-Stadiums nach Ruckdeschel et al.; CT: Computertomographie; PET-CT: Positronen-Emissions-Tomographie/Computertomographie

<table>
<thead>
<tr>
<th>Unterguppe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIIA<sub>1</sub></td>
<td>Zufällig in der abschließenden pathologischen Untersuchung des Resektionmaterials gefundener LK-Metastase</td>
</tr>
<tr>
<td>IIIA<sub>2</sub></td>
<td>LK-Metastase (einer einzigen Lymphknotenstation) intraoperativ entdeckt</td>
</tr>
<tr>
<td>IIIA<sub>3</sub></td>
<td>LK-Metastase (einer oder mehrerer LK-Stationen) im präoperativen Staging (PET-CT, Mediastinoskopie oder LK-Biopsie) entdeckt</td>
</tr>
<tr>
<td>IIIA<sub>4</sub></td>
<td>Ausgedehnte oder gesicherte, mehrere LK-Stationen betreffende N2-Situation</td>
</tr>
</tbody>
</table>

Gerade da IIIA eine sehr ungleiche Gruppe an Patienten umfasst und die Therapieformen (chirurgisch resektabler vs. nicht-resektabler Tumor) innerhalb dieser Gruppe stark variieren, kommt dem korrekten klinischen Staging in diesem UICC-Stadium eine besondere Bedeutung zu (Spira et al. 2004).

Abbildung 2: Graphische Darstellung des Stadiums IIIA (Detterbeck et al. 2009)
1.2 Prognose und Therapie

Ungeachtet der sich immer weiterentwickelnden Diagnosemethoden und Therapieansätze ist die Langzeitüberlebensrate enttäuschend. Die durchschnittliche, stadienunabhängige 5-Jahresüberlebensrate des Bronchialkarzinoms (SCLC und NSCLC) hat sich in den letzten 30 Jahren kaum verändert. 1975 lag die 5-JÜR bei 13%, heut zu Tage liegt sie bei 16% (Jemal et al. 2007).

Abhängig vom Stadium schwankt die 5-JÜR beim NSCLC zwischen 67 und 1 Prozent (s.Tab.4).

Tabelle 4: Stadienabhängige 1-Jahres- und 5-Jahresüberlebessrate beim nicht-kleinzelligen Bronchialkarzinom; JÜR: Jahresüberlebensrate (Spira et al. 2004)

<table>
<thead>
<tr>
<th>Stadium</th>
<th>1-JÜR in %</th>
<th>5-JÜR in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>94</td>
<td>67</td>
</tr>
<tr>
<td>IB</td>
<td>87</td>
<td>57</td>
</tr>
<tr>
<td>IIA</td>
<td>89</td>
<td>55</td>
</tr>
<tr>
<td>IIB</td>
<td>73</td>
<td>39</td>
</tr>
<tr>
<td>IIIA</td>
<td>64</td>
<td>23</td>
</tr>
<tr>
<td>IIIIB</td>
<td>34,5</td>
<td>5</td>
</tr>
<tr>
<td>IV</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

Obwohl es eine Vielzahl an Therapien gibt, bleibt die Operation der einzige kurative Behandlungsansatz für Patienten mit lokализierten NSCLC. Zum Zeitpunkt der Diagnosestellung liegen in mindestens 40% der Fälle Fernmetastasen vor und der Tumor gilt somit als inoperabel (Jemal et al. 2007).

Bei der Therapieentscheidung operativ vs. palliativ stellen Stadium I und II kein großes Problem dar, da bei diesen Stadien eine Resektion des Primärtumors, sowie eine Lymphknotenprobenentnahme beziehungsweise eine Lymphknotendissektion durchgeführt wird (Scott et al. 2007).

Kombinierte Radiochemotherapie erhöht zwar die Überlebensrate vor allem für den 1- und 2-Jahres Überlebenszeitraum, Marino et al. zeigten ein Senkung der Mortalität um 24% im ersten Jahr und um 30% für das zweite Jahr gegenüber alleiniger Radiotherapie, jedoch ist der absolute Nutzen gering und muss gegen die Nebenwirkungen einer zusätzlichen Chemotherapie abgewogen werden (Marino et al. 1995) (Pritchard et al. 1996).

1.3 Zielsetzung der Studie

Unsere Arbeit umfasst ausschließlich Patienten im NSCLC-Stadium IIIA und untersucht bei diesen Patienten die Übereinstimmung zwischen klinischen und pathologischen Staging.

Wie oben beschrieben ist das Stadium IIIA des NSCLC eine sehr heterogene Gruppe mit resektablen und nicht-resektablen Tumorstadien. Somit kommt dem korrekten klinischen Staging ein besonders hoher Stellenwert zu, da dieses, die Modalitäten der weiteren Behandlungsstrategie bestimmt.

Da im Stadium IIIA sowohl operable als auch nicht-operative Tumore vertreten sind und die Operation die einzig kurative Behandlungsoption darstellt, sollte das Ziel sein, keinem potentiell kurativen NSCLC-Patienten eine operative Behandlung vorzuenthalten.

