Replikation des humanen Zytomegalievirus unter Immunsuppressiva und Ganciclovir in vitro

Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm

Daniela Vetter
Heidenheim an der Brenz

2011
Amtierender Dekan: Herr Prof. Dr. Thomas Wirth

1. Berichterstatter: Herr Prof. Dr. Thomas Mertens

2. Berichterstatter: Frau Prof. Dr. Barbara Spellerberg

Tag der Promotion: 08. Dezember 2011
1. Einleitung

1.1. Organtransplantation
1.2. Immunsuppressiva und opportunistische Infektionen
1.3. Immunsuppressive Therapie
 1.3.1. Proliferationshemmer: Mycophenolat mofetil (MMF)
 1.3.2. Cyclosporin A (CSA)
 1.3.3. Prednisolon
 1.3.4. Everolimus
 1.3.5. MAP-Kinase-Inhibitoren
1.4. Zytomegalievirus (CMV)
 1.4.1. Klassifkation
 1.4.2. Struktur und Replikation
 1.4.3. Pathogenese und Epidemiologie
 1.4.4. Klinisches Bild
 1.4.5. Diagnostik
 1.4.6. Fluoreszenzmarkierte Reporterviren (CMV-pp65 EYFP)
1.5. Ganciclovir
1.6. Ziele der Arbeit

2. Material und Methoden

2.1. Material
2.2. Methoden
 2.2.1. Zellkultur
 2.2.2. CMV-pp65 EYFP
 2.2.3. Focus-Reduktionstest mit fluoreszenzmarkierten CMV Mutanten (pp65-EYFP)
 2.2.4. Automatisierte Auswertung mit Fluorimeter
 2.2.5. Modulation der CMV Replikation durch GCV und Immunsuppressiva
 2.2.5.1 Ganciclovir
 2.2.5.2 Immunsuppressiva
 2.2.5.3 Kombination der Immunsuppressiva mit Ganciclovir
 2.2.6. Vitalitätstest
3. Ergebnisse...45
 3.1. Vorversuche ... 45
 3.1.1. Fokus-Reduktions-Test: Mikroskopische vs.
 automatisierte Auswertung 45
 3.1.2. Optimierung des Untersuchungszeitraums für die
 automatische Fluorimetrie 46
 3.2. Einfluss verschiedener Immunsuppressiva 48
 3.2.1. Zell-Zyklus-Inhibitor: Mycophenolsäure (MPA) 49
 3.2.2. Calcineurin-Inhibitor: Cyclosporin A 50
 3.2.3. Glukokortikoid: Decortin H 51
 3.2.4. mTOR-Inhibitor: Everolimus 53
 3.2.5. MAP-Kinase-Inhibitor: 3736 54
 3.2.6. MAP-Kinase-Inhibitor: 3830 56
 3.2.7. DMSO-Kontrollversuch 57
 3.3. Ergebnisse Vitalitätstest .. 58

4. Diskussion...63

5. Zusammenfassung..78

6. Literaturverzeichnis..80

7. Danksagung..89

8. Lebenslauf..90
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Abbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming units</td>
</tr>
<tr>
<td>CMV</td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td>CNI</td>
<td>Calcineurininhibitor</td>
</tr>
<tr>
<td>CSA</td>
<td>Cyclosporin A</td>
</tr>
<tr>
<td>CypA</td>
<td>Cyclophilin A</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>EBV</td>
<td>Ebstein-Barr-Virus</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>EYFP</td>
<td>enhanced yellow fluorescent protein</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetales Kälberserum</td>
</tr>
<tr>
<td>FI</td>
<td>Fluoreszenzintensität</td>
</tr>
<tr>
<td>FRT</td>
<td>Focus-Reduktionstest</td>
</tr>
<tr>
<td>GCV</td>
<td>Ganciclovir</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>HCMV</td>
<td>humanes Zytomegalievirus</td>
</tr>
<tr>
<td>HFF</td>
<td>human foreskin fibroblasts</td>
</tr>
<tr>
<td>HHV</td>
<td>Humanes Herpesvirus</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes-Simplex-Virus</td>
</tr>
<tr>
<td>HWZ</td>
<td>Halbwertszeit</td>
</tr>
<tr>
<td>IL-2</td>
<td>Interleukin 2</td>
</tr>
<tr>
<td>IMPDH</td>
<td>Inosine Monophosphat Dehydrogenase</td>
</tr>
<tr>
<td>IS</td>
<td>Immunsuppressivum</td>
</tr>
<tr>
<td>kD</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>NF-AT</td>
<td>Transkriptionsfaktor</td>
</tr>
</tbody>
</table>
NFkB
NFκB Transkriptionsfaktor

MAP-Kinase
Mitogenaktivierte Protein-Kinase

MEM
minimal essential medium

MKI
MAP-Kinase-Inhibitor

MMF
Mycophenolat mofetil

MOI
multiplicity of infection

MPA
Mycophenolic Acid

mTOR
mammalian Target of Rapamycin

PbE
Plaque bildende Einheiten, bezogen auf
Virusreplikation

PBS
phosphate-buffered saline

p.i.
post infectionem

Tab.
Tabelle

TNF
Tumornekrosefaktor

VZV
Varizella-Zoster-Virus
1. Einleitung

1.1. Organtransplantation

Schon sehr früh in der Geschichte der Medizin gab es erste Ansätze Gewebe und Organe, welche in ihrer Funktion unwiderruflich geschädigt waren, durch neue Spendergewebe zu ersetzen (s. Abb. 1).

Abb. 1: Die Heiligen Cosmas und Damian bei der allogen Transplantation eines Beines eines schwarzätierten Spenders auf einen Patienten mit weißer Hautfarbe (im Jahr 200 nach Christus, Syrien)

Obwohl der Transplantationsgedanke bereits in der Mythologie und Sagenwelt um 500 v. Ch. auftaucht und die ersten beschriebenen Fälle von Transplantationen im 17. Jahrhundert durchgeführt wurden, wurden längerfristige Erfolge erst im 20. Jahrhundert erzielt. Nach der ersten erfolgreichen Nieren-

Im Jahre 1960 wurden durch die Einführung des ersten Immunsuppressivums Thiopurin erste Transplantationen bei nicht verwandten Spendern und Empfängern mit unterschiedlichen Gewebemerkmalen begonnen. 1962 kam Azathioprin erstmals zum Einsatz.

1.2. Immunsuppressiva und opportunistische Infektionen

Die ersten Immunsuppressiva (z.B.: Azathioprin, Mycophenolat) waren in ihrer Kurzzeitwirkung sehr potent (Einjahresüberlebensrate des Organs Anfang der 1970 Jahre ca. 76 Prozent). Dennoch waren sie unspezifisch in ihrer Wirkweise, was gravierende Nebeneffekte mit sich brachte. Aus dem Gebrauch neuer immunsuppressiver Medikamente (z.B. Cyclosporin A) resultierte zunächst eine weitere Verbesserung der Einjahresüberlebensrate des Organs bis hin zu 90 Prozent (Frei, U. et al, 1992). Auch die Langzeitergebnisse in Bezug auf die Abstossungsreaktion wiesen bessere Ergebnisse auf. Zudem greifen die neuen Substanzen sehr viel spezifischer in den Organismus ein, was eine individuelle Behandlung jedes Patienten mit eigenem Risikoprofil zulässt. Durch diese Substanzen entstehen jedoch Nebenwirkungen, die sehr viel medikamentenspezifi-

Abb. 2: Risiko für wichtige opportunistische Infektionen nach Organ transplantation im zeitlichen Verlauf (Fishman, J. A. et al, 1998)
Auf die speziellen Nebenwirkungen eines jeden Immunsuppressivums wird in der später folgenden Einzelvorstellung der Medikamente eingegangen (Kapitel 1.3).

Das Auftreten dieser Nebenwirkungen (z.B. aufflammende opportunistische Infektionen) immunsuppressiver Substanzen hat gravierenden Einfluss auf den Transplantationserfolg, die Erhaltung des Transplantates sowie auf die Überlebenszeit des Transplantatempfängers.

Immunsuppressiva können an unterschiedlichen Ansatzpunkten in den Stoffwechsel der Immunzellen eingreifen (s. Abb. 3) (Halloran, P. F., 2004). Dabei werden wichtige Signaltransduktionswege in der Aktivierungskaskade von Lymphozyten inhibiert, so dass ein physiologischer Aufbau von Proteinen, Signalstoffen, Genen und letztendlich Immunzellen nicht möglich ist. Im Gegen-

In dieser Arbeit sollen die Interaktionen von Immunsuppressiva und von Ganciclovir in Bezug auf die CMV Replikation funktionell untersucht werden.

Aufgrund der gemeinsamen Interaktion mit den Signalwegen der Zielzellen sind für die verschiedenen Medikamentenkombinationen sowohl synergistische als auch antagonistische Wirkungen denkbar. Auch eine unveränderte Wirkung der kombinierten Substanzen ist, im Vergleich zur Wirkung in den Einzelansätzen, im Kombinationsversuch möglich.

1.3. Immunsuppressive Therapie

Im Folgenden sollen die im experimentellen Teil der Arbeit verwendeten immunsuppressiven Medikamente vorgestellt werden.

1.3.1. Proliferationshemmer: Mycophenolat mofetil (MMF)
[Cellcept®]

Geringen Einfluss scheint Mycophenolat auf das kardiovaskuläre System zu haben. Weder kardiovaskuläre Risiken, wie zum Beispiel Hypertonie, noch andere toxische Organschäden, insbesondere an der Niere, sind in der Literatur

Besonders effektiv ist der Einsatz von MMF in Kombination mit anderen Immunsuppressiva. Häufige Kombinationen bildet MMF mit Cyclosporin A und Tacrolimus oder Glukocortikoiden. Im klinischen Alltag findet MMF in folgender Dosierung Anwendung: Bei Nierentransplantation 1g zweimal täglich unter Zusatzmedikation von Cyclosporin A. Bei Herz- und Lebertransplantat-Empfängern wird eine Dosis von 1,5g zweimal täglich angestrebt.

