Universitätsklinikum Ulm
Klinik für Anästhesiologie
Ärztlicher Direktor: Prof. Dr. med. Dr. h. c. Michael Georgieff
Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung (APV)
Sektionsleiter: Prof. Dr. med. Dr. h. c. Peter Radermacher

Die kardiale Funktion bei Mäusen unter Suspended Animation mit H₂S

DISSERTATION

Zur Erlangung des Doktorgrades der Medizin (Dr. med.) der Medizinischen Fakultät der Universität Ulm

vorgelegt von Benedikt Steif aus Augsburg

2012
Amtierender Dekan: Prof. Dr. Thomas Wirth

1. Berichterstatter: Prof. Dr. Dr. Peter Radermacher

2. Berichterstatter: Prof. Dr. Wolfgang König

Tag der Promotion: 11.07.2013
Gewidmet meinem

geliebten Bruder Christian
Inhaltsverzeichnis

Abkürzungsverzeichnis ... V

1 Einleitung ... 1
 1.1 H₂S – Schwefelwasserstoff ... 1
 1.2 Wirkung von H₂S .. 2
 1.2.1 DNA-Strangbrüche ... 3
 1.3 Suspended animation ... 4
 1.3.1 Suspended animation-ähnliche Zustände durch H₂S ... 4
 1.4 Zielsetzung der Arbeit .. 6

2 Material und Methoden ... 7
 2.1 Verwendete Geräte und Materialien .. 7
 2.1.1 Operationsmaterialien ... 7
 2.1.2 Operations- und Laborgeräte .. 7
 2.1.3 Pipetten ... 8
 2.1.4 Chemikalien, Reagenzien .. 8
 2.1.5 Medien, Standartlösungen und Puffer für den Comet Assay ... 9
 2.1.6 Sonstige Verbrauchsmaterialien .. 9
 2.1.7 Software .. 10
 2.1.8 Versuchstiere .. 10
 2.2 Der Versuchsablauf am Kleintiermodell .. 11
 2.2.1 Versuchsaufbau ... 11
 2.2.2 Die sham-Operation .. 12
 2.2.3 Intensivmedizinisches Monitoring und physiologische Messungen 13
 2.3 Hämodynamische Messung und linksventrikuläre Funktion ... 14
 2.3.1 Hämodynamik-Messung ... 14
 2.3.2 Technik des Konduktanz-Katheters ... 15
 2.3.3 Aufzeichnung der Hämodynamik ... 16
 2.4 Comet Assay der Kardiomyozyten ... 19
 2.4.1 Methodischer Ablauf des Comet Assays ... 19
 2.4.2 Herstellung der Agarose beschichteten Objektträger .. 19
 2.4.3 Präparation und Lyse der Kardiomyozyten ... 20
 2.4.4 Alkalidenaturierung und anschließende Elektrophorese ... 21
 2.4.5 Anfärbung der DNA und fluoreszenzmikroskopische Auswertung 22
 2.5 Statistische Auswertung ... 24

3 Ergebnisse ... 25
 3.1 Allgemeine Anmerkungen ... 25
 3.2 Hämodynamik und linksventrikuläre Funktion .. 25
 3.3 Comet Assay der Kardiomyozyten ... 32

4 Diskussion ... 33
 4.1 Das Studienmodell ... 33
 4.2 Die Hämodynamik .. 34
 4.3 Effekte einer Allgemeinanästhesie .. 36
 4.4 Der Comet Assay ... 38
 4.5 Grenzen der Studie .. 40
 4.6 Schlussfolgerung .. 41

5 Zusammenfassung .. 43

6 Literaturverzeichnis .. 45

7 Danksagung .. 50

8 Lebenslauf ... 51
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>A.</td>
<td>Arteria (Arterie)</td>
</tr>
<tr>
<td>AAT</td>
<td>Aspartataminotransferase</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>AU</td>
<td>Arbitrary Units (willkürliche Einheit)</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CBS</td>
<td>Cystathione-β-Syntethase</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>CO</td>
<td>Kohlenmonoxid</td>
</tr>
<tr>
<td>CSE</td>
<td>Cystathione-γ-Lyase</td>
</tr>
<tr>
<td>Cys</td>
<td>Cystein</td>
</tr>
<tr>
<td>d. h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleinacid (DNS - Desoxyribonucleinsäure)</td>
</tr>
<tr>
<td>dP/dt<sub>max</sub></td>
<td>linksventrikuläre Druckanstiegsgeschwindigkeit</td>
</tr>
<tr>
<td>dP/dt<sub>min</sub></td>
<td>linksventrikuläre Druckabfallsgeschwindigkeit</td>
</tr>
<tr>
<td>Ea</td>
<td>Nachlast</td>
</tr>
<tr>
<td>EDPVR</td>
<td>Enddiastolisches-Druck-Volumen-Verhältnis</td>
</tr>
<tr>
<td>EF</td>
<td>Ejektionsfraktion</td>
</tr>
<tr>
<td>ERK</td>
<td>Extrazelluläre regulierte Kinase</td>
</tr>
<tr>
<td>ESPVR</td>
<td>Endsystolisches-Druck-Volumen-Verhältnis</td>
</tr>
<tr>
<td>et al.</td>
<td>et altera (und die Anderen)</td>
</tr>
<tr>
<td>F</td>
<td>Franc/French (Größenangabe für Katheter)</td>
</tr>
<tr>
<td>FiO₂</td>
<td>Sauerstofffluss</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>F/min</td>
<td>Frequenz/Minute</td>
</tr>
<tr>
<td>Fa.</td>
<td>Firma</td>
</tr>
<tr>
<td>G</td>
<td>Gauge (Größenangabe für Tuben und Venenverweilkügel)</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>ggf.</td>
<td>gegebenenfalls</td>
</tr>
<tr>
<td>GNMT</td>
<td>Glycin-N-Methyltransferase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathion</td>
</tr>
<tr>
<td>h</td>
<td>Stunden</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
<tr>
<td>HS⁻</td>
<td>Hydrogensulfid Anion</td>
</tr>
<tr>
<td>H₂S</td>
<td>Schwefelwasserstoff</td>
</tr>
<tr>
<td>HF</td>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>HZV</td>
<td>Herzzeitvolumen</td>
</tr>
<tr>
<td>K⁺</td>
<td>Kalium</td>
</tr>
<tr>
<td>Kₘₐₜₚ</td>
<td>Adenosintriphosphat abhängiger Kalium-kanal</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>i. v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactatdehydrogenase</td>
</tr>
<tr>
<td>LMP</td>
<td>low melting point (Niedriger Schmelzpunkt)</td>
</tr>
<tr>
<td>LV EDP</td>
<td>linksventrikulärer enddiastolischer Druck</td>
</tr>
<tr>
<td>LV EDV</td>
<td>linksventrikuläres enddiastolisches Volumen</td>
</tr>
<tr>
<td>LV ESP</td>
<td>linksventrikulärer endsystolischer Druck</td>
</tr>
<tr>
<td>LV ESV</td>
<td>linksventrikuläres endsystolisches Volumen</td>
</tr>
<tr>
<td>mA</td>
<td>milli-Ampère</td>
</tr>
<tr>
<td>MAP</td>
<td>mittlerer arterieller Druck</td>
</tr>
<tr>
<td>MAT</td>
<td>Methioninadenyltransferase</td>
</tr>
<tr>
<td>MEEO</td>
<td>medium-electro-endosmosis</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>µM</td>
<td>Mikromolar</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeter Quecksilbersäule</td>
</tr>
<tr>
<td>MPST</td>
<td>3-Mercaptopyruvat-Sulfur-Transferase</td>
</tr>
<tr>
<td>MZP</td>
<td>Messzeitpunkt</td>
</tr>
<tr>
<td>Na<sub>2</sub>EDTA</td>
<td>Dinatriumethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natronlauge</td>
</tr>
<tr>
<td>Na<sub>2</sub>S</td>
<td>Natriumsulfid</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NaHS</td>
<td>Natriumhydrogensulfid</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>p</td>
<td>Irrtumswahrscheinlichkeit</td>
</tr>
<tr>
<td>p38 MAP</td>
<td>p 38 Mitogenaktiviertes Protein</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat basierte Saline, Phosphat gepufferte Saline</td>
</tr>
<tr>
<td>pCO<sub>2</sub></td>
<td>Partialdruck des Kohlenstoffdioxid</td>
</tr>
<tr>
<td>PEEP</td>
<td>positive endexspiratory pressure (Positiver Endexspiratorischer Druck)</td>
</tr>
<tr>
<td>pH</td>
<td>pondus Hydrogenium</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million (Teile pro Million)</td>
</tr>
<tr>
<td>SCGE</td>
<td>Single Cell Gel Electrophoresis (Einzelzellgelelektrophorese)</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>S<sub>2</sub>-</td>
<td>Sulfid</td>
</tr>
<tr>
<td>s. c.</td>
<td>sub cutan (unter die Haut)</td>
</tr>
<tr>
<td>s. o.</td>
<td>siehe oben</td>
</tr>
<tr>
<td>s. u.</td>
<td>siehe unten</td>
</tr>
<tr>
<td>sup.</td>
<td>superior (oberhalb)</td>
</tr>
<tr>
<td>SV</td>
<td>Schlagvolumen</td>
</tr>
</tbody>
</table>
u. a. unter anderem
V Volt
V. Vena (Vene)
v. a. vor allem
vs. versus (gegenüber)
ZNS Zentrales Nervensystem
1 Einleitung

1.1 H$_2$S – Schwefelwasserstoff

H₂S gehört, ebenso wie CO und NO zu den sogenannten Gasotransmittern, die eine Gruppe sehr labiler biologischer Mediatoren darstellen. H₂S diffundiert frei durch Zellmembranen ohne hierbei spezifische Transporter zu nutzen.

