Self-Aligning and Flexible Dielectric Waveguide Plug for MMICs at G-Band

Martin Geiger, Martin Hitzler, Winfried Mayer, and Christian Waldschmidt
Self-Aligning and Flexible Dielectric Waveguide Plug for MMICs at G-Band

Martin Geiger, Student Member, IEEE, Martin Hitzler, Member, IEEE, Winfried Mayer, Senior Member, IEEE, and Christian Waldschmidt, Senior Member, IEEE

Abstract—The packaging technology for transitions to dielectric waveguides in the frequency range above 100 GHz is complex, must be highly precise, and the waveguides are usually permanently connected. This paper presents a transition from an MMIC to a flexible dielectric waveguide at G-Band (140 GHz to 220 GHz), which is self-aligning and thus reduces the requirements for packaging accuracy. Furthermore, the transition is mechanically decoupled to avoid mechanical stress to the MMIC and to reconnect it arbitrarily often. A patch radiator on a quartz glass carrier is excited by a coupler on the MMIC. It feeds the HE_{11} mode into a rigid, high-permittivity dielectric dome, which increases the coupling efficiency. The flexible dielectric waveguide is placed above the dome and fixed with Rohacell half shells. The minimum insertion loss measured with a BEOL MMIC is 3.0 dB at 168 GHz.

Index Terms—dielectric waveguide, mechanical decoupling, MMIC, MMIC to dielectric waveguide transition, self-alignment.

I. INTRODUCTION

Large bandwidths and low-cost SiGe monolithic microwave integrated circuits (MMIC) make the frequency range above 100 GHz attractive for both communication and radar. With flexible, low-loss dielectric waveguide interconnects, mm-wave signals can be transmitted over long distances for board-to-board links [1] or to feed remote antennas [2], [3]. This opens up new fields of applications.

For this reason, several transitions from an MMIC to a dielectric waveguide have already been proposed in the literature for communication links [4]–[10]. Some transitions are based on resonant structures like dielectric resonators [4] or patches [5] to feed the dielectric waveguide. Another transition excites a wave in the dielectric waveguide with a half-mode taper [11], [12]. Due to the non-static scenario, a flexible dielectric waveguide are different. Due to the non-static scenario, a flexible dielectric waveguide increases the transition robustness and allows to reconnect MMIC and waveguide several times. This can be realized by radiating into the dielectric waveguide [11], [12], with metallic waveguide adapters [13], or additional transitions to the PCB [14]. However, all approaches increase the insertion loss from the MMIC to the dielectric waveguide compared to the previously mentioned transitions.

For applications with a signal transmission over several meters, the requirements for the transition and the dielectric waveguide are different. Due to the non-static scenario, a flexible dielectric waveguide made of Teflon or high-density polyethylene (HDPE) with a relative permittivity around 2.2 is necessary. Furthermore, a mechanical decoupling of MMIC and waveguide increases the transition robustness and allows to reconnect MMIC and waveguide several times. This can be realized by radiating into the dielectric waveguide [11], [12], with metallic waveguide adapters [13], or additional transitions to the PCB [14]. However, all approaches increase the insertion loss from the MMIC to the dielectric waveguide compared to the previously mentioned transitions.

This paper presents a mechanically decoupled transition from an MMIC to a flexible dielectric waveguide using a high-permittivity dielectric waveguide adapter to increase the coupling efficiency. Furthermore, the flexibility of the HDPE waveguide is utilized to align itself. The transition was designed and measured for a SiGe back end of line (BEOL) MMIC. In the following section, the transition principle is explained. In Section III the measurements results are shown and compared to state-of-the-art designs.

II. TRANSITION PRINCIPLE

The transition from the SiO_2 back end (\varepsilon_r = 4, \tan \delta = 0.02, h_{BEOL} = 10 \mu m) to the flexible dielectric waveguide is composed of several components as shown in Fig. 1a.
Fig. 2. Simulated S-Parameters for the transition from the back end to the flexible waveguide without holder (|s21| (-----), |s11| (-----)) and with holder (|s21| (-----), |s11| (-----)).