Die Inzidenz an Nebenwirkungen hängt Studien zufolge eher von der Tagesdosis an MMF ab, als von pharmakokinetischen Parametern des MPA. Wie bei allen Arzneimitteln ist aber auch die Interpatientenvariabilität, die sich in Punkten wie zum Beispiel Alter, Geschlecht, Transplantattyp, genetischem Enzymangebot (hier insbesondere die Aktivität der IMPDH), etc. ausdrückt, maß

1.3.2. Cyclosporin A (CSA)

[Sandimmun®]

Infektionsrate per se, im Vergleich zu Immunsuppressiva aus anderen Wirkklassen, niedriger einzustufen ist (Ekberg, H. et al, 2007), (Ho, M., 2008).

Zur Verbesserung des Medikaments soll eine neue Mikroemulsion Neoral® mit Wirkstoff Cyclosporin A die Bioverfügbarkeit, die unter oraler Sandimmun-Therapie bei ca. 20-50 % liegt, verbessern und ebenso die pharmakodynamischen Effekte stabilisieren (Beauchesne, P. R. et al, 2007).

1.3.3. Prednisolon

[Decortin H®, Solu-Decortin®]

Prednisolon ist der Substanzgruppe der Glukokortikoide zugehörig, welche ihre Wirkung agonistisch an Glukokortikoidrezeptoren entfalten. Als Glukokortikoid-Receptor-Komplex hemmt das Arzneimittel, unter Bindung des Transkriptionsfaktors NF-κB, intranukleär die Transkription der Gene proinflammatorischer Proteine und verhindert so unter anderem die Bildung von IL-1. Somit greift Prednisolon an einem frühen Zeitpunkt der Protein-Synthese in die humorale und zelluläre Immunantwort ein, indem nicht nur Zytokine und Lymphokine, sondern auch die Zellzahlen an Monozyten, Mak-

Im Allgemeinen werden Glukokortikoide in einer Dosierung von 10-20mg/kg Körpergewicht (KG) als Einmalgabe am Tag der Transplantation verabreicht (Äquivalenzdosis für Decortin H). Anschließend findet eine Dosisreduktion von 1-2mg/kg KG auf 0,3mg/kg KG und Tag innerhalb eines Zeitraumes von drei Monaten statt. Die Erhaltungsdosis für die darauf folgenden drei Monate beträgt 0,15-0,2 mg/kg KG täglich und sollte der am niedrigsten noch wirksamen Dosis entsprechen. Bei Eintreten einer akuten Abstösungsreaktion werden dem Patienten intravenös 500–1000mg/Tag als Bolus über zwei bis drei Tage verabreicht. Im Drei-Tage-Rhythmus wird daraufhin die Dosis jeweils um 50% reduziert.

Aufgrund seiner zahlreichen Nebenwirkungen werden immer wieder steroidfreie Therapieprotokolle angedacht, welche auch bei selektionierten Patienten zur Anwendung kommen.

Dennoch sind Glukokortikoide unverändert geschätzte Immunsuppressiva, die auf vielfache, z.T. ungeklärte Mechanismen an den unterschiedlichsten Punkten in die Immunkaskade eingreifen und somit gerade in der Akutthera-

Weiteres Risiko bei steroidfreier Therapie ist das gehäufte Auftreten eines hepatorenalen Syndroms. Somit gilt auch in Zukunft gründlich abzuwägen ob Glukokortikoide in einem patientenspezifischen Therapieprotokoll erscheinen sollen oder nicht.

1.3.4. Everolimus

[Certican®]

Everolimus ist der Substanzklasse der mammilian Target of Rapamycin-Inhibitoren (mTOR-Inhibitoren), die seit Ende der 1990er als Immunsuppressiva eingeführt wurden, zugeordnet. Als ältester Vertreter und Muttersubstanz der Medikamentengruppe gehört auch Sirolimus den mTOR-Inhibitoren an. Sowohl Everolimus als auch Sirolimus bilden mit dem intrazellulären Rezeptor-Bindeprotein FK 12 (FKBP12) einen Komplex über welchen sie das Target of Rapamycin hemmen, ohne den Calcineurin-Weg zu beschreiten. Über diese mTOR- Kinase wird physiologischerweise ein Signalweg in Gang gesetzt, der dazu führt, dass Zytokine den Zellzyklus fast aller wachstumsfaktorabhängigen Zellen aktivieren. Unter Einsatz von mTOR-Inhibitoren kommt es somit zwar zur Bildung aktivierender Zytokine, durch die Störung in der Rezeptorbindung der Zytokine jedoch zur Hemmung des Zellzykluses im Übergang von der G1-

Wie alle Immunsuppressiva weisen auch die mTOR-Inhibitoren ein eigenes, weit gefächertes Nebenwirkungsspektrum auf. Häufige unerwünschte Arzneimittelwirkungen sind Hyperlipidämien, Thrombozytopenien und Wundheilungsstörungen sowie vermehrte Ulzerationen des Mundes, Diarrhoen, Hautläsionen und Pneumonien (Halloran, P. F., 2004).

Als neuere Wirksubstanz hat Everolimus mit vierundzwanzig Stunden eine wesentlich kürzere Halbwertszeit als Sirolimus (sechzig Stunden HWZ). Somit ist die Einnahme von 0,75mg per os zweimal täglich nötig, was den Einnahmeplan vor allem bei Kombinationstherapien mit CNI (Einnahme ebenfalls zweimal täglich) vereinfacht. Um Nebenwirkungen wie Wundheilungsstörungen weitgehend zu umgehen kommen mTOR- Inhibitoren erst vier bis sechs Wochen nach einer Transplantation oder einem anderen größeren operativen Eingriff zum Einsatz.

1.3.5. MAP-Kinase-Inhibitoren

a) ERK1/2, ERK 4/5 (extra-cellular signal-regulated kinase 1/2, 4/5)
b) JNK (C-Jun N-terminal-Kinase)
c) P38 (Subtypen α, β, γ und δ)

1.4. **Zytomegalie virus (CMV)**

1.4.1. **Klassifikation**

Die Familie der Herpesviridae beinhaltet neben CMV eine Reihe anderer humanpathogen relevanter Viren wie z.B. HSV, VZV, EBV, HHV-6, HHV-7 und HHV-8. Alle Viren dieser Familie gleichen sich in ihrem morphologischen Aufbau, der sich wie folgt darstellt: es handelt sich um umhüllte, ca. 150-200 nm große Viren, die allesamt eine lineare Doppelstrang-DNA besitzen und einen ikosaedrischen Kapsidtyp aufweisen.

1.4.2. **Struktur und Replikation**

Charakteristisch für den Aufbau des HCMV-Virus ist das 230kbp große doppelsträngige DNA-Genom, welches von einem 160 Kapsomere fassenden Nukleokapsid umhüllt wird (Murphy, E. et al, 2003). Die ca. 100nm große
DNA-Kapsid-Struktur wird von einem Tegument umgeben, welches aus einer Doppellipidmembran, sowie viralen Glycoproteinen besteht.

Die fertigen Nukleokapside werden im Golgi-Apparat der Wirtszelle mit Tegument versehen und schließlich als neues Virus aus der Zelle ausgeschleust.

1.4.3. Pathogenese und Epidemiologie

Der zytopathische Effekt von CMV entwickelt sich nur langsam. Als typisches Merkmal zeigt sich die Zytomegalievirusinfektion im histologischen Präparat mittels Einschlusskörperchen in Riesenzellen, welche aufgrund ihrer Form als Eulenaugenzellen bezeichnet werden (Ho, M., 2008), (Farber, S. et al, 1932).
1.4.4. Klinisches Bild

Aufgrund einer CMV-Reaktivierung während der Schwangerschaft kann es zwar ebenfalls zu einer perinatalen CMV-Infektion beim Neugeborenen kommen, im Gegensatz zur Primärinfektion der Mutter verlaufen jedoch anschließende Infektionen des Kindes meist asymptomatisch.

wäre die CMV-Enzephalitis, CMV-Retinitis bei HIV oder die Infektion der nephralen Mesangiumzellen, welche zur Transplantatabstossung führen kann, zu nennen (Singh, N., 2005). (Quelle: Lehrbuch Medizinische Mikrobiologie, Duale Reihe S.237ff)

1.4.5. Diagnostik

Klinisch ist die sensitive Detektion seropositiver CMV-Träger wichtig, um gezielt antiviral therapieren zu können, Nebenwirkungen gering zu halten und um keine resistenten CMV-Stämme zu züchten (Berger, A. et al, 2002).

Klinisch wird neben der Erhebung CMV-bedingter Symptome, zur quantitativen CMV-Detektion, die Real-Time-PCR eingesetzt, bei welcher zunächst

1.4.6. Fluoreszenzmarkierte Reporterviren (CMV- pp65 EYFP)

Die spätere Versuchsauswertung durch den Focus-Reduktionstest soll mittels eines fluoreszenzmarkierten CMV-Mutanten erleichtert werden.