Aus dem zuvor Gesagten lässt sich die Bedeutung eines adäquaten Stagings und insbesondere einer darauf aufbauenden, korrekten Indikationsstellung zur Operation ermesssen. Voraussetzung für die Wahl der adäquaten Therapiemethode ist ein genaues klinisches Staging.

2 Material und Methoden

2.1 Studienkollektiv

2.2 Methoden
2.2.1 Methodik des klinischen und operativ-pathologischen Stagings
Alle Patienten durchliefen im Rahmen des klinischen Stagings nicht-invasive bildgebende Verfahren wie CT oder PET-CT, sowie invasive Verfahren wie Bronchoskopie und Mediastinoskopie. Diese war in einigen Fällen zum Ausschluss einer N3-Situation indiziert.

Die Stadieneinteilung erfolgte mittels der TNM-Klassifikation.

Die TNM-Klassifikation ist ein duales Klassifikationssystem, dass das anatomische Ausmaß eines Tumorbefalls auf den Gesamtorganismus beschreibt. Das Tumorstadium wurde aus den Befunden der Radiologischen Abteilung der Universität Ulm, sowie aus extern angefertigten radiologischen Befunden entnommen.

Abhängig vom TNM-Stadium wurde die OP-Indikation gestellt. Als Operationstechniken kamen die Lobektomie, die Pneumonektomie, die Bilobektomie, die Manschettenresektion und in 2 Fällen weitere Verfahren zum Einsatz.

Das Pathologische Institut der Universität Ulm führte die histopathologische Untersuchung des Tumorgewebes durch. Histologische Färbungen zur Darstellung der Gewebsstrukturen

Für die durchgeführte Studie waren das TNM-Stadium, sowie der histologische Subtyp (sog. Typing) von Bedeutung.

2.2.2 Methodik der Datenerhebung

Aus den elektronischen Krankenakten der Universitätsklinik Ulm, sowie externer Kliniken wurden die für die Studie relevanten Kriterien entnommen. Diese umfassen sowohl das klinische und pathologische Staging, als auch weitere bedeutende Patientendaten wie den Patientenname, das Geburtsdatum, die Histologie, die Staginguntersuchung, die Induktionstherapie und die Operationstechnik. Insbesondere Arztbriefe, radiologische Befunde und Operationsberichte sind als Datenquellen verwendet worden. Die Überlebensdaten wurden aus dem klinischen Krebsregister, genauer dem Tumordokumentationssystem Credos-B der Universitätsklinik Ulm, entnommen. Credos-B steht für Cancer Retrieval Evaluation and Documentation System; B steht für den Basisdatensatz. Dabei handelt es sich um eine Computersoftware, welche die Erfassung eines Datensatzes zu Diagnose, Verlauf und Therapie maligner Erkrankungen beinhaltet.

2.2.3 Statistische Analysen

In Kooperation mit Herrn Prof. Dr. Muche vom Institut für Epidemiologie und Medizinische Biometrie wurde die statistische Auswertung, hauptsächlich in Form von Häufigkeitsanalysen, erstellt.

Tabelle 5: Berechnung von Sensitivität, Spezifität, positiv prädiktiven Wert und negativ prädiktiven Wert

<table>
<thead>
<tr>
<th></th>
<th>Richtig positive / richtig positive + falsch negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivität</td>
<td></td>
</tr>
<tr>
<td>Spezifität</td>
<td>Richtig negative / richtig negative + falsch positive</td>
</tr>
<tr>
<td>Positiv prädiktiver Wert</td>
<td>Richtig positive / alle positiven</td>
</tr>
<tr>
<td>Negativ prädiktiver Wert</td>
<td>Richtig negative / alle negativen</td>
</tr>
</tbody>
</table>

3 Ergebnisse

Tabelle 6: Demographische Daten der ausgewerteten Patienten (n=49) mit nicht-kleinzelligem Bronchialkarzinom im Stadium IIIA operiert an der Universitätsklinik Ulm im Zeitraum 2004-2010; CT: Computertomographie; PET-CT: Positronen-Emissions-Tomographie-Computertomographie; n= number: engl. Anzahl

<table>
<thead>
<tr>
<th></th>
<th>IIIA Patienten (n=49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter [Jahren]</td>
<td>67 [43-82]</td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
</tr>
<tr>
<td>männlich:weiblich</td>
<td>37:12</td>
</tr>
<tr>
<td>Histologie</td>
<td></td>
</tr>
<tr>
<td>Adeno</td>
<td>26</td>
</tr>
<tr>
<td>Plattenepithel</td>
<td>20</td>
</tr>
<tr>
<td>Andere</td>
<td>3</td>
</tr>
<tr>
<td>Chirurgische Verfahren</td>
<td></td>
</tr>
<tr>
<td>Lobektomie</td>
<td>28</td>
</tr>
<tr>
<td>Pneumonektomie</td>
<td>14</td>
</tr>
<tr>
<td>Bilobektomie</td>
<td>3</td>
</tr>
<tr>
<td>Manschettenresektion</td>
<td>2</td>
</tr>
<tr>
<td>Andere</td>
<td>2</td>
</tr>
<tr>
<td>Präoperatives Staging</td>
<td></td>
</tr>
<tr>
<td>PET-CT</td>
<td>42</td>
</tr>
<tr>
<td>CT</td>
<td>7</td>
</tr>
<tr>
<td>Bronchoskopie</td>
<td>45</td>
</tr>
<tr>
<td>Mediastinoskopie</td>
<td>7</td>
</tr>
</tbody>
</table>
3.1 Gesamtauswertung von klinisch und operativ-pathologischem Staging der T-/N-Stadien und des UICC-Stadiums