1.2 Wirkung von H₂S

Es gibt jedoch widersprüchliche Aussagen über H₂S im Bezug auf seine Effekte: so werden in der Literatur einerseits zytoprotektive und andererseits zytotoxische Effekte beschrieben [32, 42, 50]. Den oben bereits angesprochenen vasodilatatorischen Effekt erreicht H₂S durch seine Fähigkeit ATP-abhängige K⁺ Kanäle (KₐTP) zu öffnen [43].

Des Weiteren konnten Yan et al. zeigen, dass H₂S in mikromolaren Konzentration in glatten Gefäßmuskelzellen von Ratten zu einem Schutz gegenüber Homocystein-induzierter Zelltoxizität führte und gleichzeitig eine geringere endogene Produktion von Wasserstoffperoxid zur Folge hatte. So wurde auch eine
Verbesserung des zytoprotektiven Effekts von N-Acetylcystein und Glutathion erzielt [53].

Elrod et al. konnten in einem Mausmodell zeigen, dass H$_2$S positiv auf Kardiomyozyten wirken kann. In einem Reperfusionsmodell konnten sie sowohl in vivo als auch in vitro nachweisen, dass sowohl exogenes als auch endogenes H$_2$S fähig war, ein Voranschreiten der Apoptose zu verhindern und so die myokardiale Infarktgröße limitieren konnte [13].

Andererseits konnten Yang et al. zeigen, dass H$_2$S ebenfalls in mikromolarer Konzentration bei menschlichen aortalen glatten Muskelzellen zu einer Kaspasenaktivierung führte und so DNA-Strangbrüche induzieren konnte, was einen apoptotischen Phänotyp zur Folge hatte. In ihrem Experiment zeigten sie, dass sowohl eine endogene Überproduktion, erreicht durch Überexpression der CSE, als auch exogen zugeführtes H$_2$S eine Veränderung verschiedener Zellregulationsmechanismen zur Folge hatte und Einfluss auf DNA-Reparaturmechanismen nahm. Die untersuchten Zellen zeigten neben den DNA-Strangbrüchen, weniger Wachstum und vermehrte Apoptose [54].

1.2.1 DNA-Strangbrüche

H$_2$S wirkt auch auf die Zellatmung. Indem es als Inhibitor der Cytochrom-C-Oxidase auftritt, kann H$_2$S die Zellatmung blockieren. H$_2$S reagiert hierbei mit dem Kupferzentrum der Cytochrom-C-Oxidase [19]. Diese Inhibierung wird als Mechanismus zur Regulation des zellulären Sauerstoffverbrauches durch H$_2$S
angesehen [25, 27]. Blackstone, Morrison und Roth sehen dies als einen möglichen Auslöser eines H₂S induzierten „suspended animation“-ähnlichen Zustandes [8], auf den im Folgenden eingegangen wird.

1.3 Suspended animation

1.3.1 Suspended animation-ähnliche Zustände durch H₂S

In einem Tierversuch mit Mäusen konnten Blackstone et al. zeigen, dass die Inhalation von H₂S in einer niedrigen Konzentration von 20 bis 80 ppm einen suspended animation-ähnlichen Zustand hervorrufen kann [8]. Interessant ist hierbei jedoch, dass Mäuse Tiere sind, die von Natur aus keinen Winterschlaf halten.

Die Gruppe um Blackstone stellte hierbei die Hypothese auf, dass H₂S durch die reversible Hemmung des Komplex IV der Atmungskette zu einer Reduzierung der metabolischen Rate und einer konsekutiven Absenkung der Körperkerntemperatur führe. Die Mäuse wurden einer Atmosphäre mit bis zu 80 ppm H₂S ausgesetzt. Nach sechs Stunden war ihre metabolische Rate um bis zu 90% vom Ausgangswert gefallen. Die Körperkerntemperatur war hierbei ebenfalls gefallen.
und die durchschnittliche Körperkerntemperatur der Mäuse betrug 15°C (Ausgangswert ca. 37°C) und lag dann bei 2°C über der Umgebungstemperatur (13°C). Nach Beendigung des Versuches erlangten die Mäuse unter Raumluft und Raumtemperatur wieder die Ausgangswerte ihrer metabolischen Rate und ihrer Körperkerntemperatur. In dem beschriebenen Versuch konnte ebenfalls eine lineare Beziehung zwischen der Konzentration von H₂S und der Körperkerntemperatur gezeigt werden, was zu der Annahme führt, dass die Effekte von H₂S dosisabhängig sind [8].

Die Gruppe um Volpato untersuchte in einem folgenden Experiment die kardiovaskulären Effekte von H₂S in einem Mausmodell [47]. Während die Mäuse hier H₂S (ebenfalls 80 ppm) bei einer Umgebungstemperatur von 27°C atmeten, fiel ihre Körperkerntemperatur bei einer Ausgangstemperatur von ca. 37°C ebenfalls wie im oben beschriebenen Versuch auf bis zu ca. 29°C ab. Im Gegensatz hierzu änderte sich die Körperkerntemperatur der Mäuse nicht, wenn sie H₂S bei 35°C Umgebungstemperatur atmeten. Ebenfalls konnte hierbei nachgewiesen werden, dass spontan eingeatmetes H₂S, egal ob bei 27°C oder 35°C Umgebungstemperatur, die Herzfrequenz innerhalb von zwei Stunden um die Hälfte reduzierte und solange auf diesem Niveau blieb wie die H₂S-Exposition andauerte. Der mittlere arterielle Blutdruck änderte sich bei 27°C Umgebungstemperatur nicht signifikant im Vergleich zu den Ausgangswerten. Bei 35°C waren die mittleren arteriellen Blutdrücke leicht höher im Vergleich zum Ausgangsniveau. Bei gleichbleibendem Schlagvolumen verminderte sich so das Herzzeitvolumen um bis zu 60% in beiden Gruppen [47].
1.4 Zielsetzung der Arbeit

Wie aus den Studien beider Gruppen hervorgeht, hat die H\textsubscript{2}S-Exposition einen Einfluss auf die Herzfunktion und Hämodynamik der Versuchstiere. Des Weiteren wurden, wie oben bereits beschrieben, für H\textsubscript{2}S widersprüchliche Aussagen im Bezug auf die Wirkung auf zellulärer Ebene gefunden. So ließen sich sowohl protektive wie auch toxische Effekte nachweisen. Einerseits führte Kaspasenaktivierung in menschlichen aortalen glatten Muskelzellen in vitro zu DNA-Strangbrüchen und so zu einem apoptotischen Phänotyp [54], andererseits konnte in Mäusen bei Reperfusion nach myokardialer Ischämie ein positiver Effekt durch Limitierung von Apoptose durch H\textsubscript{2}S gezeigt werden [13].

Sowohl die Ergebnisse beider Gruppen im Bezug auf die Hämodynamik, als auch die widersprüchlichen Aussagen über H\textsubscript{2}S und seine Wirkung auf einzelne Zellen und deren DNA, legen nahe die Effekte von H\textsubscript{2}S auf diesen beiden Ebenen genauer zu untersuchen.

Da die bisherigen Daten zu einer mit H\textsubscript{2}S induzierten suspended animation, wie auch die Angaben zur anti-/apoptotischen Wirkung aus Studien an wachen, spontan atmenden Mäusen stammten, wurde hier ein neues Versuchssetting mit anästhesierten Mäusen gewählt.

Im Rahmen dieser kontrollierten, randomisierten, prospektiven Studie sollten bei Mäusen folgende Fragen untersucht werden:

1. Erlaubt die Inhalation von H\textsubscript{2}S bei anästhesierten und beatmeten Versuchstieren die Induktion eines „suspended animation“-ähnlichen Zustandes ähnlich wie bei wachen Mäusen?

2. Ist die Inhalation von H\textsubscript{2}S auch bei anästhesierten und beatmeten Mäusen mit einer Aufrechterhaltung der linksventrikulären Funktion verbunden?