Das Gen, welches für das fluoreszierende Protein kodiert wird hinter einen Promotor kloniert, so dass der hier eingesetzte CM-Virusstamm eine Fusion aus Phosphoprotein pp65 mit der Mutante EYFP enthält und nach Aktivierung und Virusreplikation grün fluoresziert (Straschewski, S. et al, 2010). Wissenschaftlich belegt ist, dass sich die modifizierten Viren wachstumskinetisch wie der Wildtyp verhalten.
1.5. Ganciclovir
[Cymeven®]

Ganciclovir (GCV) wird der Substanzklasse der antiviralen Medikamente zugeordnet.

Aufgrund des renalen Eliminationsmechanismus wird Ganciclovir im klinischen Alltag abhängig von der Kreatinin-Clearance aufdosiert. Dosierungen zwischen 500mg/d und 3000mg/d werden je nach Funktionsleistung der Nieren verabreicht.

1.6. Ziele der Arbeit

Ziel dieser Arbeit ist die funktionelle Untersuchung unterschiedlicher Immunsuppressiva und Ganciclovir in Bezug auf die Replikation von Zytomegalievirus (CMV). Antivirale Substanzen aber auch Immunsuppressiva greifen in die Signalwege der Wirtszenlen ein, d.h. auch Immunsuppressiva sind potentiell in der Lage die Virusreplikation zu beeinflussen. Darüber hinaus sind auch synergistische bzw. antagonistische Wirkungen bei Kombinationen denkbar. Dies wurde durch Kombinationsexperimente (Schachbretttitration) getestet.

Als antivirales Arzneimittel wurde Ganciclovir eingesetzt (Standardtherapie). Als immunsuppressive Substanzen kamen Immunsuppressiva mit sehr unterschiedlichen Ansatzpunkten im Zellstoffwechsel zum Einsatz (Mykophenolat mofetil, Cyclosporin A, Decortin H und Everolimus). Weiter soll die Wirkung neuer potentiell immunsuppressiv wirkender Medikamente wie die
der MAP-Kinase-Inhibitoren getestet werden (MAP-Kinase-Inhibitoren 3736 und 3830).

2. Material und Methoden

2.1. Material

2.1.1. Geräte

- Brutschränke
 Heraeus, Hanau
- Fluoreszenzmikroskop
 Axiovert 200Ze, Zeiss
- Lichtmikroskop
 Nikon TMS, Japan
- Sterile Bänke
 Heraeus, Hanau
- Vortex
 Bachofer, Reutlingen
- Zentrifuge
 Allegra™ 6 Centrifuge,
 Beckmann Coulter GMBH

2.1.2. Analysegeräte

- Fluoreszenzmikroskop
 Axiovert 200Ze, Zeiss
- Varian-Fluorimeter
 Cary Eclipse, Darmstadt, Germany

2.1.3. Analysesoftware

- Cell Quest V2.8. for MacOs
 Becton Dickinson, Bioscience
- Excel und Word
 Windows Vista 07
2.1.4. Viren

- CMV pp65 EYFP (1305) freundlicherweise zur Verfügung gestellt von der Arbeitsgruppe von Michael Winkler

2.1.5. Zellen

- HFF (Humann Foreskin Fibroblasts) Humane Vorhaut Fibroblasten. Die Zellen wurden vor Passage 15 verwendet.

2.1.6. Medikamente

- Mycophenolat mofetil Novartis, Basel
- Cyclosporin A Novartis, Basel
- Solu-Decortin H (Prednisolon-21-hydrogensuccinat, Natriumsalz) MERCK
- MAP-Kinase-Inhibitor No. 3736 C-A-I-R Bio Science GmbH
- MAP-Kinase-Inhibitor No. 3830 C-A-I-R Bio Science GmbH
- Everolimus (RAD) Novartis, Basel Pharma AG, Basel
- Ganciclovir Roche, Basel
2.1.7. Weitere Gebrauchsmaterialien

Mikrotiterplatten
- greiner bio-one Cellstar (durchsichtige Platten)
 tissue culture plate, 96 Wells
 flat bottom, with lid, sterile
 No. 655180
- NUNC, Nunclon Surface (weiße Platten)
 Cat. No. 136101

Weitere
- Reaktionsgefäße 1,5 und 2ml Eppendorf, Hamburg
- Blue Caps 10 und 40ml Falcon, Becton Dickinson
- Petrischalen Cellstar, greiner
- Einfach- und Mehrfachpipetten Eppendorf, Hamburg
 mit Spitzen
- Kulturschalen 175cm² Cellstar, greiner- one
 Tissue culture flasks, 175cm²

2.1.8. Kulturmedien, Puffer, Lösungen

Zellkulturmedium für HFF-Zellen
- MEM (minimal essential medium) GIBCO, NY, USA
- 10% Fetales Kälberserum GIBCO, NY, USA
- 1% Antibiotikum (100IU/ml Penicillin, 0,1mg/ml Streptomycin) Seromed
- 1% Glutamin Seromed
- 1% nicht essentielle Aminosäuren (NE-AS) Seromed

PBS (phosphate-buffered saline), pH 7,4
- 5mM MgCl₂
- 9mM CaCl₂
- 136mM NaCl
- 2,6mM KCl
- 8mM Na₂HPO₄
- 1,5mM KH₂PO₄

Für Vitalitätsversuch
- Cell Titer 96® AQueous One Solution Promega, USA
 Cell Proliferation Assay

EDTA
- PAA Laboratories GMBH

Trypsin
- PAA Laboratories GMBH

DMSO
- SERVA Electrophoresis
 GMBH Heidelberg
2.2. Methoden

2.2.1. Zellkultur

Als Zellgrundlage wurden adhäsant wachsende humane Vorhautfibroblasten (HFF= human foreskin fibroblast) verwendet. Die Zellen wurden vor Gebrauch über mehrere Passagen hinweg in Zellkulturflaschen (175 cm²) gesplittet und mit Nährmedium (MEM) versetzt. Das Wachstum der HFF-Zellen sollte so optimal gewährleistet sein.

100µl der Zellsuspension wurden zu jedem Well zugegeben. Aufgrund der Zellzahl in den Kulturflaschen und der in die Wells überführten Menge an Zellsuspension errechnete sich eine Zellzahl von 10.000 HFF-Zellen/Well.
Die Zellen sollten nun über Nacht im Brutschrank anwachsen. Versuchstag zwei begann mit der Überprüfung des Zellstatus der, in die Mikrotiterplatten überführten Zellen unter dem Lichtmikroskop. Wiesen diese ein vitales Erscheinungsbild auf, konnte mit der weiteren Versuchs vorbereitung (Schachbrett titration) fortgeführt werden (Kap. 2.2.5.1-2.2.5.3.).

2.2.2. CMV-pp65 EYFP

Die Isolation des CMV-EYFP erfolgte durch Infektion humaner Vorhaut fibroblasten in Zellkulturlaschen mit dem gewünschten Virusstamm. Nachdem eine 90 prozentige Infektion der Zellen stattgefunden hatte wurden diese mittels Trypsinzugab vom Flaschenboden abgelöst und mit 8ml MEM-Medium versetzt. 6ml wurden mittels Zentrifugation über 5 min. bei 1000 Umdrehungen pelletiert und dann in 3ml Einfrierlösung (1,8ml MEM, 900µl FCS und 300µl DMSO) bei -70°C eingefroren.

Die verbleibenden 2ml Lösung virusinfizierter Zellen wurden mit dem Inhalt von 2 x 175cm² HFF-Zellen und insgesamt 60ml MEM-Medium vermengt und anschließend auf 3 Zellkulturlaschen à 175cm² verteilt (je 20ml des Materials). Die Zellkulturlaschen wurden bis zur Zellyse kultiviert. Der Überstand wurde regelmäßig abpipettiert.

Die folgenden Versuchsansätze werden mit 25Viren/Well (Ansätze zur manuellen Auswertung mit Focus-Reduktionstest) und 25.000Viren/Well (=MOI 2,5; Auswertung mit automatisiertem Verfahren) durchgeführt.

2.2.3. Focus-Reduktionstest mit fluoreszenzmarkierten CMV Mutanten (pp65-EYFP)

Zur vollständigen Dokumentation wurden Fotografien der Wells angefertigt, die die maximale Konzentration an Kombinationsmedikation erhalten haben, ebenso wie von den Ansätzen, die jeweils nur Immunsuppressivum oder Ganciclovir in höchster Dosierung erhalten haben. Zum direkten Vergleich wurde auch ein Well, welches nur Zellen, Medium und Viren enthalten hat, fotografiert.
Exemplarisch stellt die folgende Abbildung die Virusproliferation in HFF-Zellen fotografisch zu unterschiedlichen Zeitpunkten nach Beimpfen mit Virusstamm pp65 EYFP (25 Viren/Well), ohne Medikamentenzusatz (A-C) und mit GCV hochdosiert (D) dar (s. Abb. 4).

Abb. 4: Focus-Reduktionstest, Virusproliferation Virusstamm pp65 EYFP (25Viren/Well)
A: 7d nach Beimpfen der HFF-Zellen, kein Medikamentenzusatz
B: 9d nach Beimpfen der HFF-Zellen, kein Medikamentenzusatz
C: 11d nach Beimpfen der HFF-Zellen, kein Medikamentenzusatz
D: Kontrolle, 11d nach Beimpfen der HFF-Zellen, GCV 25 µmol/l
(EYFP= enhanced yellow fluorescent protein, HFF= humane Vorhautfibroblasten)
2.2.4. Automatisierte Auswertung mit Fluorimeter

Die folgende Abbildung zeigt die Virusproliferation 6 Tage nach Beimpfen mit Virusstamm pp65 EYFP (25.000 Viren/Well= MOI 2,5), ohne Medikamentenzusatz: Übersichtsaufnahme und vergrößerter Einzelplaque (s. Abb. 5).