Tabelle 7: Detaillierter Überblick über die Patienten (n=49) mit nicht-kleinligrigem Bronchialkarzinom im Stadium IIIA operiert an der Universitätsklinik Ulm im Zeitraum 2004-2010 in Hinblick auf klinisch und operativ-pathologisches Staging. UICC: Union international contre le cancer

<table>
<thead>
<tr>
<th>Klinische Kategorie</th>
<th>Operativ-pathologische Kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>16.3 % (8/49)</td>
</tr>
<tr>
<td>T2</td>
<td>48.8 % (19/49)</td>
</tr>
<tr>
<td>T3</td>
<td>24.5 % (12/49)</td>
</tr>
<tr>
<td>T4</td>
<td>20.4 % (10/49)</td>
</tr>
<tr>
<td>N0</td>
<td>22.4 % (11/49)</td>
</tr>
<tr>
<td>N1</td>
<td>12.2 % (6/49)</td>
</tr>
<tr>
<td>N2</td>
<td>61.2 % (32/49)</td>
</tr>
<tr>
<td>N3</td>
<td>-</td>
</tr>
<tr>
<td>UICC</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>4.1 % (2/49)</td>
</tr>
<tr>
<td>II</td>
<td>10.2 % (5/49)</td>
</tr>
<tr>
<td>IIIA 1/2</td>
<td>-</td>
</tr>
<tr>
<td>IIIA 3</td>
<td>83.7 % (41/49)</td>
</tr>
<tr>
<td>IIIA (total)</td>
<td>83.7 % (41/49)</td>
</tr>
<tr>
<td>IIIB</td>
<td>4.1 % (1/49)</td>
</tr>
</tbody>
</table>

Tabelle 7 gibt einen detaillierten Überblick über die Verteilung des T- und des N-Stadiums, sowie des UICC-Stadiums.

Präoperativ wurden 24,5% (12/49) der Patienten in das Stadium T3 eingeteilt; postoperativ waren noch 20,4% (10/49) dem Stadium T3 zugeteilt.
Weitere 20,4% (10/49) wurden der Tumorgröße T4 zugeordnet; nach Operation wurden diesem Stadium jedoch nur noch 14,3% (7/49) zugeteilt.
Nur Stadium T1 hat im pathologischen Staging eine höhere Anzahl an Patienten (28,6%; 14/49) als im klinischen Staging (16,3%; 8/49).
Diese Werte lassen erkennen, dass die Tumorgrößen T2-T4 im klinischen Staging überschätzt werden und die wahre Tumorgröße geringer ausfällt.
Tumorentitäten, klinisch als T2 gestaged, fallen nach der histopathologischen Untersuchung in die T1-Gruppe.
Bei der Begutachtung der Lymphknoten lässt sich Ähnliches beobachten:
In den klinischen Kategorien N0 und N1 fiel die Anzahl der klinisch gestagten (N0:22,4%; N1:12,2%) geringer aus als im operativen Staging (N0:32,7%; N1:22,4%).
Schaut man sich das Stadium N2 an verhält es sich umgekehrt:
Klinisch waren 61,2% (32/49) der Patienten in das N2-Stadium gestaged; pathologisch-operativ waren es noch 42,9% (21/49).
Insgesamt 83,7% (41/49) wurden klinisch als UICC-Stadium IIIA gestaged; nach pathologischer Begutachtung waren 53,1% (26/49) als Stadium IIIA gestaged.
Von 49 Patienten hatten 8,2% (4/49) in der pathologischen Begutachtung unerwartet IIIA-Status (IIIA_{1/2}). Insgesamt 44,9% (22/49) der Patienten wurden sowohl klinisch als auch pathologisch als IIIA (IIIA_3) gestaged.