3. Reduziert die Inhalation von H\textsubscript{2}S die Entstehung von oxidativen DNA-Schäden in Kardiomyozyten?
2 Material und Methoden

2.1 Verwendete Geräte und Materialien

2.1.1 Operationsmaterialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller/Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamin</td>
<td>Ketavel®, Pharmacia & Upjohn, Erlangen</td>
</tr>
<tr>
<td>Midazolam</td>
<td>Dormicum®, Hoffmann-La Roche AG, Grenzach-Whyle</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Fentanyl-Janssen®, Janssen-Cilag, Neuss</td>
</tr>
<tr>
<td>Ringerlaktat</td>
<td>Ringerlösung Fresenius®, Fresenius Kabi, Erlangen</td>
</tr>
<tr>
<td>Glukose</td>
<td>Glucose 40 Fresenius®, Fresnius Kabi, Erlangen</td>
</tr>
<tr>
<td>Buprenorphin</td>
<td>Temgesic®, Boehringer, Mannheim</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>Forene®, Abbott, Wiesbaden</td>
</tr>
<tr>
<td>Ceftriaxon</td>
<td>Rocephin®, Hoffmann-LaRoche AG, Grenzach-Whyle</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Sobelin®, Pharmacia & Upjohn GmbH, Erlangen</td>
</tr>
<tr>
<td>Volumenersatzlösung</td>
<td>Hextend®, Abbott, Chicago, IL, USA</td>
</tr>
<tr>
<td>Noradrenalin</td>
<td>Arterenol® 25 ml, Sanofi-Aventis, Deutschland GmbH, Frankfurt</td>
</tr>
</tbody>
</table>

2.1.2 Operations- und Laborgeräte

<table>
<thead>
<tr>
<th>Geräte</th>
<th>Hersteller/Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmematte und -lampe</td>
<td>TKM-0902 Temperaturkontrolleur, FMI</td>
</tr>
<tr>
<td>Tierbeatmungsgerät</td>
<td>SAR-830/p, CWE, Ardmore, PA, USA</td>
</tr>
<tr>
<td>Perfusor</td>
<td>Syringe pump 11, Harvard Apparatus, Holliston, MA, USA</td>
</tr>
</tbody>
</table>
Mikromanometrie-Katheter 1,4 F
Millar Instruments, Houston, TX, USA

Hämodynamik-Analysesystem ARIA™1
Millar Instruments, Houston, TX, USA

Eismaschiene Scotsman AF 80 Frimont, Mailand, Italien

Elektrophoresekammer Sub-Cell GT Basic
Bio-Rad, Hercules, CA, USA

Heizblock Thermostat 5320 Eppendorf, Hamburg

Kühlschrank Glass Line Liebherr, Bulle, Schweiz

Mikroskop Olympus XY Olympus, Tokyo, Japan

Bosch Mikrowellenherd 842 C Robert Bosch GmbH, Gerlingen

2.1.3 Pipetten
Eppendorf Reference Eppendorf, Hamburg
Eppendorf Multipette (große) Eppendorf, Hamburg

2.1.4 Chemikalien, Reagenzien
DMSO Merck, Darmstadt
Ethanol Sigma-Aldrich, Steinheim
Ethidiumbromid Carl Roth, Karlsruhe
Gasgemisch Luft, H₂S, O₂ Westfalen AG Münster
LMP-Agarose Sigma-Aldrich, Steinheim
MEEO-Agarose Merck, Darmstadt
PBS-Puffer Invitrogen Cooperation, Paisley, Schottland
2.1.5 Medien, Standardlösungen und Puffer für den Comet Assay

Lyse-Stammlösung

NaCl: 2,5 M
Na₂EDTA: 100 mM
Tris-Base: 10 mM

Lysepufferlösung

Triton X-100: 42,5 mM in Lyse-Stammlösung
DMSO: 1,41 M in Lyse-Stammlösung

Alkali-Elektrophoresepuffer

NaOH: 300 mM
Na₂EDTA: 1 mM

Neutralisationspuffer

Tris-Base: 48,5 mg/ml

Färbelösung

Ethidiumbromid: 20 µg/ml

LMP-Agarose

LMP-Agarose: 5 mg/ml PBS

2.1.6 Sonstige Verbrauchsmaterialien

Adapter für Monovette Sarstedt, Nürmbrecht
Aluminiumfolie Melitta, Minden
Bechergläser Schott Glas, Mainz
Deckgläser Menzel-Gläser, Braunschweig
Einmalpasteurpipetten 3,5 ml Sarstedt, Nürmbrecht
Erlenmeyerkolben Schott Glas, Mainz
Glastrichter Schott Glas, Mainz
Micro Test Tubes 1,5 ml (Eppis) Eppendorf, Hamburg
Objektträger mit Mattrand Marienfeld, Lauda-Königshofen
Perfusor-Spritzen 50 ml Braun, Melsungen
Spritzen BD, Franklin Lakes, NJ, USA

2.1.7 Software
Comet Assay II 2.11 Perceptive Instruments, Haverhill, UK
Microsoft® Excel® 2008 für Mac Version 12.0 Microsoft, Redmond, WA, USA
Microsoft® Word 2008 für Mac Version 12.0.0 Microsoft, Redmond, WA, USA
Sigmastat 8.0 Systat Software Inc. (SSI), Richmond, CA, USA
Sigmaplot 2002 2.03 Systat Software Inc. (SSI), Richmond, CA, USA

2.1.8 Versuchstiere
Für die Studie wurden Mäuse (C57BI/6), männlichen Geschlechts verwendet. Ihr Alter lag zwischen 10 und 12 Wochen und sie hatten ein Körpergewicht von ca. 22-27g. Bei den Mäusen handelte es sich um eigens für Versuchszwecke im Tierforschungszentrum Oberberghof der Universität Ulm gezüchtete Tiere. Für die Versuchsreihe wurden insgesamt 38 Mäuse (C57BI/6) männlichen Geschlechts verwendet. Die Versuchstiere wurden nach dem Transfer vom Tierforschungszentrum Oberberghof der Universität Ulm zu den Räumlichkeiten der Versuchsdurchführung kontinuierlich betreut.
2.2 Der Versuchsablauf am Kleintiermodell

2.2.1 Versuchsaufbau

Alle Versuche wurden im Rahmen der Deutschen und Europäischen Richtlinien zum „Umgang mit Labortieren“ durchgeführt. Das Versuchsprotokoll wurde sowohl von dem Tierschutzbeauftragten der Universität Ulm als auch vom Regierungspräsidium Tübingen (Baden-Württemberg, Reg.-Nr. 887) genehmigt.

Zwischen dem ersten (sham- Operation) und zweiten Versuchsteil (Messphase) erhielten die Tiere freien Zugang zu Nahrung und Trinkwasser.

Es handelt sich um eine randomisierte, prospektive Studie. Insgesamt wurden die Versuchstiere in vier Gruppen unterteilt, die sich durch Körperkerntemperatur und Zusammensetzung des Beatmungsgemisches unterschieden. Die normothermen Gruppen wurden mittels Wärmematte und Wärmelampe konstant bei einer Körperkerntemperatur von 38°C gehalten. Bei den hypothermen Versuchsgruppen wurde nicht gegenreguliert und die Hypothermie durch die kombinierten Effekte von Narkose, Laparotomie, sowie Umgebungstemperatur erreicht. Je eine der Gruppen aus Normothermie und Hypothermie wurde nun als Kontrollgruppe behandelt und erhielt eine Beatmung mit einem FiO₂ von 50%. Die jeweils anderen erhielten zusätzlich zu ihrem FiO₂ von 50% 100 ppm H₂S.

Tabelle 1: Aufteilung der 4 Versuchsgruppen in je zwei Normo- und Hypotherme (in Grad Celsius) Versuchsgruppen sowie die Eigenschaften des Beatmungsgemisches. n ist die Anzahl der Versuchstiere je Gruppe.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Beatmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normotherme (38°C) Tiere (n=8)</td>
<td>Kontrollgruppe (FiO₂ 50%)</td>
</tr>
<tr>
<td>Hypotherme (27°C) Tiere (n=11)</td>
<td>Kontrollgruppe (FiO₂ 50%)</td>
</tr>
<tr>
<td>Normotherme (38°C) Tiere (n=8)</td>
<td>100 ppm H₂S</td>
</tr>
<tr>
<td>Hypotherme (27°C) Tiere (n=11)</td>
<td>100 ppm H₂S</td>
</tr>
</tbody>
</table>
2.2.2 Die sham-Operation

Den ersten Teil des Versuches stellte die sham-Operation dar. Die Versuchstiere, die in dieser Arbeit besprochen werden, dienten als Kontrolle für spätere Versuche.

Hierbei wurde folgendermaßen vorgegangen: Die Mäuse wurden aus ihrem Käfig genommen, gewogen und das Gewicht dokumentiert. Anschließend wurden sie in ein geschlossenes Glasgefäß gesetzt und durch Sevoflurane in Kurznarkose gesetzt. Es folgte eine intraperitoneale Injektion von 120 μg/g Ketamin, 1,25 μg/g Midazolam und 0,25 μg/g Fentanyl mit welcher die Anästhesie induziert wurde (Gesamtvolumen: ca. 180-250 μl). Anschließend wurde das Versuchstier auf einer Platte fixiert und die Körperkerntemperatur rektal gemessen, um über eine feedback-Regulation der Wärmematte und -lampe eine Konstanthaltung der Temperatur von 37-38°C zu gewährleisten. Um den perioperativen Flüssigkeitsverlust zu kompensieren und um die Gleichheit zu später folgenden Versuchstieren (siehe oben) zu gewährleisten, wurde 1 ml Ringerlaktat, in dem 4 μg/g Glukose gelöst waren, s.c. (Nacken) injiziert. Eine mediane Laparotomie über ca. 1 cm, mit Darstellung des Zökums wurde durchgeführt. Anschließend wurde die Bauchdecke durch eine 4,0 Naht in zwei Schritten geschlossen. Das Versuchstier wurde in den gewärmten Käfig zurückgegeben. Zur postoperativen Analgesie erhielten die Mäuse 1 μg/g Buprenorphin. Acht Stunden post OP erhielten die Tiere eine erneute s. c. Injektion von Ringerlaktat, Glucose und Buprenorphin, wie oben beschrieben, nachdem per Sevoflurane eine Kurznarkose

Abbildung 2: grafische Darstellung des Versuchs (h= Stunden; MZP= Messzeitpunkt)
eingeleitet worden war. Ebenfalls erhielten die Versuchstiere (analog zu den oben angesprochenen späteren Versuchstieren) 30 µg/g Rocephin und 30 µg/g Clindamycin, s.c. appliziert.