Abb. 5: Fluorimeter, Virusproliferation Virusstamm pp65 EYFP (25.000 Viren/Well= MOI 2,5) (EYFP= enhanced yellow fluorescent protein)
A: 6d nach Beimpfen der HFF-Zellen, kein Medikamentenzusatz
B: Einzelplaque (40 fach vergrößert), 6d nach Beimpfen der HFF-Zellen, kein Medikamentenzusatz (HFF= humane Vorhautfibroblaste)

Im Ergebnisteil werden die Vor- und Nachteile der unterschiedlichen Messmethoden dargestellt. Auch ein Vergleich mit dem klassischen Focus-Reduktionstest, ohne fluoreszenzmarkierten Virusstamm wird angestrebt.

2.2.5. Modulation der CMV Replikation durch GCV und Immunsuppressiva

Der Nachweis synergistischer und antagonistischer Effekte bei Kombination von GCV mit Immunsuppressiva wurde mittels Schachbretttitration untersucht.

2.2.5.1 Ganciclovir

Im 12 Tages Verlauf sollte die Einzelwirkung von Ganciclovir (GCV) auf die CMV-Replikation dargestellt werden, was zur Optimierung des späteren Auswertungszeitpunktes der folgenden Kombinationsversuche aus Immunsuppressiva und GCV dient. Die Durchführung des Versuches erfolgte nach unten beschriebener SchachbrettTitration, jedoch unter alleiniger Anwendung einer GCV-Titrationsreihe auf HCMV infizierte HFF-Zellen. Orientierend wurden hier Medikamentenkonzentrationen verwendet, welche in ähnlicher Dosierung
auch im klinischen Alltag zum Einsatz kommen (Ganciclovir in µmol/l: 50-25-12,5-6,25-3,175-1,6-0,8-0).

2.2.5.2 Immunsuppressiva

Die zum Einsatz kommenden Konzentrationen an Immunsuppressiva (IS) sollten zum einen in einem Konzentrationsfeld liegen, in welchem hemmende Einflüsse auf die CMV-Replikation zu erwarten sind. Zum anderen sollten die zu testenden Medikamentenkonzentrationen den klinisch zur Anwendung kommenden Dosierungen, bzw. den im Körper bioverfügbaren Konzentrationen ähnlich sein, um Rückschlüsse von den in vitro Versuchen auf die in vivo-Situation zuzulassen. Die verwendeten Konzentrationen der Medikamente wurden durch mehrere Vorversuche ermittelt (s. Tab. 1).

Tab. 1: Medikamentenkonzentrationen (Schachbrettitration)

<table>
<thead>
<tr>
<th>Medikament</th>
<th>500ng/ml</th>
<th>100ng/ml</th>
<th>20ng/ml</th>
<th>4ng/ml</th>
<th>0,8ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycophenolsäure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>5000ng/ml</td>
<td>1000ng/ml</td>
<td>200ng/ml</td>
<td>40ng/ml</td>
<td>8ng/ml</td>
</tr>
<tr>
<td>Decortin H</td>
<td>400µg/ml</td>
<td>80µg/ml</td>
<td>16µg/ml</td>
<td>3,2µg/ml</td>
<td>0,64µg/ml</td>
</tr>
<tr>
<td>Everolimus</td>
<td>2500nM</td>
<td>500nM</td>
<td>100nM</td>
<td>20nM</td>
<td>4nM</td>
</tr>
<tr>
<td>MAP-K.-Inhibitor 3736</td>
<td>200µM</td>
<td>20µM</td>
<td>2µM</td>
<td>0,2µM</td>
<td>0,02µM</td>
</tr>
<tr>
<td>MAP-K.-Inhibitor 3830</td>
<td>200µM</td>
<td>20µM</td>
<td>2µM</td>
<td>0,2µM</td>
<td>0,02µM</td>
</tr>
<tr>
<td>Ganciclovir</td>
<td>25µmol/l</td>
<td>5µmol/l</td>
<td>1µmol/l</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Als Besonderheit ist an dieser Stelle anzumerken, dass die beiden untersuchten MAP-Kinase-Inhibitoren hydrophobe Substanzen sind, die für die experimentellen Untersuchungen in Dimethylsulfoxid (DMSO) gelöst wurden. Alle Titrationsschritte zur Herstellung der unterschiedlichen Konzentrationen wurden daher in DMSO, welches in hohen Konzentrationen toxisch wirkt, durchge-

Weiter wurde Ganciclovir, im Vergleich zum Ganciclovir-Einzelsing, in den mit den Immunsuppressiva kombinierten Versuchsansätzen in lediglich 3 unterschiedlichen Konzentrationen eingesetzt.

2.2.5.3 Kombination der Immunsuppressiva mit Ganciclovir

Zur experimentellen Durchführung der Kombination aus Immunsuppressiva und Ganciclovir wurde eine Schachbretttitration durchgeführt (s. Abb. 6).

![Schachbretttitration, 96-Well-Platte (Beispiel: GCV/CSA-Kombinationsversuch)]

- CMV-infizierte Wells:
- Dreifachansätze GCV (25, 5, 1, 0 μmol/l): von links nach rechts
- CSA von oben nach unten (5000, 1000, 200, 40, 8, 0 ng/ml)
- Wells ohne CMV-Zugabe (=MOCK)
- (keine Fluoreszenz zu erwarten!)
Für die Kombinationsversuche war aufgrund verschiedener Auswertungsmethoden (FRT und automatisierte Auswertung mittels Fluorimeter) die Vorbereitung zweier unterschiedlicher Arten an Mikrotiterplatten à 96 Well nötig, deren Bestückung jedoch zunächst identisch gehandhabt wurde.

Durch zahlreiche Zellsplittungen und Waschvorgänge wurde, wie bereits im Kapitel Zellkultur (Kap. 2.2.1) beschrieben, eine Zellzahl von 10.000 HFF-Zellen/Well vorbereitet.

Zuletzt wurden die Platten mit isoliertem pp65 EYFP CM-Virus (50µl) beimpft. Hierin unterschieden sich nun die beiden verwendeten Mikrotiterplatten. Diejenigen Platten, die später durch den Focus-Reduktionstest ausgewertet wurden wurden jeweils mit 25 Viren/Well beimpft. Diese geringe Menge an Virus sollte später die manuelle Auszählung am Fluoreszenzmikroskop erleichtern. Die Messergebnisse der zweiten Platte sollten mittels automatischem Fluorimeter erfasst werden, weshalb die Platte mit 25.000 Viren/Well (entspricht einer MOI von 2,5) beimpft wurde. Dementsprechende Virusverdünnungen wurden zuvor hergestellt. Die vorbereiteten Platten wurden für 15 Minuten bei 1400 Umdrehungen zentrifugiert um eine gleichmäßige Vermengung aller zugefügter Substanzen und Lösungen zu garantieren und optimale Reaktions-

Alle Versuchsansätze wurden in ihrer Gesamtheit 3fach wiederholt durchgeführt.

2.2.6. Vitalitätstest

Für den Versuch wurden Mikrotiterplatten, wie bereits weiter oben im Text beschrieben, mit 100µl vitalen HFF-Zellen beschichtet (entspricht: 10.000 HFF-Zellen/Well). Am Folgetag wurden unterschiedliche Konzentrationen der verwendeten Immunsuppressiva, sowie Ganciclovir zu den Ansätzen gegeben (je
Substanz 25 µl) und diese anschließend für 3 Tage bei 37 Grad Celcius inkubiert.

Tab. 2 Medikamentenkonzentration im Vitalitätstest. Zusätzlich zu der höchsten Konzentration in der Schachbrettitration (Spalte B) wurden sicherheitshalber auch eine 5fach höhere Konzentration (Spalte A) und eine 25fach niedrigere Konzentration (Spalte C) für jedes Medikament getestet.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganciclovir</td>
<td>125µmol/l</td>
<td>25µmol/l</td>
<td>1µmol/l</td>
</tr>
<tr>
<td>Mycophenolsäure</td>
<td>2500ng/ml</td>
<td>500ng/ml</td>
<td>20ng/ml</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>25ng/ml</td>
<td>5000ng/ml</td>
<td>200ng/ml</td>
</tr>
<tr>
<td>Decortin H</td>
<td>2000µg/ml</td>
<td>400µg/ml</td>
<td>16µg/ml</td>
</tr>
<tr>
<td>Everolimus</td>
<td>12,5nM</td>
<td>2500nM</td>
<td>100nM</td>
</tr>
<tr>
<td>MAP-K.-Inhibitor 3736</td>
<td>125µM</td>
<td>25µM</td>
<td>1µM</td>
</tr>
<tr>
<td>MAP-K.-Inhibitor 3830</td>
<td>125µM</td>
<td>25µM</td>
<td>1µM</td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO) titriert</td>
<td>10%</td>
<td>2%</td>
<td>0,08%</td>
</tr>
<tr>
<td>MEM+ Nährstoffe</td>
<td>20%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEM (Hungermedium)</td>
<td>20%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100% DMSO pur</td>
<td>20%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35% Ethanol pur</td>
<td>7%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3. Ergebnisse

3.1. Vorversuche

3.1.1. Fokus-Reduktionstest: Mikroskopische vs. automatisierte Auswertung

An Tag 6 post infectionem (p.i.) wurde die Vergleichbarkeit der mikroskopischen (Fokus-Reduktionstest, FRT) und automatisierten (Fluorimeter) Untersuchung der Virusreplikation exemplarisch dargestellt (s. Abb. 7). Dieser Untersuchungszeitpunkt wurde gewählt, da sich an Tag 6 die infizierten Foci im Focus-Reduktionstest besonders gut mikroskopisch darstellen lassen. Dabei konnte gezeigt werden, dass sich sowohl im FRT als auch im automatisierten Fluorimetertest keine qualitativen Unterschiede bei der Hemmung durch GCV zeigten (s. Abb. 7)
Unter Berücksichtigung der Fehlerbalken zeigt sich, unabhängig vom gewählten Auswertungsverfahren, dass die Messergebnisse bei gleicher Ganciclovir-Konzentration nahezu dieselbe Fluoreszenzintensität bzw. Focizahl (je-weils in Prozentwerten angegeben) aufweisen.