3.2 Genauigkeit des Stagings

Tabelle 8: Genauigkeit, Über- und Unterschätzung des präoperativen Stagings in Hinblick auf den T,N und Union international contre le cancer(UICC)-Status bei Patienten (n=49) mit nicht-kleinzeligem Bronchialkarzinom im Stadium IIIA operiert an der Universitätsklinik Ulm im Zeitraum 2004-2010

<table>
<thead>
<tr>
<th></th>
<th>pT</th>
<th>pN</th>
<th>UICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genauigkeit</td>
<td>38.7% (19/49)</td>
<td>40.8% (20/49)</td>
<td>38.7% (19/49)</td>
</tr>
<tr>
<td>Überschätzung</td>
<td>40.8% (20/49)</td>
<td>38.7% (19/49)</td>
<td>40.8% (20/49)</td>
</tr>
<tr>
<td>Unterschätzung</td>
<td>20.4% (10/49)</td>
<td>20.4% (10/49)</td>
<td>20.4% (10/49)</td>
</tr>
</tbody>
</table>

Das klinische Staging war in 38,7% (19/49) für den T-Status korrekt. In 40,8% (20/49) beziehungsweise 38,7% fand eine Überschätzung des T-und N-Status statt, dass heißt in der präoperativen klinischen Untersuchung wurde die Tumorgröße als auch der
Lymphknotenbefall als gravierender eingeschätzt als er tatsächlich in der anschließenden pathologischen Untersuchung war.

In 20,4% (10/49) gab es eine Unterschätzung des T- und N-Status.
Das UICC-Stadium war im klinischen Staging in 38,7% (19/49) richtig.
In 40,8% (20/49) wurde der Patient in ein zu hohes UICC-Stadium und in 20,4% (10/49) in ein zu niedriges UICC-Stadium eingestuft.

3.3 Kontingenztabelle für das klinische Staging von T4 Tumoren, N1- und N2-Beteiligung

Tabelle 9: Kontingenztabelle für das klinische Staging von T4 Tumoren, N1- und N2-Beteiligung von Patienten (n=49) mit nicht-kleinzeligem Bronchialkarzinom im Stadium IIIA operiert an der Universitätsklinik Ulm im Zeitraum 2004-2010. P: pathological, c: clinical

<table>
<thead>
<tr>
<th></th>
<th>pT4+</th>
<th>pT4-</th>
</tr>
</thead>
<tbody>
<tr>
<td>cT4+</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>cT4-</td>
<td>5</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>pN1+</th>
<th>pN1-</th>
</tr>
</thead>
<tbody>
<tr>
<td>cN1+</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>cN1-</td>
<td>9</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>pN2+</th>
<th>pN2-</th>
</tr>
</thead>
<tbody>
<tr>
<td>cN2+</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>cN2-</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

In der N2-Situation verhält es sich entsprechend der T4-Tumore: die Anzahl der falsch-positiven Ergebnisse (18 Patienten) liegt um mehr als das Doppelte höher als die Anzahl der falsch-negativen (7 Patienten).
3.4 Sensitivität, Spezifität positiv-prädiktiver und positiv-negativer Wert der klinischen Staginguntersuchungen

Tabelle 10: Sensitivität, Spezifität, positiv-prädiktiver Wert (PPV: positive predictive value) und negativ-prädiktiver Wert (NNV: negative predictive value) für T4, N1- und N2-Beteiligung der klinischen Staginguntersuchungen bei Patienten (n=49) mit nicht-kleinzelligem Bronchialkarzinom im Stadium IIIA operiert an der Universitätsklinik Ulm im Zeitraum 2004-2010

<table>
<thead>
<tr>
<th>T4</th>
<th>N1-Beteiligung</th>
<th>N2-Beteiligung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivität</td>
<td>28,5 %</td>
<td>18,1 %</td>
</tr>
<tr>
<td>Spezifität</td>
<td>80,9 %</td>
<td>89,4 %</td>
</tr>
<tr>
<td>PPV</td>
<td>20 %</td>
<td>33,3 %</td>
</tr>
<tr>
<td>NPV</td>
<td>87,1%</td>
<td>79,1 %</td>
</tr>
</tbody>
</table>

Die Sensitivität lag bei 28,5% und Spezifität bei 80,9% im T4-Stadium, der positiv-prädiktive Wert betrug 20% und der negativ-prädiktive Wert 87,1%.

Bei der Beurteilung der Lymphknotenbeteiligung lag für die N1-Situation eine Sensitivität von 18,1% und eine Spezifität von 89,4% vor.

Für die N2-Situation lag die Sensitivität bei 66,6% und Spezifität bei 35,7%.
4 Diskussion

Jährlich versterben weltweit mehr als 1 Million Menschen an Lungenkrebs (Kauczor et al. 2006). Im Jahr 2008 erkrankten in Deutschland rund 34.000 Männer und 15.500 Frauen an Lungenkrebs, ca. 29.500 Männer und 13.000 Frauen verstarben daran. Somit ist Lungenkrebs mit einem Anteil von 26% weiterhin mit Abstand die häufigste Krebstodesursache bei Männern und mit einem Anteil von 13% die dritthäufigste Krebstodesursache bei Frauen (Robert Koch Institut 2010) in Deutschland.

Trotz neuer Entwicklungen in Diagnose und Therapie hat sich die Langzeitüberlebensrate in den letzten 30 Jahren nur unwesentlich verbessert (Jemal et al. 2007).