2.2.3 Intensivmedizinisches Monitoring und physiologische Messungen
Analog zum ersten Versuchsteil wurde per Sevofluran eine Kurznarkose erzielt. Anschließend wurde durch intraperitoneale Injektion von 120 µg/g Ketamin 1,25 µg/g Midazolam und 0,25 µg/g Fentanyl die Anästhesie induziert (Gesamtvolumen: ca. 180-250 µl). Die Körperkerntemperatur wurde rektal gemessen, um über eine feedback-Regulation der Wärmmatte und-lampe eine Konstanthaltung der Körperkerntemperatur in gewünschter Höhe (38°C/27°C) zu gewährleisten. Nun schloss sich eine Tracheotomie mit einer 20-G-Kanüle an. Die maschinelle Beatmung wurde mit einem speziellen Tierbeatmungsgerät (SAR-830/p) durchgeführt. Die Beatmung erfolgte volumenkontrolliert, drucklimitiert mit einem FiO₂ von 50%, PEEP 3 cm H₂O, bei einem Atemzugvolumen von 8-10 ml*kg⁻¹, titriert nach dem expiratorischen pCO₂. Wie oben beschrieben, wurden zwei Gruppen zusätzlich zum Atemgas mit 100 ppm H₂S beatmet. Die Vena jugularis externa dextra wurde zur i. v. Applikation der Narkose kanüliert. Hierzu wurde kontinuierlich 30 µg/g*h Ketamin und 0,3 µg/g*h Fentanyl zur Aufrechterhaltung der Anästhesie über automatische Perfusoren infundiert. Anschließend wurde die rechtsseitige A. carotis interna kanüliert und der 1,4 Fr. Linksherzminiaturkatheter in den linken Herzventrikel eingeführt um die myokardiale Hämodynamik zu erfassen. An die Kanülierung der A. carotis interna schloss sich die Relaparotomie an. Alle zwei Stunden wurden ca. 75 µl Blut aus der seitlichen Schwanzvene zur Evaluation des Säurenbasenstatus und Gaspartialdrücken mittels Blutgasanalysator entnommen. Zu jeder vollen Stunde nach Beginn der Instrumentierung schlossen sich die Messzeitpunkte an, für die die Hämodynamikparameter dokumentiert wurden und welche zur Auswertung herangezogen wurden.

wurden protokolliert. Die operativen Eingriffe erfolgten gänzlich unter sterilen Kautelen.

2.3 Hämodynamische Messung und linksventrikuläre Funktion

2.3.1 Hämodynamik-Messung

2.3.2 Technik des Konduktanz-Katheters

Durch die Formel:

\[V_i(t) = \frac{1}{\alpha} \langle pL^2 \rangle (G_i(t) - G_p) \]

2.3.3 Aufzeichnung der Hämodynamik

Als Maß für die systolische Funktion wurden folgende Werte aufgezeichnet:

Herzfrequenz (HF; F/min): Die Herzfrequenz gibt die Herzschläge pro Minute an und wird in Schläge pro Minute angegeben.

Mittlerer arterieller Blutdruck (MAD; mmHg): Der mittlere arterielle Blutdruck ist für die Organperfusion von entscheidender Bedeutung. Er kann mit folgender Formel berechnet werden: Diastole + 1/3(Systole-Diastole). Seine Einheit sind Millimeter Quecksilbersäule.

Schlagvolumen (SV; µl): Das Schlagvolumen ist das Volumen, das während der Ejektion aus dem Ventrikel in die Aorta ausgeworfen wird. Man errechnet es, indem man das enddiastolische Volumen vom endsystolischen Volumen subtrahiert. Angegeben wird das Schlagvolumen in µl.

Herzzeitvolumen (HZV; ml/min): Das Herzminutenvolumen ist das Volumen, das das Herz in einer Minute auswirft. Es errechnet sich aus der Herzfrequenz multipliziert mit dem Schlagvolumen. Es wird in mL pro Minute angegeben.

Ejektionsfraktion (EF; %): Die Ejektionsfraktion ist die prozentuale Auswurfsfraktion vom maximalen, also dem enddiastolischen Volumen des linken
Ventrikels. Es wird durch folgende Formel (maximales Volumen – minimales Volumen) / (maximales Volumen * 100) = EF errechnet und stellt einen in der Klinik wichtigen Faktor der systolischen Funktion dar. Dabei ist es wichtig zu wissen, dass die Ejektionsfraktion von der Vor- und Nachlast und somit vom Volumen abhängig ist. Angegeben wird die EF in %.

Linksventrikuläres endsystolisches Volumen (LV ESV; µl): das linksventrikuläre endsystolische Volumen ist das minimale Volumen, das nach dem Auswurf des Blutes im linken Ventrikel verbleibt. Es wird in µl angegeben.

Linksventrikulärer endsystolischer Druck (LV ESP; mmHg): Dies ist der maximale linksventrikuläre Druck und somit ein Parameter der systolischen Herzfunktion. Er wird in mmHg angegeben.

Linksventrikuläre Druckanstiegsgeschwindigkeit (dP/dt max; mmHg/s): Die linksventrikuläre Druckanstiegsgeschwindigkeit ist ein Parameter der systolischen Funktion und insbesondere der Kontraktilität des linken Ventrikels. Er wird mathematisch aus der ersten Ableitung der linksventrikulären Druckkurve errechnet und stellt daher die Geschwindigkeit der Veränderungen des Drucks im Ventrikel dar. Er wird durch die Einheit mmHg pro Sekunde beschrieben.

Ea (Nachlast; mmHg/µl): Die Nachlast errechnet sich aus dem LV ESP geteilt durch das Schlagvolumen, also Ea = LV ESP/SV. Entsprechend dieser Formel stellt sie den Widerstand der arteriellen Gefäße dar. Die Nachlast ist damit direkt an der Regulierung der kardialen Pumpfunktion beteiligt. Ihre Einheit wird in mmHg pro µl angegeben.

ESPVR (Endsystolisches-Druck-Volumen-Verhältnis; mmHg/µL): Das ESPVR gibt die Kontraktilität des linken Ventrikels wieder und wird aus der Steigung der linearen Gleichung durch die endsystolischen Druck-Volumen-Punkte errechnet. Es ist ein Vor- und Nachlast-unabhängiger Parameter. Es wird in mmHg pro µl angegeben.

Als Maß für die diastolische Funktion wurden folgende Werte aufgezeichnet:

Linksventrikulärer enddiastolischer Druck (LV EDP; mmHg): Der linksventrikuläre enddiastolische Druck ist einer der wichtigsten konventionellen Parameter der
diastolischen Funktion. Er ist der Druck, der am Ende der Diastole kurz vor Beginn der systolischen Kontraktion im linken Ventrikel gemessen wird.

Linksventrikuläres enddiastolisches Volumen (LV EDV; µl): Das linksventrikuläre enddiastolische Volumen ist das maximale Volumen an Blut im linken Ventrikel kurz vor Beginn der Systole. Es wird in µl angegeben.

Linksventrikuläre Druckabfallsgeschwindigkeit (dP/dt min; mmHg/s): die minimale Druckabfallsgeschwindigkeit ist ein Parameter der frühen diastolischen Relaxation. Sie wird analog zur maximalen Druckanstiegs geschwindigkeit aus der 1. Ableitung der Druckkurve errechnet und daher in mmHg pro s angegeben.

EDPVR (Enddiastolisches-Druck-Volumen-Verhältnis; mmHg/µl): Dieser Parameter gibt die intrinsische Steifigkeit des Ventrikels während der Diastole wieder. Man erhält ihn durch die Bildung einer linearen oder exponentiellen Funktion durch die enddiastolischen Druck-Volumen-Kurven. Die Steigung oder exponentielle Steilheit dient als Wert für das EDPVR. Im Mausmodell findet vor allem die exponentielle Funktion Anwendung, da sich das EDPVR so genauer ausdrücken lässt. Es wird in mmHg pro µl angegeben.
2.4 Comet Assay der Kardiomyozyten

2.4.1 Methodischer Ablauf des Comet Assays

Eine besonders geeignete Methode um DNA-Schäden auf Ebene einzelner Zellen zu charakterisieren, stellt der Comet Assay dar [40]. Zum Nachweis von DNA-Strangbrüchen und alkalilabilen Stellen wurde in der hier vorliegenden Arbeit die alkalische Version des Comet Assays verwendet (Speit und Hartmann).