In order to decouple the field efficiently of the back end, a $\lambda/2$-patch on a 100μm thick quartz glass carrier ($\varepsilon_r = 3.8$, $\tan\delta = 0.001$) is placed above a shortened $\lambda/4$-patch, which is fed by a microstrip line on the back end [15], (cf. Fig. 3b). The length l_{patch} of the $\lambda/2$-patch determines the center frequency f_0 of the transition. With a back end area of only $170\mu m \times 220\mu m = 0.01\lambda_0^2$ the transition has a very compact design, with λ_0 corresponding to the wavelength at f_0.

On top of the $\lambda/4$-patch a round dielectric waveguide dome with the diameter $d_{\text{PEEK}} = 780\mu m$ is placed, in which the HE$_{11}$ mode is excited. By increasing the permittivity of the dielectric waveguide, the field is decoupled more efficiently of the back end. The dielectric waveguide is made of polyetheretherketone (PEEK), since it is very simple to machine. Furthermore, the permittivity of $\varepsilon_r = 3.2$ ($\tan\delta = 0.006$) is high enough to make the decoupling of the back end more efficient compared to HDPE ($\varepsilon_r = 2.25$, $\tan\delta = 3.1 \cdot 10^{-4}$).

A self-aligning transition is used to connect the flexible and mechanically decoupled dielectric waveguide. The round waveguide dome is spherically rounded with a hemisphere. The counterpart in the flexible waveguide has a spherical opening with a radius r_{op} of $490\mu m$, aligning itself in case of misalignment or mechanical stress. The hemispherical shapes serve not only for mechanical alignment but also for improved impedance matching. In order to avoid reflections at the interface, the wave impedance of the two dielectric waveguides is chosen to be very similar. The permittivity as well as the dimensions are the adjustable parameters. The flexible waveguide is made of HDPE and has a rectangular cross-section of $648\mu m \times 1295\mu m$. A tapering to a cross-section of $950\mu m \times 1295\mu m$ decreases the insertion loss of the transition and avoids additional radiation losses. Full wave simulations of the transition from the back end to the flexible waveguide result in a minimum simulated insertion loss of $3.1\mathrm{dB}$ with a $10\mathrm{dB}$ return loss bandwidth of $34\mathrm{GHz}$ as shown in Fig. 2. The losses are mainly caused by dielectric and metallic losses on the MMIC (70%) and only 23% by radiation losses.

The requirements for the positioning precision of the quartz glass are high and it should be positioned with $50\mu m$ accuracy. The pluggable interface between the dome and the flexible front end, however, is very robust against positioning tolerances due to the non-resonant coupling. A vertical displacement of $0.1\mathrm{mm}$ results in a larger air gap between the waveguide and the dome and reduces the transmission coefficient by $0.3\mathrm{dB}$. Displacements in horizontal direction or slight tilting are even less critical.

Therefore, a Rohacell shell ($\varepsilon_r = 1.05$, $\tan\delta = 0.005$) is used to fix the flexible waveguide $1\mathrm{cm}$ above the BEOL MMIC. It disturbs the field distribution minimally and fits positively on a pin-shaped profile on the dielectric waveguide surface as shown in Fig. 1b. The pins fix the waveguide mechanically, but cause additional radiation losses. This increases the insertion loss by approximately $0.9\mathrm{dB}$ (Fig. 2) on average. The transition dimensions are listed in Table I.

Table I

<table>
<thead>
<tr>
<th>w_{patch}</th>
<th>l_{patch}</th>
<th>h_{PEEK}</th>
<th>w_{dome}</th>
<th>h_p</th>
<th>w_p</th>
<th>d_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>360</td>
<td>1000</td>
<td>950</td>
<td>750</td>
<td>1000</td>
<td>1750</td>
</tr>
</tbody>
</table>

III. TRANSITION ASSEMBLY AND MEASUREMENTS

A BEOL MMIC was fabricated to characterize the transition. The quartz glass was metallized with a $2\mu m$ thick aluminum layer in a clean room process and glued on the BEOL MMIC with epoxy adhesive. The PEEK waveguide was fixed on top with epoxy adhesive. The flexible waveguide was clamped with two Rohacell half shells and aligned over the PEEK waveguide using an aluminum mounting plate and screws. The realized transition is shown in Fig. 3.