In der vorliegenden Studie wurde die Genauigkeit des klinischen Stagings von 49 Patienten mit NSCLC im Stadium IIIA betrachtet. Dieses sogenannte klinische Staging ist essentiell für die Wahl der richtigen Therapie beziehungsweise um operable von nicht operablen Patienten zu unterscheiden. In frühen Tumorstadien (UICC I&II) stellt die Wahl der richtigen Therapiemethode keine große Herausforderung dar, da bei diesen Patienten

Das Durchschnittsalter unseres Patientenkollektivs betrug 67 Jahre und schloss dreimal so viele Männer wie Frauen ein (37 Männer/12 Frauen). Diese Patientenparameter stimmen somit mit dem in der Literatur angegebenen Häufigkeitsgipfel des Krankheitsauftretens zwischen dem 60. und 70. Lebensjahr und der Geschlechterverteilung von 3:1 überein (Roth et al. 1998).

4.1 Nicht-invasive und invasive Methoden des klinischen Stagings

Wie bereits in der Einleitung erwähnt, kommen beim klinischen Staging verschiedene nicht-invasive und invasive Untersuchungsverfahren zum Einsatz. Dieses klinische Staging ist essentiell für die Wahl der richtigen Therapie um zwischen operablen und nicht-operablen Patienten zu unterscheiden.

Das PET-CT ist dem CT auch in der Detektion von mediastinalen Lymphknotenbefall überlegen (Dwamena et al. 1999) (Chin et al. 2007) (Vansteenkiste et al. 1998b).

Als Nachteil der PET-CT Untersuchung ist die relativ hohe Anzahl falsch positiver Lymphknoten zu nennen, die durch eine erhöhte Kontrastmittelaufnahme entzündlicher Lymphknoten zu erklären ist (Bryant et al. 2006) (Cerfolio et al. 2007).

Nicht bei allen Patienten unserer Studie wurde im Rahmen des präoperativen Stagings eine PET-CT Untersuchung durchgeführt. Bei 7 Patienten wurde keine PET-CT-Untersuchung durchgeführt, sondern alleinig ein CT.

Dies ist damit zu erklären, dass in die Studie Patienten miteingeschlossen sind, die in peripheren Krankenhäusern präoperativ gestaged worden sind und nicht in allen Krankenhäusern ein PET-CT verfügbar ist.

Trotz der höheren Sensitivität und Spezifität kann das integrierte PET-CT das invasive intrathorakale Lymphknoten-Staging nicht ersetzen (Tournoy et al. 2007) (Lee et al. 2007) (Gonzalez-Stawinski et al. 2003) (Silvestri et al. 2007). Invasives Staging des potentiell operablen NSCLC mittels Mediastinoskopie, Bronchoskopie oder endoskopisch ultrasoundgeführten Feinnadelaspiration (EUS-FNA) wird nach wie vor als Goldstandard angesehen.

Entsprechend der ACCP Leitlinien wurde bei der Mehrheit (45 von 49 Patienten) der in die Studie eingeschlossenen Patienten eine Bronchoskopie zur Erstdiagnose des Tumors durchgeführt. Bei zentral liegenden NSCLC liegt die Sensitivität dieser Untersuchung bei 88% (Rivera et al. 2003).

Im PET-CT beziehungsweise im CT verdächtige Lymphknoten (klinische N1/N2 Situation) sollten immer zusätzlich histologisch untersucht werden um die Zahl der falsch positiven Ergebnisse zu minimieren (Cerfolio et al. 2006) (Detterbeck et al. 2007).

TBNA-EBUS wird als Alternative zur Mediastinoskopie gesehen und eignet sich vor allem zum initialen Staging (Kambartel et al. 2012). Aufgrund des niedrigen negativ prädiktiven Wert von 76% (gegenüber 91% bei Mediastinoskopie) wird empfohlen bei negativem Untersuchungsergebnis in der EBUS und hochgradigen Verdacht auf N2/N3-Situation eine

Eine weitere sichere Modalität des invasiven Stagings stellt die endoskopisch ultraschall-gesteuerte Feinnadelbiopsie (EUS-FNA) dar. Bei dieser wird transösophageal ein Ultraschall durchgeführt. Das Mediastinum und die darin liegenden Lymphknoten sind über die Ösophaguswand für die Biopsie zugänglich. Die Untersuchungsmethode zeichnet sich durch eine niedrige Infektions- und Blutungsrate, sowie einer geringen technischen Schwierigkeit in der Durchführung aus. Als Nachteil ist die Unzugänglichkeit des anteriorens Anteils des Mediastinums zu nennen (Larsen et al. 2002). Sensitivität und Spezifität der Untersuchungsmethode liegen bei 83% und 97% (Micames et al. 2007).

Zweifelsohne hat sich das klinische Staging dank des Einsatzes des PET-CT’s, sowie Neuerungen in den invasiven Untersuchungsmethoden während der letzten Jahrzehnte verbessert, dennoch ist die Exaktheit in fortgeschrittenen Stadien noch unzureichend.