![Schema des Comet Assays](image)

Abbildung 4: schematischer Ablauf des Comet Assays (Einzelzell-Gelelektrophorese in der alkalischen Version (verändert nach Speit und Hartmann). LMP-Agarose: low melting point Agarose

2.4.2 Herstellung der Agarose beschichteten Objekträger

Zum Einsatz kamen Objekträger mit Mattrand, bei denen die Oberseite durch eine Bleistiftmarkierung definiert wurde. Nachdem die Objekträger mit 70% Ethanol gereinigt worden waren und dieser getrocknet war, wurden sie in 1,5%iger MEEO-Agarose (mediumelectroendoosmosis) eingetaucht. Die Agarose wurde wie folgt hergestellt: je 1,5 g MEEO-Agarose wurde in 100 ml PBS-Puffer in einem Erlenmeyerkolben in der Mikrowelle zweimal sprudeln aufgekocht und anschließend in einem Becher mit temperierten Wasser auf 60°C abgekühlt.

Die Objekträger (etwa 100 Stück je 100 ml vorbereiteter MEEO-Agarose) wurden einzeln, mit dem klaren Ende voran in die MEEO-Agarose eingetaucht, wobei das Beschriftungsfeld etwa bis zur Mitte benetzt wurde, um so eine bessere Haftung
der MEEO-Agarose sicherzustellen. Nach Abwischen der Unterseite wurden die Objekträger zur Trocknung auf Ablageplatten gelegt und konnten dann über mehrere Monate hinweg bei Raumtemperatur aufbewahrt werden.

2.4.3 Präparation und Lyse der Kardiomyozyten

Die zur Untersuchung der Kardiomyozyten benötigten LMP-Agarose-Aliquote wurden in Eppendorf Micro-Test-Tubes (Eppis) vorbereitet. Jeweils 100 mg LMP-Agarose wurden hierfür in 20 ml PBS zweimal aufgekocht und in Aliquoten zu 125 µl in die Eppis pipettiert. Diese Aliquote konnten mehrere Monate im Kühlschrank bei 4°C gelagert werden.

Zur Vorbereitung für die Probenentnahme wurden die Eppis zur Verflüssigung der Agarose im Wasserbad aufgekocht und anschließend bis zur Organentnahme im Heizblock auf die gewünschten 37°C temperiert. Nach der terminalen Blutentnahme wurde das Herz entnommen und ein kleines Stück in einer Petrischale mit 0,5 ml 20m EDTA 1xPBS auf Eis mit Hilfe von zwei spitzen Pinzetten weiter zerkleinert. Diese Suspension wurde mit Hilfe einer Pipette in ein Reagenzglas mit 0,5 ml 20m EDTA 1xPBS übertragen, in welchem die Zerkleinerung mit einem Potterhomogenisator fortgeführt wurde. Von dieser Suspension wurden 5 µl in die 37°C warme LMP-Agarose pipettiert, vermischt und gleichmäßig auf die präparierten Objekträger aufgetragen. Zum Ausgelieren der Agarose wurden diese mit einem Deckglas versehen und für zwei Minuten bei 4°C in den Kühlschrank gelegt. Die Deckgläser wurden im rechten Winkel zur späteren Migrationsrichtung der DNA-Fragmente im elektrischen Feld von den Objekträgern abgezogen, um eventuell dabei entstehende Artefakte als solche zu erkennen und aus der Auswertung ausschließen zu können. Die so behandelten Objekträger wurden für einen Zeitraum von mindestens einer Stunde, maximal jedoch nicht länger als 48 Stunden, in eine lichtgeschützte Küvette mit 4°C kalter, gebrauchsfertiger Lysepufferlösung gestellt. Hierbei werden sämtliche Zellmembranen abgebaut, die DNA wird freigesetzt, während sie aber noch in der Form des ehemaligen Zellkerns in der Agarose fixiert bleibt. Um eine zusätzliche DNA-Schädigung zu verhindern, wurde die Lyse unter Lichtabschluss durchgeführt. Die Herstellung der Lysepufferlösung erfolgte folgendermaßen: zu 89 ml Lyse- Stammlösung wurde 1 ml Triton X-100 und 10 ml DMSO zugegeben und vermischt. Vor Gebrauch wurde sie für mindestens eine Stunde bei 4°C
gekühlt. Bei der Verarbeitungszeit der Kardiomyozyten wurde darauf geachtet, dass 10 Minuten nicht überschritten wurden, um so eine Reparatur möglicher DNA-Schäden zu vermeiden.

2.4.4 Alkalidenaturierung und anschließende Elektrophorese

Im Anschluss an die Alkalibehandlung wurde eine 40-minütige Elektrophorese im selben Puffer durchgeführt. Um einen stetigen Stromfluss von 300 mA bei einer angelegten Spannung von 25 V zu gewährleisten, wurde die Füllhöhe durch die Zugabe oder Abpipettieren von Puffer reguliert.
Abbildung 5: Elektrophoresekammer mit Spannungsquelle

2.4.5 Anfärbung der DNA und fluoreszenzmikroskopische Auswertung

Zur Anfärbung der DNA wurden die Proben unmittelbar vor der Auswertung mit 50 µl Ethidiumbromidfärbelösung (20 µg/ml) überschichtet und mit einem Deckglas versehen. Das Fluoreszenzmikroskop arbeitet bei einer 400-fachen Vergrößerung mit einer Anregungswellenlänge von 515 nm – 560 nm und einem Sperrfilter bei

Die Auswertung erfolgte unter Verblindung des Experimentators, der während der Auswertung der Objektträger nicht über die Gruppenzugehörigkeit der Tiere informiert war.
2.5 Statistische Auswertung

Zur Berechnung und statistischen Auswertung kam das Programm Sigmastat® in der Version 2.03 zur Anwendung.
3 Ergebnisse

3.1 Allgemeine Anmerkungen

In der warmen Gruppe der mit H₂S beatmeten Tiere verstarben einige Tiere vor dem Messzeitpunkt 4, sodass zur Auswertung der Wert von Messzeitpunkt 3 in allen Gruppen herangezogen wurde.

3.2 Hämodynamik und linksventrikuläre Funktion

Die Ausgangswerte der hämodynamischen Parameter und die der Körperkerntemperatur waren in allen vier Gruppen vergleichbar (Tabelle 2).

Die Hypothermie wurde innerhalb von 30 Minuten nach der Erholungsphase erreicht. Die Flüssigkeitssubstitution war während der Hypothermie signifikant geringer, wobei zu sagen ist, dass H₂S den Flüssigkeitsbedarf nicht beeinflusste (Normotherme (38 °C) Gruppe: 0,95 (0,92; 1,10), Hypotherme (27 °C) Gruppe: 0,50 (0,42; 0,58) ml·h⁻¹, p < 0,001; Normotherme (38 °C) Gruppe mit H₂S: 0,84 (0,73; 0,97), Hypotherme (27 °C) Gruppe mit H₂S: 0,58 (0,53; 0,65) ml·h⁻¹, p = 0,004).
<table>
<thead>
<tr>
<th></th>
<th>Kontrolle/38°C</th>
<th>H₂S/38°C</th>
<th>Kontrolle/27°C</th>
<th>H₂S/27°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlerer arterieller Druck [mm Hg]</td>
<td>71 (65;73)</td>
<td>75 (70;85)</td>
<td>72 (63;77)</td>
<td>69 (61;78)</td>
</tr>
<tr>
<td>Herzzeitvolumen [ml x min⁻¹]</td>
<td>9,7 (5,5;14,8)</td>
<td>8,4 (5,8;16,9)</td>
<td>9,3 (3,7;16,2)</td>
<td>6,8 (4,9;13,7)</td>
</tr>
<tr>
<td>Herzfrequenz [min⁻¹]</td>
<td>351 (321;449)</td>
<td>372 (338;411)</td>
<td>355 (300;392)</td>
<td>358 (310;414)</td>
</tr>
<tr>
<td>Schlagvolumen [µl]</td>
<td>27 (17;49)</td>
<td>27 (17;43)</td>
<td>27 (12;46)</td>
<td>25 (17;38)</td>
</tr>
<tr>
<td>Ejektionsfraktion [%]</td>
<td>49 (41;57)</td>
<td>44 (38;48)</td>
<td>48 (41;55)</td>
<td>48 (37;61)</td>
</tr>
<tr>
<td>Enddiastolisches Volumen [µl]</td>
<td>51 (28;86)</td>
<td>59 (38;87)</td>
<td>54 (24;82)</td>
<td>41 (20;73)</td>
</tr>
<tr>
<td>Endsystolisches Volumen [µl]</td>
<td>31 (20;51)</td>
<td>36 (27;49)</td>
<td>34 (17;45)</td>
<td>29 (11;37)</td>
</tr>
<tr>
<td>Enddiastolischer Druck [mmHg]</td>
<td>18 (11;22)</td>
<td>15 (12;18)</td>
<td>16 (14;16)</td>
<td>17 (14;19)</td>
</tr>
<tr>
<td>Endsystolischer Druck [mmHg]</td>
<td>91 (87;95)</td>
<td>91 (85;99)</td>
<td>94 (84;103)</td>
<td>84 (75;101)</td>
</tr>
<tr>
<td>dP/dt max [mm Hg x s⁻¹]</td>
<td>6479 (6208;6846)</td>
<td>7277 (6671;8187)</td>
<td>6615 (5554;7740)</td>
<td>5953 (4947;7341)</td>
</tr>
<tr>
<td>dP/dt min [mm Hg x s⁻¹]</td>
<td>-5610 (-6096;-5123)</td>
<td>-6480 (-8000;-5857)</td>
<td>-5865 (-7118;-5474)</td>
<td>-5298 (-6735;-4035)</td>
</tr>
</tbody>
</table>

Inhalieres H₂S beeinflusste weder Herzfrequenz noch Blutdruck in der Normothermie (Abbildung 6 und 7). Im Gegensatz hierzu senkte Hypothermie sowohl Herzschlag als auch Blutdruck signifikant, unabhängig von der Anwesenheit von H₂S. Da das Schlagvolumen in allen Gruppen ähnlich war...
(Abbildung 8), rührte das verminderte Herzzeitvolumen (Abbildung 9) der Hypothermiegruppen ausschließlich von der verminderten Herzfrequenz her.