3.1.2. Optimierung des Untersuchungszeitraums für die automatische Fluorimetrie

Für die Auswahl eines geeigneten Untersuchungszeitpunktes des Fluorimeter-Tests wurden die Fluoreszenzmessungen über einen Zeitraum von 12 Tagen p.i. täglich ausgewertet (s. Abb. 8). Eine Schachbrettitration mit dosisabhängiger Ganciclovirwirkung auf CMV-infizierte HFF-Zellen diente als Versuchsansatz. Ganciclovir wurde in den Konzentrationen 50- 25- 12,5- 6,25- 3,175- 1,6- 0,8- 0 mM eingesetzt.
Es konnte gezeigt werden, dass innerhalb der ersten beiden Untersuchungstage p.i. keine Fluoreszenz nachweisbar war. Innerhalb der folgenden Tage kam es bis einschließlich Tag 7 zu einem kontinuierlichen Anstieg der Fluoreszenzintensität (FI), während eine weitere Verlängerung der Testlaufzeit keine wesentlichen Veränderungen der FI bewirkte (s. Abb. 8, GCV 0). Die dosisabhängige Hemmung der CMV Replikation durch GCV konnte zwar schon zu frühen Infektionszeitpunkten ab Tag 4 p.i. gezeigt werden, für die weiteren Experimente wurde aber Tag 9 p.i. als Untersuchungszeitpunkt gewählt, ein Zeitpunkt im mittleren Sättigungsintervall für die fluorimetrische Messung (s. Abb. 8, 9d).

Es wurde deutlich, dass Ganciclovir bereits in Konzentrationen ab 25µmol/l eine vollständige Hemmung der CMV-Replikation bewirkt, weshalb GCV in allen Folgeversuchen in einer Maximaldosis von 25µmol/l verwendet wurde.

In den Kombinationsversuchen kam Ganciclovir in 3 Konzentrationen (25µmol/l, 5µmol/l und 1µmol/l) zum Einsatz.
3.2. Einfluss verschiedener Immunsuppressiva

Aufgrund der gemeinsamen Ansatzpunkte von Immunsuppressiva und Ganciclovir im Zellzyklus, sollten die synergistischen und antagonistischen Effekte der Medikamente in Bezug auf die CM-Virusreplikation in Kombination getestet werden. Dies wurde in einer Schachbrettitration untersucht. Dabei wurden folgende Definitionen gewählt:

1. **Ohne Einfluss auf die Virusreplikation** waren Medikamente, bei denen die immunsuppressive Therapie die Hemmkurve von GCV nicht veränderte (s. Abb. 9: Mycophenolat).

2. Eine **intrinsische antivirale Wirkung** konnte für die Medikamente aufgezeigt werden, bei denen unabhängig von GCV eine Hemmung der CMV Replikation nachgewiesen wurde (s. Abb. 10: CSA, s. Abb. 13 und 14: MAP-K.-Inhibitoren 3736 und 3830).

3. Bei Immunsupressiva mit antiviraler Wirkung konnte in Kombination mit GCV von einer **additiven Wirkung** gesprochen werden, wenn sich durch die Kombinationstherapie eine verstärkte Hemmung der Virusreplikation nachweisen ließ (s. Abb. 10: CSA).

4. Immunsuppressiva ohne intrinsische antivirale Wirkung welche die inhibitorische Wirkung von GCV in Kombination potenzieren werden als **synergistisch** wirkende Substanzen definiert (s. Abb. 12: Everolimus)

5. **Antagonistisch wirkende Substanzen** müssen die inhibitorische Wirkung von GCV abschwächen bzw. sogar aufheben. Dies wurde dosisabhängig für Decortin H gezeigt (s. Abb. 11: Decortin H).

Die Daten ergeben sich aus den Mittelwerten von jeweils 3 separat durchgeführten Experimenten mit 3-fachen Ansätzen im Einzelversuch.
3.2.1. Zell-Zyklus-Inhibitor: Mycophenolsäure (MPA)

Abb. 9: Kombinationstherapie von MPA mit GCV, 9d p.i. mit CMV pp 65 EYFP, Fluorimeter-Messung. Die Konzentrationen von MPA sind in der Legende dargestellt. Mit MOCK wurden Kontrollansätze ohne Viruszugabe gekennzeichnet. Für die mit * markierten Kombinationen wurde ein signifikanter Unterschied zur Kontrolle (GCV, ohne Immunsuppressivum) nachgewiesen (p<0,05, t-Test für gepaarte Proben).

(CMV= Zytomegalievirus; EYFP= enhanced yellow fluorescent protein, MPA= Mycophenolsäure)

Mycophenolsäure wurde in den Konzentrationen 500-100-20-4-0,8-0 ng/ml getestet. Es konnte gezeigt werden, dass MPA keine intrinsische antivirale Wirkung auf die CMV Replikation besitzt (s. Abb. 9, GCV 0µmol/l). Darüber hinaus konnte auch in Kombination mit GCV keine synergistische oder antagonische Aktivität nachgewiesen werden. Damit konnte gezeigt werden, dass MPA in den therapeutisch wirksamen Konzentrationen in vitro keinerlei Einfluss auf die CMV Replikation hat.
3.2.2. Calcineurin-Inhibitor: Cyclosporin A

Cyclosporin A kam in den absteigenden Konzentrationen 5000- 1000- 200- 40- 8- 0 µg/ml zum Einsatz.

Es zeigte sich eine dosisabhängige intrinsche antivirale Wirkung von CSA (s. Abb. 10, GCV 0µmol/l). Je höher die eingesetzten Konzentration an CSA, desto größer war der hemmende Einfluss des Arzneimittels auf die Plaque bildenden Einheiten von CMV. Durch kombinierte Anwendung von CSA mit
GCV konnte eine Verstärkung der Hemmwirkung des GCV nachgewiesen werden.

Somit zeigte sich bei Kombination von Cyclosporin A mit Ganciclovir in therapeutisch relevanten Konzentrationen ein additiver Effekt auf die Hemmung der Virusreplikation von CMV.

3.2.3. Glukokortikoid: Decortin H

(CMV= Zytomegalievirus; EYFP= enhanced yellow fluorescent protein)
Decortin H wurde in folgenden Konzentrationen verwendet: 400-80-16-3,2-0,64-0 µg/ml.

Decortin H wies konzentrationsabhängig unterschiedliche Einflüsse auf die Replikation von CMV auf. Besonders in niedrigen Konzentrationen (0,64-80 µg/ml) förderte das Immunsuppressivum die Proliferation von CMV (s. Abb. 11, GCV 0µmol/l). Bei Kombination von Decortin H mit Ganciclovir konnte in niedrigen Dosierungen gezeigt werden, dass Decortin H die inhibitorischen Effekte des GCV abschwächt.

Hohe Konzentrationen an Decortin H (hier ab 400µg/ml) wiesen eine intrinsische antivirale Wirkung auf (GCV=0), welche in Kombination mit Ganciclovir zu einer verstärkten Fluoreszenzhemmung führte.

Somit konnte Decortin H in niedrigen Konzentrationen ein antagonistischer Effekt in Bezug auf die replikationshemmende Ganciclovirwirkung zugeordnet werden. Hochdosiert wies Decortin H eine additive Wirkung auf die CMV-Replikation auf.
3.2.4. mTOR-Inhibitor: Everolimus

![Graph showing Everolimus concentration vs. Ganciclovir treatment](image)

(CMV= Zytomegalievirus; EYFP= enhanced yellow fluorescent protein)

Folgende Everolimus-Konzentrationen wurden für die Versuchsdurchführung eingesetzt: 2500- 500- 100- 20- 4- 0 nM.

Everolimus zeigte unter alleiniger Zugabe zu den Ansätzen (s. Abb. 12, GCV=0 µmol/l) keinen hemmenden Einfluss auf die Zytomegalievirus-Replikation und somit keine intrinsische antivirale Wirkung.

In Kombination jedoch potenzierte Everolimus die replikationshemmende Wirkung von Ganciclovir.
Ein synergistisches Wirkprinzip zwischen den Arzneimitteln konnte daher, bei nicht nachgewiesener intrinsischer antiviraler Einzelwirkung von Everolimus auf die CM-Virusreplikation gezeigt werden.

3.2.5. MAP-Kinase-Inhibitor: 3736

Abb. 13: Kombinationstherapie von MAP-K.-Inhibitor 3736 mit GCV, 9d p.i. mit CMV pp 65 EYFP, Fluorimeter-Messung. Die Konzentrationen des MAP-K.-Inhibitor 3736 sind in der Legende dargestellt. Mit MOCK wurden Kontrollansätze ohne Viruszugabe gekennzeichnet. Für die mit * markierten Kombinationen wurde ein signifikanter Unterschied zur Kontrolle (GCV, ohne Immunsuppressivum) nachgewiesen (p<0,05, t-Test für gepaarte Proben).

(CMV= Zytomegalievirus; EYFP= enhanced yellow fluorescent protein; MAP-K.-Inhibitor= MAP-Kinase-Inhibitor)
Der MAP-Kinase-Inhibitor 3736 wurde in den Konzentrationen 200- 20- 2- 0,2- 0,02- 0 μM getestet.