4.2 Gesamtauswertung des klinisch und pathologischen Stagings

In der Auswertung dieser Arbeit zeigt sich, dass die tatsächliche Tumorausbreitung im T2-T4 Stadium in der klinischen Staginguntersuchung überschätzt wird und die tatsächliche Tumorgröße geringer ausfällt. Präoperativ wurden bei 10 der 49 Patienten der Primärtumor als Tumorgröße T4 gestaged; in der chirurgisch-pathologischen Untersuchung zeigte sich, dass nur 7 der 49 Patienten tatsächlich einen T4 Tumor hatten. Das bedeutet bei nur 70% der klinisch als T4 eingestuften Patienten bestand de facto eine T4-Situation. Auch Patienten mit großer Primärtumorausdehnung (T4) sollte die Operation als Behandlungsoption nicht vorenthalten werden, da die tatsächliche Tumorgröße häufig geringer ausfällt als in der präoperativen Diagnostik evaluiert wurde. Auch Cetinkaya et al.
konnten zeigen, dass lokale T4Bronchialkarzinome nicht von vorne herein von einer Operation ausgeschlossen werden sollten. In der Studie von Cetinkaya et al. lag bei nur 61,9% der klinisch als T4 gestagten Patienten nach der pathologischen Untersuchung eine T4-Situation vor (Cetinkaya et al. 2002).

Im Stadium T1 zeigt sich, dass die tatsächliche, d.h. pathologisch gesicherte Anzahl der T1 Tumore (14/49) höher liegt als durch das klinische Staging angenommen (8/49). Auch diese Zunahme in der T1-Gruppe in der operativ-pathologischen Untersuchung weist darauf hin, dass die wahre Tumogröße kleiner als klinisch angenommen ist. Klinisch als T2 gestagte Tumorentitäten fielen nach der histopathologischen Exploration in die T1-Gruppe. Dies kann als Erklärung für die Zunahme der T1 Tumore in der pathologischen Untersuchung herangezogen werden.

Das Lymphknotenstaging bleibt trotz Fortschritten in den Bildgebungstechniken eine Herausforderung. Bei der Beurteilung der Lymphknoten lässt sich Ähnliches wie in der Beurteilung der Primärtumors beobachten:

In den klinischen Kategorien N0 und N1 fiel die Anzahl der klinisch gestagten (N0:22,4%; N1:12,2%) geringer aus als im operativen Staging (N0:32,7%; N1:22,4%).

Betrachtet man das Stadium N2 so verhält es sich invers. Klinisch waren 61,2% (32/49) der Patienten in das N2-Stadium eingeteilt; pathologisch-operativ waren es noch 42,9% (21/49). Ebenfalls der Lymphknotenbefall, genauer gesagt die N2 Situation, wurde in der durchgeführten Studie im klinischen Staging überschätzt und das tatsächliche N-Stadium fiel geringer aus als im klinischen Staging angenommenen.

Insgesamt 83,7% (41/49) der betrachteten Patienten wurden klinisch als UICC-Stadium IIIA gestaged; nach pathologischer Begutachtung waren es 53,1% (26/49), wobei 4 von 49 Patienten (8,2%) in der pathologischen Begutachtung unerwartet IIIA-Status (IIIA1/2) hatten. Auch in Bezug auf das UICC-Stadium zeigt sich eine Überschätzung im klinischen Staging.

4.3 Intraoperatives Lymphknotenstaging

Gerade im Bezug auf den Lymphknotenbefall ist die Übereinstimmung zwischen klinischen und pathologischen Staging gering. Da dies, Lymphknotenbefall oder nicht, häufig der entscheidende Punkt in der Wahl der Therapieform darstellt, besteht die Forderung nach einem genaueren prä- als auch intraoperativen Lymphknotenstaging.

Einige Autoren sprechen eine Empfehlung für die systemische, radikale Lymphknotendissektion aus (Izbicki et al. 1998) (Passlick et al. 2002). Dadurch wird ein genaueres Staging gewährleistet; je höher die Anzahl der entnommenen LK, desto exakter das Staging, umso mehr N2-Situationen können identifiziert werden (Keller et al. 2000) (Gajra et al. 2003). Vergleicht man die Überlebensraten von Lymphknotensampling vs systemische radikale Lymphadenektomie (LA), zeigt sich, dass die radikale LA mit einer verbesserten Überlebensrate einhergeht, vor allem im Stadium IIIA. Wu et al. zeigten, dass die 5-JÜR in IIIA Patienten bei radikaler Lymphadenektomie bei 27% im Gegensatz zum alleinigen Lymphknotensampling bei 6,2% lag (Wu et al. 2002).

4.4 Genauigkeit, Über- beziehungsweise Unterschätzung des klinischen Stagings

Das klinische Staging der Studie stimmte in 38,7% für den T- und in 40,8% für den N-Status mit dem pathologischen Staging überein. Gerade da das Ausmaß des Lymphknotenbefalls meistens der entscheidende Punkt in der Therapieentscheidung ist, ist eine Genauigkeit von nur 40,8% als ungenügend anzusehen. Vergleicht man die
Genauigkeit des UICC-Stadiums ist eine Übereinstimmung entsprechend des T-Status von 38,7% zu beobachten.

Auch andere Studien haben die Übereinstimmung von klinischem und pathologischem Staging untersucht (Tab.11).