For the S-parameter measurements the BEOL MMIC was contacted with a probe, and the flexible dielectric waveguide was connected via a mode converter with a metallic waveguide. The S-parameters of the transition are determined by de-embedding the measured losses of the microstrip line ($6.9\mathrm{dB} \pm 1\mathrm{dB/mm}$), the mode converter ($0.5\mathrm{dB}$) [2], and the flexible dielectric waveguide ($0.3\mathrm{dB}$), since the calibration
TABLE II
COMPARISON OF STATE-OF-THE-ART DESIGNS FOR TRANSITIONS FROM CHIP TO DIELECTRIC WAVEGUIDE.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Transition Design</th>
<th>Area (λ_0^2)</th>
<th>Substrate, Height</th>
<th>Frequency (GHz) [rel. Bandwidth]</th>
<th>Permittivity Waveguide</th>
<th>IL (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4]</td>
<td>self-aligned resonator</td>
<td>0.028</td>
<td>BCB ($\varepsilon_r = 2.55$), 24 μm</td>
<td>100 [7.2]</td>
<td>9.8</td>
<td>2.15</td>
</tr>
<tr>
<td>[5]</td>
<td>open-ended microstrip feed</td>
<td>0.07</td>
<td>BCB, 20 μm</td>
<td>175 [12]</td>
<td>11.9</td>
<td>3.2</td>
</tr>
<tr>
<td>[6]</td>
<td>half-mode SIW</td>
<td>0.189</td>
<td>SiO$_2$, 10 μm</td>
<td>275 [18.2]</td>
<td>6.15</td>
<td>4.8</td>
</tr>
<tr>
<td>[11]</td>
<td>bow-tie dipole with metal reflector</td>
<td>0.07</td>
<td>SiO$_2$, 10 μm</td>
<td>120 [15]</td>
<td>2.1</td>
<td>11</td>
</tr>
<tr>
<td>[14]</td>
<td>SIW on PCB fed by flip-chip</td>
<td>-</td>
<td>Megtron6 ($\varepsilon_r = 3.6$), 300um</td>
<td>120 [25]</td>
<td>2.1</td>
<td>3.4</td>
</tr>
<tr>
<td>This work</td>
<td>shortened λ/4-patch feeding a stacked design</td>
<td>0.01</td>
<td>SiO$_2$, 10 μm</td>
<td>160 [18.8]</td>
<td>2.25</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Fig. 4. Measured and simulated transmission coefficient $|s_{21}|$.

Fig. 5. Measured and simulated reflection coefficients $|s_{11}|$ (towards probe) and $|s_{22}|$ (towards rectangular waveguide).

The comparison of the proposed transition to state-of-the-art designs must not only consider the insertion loss (IL) and chip area, but also the mechanical construction, material properties, and the realization of the BEOL MMIC. Several transitions are listed in Table II and subdivided into rigid dielectric waveguides with high permittivity [4]–[6] and flexible, low-permittivity waveguides [11], [14].

The presented transition has the lowest area consumption with a very small guard area (patch size plus 20 μm) around the patch and is fabricated with a commercial available IC process like [6], [11], [14]. With a relative bandwidth of 18.8% the transition is very broadband. The measured insertion loss of 3 dB is comparatively low. Transitions with comparable or lower insertion losses use higher low-loss substrates and high-permittivity dielectric waveguides, which improves the transition performance. Furthermore, the presented transition is mechanically decoupled, can be reconnected several times, and is even self-aligning, reducing the requirements concerning the positioning accuracy.

V. CONCLUSION

In this paper, a transition from MMIC to a flexible dielectric waveguide in the G-Band is presented. The transition is mechanically decoupled and aligns itself in case of slight positioning tolerances.

The transition is based on a stacked design made out of several components. A resonant $\lambda/2$-patch, excited by the MMIC, feeds the fundamental HE$_{11}$ mode into a rigid dielectric waveguide. By rounding the rigid waveguide end spherically, the flexible waveguide can be aligned with the corresponding counterpart above it. Rohacell half shells are used to fix the flexible waveguide. The minimum measured insertion loss without the Rohacell holders is 3 dB at 168 GHz. The transition is matched better than 10 dB over a bandwidth of 30 GHz.
REFERENCES