Ohne hemmenden Einfluss von Ganciclovir konnte bereits bei niedriger Konzentration des MAP-Kinase-Inhibitors 3736 (0,02μM) eine Hemmung der Virusreplikation aufgezeigt werden (s. Abb. 13, GCV=0 μmol/l). Alle weiteren getesteten Konzentrationen des MAP-Kinase-Inhibitors wiesen ebenfalls eine intrinsische antivirale Wirkung auf.

Weiter konnte gezeigt werden, dass die Kombination aus GCV und dem MAP-K.-Inhibitor 3736 eine verstärkte Hemmung der Virusreplikation bewirkt. Der gemeinsame Ansatz aus GCV und MAP-K.-Inhibitor 3736 weist folglich additive Wirkung auf, bei intrinischer antiviraler Einzelwirkung des MAP-Kinase-Inhibitors 3736.
3.2.6. MAP-Kinase-Inhibitor: 3830

(CMV= Zytomegalievirus; EYFP= enhanced yellow fluorescent protein)

Der zweite Subtyp der neuen Medikamentengruppe MAP-Kinase-Inhibitoren, 3830, erwies sich, als der Variante 3736, in seiner Wirkung sehr ähnlich. Die äquivalenten Konzentrationen von 200- 20- 0,2- 0,02- 0 µM wurden hier eingesetzt.

Erneut zeigte sich ein hemmender Einfluss (ca. 50 % Hemmung der Fluoreszenzintensität) bei bereits niedrigen Konzentrationen des MAP-Kinase-
Inhibitors 3830 (ab 0,02µM) auf die Zytomegalievirus Replikation. Mit zunehmender Konzentration zeigte sich jedoch keine deutliche Zunahme der intrinsischen antiviralen Aktivität des MAP-K.-Inhibitors 3830 (s. Abb. 14, GCV 0µmol/l).

In Kombination mit Ganciclovir konnte auch hier eine additive Wirkweise aufgezeigt werden, was bedeutet, dass der MAP-K.-Inhibitor 3830, mit intrinsischer antiviraler Wirkung, die antivirale Wirkung des Ganciclovir auf die CMV-Replikation verstärkt.

3.2.7. DMSO-Kontrollexperiment

DMSO wurde als Lösungsmittel für die hydrophoben Substanzen MAP-K.-Inhibitoren 3736 und 3830 verwendet.

Da auch DMSO toxisch auf Zellen wirken kann wurde ergänzend zu den Versuchen von GCV mit den MAP-Kinase-Inhibitoren 3736 und 3830 auch der alleinige Effekt des Lösungsmittels DMSO auf die Virusvermehrung untersucht. Eine Titrationsreihe mit abnehmenden Konzentrationen von 6,25%-3,13%-1,56%-0,78%-0,39%-0,20%-0,10%-0,05 % DMSO wurde über 9 Tage mit virusinfizierten HFF-Zellen inkubiert.

Die Auswertung mittels Fluorimeter an Tag 6 und 9 postinfektiös ergab keine Hemmung der Fluoreszenzintensität bei Konzentrationen der Substanz bis 1,56% (s.Abb. 15). Bei DMSO-Werten >1,56% wurde eine dosisabhängige Hemmung der Virusreplikation festgestellt. In der von uns in den Kombinationsversuchen verwendeten Konzentration (2%) ist allenfalls von einer geringen Hemmung durch DMSO von maximal bis zu 20 Prozent auszugehen.
Abb. 15: DMSO-Titrationsreihe, Wirkung auf Virusreplikation, 9d p.i. mit CMV pp 65 EYFP, Fluorimeter-Messung. (DMSO= Dimethylsulfoxid, CMV= Zytomegalievirus, EYFP= enhanced yellow fluorescent protein)

3.3. Ergebnisse Vitalitätstest

Nicht untersucht wurde der toxische Einfluss der Substanzen, bei vorheriger Mischung des immunsuppressiven Medikamentes mit Ganciclovir und anschließender Zugabe der Substanzmischung zu den Zellen.

(GCV=Ganciclovir, MPA= Mycophenolat, CSA= Cyclosporin A, DecH= Decortin H, MAP= Mitogenaktivierte Protein-Kinase, DMSO= Dimethylsulfoxid, HFF= humane Vorhautfibroblasten)

3.3.1. GCV

Ganciclovir wurde, als antivirales Medikament, sowohl einzeln als auch in den kombinierten Schachbrett-Titrationen mit jedem Immunsuppressivum gemeinsam verabreicht.

Im Vitalitätsversuch konnte gezeigt werden, dass Ganciclovir die Vitalität der humanen Vorhautfibroblasten in keiner der drei angewandten Konzentrationen (125µmol/ml- 25µmol/ml- 1µmol/ml) beeinträchtigt. In allen drei Konzentrationen wiesen die HFF-Zellen einhundert Prozent Vitalität auf.
3.3.2. Immunsuppressiva

Anders wiesen die Substanzen Decortin H, MAP-Kinase-Inhibitor 3736 und 3830 in 5fach erhöhter Konzentration eine deutliche Depletion der HFF-Zellvitalität auf, während Mycophenolat mofetil, Cyclosporin A und Everolimus auch in extrem hohen Konzentrationen die Zellvitalität unbeeinträchtigt ließen (s.Abb. 16, blaue Säule).

Mycophenolat: Es konnte in keiner der 3 Konzentrationen: 2500ng/ml-500ng/ml-20ng/ml eine Vitalitätseinschränkung der Zellen nachgewiesen werden.

Cyclosporin A beeinträchtigte die Vitalität der HFF-Zellen in keiner der 3 getesteten Konzentration (4ng/ml=beige Säule, 500ng/ml=blaue Säule und 100ng/ml=violette Säule).

Decortin H zeigte in den Konzentrationen 400µg/ml (violette Säule) und 16µg/ml (beige Säule) keinen toxischen Einfluss auf HFF-Zellen. In der 5-fachen Konzentration, 2000µg/ml (blaue Säule) zeigte sich eine deutliche Vitalitätseinschränkung der Zellen um bis zu 80%.
Everolimus wies in keiner der Konzentrationen (1250µM, 250µM und 10µM) eine Einschränkung der Zellvitalität auf.

Die MAP-Kinase-Inhibitoren 3736 und 3830 wurden in den Konzentrationen 125µM, 25µM und 1µM) auf Zelltoxizität getestet. Die Originalkonzentration sowie die 25fache Verdünnung hatten keinen Einfluss auf die Zellvitalität. Die 5fach erhöhte Konzentration der Substanzen (125µM) scheint die Vitalität der HFF-Zellen deutlich zu deprimieren. Der Vitalitätsgehalt der Zellen lag bei unter zwanzig Prozent, wobei zu beachten ist, dass allein die DMSO-Konzentration in 5fach erhöhter Konzentration diese Hemmung bewirkt.

In wie weit der DMSO-Gehalt Einfluss auf die MAP-K.-Inhibitor-Wirkung bezüglich der Zellvitalität hat, soll im Diskussionsteil erörtert werden.

3.3.3. Kontrollsubstanzen

DMSO dient als hydrophiles Lösungsmittel für die neuen MAP-Kinase-Inhibitoren und sollte daher im Einzelansatz auf seine Toxizität getestet werden. Getestet wurden auch hier drei Konzentrationen (10%, 2% und 0,08%) (s. Abb.16, DMSO). Es konnte gezeigt werden, dass DMSO in herunter titriertem Zustand (2%= violette Säule und 0,08%= beige Säule), die Vitalität der HFF-Zellen nicht beeinflusst. Lediglich in extrem hoher Dosierung (Konzentrationen um 10%) machte sich eine deutliche Toxizität mit Suppression des Zellmetabolismus um 80 Prozent bemerkbar.

Als positive Kontrollgruppen, welche 100 Prozent Vitalität garantieren sollten, wurden zwei Arten an Medium eingesetzt: MEM-Medium mit Nährstoffzusätzen wie fetales Kälberserum, Glutamin, Antibiotikum und nicht essentiellen
Aminosäuren und ein Hungermedium welches nur aus dem synthetisch hergestellten MEM-Medium ohne Zusätze bestand.

Beide Ansätze zeigten nach 3-tägiger Inkubation keine Einschränkung der Zellvitalität (Ergebnisse nicht in der Abbildung dargestellt).

20-prozentiges DMSO wurde ebenso wie 35-prozentiges Ethanol als Negativkontrolle eingesetzt. In beiden Ansätzen, welche Toxizität nachweisen sollten, konnte eine Unterdrückung der Zellproliferation um 90 Prozent aufgezeigt werden (Ergebnisse nicht in der Abbildung dargestellt).
4. Diskussion

Vor- und Nachteile des automatisierten Fluorimetertests

Der Focus-Reduktionstest (FRT) mit grün fluoreszierendem CM-Virus pp65 EYFP und der Test mit der automatischen Evaluation mittels mechanischem Fluorimeter sollen mit dem klassischen Focus-Reduktionstest (wurde hier nicht eingesetzt) in Bezug auf Vor- und Nachteile der Messmethoden verglichen werden. Folgende Aspekte sollen dabei berücksichtigt werden: die Reproduzierbarkeit der Tests, die Objektivität der Datenerfassung, die Zeitdauer der Messungen, die Kultivierdauer der Testansätze und die Automatisierung der Messungen, wobei sich die aufgeführten Punkte auf die Messung eines Einzelansatz beziehen (s. Tab. 3).
Tab. 3: Tabellarische Gegenüberstellung der verschiedenen Evaluationsmethoden
++ in hohem Maße gegeben
+ gegeben
- nicht gegeben
S Subjektiv
O Objektiv
Zeitangaben in Stunden (Std.), Minuten (min.) oder Tagen (d)

<table>
<thead>
<tr>
<th></th>
<th>Klassischer Focus-Red. Test</th>
<th>Focus-Red. Test mit fluoreszenzmarkierter CMV-Mutante</th>
<th>Fluorimeter-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduzierbarkeit</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Objektivität (O)</td>
<td>S</td>
<td>S</td>
<td>O</td>
</tr>
<tr>
<td>Subjektivität (S)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeitdauer der Messungen („hands-on-time“)</td>
<td>8 Std.</td>
<td>2 Std.</td>
<td>15 min.</td>
</tr>
<tr>
<td>Kultivierdauer</td>
<td>2-4d</td>
<td>6d</td>
<td>6-9d</td>
</tr>
<tr>
<td>Automatisierung</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Der klassische FRT wird mikroskopisch ausgewertet, d.h. die Identifizierung spezifischer Plaques ist abhängig von der Erfahrung der Untersuchers.