Abbildung 7: Effekt des inhalierten H$_2$S (100 ppm über drei Stunden) auf den Herzschlag (in Schlägen/Minute) bei Mäusen während Normo- (38 °C) und Hypothermie (27 °C). Alle Daten sind als Median (Quartilen) angegeben. n=8 während Normothermie und n=11 während Hypothermie. # p<0,05 vs. 38 °C Kontrolle
Abbildung 8: Effekt des inhalierten H_2S (100 ppm über drei Stunden) auf den mittleren arteriellen Blutdruck (in mmHg) bei Mäusen während Normo- (38 °C) und Hypothermie (27 °C). Alle Daten sind als Median (Quartilen) angegeben. $n=8$ während Normothermie und $n=11$ während Hypothermie. # $p<0,05$ vs. 38 °C Kontrolle

Abbildung 9: Effekt des inhalierten H_2S (100 ppm über drei Stunden) auf das Schlagvolumen (in µl) bei Mäusen während Normo- (38 °C) und Hypothermie (27 °C). Alle Daten sind als Median (Quartilen) angegeben. $n=8$ während Normothermie und $n=11$ während Hypothermie.
Abbildung 10: Effekt des inhalierten H₂S (100 ppm über drei Stunden) auf das Herzzeitvolumen (in ml x min⁻¹) bei Mäusen während Normo- (38 °C) und Hypothermie (27 °C). Alle Daten sind als Median (Quartilen) angegeben. n=8 während Normothermie und n=11 während Hypothermie. # p<0,05 vs. 38 °C Kontrolle

Die linksventrikuläre EF und der linksventrikuläre enddiastolische Druck blieben unverändert, während die verminderten Drücke in der Hypothermie mit verringerten dP/dtₘₐₓ und dP/dtₘᵋₜ einhergingen.

Tabelle 3: Effekt des inhalierten H₂S (100 ppm über drei Stunden) auf Linksherzparameter bei Mäusen während Normo- (38 °C) und Hypothermie (27 °C). Linksventrikuläre Druckanstiegs geschwindigkeit (dP/dtₘₐₓ) und linksventrikuläre Druckabfallsgeschwindigkeit (dP/dtₘᵋₜ) sind die maximale systolische Kontraktion und diastolisches Relaxation. Alle Daten sind als Median (Quartilen) angegeben. n=8 während Normothermie und n=11 während Hypothermie. # p<0,05 vs. Kontrolle/38 °C

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle/38 °C</th>
<th>H₂S/38 °C</th>
<th>Kontrolle/27 °C</th>
<th>H₂S/27 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>dP/dt max [mm Hg x s⁻¹]</td>
<td>6535 (6001;7054)</td>
<td>6176 (5769;6519)</td>
<td>2777 (2330;4077)</td>
<td>2505 (2226;5258)</td>
</tr>
<tr>
<td>dP/dt min [mm Hg x s⁻¹]</td>
<td>-5530 (-5266;-5713)</td>
<td>-4963 (-4843;-5298)</td>
<td>-1747 (-1516;-2976)</td>
<td>-1963 (-1587;-4181)</td>
</tr>
</tbody>
</table>
Abbildung 11: Effekt des inhalierten H₂S (100 ppm über drei Stunden) auf die Ejektionsfraktion des linken Ventrikels bei Mäusen während Normo- (38°C) und Hypothermie (27°C). Alle Daten sind als Median (Quatrilen) angegeben. n=8 während Normothermie und n=11 während Hypothermie.

Tabelle 4: Effekt des inhalierten H\textsubscript{2}S (100 ppm über drei Stunden) auf Linksherzparameter bei Mäusen während Normo- (38 °C) und Hypothermie (27 °C). Alle Daten sind als Median (Quartilen) angegeben. n=8 während Normothermie und n=11 während Hypothermie. * p<0,05 vs. 0/38 °C

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle/38 °C</th>
<th>H\textsubscript{2}S/38 °C</th>
<th>Kontrolle/27 °C</th>
<th>H\textsubscript{2}S/27 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linksventrikuläres enddiastolisches Volumen [µl]</td>
<td>50 (44;84)</td>
<td>67 (63;91)</td>
<td>60 (48;68)</td>
<td>53 (47;56)</td>
</tr>
<tr>
<td>Linksventrikuläres endsystolisches Volumen [µl]</td>
<td>40 (31;50)</td>
<td>49 (43;56)</td>
<td>38 (33;41)</td>
<td>37 (32;40)</td>
</tr>
<tr>
<td>Linksventrikulärer enddiastolischer Druck [mmHg]</td>
<td>16 (13;16)</td>
<td>15 (13;16)</td>
<td>15 (14;19)</td>
<td>15 (13;16)</td>
</tr>
<tr>
<td>Linksventrikulärer endsystolischer Druck [mmHg]</td>
<td>84 (81;88)</td>
<td>80 (79;82)</td>
<td>69 (67;73)</td>
<td>67 (64;72)</td>
</tr>
</tbody>
</table>

Abbildung 12: Linksventrikuläre Druck-Volumen-Kurven der Normo- (Dreiecke n=8 je Gruppe) und Hypothermie Mäuse (Vierecke n=11 je Gruppe) nach 3h ohne (Symbol offen) oder mit H\textsubscript{2}S (Symbol gefüllt) Beatmung. Die Linien stehen für die systolischen und diastolischen Elastanzlinien.
Abgesehen von den niedrigeren linksventrikulären endsystolischen Drücken der Mäuse während einer Hypothermie, präsentierten sich die vier Gruppen mit ähnlichen Verläufen der systolischen und diastolischen Elastanz.

3.3 Comet Assay der Kardiomyozyten

Der oxidative Schaden der DNA bei Kardiomyozyten war unabhängig von der Beatmung mit H₂S in der kalten Gruppe gleich der warmen Gruppe.

Die folgenden Boxplots stellen den oxidativen DNA-Schaden (Tailmoment im Comet Assay) der Kardiomyozyten dar.

4 Diskussion

Ziel dieser Arbeit war es, in einem klinisch relevanten Modell zu untersuchen, ob die Inhalation von H$_2$S bei anästhesierten und beatmeten Mäusen ähnlich wie bei wachen, spontan atmenden Mäusen zu einem „suspended animation“-ähnlichen Zustand führen kann. Außerdem sollte die Studie Aufschluss geben, ob eine H$_2$S-Inhalation ebenfalls mit einer Aufrechterhaltung der linksventrikulären Funktion verbunden ist. Ein besonderes Augenmerk lag hierbei darauf, ob H$_2$S einen zusätzlichen Einfluss auf die kardiale Funktion während einer Hypothermie hat.

Des Weiteren sollten die Auswirkungen der H$_2$S-Inhalation auf Einzelzellebene untersucht werden, genauer ob durch H$_2$S eine Protektion der DNA der Kardiomyozyten erreicht werden konnte oder ob diese durch H$_2$S-induzierten oxidativen Stress geschädigt wurde.

Zum Einsatz kamen hierbei einerseits der Linksherzkatheter zur kardialen Funktionsdiagnostik, sowie der Comet Assay zum Nachweis oxidativen Stresses auf Einzelzellebene.

Die Hauptergebnisse lassen sich wie folgt zusammenfassen:

- Hypothermie per se führte zu einem Abfall des Herzminutenvolumens, sowie zu einem verminderten mittleren arteriellen Blutdruck.

- Die H$_2$S-Inhalation per se führte nicht zu einem „suspended-animation“-ähnlichen Zustand.

- Inhaliertes H$_2$S führte unabhängig von der Körperkerntemperatur nicht zu einer weiteren Veränderung der Hämodynamik.

- Weder die Temperatur noch die Inhalation von H$_2$S beeinflusste den Grad der DNA-Schädigung.