Unsere Studie schloss ausschließlich Patienten ein, die entweder klinisch oder pathologisch in das UICC-Stadium IIIA gestaged worden waren. Die in Tabelle 11 aufgeführten Studien hatten dieses Auswahlkriterium nicht und schlossen alle Patienten mit operablen Stadien ein.

\[
\]

<table>
<thead>
<tr>
<th>Studie</th>
<th>Alle UICC-Stadien</th>
<th>Stadium IIIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopez et al.</td>
<td>47%</td>
<td>23%</td>
</tr>
<tr>
<td>Cetinkaya et al.</td>
<td>47,7%</td>
<td>33%</td>
</tr>
<tr>
<td>Bülzebruck et al.</td>
<td>56%</td>
<td>60%</td>
</tr>
<tr>
<td>Fernandes et al.</td>
<td>28,3%</td>
<td>16,7%</td>
</tr>
<tr>
<td>Bekić et al.</td>
<td>50%</td>
<td>42,9%</td>
</tr>
<tr>
<td>Gdeedo et al.</td>
<td>35,1%</td>
<td>26,1%</td>
</tr>
<tr>
<td>Fernando et al.</td>
<td>46,6%</td>
<td>-*</td>
</tr>
<tr>
<td>Unsere Studie</td>
<td>-**</td>
<td>38,7%</td>
</tr>
</tbody>
</table>

Bei allen Studien liegt die Übereinstimmung zwischen klinischem und pathologischem Stadium unter 60%. Die Genauigkeit der durchgeführten Studie liegt mit 38,7% unterhalb des Durchschnittswertes der anderen Studien mit 44,4%. Dies kann damit erklärt werden, dass die oben genannten Arbeiten alle Tumorstadien miteinschlossen. Somit auch die initialen Stadien I und II für die bekannt ist, dass eine höhere Genauigkeit im klinischen Staging vorliegt.
Eindrücklich ist, dass die Genauigkeit des Stagings im Stadium IIIA mit 33,6% deutlich unterhalb des Wertes (44,4%) aller anderen Stadien liegt. Eine Ausnahme ist die Arbeit von Bülzebruck et al.: Die Genauigkeit des Stagings im Stadium IIIA liegt höher als bei allen UICC-Stadien zusammen.

Der Tatsache, dass das Staging im Stadium IIIA weniger exakt ist als in den anderen UICC-Stadien, kommt eine besondere Bedeutung zu. Das Stadium IIIA umfasst sowohl operable, als auch nicht-operable Tumorentitäten, so dass das korrekte klinische Staging besonders entscheidend für die Wahl der Therapiemodalität ist.

Neben der Genauigkeit des klinischen Stagings wurde ebenso untersucht, bei wie viel Prozent der Fälle eine Unterschätzung beziehungsweise Überschätzung des klinischen Stagings auftrat.

Eine Überschätzung des klinischen Stadiums fand in 40,8% für den T-Status und das UICC-Stadium statt, für den N-Status fiel dieser Wert etwas geringer aus (38,7%). Eine Unterschätzung des klinischen Stagings fand wesentlich seltener statt. Der T- und N-Status, sowie das UICC-Stadium wurden in 20,4% im klinischen Staging unterschätzt.

Aus dem oben genannten kann geschlussfolgert werden, dass die faktische Tumorgröße beziehungsweise die Tumorausbreitung häufig geringer ist als in der Bildgebung und weiteren präoperativen Untersuchungen angenommen wird.
4.5 Sensitivität, Spezifität, positiv-prädiktiver und negativ-prädiktiver Wert der klinischen Staginguntersuchungen

Die präoperativen Untersuchungsmethoden weisen bei der Beurteilung des Lymphknotenbefalls vor allem eine niedrige Sensitivität auf, in der N2 Stadium ist auch die Spezifität mit 35,7% als niedrig einzustufen.

Bei der Beurteilung der N1-Situation konnten die Studie zeigen, dass die Sensitivität 18,1% und die Spezifität 89,4% beträgt. Für die N2 Situation betrug die Sensitivität 66,6% und die Spezifität 35,7%. Gerade zur Beurteilung der Lymphknoten sind klinische Staginguntersuchungen auf Grund ihrer niedrigen Sensitivität und Spezifität nicht exakt genug.

Für die Tumorgröße T4 ergab sich zwar eine hohe Spezifität von 80,9% und ein hoher negativ prädiktiver Wert von 87,1%, dennoch lag die Sensitivität bei gerade einmal 28,5% und die klinische Übereinstimmung des Primärtumors war nur in 38,7% der Fälle korrekt.

In der Literatur wird für das PET-CT, eine Untersuchung, die bei der Mehrzahl unserer Patienten (42/49 Patienten) durchgeführt wurde, eine Sensitivität von 84% bis zu 93% und eine Spezifität von 80,6% bis 95% für alle Tumorstadien angegeben (Lee et al. 2007), (Antoch et al. 2003), (Vansteenkiste et al. 1998b). Gerade in der N1-Situation und dem Vorliegen eines T4 Tumors liegt der Wert deutlich unterhalb der Sensitivität der PET-CT Untersuchung. Für die N2-Situation liegt die Spezifität unserer Auswertung mit 35,7% unter der Spezifität der PET-CT Untersuchung für alle Tumorstadien. Auch der positiv prädiktive Wert in der N1/N2-Situation und dem T4 Tumor ist niedrig.