Zeitaufwand: Um den Versuchsansatz des klassischen Focus-Reduktionstests auswerten zu können ist das Fixieren und das immunzytologische Anfärben der infizierten Zellen nötig bevor die CMV infizierten Plaques mikroskopisch quantifiziert werden können. Dies erfordert allein für die Präparation zur Auswertung und die anschließende fluoreszenzmikroskopische Auszählung einen mehrstündigen Zeitaufwand, sprich eine „hands-on-time“ von etwa 8 Stunden (Cole, N. L. et al, 1987).

Der fluoreszenzmarkierte FRT erfordert ausschließlich die mikroskopische visuelle Auswertung da die EYFP-positiven Plaques bereits eine Eigenfluoreszenz aufweisen („live imaging“). Dadurch verkürzt sich der *Zeitaufwand* um ca. 6 Arbeitsstunden („hands-on-time“ ca. 2Std.). Der Fluorimeter-Test wird automatisch innerhalb einer Zeitspanne von wenigen Minuten ausgewertet und eignet sich damit auch für „Hochdurchsatz“-Untersuchungen.

Die *Kultivierdauer* der unterschiedlichen Versuchsansätze beträgt beim klassischen Focus-Reduktionstest, zur optimalen Auswertung der Plaques, 2-4 Tage (Metzger, C. et al, 1994). Die Plaques des fluoreszenzmarkierten Virusstammes (CMV-EYFP) lassen sich fluoreszenzmikroskopisch am Besten am 6. Tag p.i. auswerten. Zu diesem Zeitpunkt stellen sich die grün fluoreszierenden Plaques des CM-Viruses am deutlichsten dar. Die Evaluation der CMV-Replikation für die automatisierte Auswertung mittels Fluorimeter erfolgt Plaque-unabhängig durch Messung der mittleren Fluoreszenzintensität; aus diesem Grunde ist kei-
ne Quantifizierung von Plaques notwendig. Eine optimale Auswertung ergab sich im Zeitraum zwischen Tag 6 und 9 p.i. (s. Kapitel 3.1.2. Optimierung des Untersuchungszeitpunktes für die Fluorimetrie, s. Abb. 8).

Ein wesentlicher Aspekt für die Implementation eines neuen Untersuchungsverfahrens ist die Möglichkeit der Automatisierung. Einzig die Fluorimeterauswertung lässt sich automatisch durchführen. Dadurch ist sie leicht in Routinearbeitsschritte zu integrieren und benötigt kein zusätzlich geschultes Personal. Die beiden Focus-Reduktionstests sind in ihrer Auswertung von einem menschlichen Untersucher abhängig.

Weitere Vorteile des FRT mit CMV pp65 EYFP und des automatisierten Fluorimetertests:

Um den zeitlichen Verlauf der Infektion longitudinal über mehrere Tage zu verfolgen müssten beim klassischen Focus-Reduktionstest gleich mehrere identische Versuchsansätze parallel mitgeführt werden, welche dann zu unterschiedlichen Zeitpunkten fixiert und ausgewertet werden. Die aufwändige Praparation des klassischen FRT führt dazu, dass die Ansätze nach einmaliger Auswertung nicht erneut rekultiviert werden können. Der Focus-Reduktionstest mit fluoreszenzmarkiertem Virus (CMV pp65 EYFP) und der Fluorimeter-Test sind beide für wiederholte Messungen zu unterschiedlichen Zeitpunkten bei Vorbereitung von nur einem Ansatz geeignet, da durch die Auszählung beziehungsweise die Messung nicht in den Versuchsansatz eingegriffen wird.

Nach ausführlicher Gegenüberstellung der drei unterschiedlichen Evaluationsmethoden stellt der Fluorimetertest, trotz einer langen Kultivierdauer von 6-
9 Tagen, mit einem effektiven Zeitaufwand („hands-on-time“) von nur 15 min., eine sichere, jederzeit reproduzierbare Messmethode dar.

Zusammenfassend ergibt sich daraus eine, aufgrund der Automatisierung in der Auswertung, objektive Alternative zu bisher fundierten Tests.

Antivirale Wirkung der verschiedenen Immunsuppressiva

Als immunsuppressive Substanzen kamen Mycophenolat mofetil, Cyclosporin A, Decortin H und Everolimus zum Einsatz, welche alle an unterschiedlichen Punkten im Zellstoffwechsel angreifen (s. Abb. 3). Neue potentiell immunsuppressiv wirkende Medikamente wie die MAP-Kinase-Inhibitoren (MAP-Kinase-Inhibitoren 3736 und 3830) wurden zusätzlich getestet.

Mycophenolat wies keine intrinsische antivirale Wirkung auf. Auch in Kombination mit Ganciclovir konnte kein verstärkender Effekt des Mycophenolat
auf die replikationshemmende Ganciclovirwirkung festgestellt werden (s. Abb. 9).

Für Cyclosporin A konnte erstmals eine dosisabhängige intrinsische antivirale Wirkung auf die CMV-Replikation nachgewiesen werden. Zusätzlich konnte in kombinierter Gabe ein additiver Effekt mit Potenzierung der antivirale Wirkung von Ganciclovir aufgezeigt werden (s. Abb. 10).

Monto Ho jedoch zeigte 2007 in seiner Arbeit „The history of cytomegalovirus and its diseases“, dass neuere immunsuppressive Substanzen, wie Cyclosporin A oder Tacrolimus, die CMV-Infektionsrate nach Nierentransplantation nicht wesentlich erhöhen (Ho, M., 2008). Grund dafür ist möglicherweise die zusätzliche antivirale Wirkung.

CSA-Cyclophilin-Komplexes. Dieser tritt mit Calcineurin in Kontakt und stört dadurch Kalzium-abhängige Signaltransduktionswege. Letztlich unterbleibt die Bildung wichtiger Interleukine (v.a IL-2), Zytokine und Interferon-γ, was eine spezifische Unterbindung der T- und B-Zellaktivierung zur Folge hat. Da Cyclophilin A (CypA) auch bedeutend für die Virusreplikation ist (Braaten, D. et al, 2001), kann CSA störend in den Aktivierungsweg der Virusreplikation eingreifen und somit HIV-Infektionen verhindern.

Schlussendlich konnte unser in vitro Versuch zeigen, dass CSA intrinsische antivirale Wirkung gegen HCMV aufweist und gemeinsam mit Ganciclovir verabreicht die antivirale Wirkung des GCV im Sinne einer Wirkungsaddition potenziert.

Decortin H zeigte dosisabhängig unterschiedliche Wirkung auf die CMV-Replikation (s. Abb. 11). Wird Decortin H niedrig dosiert eingesetzt so nimmt die Fluoreszenzintensität stark zu, während Konzentrationen ab 400µg/ml eine intrinsische antivirale Wirkung auf die CMV-Replikationsrate aufweisen. Die Kombination aus Decortin H mit Ganciclovir wies sowohl antagonistische Effekte als auch synergistische Wirkung auf. In Zusammenschau mit den Ergebnissen des Vitalitätsversuches zeigte sich, dass die in den Kombinationen mit GCV verwendeten Konzentrationen des Decortin H keinen vitalitätsschädigenden Einfluss auf HFF-Zellen haben (s. Abb. 16, Vitalitätsversuch: violette und beige Säule). Demnach sind die CMV-replikationshemmenden Einflüsse des Decortin bei 400µg/ml auf dessen Medikamentenwirkung zurück zu führen.
Erst in überphysiologisch hoher Konzentration (um 2000µg/ml) hemmt Decor-
tinH das Zellwachstum um bis zu 80%.

Decorin H, als Vertreter der Kortikosteroidgruppe wirkt über unterschied-
liche Signaltransduktionswege als Glukokortikoid-Rezeptor-Komplex und hat
hemmenden Einfluss nicht nur auf die Transkription der Gene proinflammato-
rischer Proteine sondern auch auf die Zellzahlen an Monozyten, Makrophagen,
T-Helfer- und T-Killerzellen. Steroiden wird dosisabhängig sowohl eine
apoptotische als auch eine wachstumsstimulierende Wirkung zugesprochen
(Oka, T. et al, 1996). Es ist davon auszugehen, dass Steroide noch in weit mehr-
bisher unbekannte- Stoffwechselwege eingreifen. Dies macht die Steroide zum
 einen zu wertvollen Substanzen mit vielseitig einsetzbarem Wirkschema, ande-
 rerseits sind auch die breit gefächerten Nebenwirkungen und Wechselwirkun-
gen, wie vor allem die Zunahme an opportunistischen Infektionen zu beachten,
die v.a. bei hochdosierter Anwendung deutlich werden (Scherer, M. N. et al,
2007). Dass Glukokortikoide auch heute noch in vielen gängigen Therapieregi-
 men zum Einsatz kommen, sollte weiterhin kritisch betrachtet werden (Linden-

Everolimus zeigte in unseren Versuchen, bei alleiniger Gabe zu den virusin-
fizierten HFF-Zellen, keinen Einfluss auf die Replikation des CM-Virus, sprich
keine intrinsische antivirale Wirkung. Mit GCV kombiniert jedoch potenzieren
die mTOR-Inhibitoren, und hier besonders Everolimus, die antivirale Wirkung
von Ganciclovir im Sinne eines Synergismus (s. Abb. 12). Mit Blick auf die
Auswertung des Vitalitätsversuches wird deutlich, dass Everolimus in allen
gestesteten Konzentrationen vitalitytserhaltend auf die HFF-Zellen wirkt.