4.1 Das Studienmodell

Die Maus war für diese Studie sehr gut geeignet, da sie durch ihre ca. 10-fach höhere metabolische Rate im Vergleich zum Menschen die Möglichkeit bietet unspezifische Effekte der Reduktion der Körperkerntemperatur per se von den spezifischen Wirkungen der Substanz H$_2$S zu unterscheiden. Außerdem ist das hier verwendete Studienmodell bereits seit längerem in der Sektion für

4.2 Die Hämodynamik

In der hier vorliegenden Studie beeinflusste weder die Hypothermie noch die Inhalation von H₂S das Schlagvolumen, die linksventrikuläre Ejektionsfraktion oder die endsystolischen und enddiastolischen Druck-Volumenverhältnisse. Diese Ergebnisse weisen auf eine unveränderte Kontraktilität des Herzens hin. Im Hinblick auf den Einfluss einer Hypothermie auf die Kontraktilität des Herzens steht diese Tatsache im Gegensatz zu bisher veröffentlichten Ergebnissen, bei denen sowohl Angaben über eine Steigerung, sowie eine Abschwächung der myokardialen Kontraktilität zu finden sind, wobei darauf hinzuweisen ist, dass hier in den meisten Studien nicht mit Mäusen gearbeitet wurde. So konnte bereits 1958 während einer Hypothermie bei Hunden ein Anstieg der Kontraktskraft des Myokards nachgewiesen werden [17]. Eine Gruppe um Weisser untersuchte den Einfluss einer milden Hypothermie (37 bis 31°C) auf menschliche Herzmuskelanteile und derer von Schweinen in vitro, sowie auf hämodynamische Parameter im Schwein in vivo. Sie konnten nachweisen, dass die Hypothermie die isometrische Kontraktilität bei den humanen in vitro Proben um 16% und in den Proben der Schweine um 9% steigern konnte. Ebenso konnten sie einen Anstieg der Kontraktilität in vivo nachweisen, wo sich das Minutenvolumen von 2,4 +/- 0,1 l/min auf 3,1 +/- 0,31 l/min, das Schlagvolumen von 21 +/- 1 auf 41 +/- 3 ml veränderte und dP/dt\text{max} um 8% anstieg, während die Herzfrequenz von 111 +/- 3 auf 73 +/- 1 pro Minute abfiel. Die Autoren beschrieben weiterhin, dass sie diesen positiv inotropen Effekt einer Hypothermie nachweisen konnten, obwohl es zu keinem Anstieg der intrazellulären Ca²⁺-Ströme oder einer erhöhten Ca²⁺-Konzentration des sarkoplasmatischen Retikulums kam [49]. Bei Kaninchen, Ratten und Igeln konnte ebenfalls eine gesteigerte myokardiale Kontraktilität in vitro während einer Hypothermie nachgewiesen werden. Jedoch waren hier wesentlich tiefere Temperaturen untersucht worden. So lagen die Maxima der
Kontraktionskraft bei Kaninchen bei 20°C, für Ratten bei 15°C und bei Igeln sogar bei 10°C [26].

Volpato et al. [47] untersuchten in ihrer Studie zwar Mäuse, aber nicht ausschließlich eine Hypothermie. Sie berichteten, dass die Inhalation von H_2S in wachen, spontan atmenden, normothermen Mäusen zu einer Verringerung der Herzfrequenz, sowie zu einem verminderten Herzzeitvolumen führte. Im Gegensatz zu diesen Ergebnissen von Volpato et al. hatte H_2S unabhängig von
der Körperkerntemperatur in unserem Experiment keinen Einfluss auf die Systemhämodynamik oder die linksventrikuläre Herzfunktion. Einen entscheidenden Faktor könnte hierbei das gewählte Versuchssetting mit Vollnarkose und maschineller Beatmung eingenommen haben. Sprung et al. beschäftigten sich in einer Studie mit der Kontraktilität und dem Fluss von Ca2+ Ionen in caninen Purkinjefasern [41]. Sie griffen hierbei auf vorliegende Daten zurück, die zeigten, dass eine Hypothermie eine Steigerung der Kontraktilität von Papillarmuskeln bewirkte [17, 26, 28]. Sprung et al. konnten nachweisen, dass Halothan und Isofluran durch eine Herabsetzung der myofibrillären Ca2+-Sensitivität den kontraktilitätssteigernden Effekt einer Hypothermie aufheben konnten [41]. Zwar wurde in der hier vorliegenden Arbeit, während der Messphase nicht mit volatilen Anästhetika gearbeitet, dennoch könnte die kontinuierliche i. v. Substitution von Ketamin und Fentanyl einen vasodilatativen Effekt von H\textsubscript{2}S maskiert haben und somit auf die Systemhämodynamik und rückwirkend auf die linksventrikuläre Herzfunktion Einfluss genommen haben: während H\textsubscript{2}S ein bekannter Vasodilatator [37] ist, führt Ketamin durch eine periphere Wiederaufnahmehemmung von Katecholaminen zur Wirkungsverstärkung selbiger und so zu einem Anstieg der Herzfrequenz und des Blutdrucks.

4.3 Effekte einer Allgemeinanästhesie

Wie oben bereits erwähnt, handelt es sich bei dem hier gewählten Versuchssetting um ein noch nicht untersuchtes Verfahren, nämlich einer Vollnarkose mit maschineller Beatmung in Kombination mit H\textsubscript{2}S-Inhalation. Daher gilt es auch allgemein Effekte einer Anästhesie genauer zu betrachten. Während Blackstone et al. in ihrer Studie die Hypothese aufstellten, dass eine H\textsubscript{2}S-Inhalation zu einer Hypothermie führt [8], ist bei einer Vollnarkose mit maschineller Beatmung seit längerem bekannt, dass Mäuse aufgrund ihres hohen Körperoberfläche-zu-Masse-Verhältnisses während einer Anästhesie besonders anfällig für eine Hypothermie sind [44].

Allgemein wird die Temperatur hauptsächlich durch den Vasotonus der peripheren Gefäße reguliert: erhöhter peripherer Gefäßwiderstand führt zu einer geringeren Wärmeabgabe aus dem Körperkern an die Umgebung, während ein geringer peripherer Widerstand zu vermehrtem Wärmeverlust führt.

Eine Anästhesie greift in die Thermoregulierung des Körpers ein und kann die thermoregulatorischen Antworten des Körpers beeinträchtigen [38]. Sessler et al.

4.4 Der Comet Assay

Mögliche Fehlerquellen bei der Anwendung des Comet Assays können an verschiedenen Punkten auftreten. So kann es bei der Verarbeitung des Materials nach der Entnahme des Organs zu Verzögerungen kommen und die DNA-Reperaturmechanismen der Zelle könnten einsetzen und so mögliche Schäden beheben. Ebenso können bei der Elektrophorese die Ergebnisse verfälscht werden, indem durch zu hohen oder tiefen Füllstand der Elektrophoresekammer
ein falscher pH-Wert herrscht oder nicht stets der gleiche Strom fließen kann. Ein weiterer Fehler könnte bei der mikroskopischen Auswertung durch die Auswahl „falscher“ Kometen entstehen.

Das Tailmoment der vier untersuchten Gruppen lag ungefähr gleich bei ca. 0,4 was generell für eine nur schwach geschädigte DNA spricht. In der vorliegenden Studie konnte also nicht nachgewiesen werden, dass weder die Inhalation von \(\text{H}_2\text{S} \) noch die Hypothermie oder beide in Kombination zu einem protektiven Effekt für die DNA der Kardiomyozyten führte. Ebenso konnte aber auch keine Toxizität von \(\text{H}_2\text{S} \) nachgewiesen werden.

Der Effekt einer Substanz, in der vorliegenden Studie \(\text{H}_2\text{S} \), egal ob zytotoxischer oder zytoprotektiver Natur, ist stets dosisabhängig. In einer Studie konnte gezeigt werden, dass die Toxizität von \(\text{H}_2\text{S} \) abhängig von der Bildung von reaktiven Sauerstoffspezies ist. Dies gelang durch den Nachweis der Bildung von reaktiven Sauerstoffspezies \textit{in vitro} in Hepatozyten mit Hilfe der Dichlorfluoreszin-Methode. Ihre Bildung war hierbei abhängig von der Konzentration von \(\text{H}_2\text{S} \), das in Form von \(\text{NaHS} \) appliziert wurde. In dieser Studie von Eghbal et al. lagen die Konzentrationen, die zur toxischen Wirkung von \(\text{H}_2\text{S} \) führten im geringen millimolaren Bereich (\(\text{NaHS} 0,5 \text{ mM} \)) [12]. Eine Gruppe aus Singapore konnte in einer Studie im Rahmen der Parkinsonforschung nachweisen, dass \(\text{H}_2\text{S} \), ebenfalls in Form von \(\text{NaHS} \) appliziert, in mikromolaren Konzentrationen (1-100 \(\mu \text{M} \)) zu einem Schutz vor Zellschäden durch das Derriswurzelextrakt (Rotenon), einem häufig verwendetem Toxin zur \textit{in vivo} oder \textit{in vitro} Induktion von Morbus Parkinson-Modellen, führt [21]. In der hier vorliegenden Studie betrugen die freien Sulfidwerte im Blut zwischen 0,7 und 0,9 \(\mu \text{M} \), was darauf zurückschließen lässt, dass die \(\text{H}_2\text{S} \)-Gewebezonen keine möglicherweise zytotoxischen Bereiche erreichten und somit eher im Bereich der als protektiv angenommenen Konzentration [21] lagen. Dies deckt sich mit der Annahme, dass bei Ratten normale Herzgewebekonzentrationen von \(\text{H}_2\text{S} \) von 130 \(\mu \text{M} \) nachgewiesen werden konnten [30]. Im Gegensatz zu den Ergebnissen dieser Arbeit, einer nur geringen Schädigung der DNA, unabhängig von der \(\text{H}_2\text{S} \)-Behandlung, stehen Ergebnisse über die genotoxische Wirkung selbst bei geringen mikromolaren Konzentrationen von \(\text{H}_2\text{S} \), die mit derselben Methode, dem Comet Assay, nachgewiesen werden konnten. Während in diesem Experiment freie Sulfidwerte von bis zu 0,9 \(\mu \text{M} \) \(\text{H}_2\text{S} \)