4.6 Überlebenszeitanalyse

kurative Therapie nicht mehr möglich und die 5-JÜR liegt bei 5% im Stadium IIIB und 1% im Stadium IV (Spira et al. 2004).

Vergleicht man die 5-JÜR der vorliegenden Arbeit mit anderen Studien, so ist die 5-JÜR der anderen Studien geringer. In der Studie von Van Rems et al. hatten die Patienten mit NSCLC im Stadium IIA eine 5-JÜR von 19%; bei Pfannschmidt et al. zeigte sich eine 5-JÜR von 35,8% und bei Goya et al. lag sie bei 29,3%.

4.7 Schlussfolgerung

Im Zweifelsfall sollten mehr invasive Stagingmethoden oder Probethorakotomien eingesetzt werden, um potentiellen operablen Patienten nicht die kurative Operation vorzuenthalten.

Es besteht die Möglichkeit, dass fälschlicherweise die reale Tumorgröße und –ausbreitung im klinischen Staging überschätzt wird. Genau dies zeigt sich in unserer Studie: 40,8% der Patienten werden im klinischen Staging überschätzt; wesentlich seltener kommt es zu einer Unterschätzung. Eventuell sollten Patienten in zweifelhaften Situationen einer Operation unterzogen werden um ihnen nicht die einzig kurative Therapieoption, die Resektion, vorzuenthalten.

Zukünftige Arbeiten sollten sich mit der Genauigkeit und der Bedeutung von invasiven Stagingmethoden (EBUS-TBNS, EUS-FNA, Videothorakoskopie) in fortgeschrittenen Tumorstadien befassen, damit operable von nicht operablen Patienten besser unterschieden werden können. Um so auch NSCLC Patienten in fortgeschrittenen Stadien die richtige Therapiemethode zukommen lassen zu können.
5 Zusammenfassung

Aus der Datenbank der Universität Ulm konnten 49 Patienten gefunden werden, die die Auswahlkriterien unsere Studie erfüllten. Histologisch handelte es sich beim Primärtumor um Adenokarzinome (53%), Platteneptelkarzinome (41%) und andere histologische Subtypen (6%) des nicht-kleinzelligen Bronchialkarzinoms. Das präoperative klinische Staging umfasste Computertomographie, PET-CT, Bronchoskopie und Mediastinoskopie. Die häufigste angewandte OP-Methode war mit 57% die Lobektomie, gefolgt von der Pneumektomie (29%). Das klinische Staging war für UICC, Tumor (T)- und Lymphknoten (N)-Stadium mit dem pathologischen Staging in 38,7%, 38,7% und 40,8% übereinstimmend. Die Tumorausbreitung wurde im klinischen Staging häufiger überschätzt als unterschätzt (40,8% vs. 20,4%).

Bezüglich der Tumorausbreitung im Stadium T4 lag im klinischen Staging eine Sensitivität von 28,5%, eine Spezifität von 80,9% und ein negativ prädiktiver Wert von 87,1% vor.
Was den Befall der N2 Lymphknoten angeht, fanden wir eine Sensitivität von 66,6% und eine Spezifität von 35,7%. Positiv und negativ prädiktiver Wert lagen bei N2 Beteiligung bei 43,7% und 58,8%.

Trotz multimodaler, präoperativer, nicht-invasiver und invasiver Untersuchungstechniken ist die Genauigkeit des klinischen Stagings gering. Insbesondere in fortgeschrittenen Tumorstadien, wie dem Stadium IIIA, zeigen sich insuffiziente Ergebnisse. Weniger als die Hälfte der fortgeschrittenen Tumore stimmen im klinischen und pathologischen Staging überein.

Deshalb sollten im Zweifelsfall mehr invasive Stagingmethoden oder Probethorakotomien eingesetzt beziehungsweise durchgeführt werden, um potentiell operablen Patienten nicht die kurative Operation vorzuenthalten.
6 Literaturverzeichnis

86. Statistisches Bundesamt W 2: Gesundheit Todesursachen in Deutschland. 2010-last update. Available:

Danksagung

7 Danksagung

An erster Stelle möchte ich mich bei Herrn PD Dr. med B. Mühling bedanken für die Überlassung des Themas und die außergewöhnlich gute Betreuung.

Für die Hilfe bei der statistischen Auswertung möchte ich mich bei Herrn Prof. Dr. R. Muche und dem Institut für Epidemiologie und Biometrie bedanken.

Der allergrößte Dank gebührt meiner Familie und Freunden für die Unterstützung, den Halt und das Vertrauen das ihr mir immer gegeben habt.
Lebenslauf aus Gründen des Datenschutzes entfernt.