4.5 Grenzen der Studie

In dieser Arbeit müssen auch Aspekte des Experimentes besprochen werden, die Teile der Auswertung hätten verbessern können. Ebenso sollte die klinische Übertragbarkeit auf Studien an anderen Spezies überprüft werden. In der vorliegenden Arbeit wurden nach der Organentnahme keine direkten Konzentrationsbestimmungen von H₂S in den Kardiomyozyten durchgeführt, da ein direkter Nachweis extrem schwierig zu führen ist. Es wurden freie Sulfidwerte im Blut nachgewiesen und anhand dieser Rückschlüsse auf die Gewebekonzentration gezogen. Der tatsächliche Wert könnte also in den Kardiomyozyten höher oder niedriger gewesen sein. Des Weiteren sollte man beachten, dass die gemessenen kardialen und hämodynamischen Werte bereits zu Beginn der Studie nicht im für Mäuse physiologischen Bereich lagen, sondern in allen Gruppen deutlich unter dem
Normalbereich. Wie oben bereits beschrieben, könnte dies am gewählten Versuchssetting liegen: während Volpato et al. in ihrer Studie mit wachen Mäusen arbeiteten und zu Versuchsbeginn physiologische Verhältnisse der Hämodynamik vorlagen [47], wurden die Tiere im hier vorliegenden Experiment narkotisiert und maschinell beatmet. Kass et al. stellten schon 1998 in Frage, ob solche nicht im physiologischen Bereich liegenden Ausgangswerte, die hauptsächlich bei Studien mit Vollnarkosen gemessen werden, tatsächlich Rückschlüsse auf den Einfluss der zu untersuchenden Größe zulassen oder ob sie das tatsächliche Ergebnis zu stark verzerren [23].

Ebenfalls sollte die Übertragbarkeit der Ergebnisse einer \(\text{H}_2\text{S} \)-induzierten Hypothermie, sowie die kardiale Beeinflussung durch \(\text{H}_2\text{S} \) auf größere Tierspezies überprüft werden. Ein solcher Beweis gelang für einen Hypothermie-induzierenden Effekt noch nicht [11], während es über den Einfluss auf die kardiale Funktion, sowie die Hämodynamik in der Literatur widersprüchliche Angaben gibt: während Osipov et al. in einer Studie an Schweinen keine hämodynamischen Veränderungen unter \(\text{H}_2\text{S} \)-Gabe nachweisen konnten [31], zeigten Derwall et al. bei Schafen einen durch periphere Vasodilatation induzierten starken Abfalls des mittleren arteriellen Blutdrucks [10].

Um die genotoxische Wirkung von \(\text{H}_2\text{S} \) bei einem \textit{in vivo} Modell genauer zu quantifizieren, müssten wie oben bereits angesprochen genaue Gewebekonzentrationen nach Versuchsende bestimmt werden. Ebenso müsste nachgewiesen werden, ob \(\text{H}_2\text{S} \) auch \textit{in vivo} bei Kompromittierung von DNA-Reperaturmechanismen zu DNA-Schädigung führen kann.

4.6 Schlussfolgerung

Bei Mäusen in Vollnarkose unter mechanischer Beatmung hat inhaledes \(\text{H}_2\text{S} \) unabhängig von der Körperkerntemperatur weder Einfluss auf die systemische Hämodynamik noch auf die kardiale Funktion. \(\text{H}_2\text{S} \) verstärkt also nicht die hämodynamischen Effekte einer vorsätzlichen Hypothermie.

Ebenso führte die Inhalation von \(\text{H}_2\text{S} \) zu keiner Organprotektion des Herzens, aber auch nicht zu einer nennenswerten Steigerung des oxidativen Stress’ für Kardiomyozyten.

Ob \(\text{H}_2\text{S} \) dennoch Einfluss auf die kardiale Funktion genommen hat, gilt es in weiteren Studien zu überprüfen.
Schwefelwasserstoff bleibt ein verfolgenswerter Ansatz, da in unserem Experiment keine negativen Folgen für die kardiale Funktion und die Hämodynamik nachgewiesen werden konnten und vorhergehende Studien einen positiven Effekt, sowie einen suspended animation-ähnlichen Zustand nachweisen konnten [8, 47].
5 Zusammenfassung

Es wird vermutet, dass die Fähigkeit von H₂S mit der Cytochrom C Oxidase zu interagieren und so den zellulären Sauerstoffverbrauch zu regulieren, den entscheidenden Faktor für die Induktion einer Suspended Animation darstellt. Allgemein versteht man unter einer Suspended Animation einen Winterschlaf-ähnlichen Zustand mit der Herabregulierung verschiedener Körperfunktionen wie z. B. der Atem- und Herzfrequenz, die es dem Organismus erleichtert extreme Belastungssituationen besser zu überleben. Zwei wegweisende Experimente zeigten, dass H₂S bei Mäusen, einer Spezies die normalerweise keinen Winterschlaf hält, eine Hypothermie und eine Suspended Animation induzierte, sowie deutlich Einfluss auf die kardiale Funktion nahm. Im Rahmen dieser Studie sollte nun untersucht werden, ob H₂S bei Mäusen unter Vollnarkose ähnliche Effekte auf die Körperkerntemperatur und die Hämodynamik wie bei wachen Mäusen hat und ob H₂S in diesem Setting auf die Kardiomyozyten protektiv oder genotoxisch wirkt.

Für die Durchführung der Studie wurden 38 Mäuse vom Typ C57Bl/6 männlichen Geschlechts verwendet. Sie wurden randomisiert in vier Gruppen unterteilt, von

Bei Mäusen in Vollnarkose unter maschineller Beatmung hat inhaledes H₂S, anders als bei wachen Mäusen, unabhängig von der Körperkerntemperatur weder Einfluss auf die systemische Hämodynamik noch auf die kardiale Funktion. In der vorliegenden Studie konnte nicht nachgewiesen werden, dass H₂S die hämodynamischen Effekte einer vorsätzlichen Hypothermie verstärkt. Ebenso führte die Inhalation von H₂S zu keiner Steigerung des oxidativen Stress' für Kardiomyozyten. Es konnte kein protektiver Effekt für H₂S an Kardiomyozyten nachgewiesen werden.
6 Literaturverzeichnis

7 Danksagung

Ein weiterer Dank geht an meine Betreuerin Frau Dr. Katja Wagner, die mir sehr geduldig immer wieder nützliche Hinweise gab und mir das wissenschaftliche Schreiben nahe brachte.

Natürlich möchte ich mich zum Schluss noch bei meinen lieben Eltern Brigitte und Johannes herzlich bedanken, die mir dieses Studium ermöglicht haben und mir stets eine Stütze waren. Sie gaben mir die nötigen Freiräume, hatten Verständnis für das was ich brauchte und für das was ich tat. Ohne sie wäre ich nicht so weit gekommen!

Vielen Dank!
8 Lebenslauf

Persönliche Daten
Name und Anschrift: Benedikt Steif, wohnhaft in Erlangen
Geburtsjahr: 1984
Geburtsort: Augsburg

Schulausbildung
1991 bis 1995 Anton-Höfer-Volksschule, Thannhausen
1995 bis 2004 Ringeisen-Gymnasiums der St. Josefskongregation, Ursberg
2001 3-monatiger Aufenthalt an der Blackwood High School (Adelaide, Australien) als Austauschschüler

Grundwehrdienst
2004 bis 2005 Grundwehrdienst im Gebirgssanitätsregiment Kempten und Bundeswehrkrankenhaus Ulm

Studium
2005 bis 2010 Studium der Humanmedizin, Universität Ulm
2010 bis 2011 Praktisches Jahr am Universitätsklinikum Ulm (Innere Medizin und Pädiatrie 50%), Spitalzentrum Biel (Chirurgie), Royal Children’s Hospital Melbourne (Pädiatrie 50%)

Dezember 2011 Staatsexamen Humanmedizin und Approbation als Arzt

Seit 1.10.2008 Stipendiat der Hanns-Seidel-Stiftung e. V.

Derzeit
Seit 1.03.2012 Assistenzarzt an der Klinik für Kinder und Jugendliche der Friedrich-Alexander-Universität Erlangen