Halloran et al. beschrieben bereits im Jahre 2004, dass die mTOR-Inhibitoren
Everolimus und Sirolimus die Rate an CMV-Infektionen reduzieren (Halloran,
P. F., 2004).

Unsere Ergebnisse zeigen, dass Everolimus, als mTOR-Inhibitor, in Kombination mit Ganciclovir in diesen Signaltransduktionsweg eingreift und dadurch die Virusreplikation synergistisch hemmt. Als Einzelsubstanz eingesetzt konnte Everolimus den CMV-replikationshemmenden Effekt nicht bewirken. Eine mögliche Erklärung wäre, dass HCMV an unterschiedlichen Ansatzpunkten aktivierend in die mTOR-Signalkaskade eingreifen kann, so dass HCMV, auch nach Hemmung eines Abschnittes des Signalweges durch eine Substanz wie Everolimus, zu einem späteren Zeitpunkt wieder stimulierend in diesen eingreifen kann.

Die beiden verwendeten MAP-Kinase-Inhibitoren 3736 und 3830 zeigten sich als potente antiviral wirkende Substanzen. Beide Substanzen wiesen eine intrinsische antivirale Wirkung auf, welche nach Zugabe von GCV additiv verstärkt wurde (s. Abb. 13 und 14). In den gewählten Konzentrationen konnte gezeigt werden, dass die Zellvitalität bei bis zu 80% der HFF-Zellen gegeben ist. In diesem Wirkbereich sind somit genügend vitale Zellen vorhanden, so dass von einer CMV-replikationshemmenden Wirkung durch die Medikamente ausgegangen werden muss.

Bereits in früheren Versuchen konnte gezeigt werden, wie SB 239063, ein potenter p38 MAP-Kinase-Inhibitor der Substanzgruppe der Pyridinyl-Imidazole, die Produktion von Entzündungsmediatoren (IL-1, IL-6, IL-8 und TNF) in verschiedenen Zelltypen blockiert. Anhand von rhinovirusinfiziertem Zellepithel der oberen Atemwege konnte eine 74-100 prozentige Hemmung der Produktion von IL-8 nachgewiesen werden, was zur verminderten Bildung von Neutrophilen und somit zur Behandlung von Inflammationen führte (Griego, S. D. et al, 2000), (Lee, J. C. et al, 1999).

In Versuchen mit HEL-Zellen (human embryonic lung fibroblasts) wurde gezeigt, dass der MAP-Kinase-Inhibitor FHPI (4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazol) potente Substanz in der Hemmung der HCMV Infektion ist. Desweiteren konnte differenziert aufgezeigt werden, dass die hemmende Wirkung des MAP-Kinase-Inhibitors zum Zeitpunkt der DNA-Replikation einsetzt und die darauffolgende Synthese der Late-Proteine

An zwei weiteren Formen der p38-Kinase-Inhibitoren: SB 203580 und FHPI konnte gezeigt werden, dass die Substanzen um die ATP-Bindungsstelle der p38-Kinase konkurrieren und ihre hemmende Wirkung an p38α und p38β entfalten, wobei SB 203580 zusätzlichen Einfluss auf JNK-Kinase hat (Young, P. R. et al, 1997). Dass die Virusreplikation an Tag 10 postinfektiös zunimmt lässt vermuten, dass Viren auch p38γ und p38δ aktivieren können, insofern die Subtypen α und β supprimiert sind, so dass hier weitere experimentelle Ansätze zur Verbesserung der MAP-K.-Therapie gegeben sind.

Eine mögliche Einschränkung bei der Beurteilung der MKI ist der Zusatz von DMSO als Lösungsmittel für diese hydrophoben Substanzen. DMSO gilt in hoher Dosierung als zytotoxisch. Die Frage, ob sichtbare inhibitorische Effekte der MAP-Kinase-Inhibitoren auf die alleinige Wirkung des DMSO zurückzuführen sind ist durchaus berechtigt.

Anhand eines Zusatzversuches mit Schachbrettitration und Auswertung mittels Fluorimeter (s. Abb. 15, DMSO-Zusatzversuch) konnte in hier verwendeten Konzentrationen (2% DMSO) lediglich eine diskrete Hemmung der Fluoreszenz und somit eine geringe Suppression der Virusreplikation durch DMSO beobachtet werden. Damit sind die, auf die Virusreplikation hemmend wirken- den Einflüsse der MAP-Kinase-Inhibitoren eindeutig auf die Wirkung dieser
zurück zu führen. In oben erwähnten Literaturquellen mit äquivalenten Focus-Reduktionstests wurden keine Angaben über eventuelle toxische Einflüsse des Lösungsmittels gemacht.

Im Vitalitätstest wurde DMSO in den Konzentrationen 10%, 2% und 0,08% weiter getestet. Wie bereits oben erwähnt kommt DMSO in 2% Verdünnung bei den MAP-Kinase-Inhibitoren zum Einsatz. In dieser Konzentration ist kein toxischer Einfluss auf den Zellmetabolismus untersuchter HFF-Zellen zu erkennen. Erst in 10-prozentiger Konzentrierung, sowie in weitaus höheren Konzentrationen (20% DMSO, als negative Kontrolle) erweist sich DMSO als potentes Toxin des Zellmetabolismus.

Es bleibt zu erwähnen, dass die Substanzklasse der MAP-Kinase-Inhibitoren bisher noch nicht in klinischem Einsatz ist, so dass sich alle Ergebnisse auf in vitro-Versuche beziehen.

Im Rahmen der statistischen Analyse der Ergebnisse wurde der gepaarte t-Test angewandt. Für einige Konzentrationen der untersuchten Immunsuppressiva konnten, im Vergleich zur Kontrolle (Ganciclovir-Wirkung, ohne Immunsuppressivum), signifikante Unterschiede der Werte aufgezeigt werden. Die Werte gelten als signifikant insofern der p-Wert kleiner 0,05 ist.

Aufgrund der geringen Anzahl an Wiederholungen der Testansätze ist das Ergebnis nach statistischer Analyse nur bei wenigen, besonders auffälligen Werten signifikant (jede Versuchskombination wurde 3fach angesetzt und in 3maliger Ausführung durchgeführt).

Im Rahmen dieser in vitro-Untersuchung konnte für die Immunsuppressiva CSA, Decortin H, Everolimus und MAP-K.-Inhibitoren 3730 und 3830 gezeigt werden, dass sie mit der CMV-Replikation interagieren. Mycophenolat hatte keinen Einfluss auf die CMV-Replikation. Nur durch klinische Studien kann

Trotz der in dieser Arbeit nachgewiesenen antiviralen Wirkung einiger Substanzen kann ein vollständiges Ausbleiben klinisch relevanter CMV Infektionen jedoch durch keine der bislang eingeführten Substanzkombinationen erreicht werden. Bislang wenig untersucht ist der Einfluss additiver oder synergistischer klinischer Effekte bei der antiviralen Therapie/Prophylaxe mit GCV.

durch die Kombination mit GCV additiv potenziert wird. Hohe Konzentrationen der Substanzen weisen jedoch toxische Wirkung auf HFF-Zellen auf, so dass die in Frage kommende klinische Dosierung der Substanzen weiter sorgfältig untersucht werden muss.

Während bei der Mycothenolsäure keine Hemmung der Virusreplikation in HFF-Zellen erkennbar war, zeigte Everolimus auch ohne intrinsische antivirale Eigenwirkung eine deutlich synergistische Potenzierung der Wirkung von Ganciclovir.

5. Zusammenfassung

Der klinische Einsatz hochpotenter Immunsuppressiva ist eine wesentliche Voraussetzung für die erfolgreiche Organtransplantation. Unter immunsuppressiver Therapie steigt vor allem das Risiko für opportunistische Infektionen. Aufgrund der Virulenz und Häufigkeit ist die Infektion mit dem humanen Zyto-
tomegalievirus (CMV) dabei von besonderer Bedeutung.

Immunsuppressiva greifen ähnlich wie antivirale Substanzen an essenti-
len, z.T. gemeinsamen Stoffwechselwegen in den Zellzyklus ein. Die Bedeutung
von immunsuppressiven Substanzen für die Virusreplikation ist aber bislang
nicht systematisch untersucht worden. Mit Hilfe eines neuen optimierten CMV-
Replikationstests wurde die potentielle antivirale Wirkung verschiedener Im-
munsuppressiva untersucht. Darüber hinaus evaluierten wir mögliche additive,
synergistische bzw. antagonistische Interaktionen der Immunsuppressiva mit
Ganciclovir.

Für die Evaluation der CMV-Replikation wurde der klassische Focus-
Reduktionstest mithilfe eines grün-fluoreszierenden pp65 EYFP CMV weiter-
entwickelt und durch Einsatz einer Fluorimeternmessung automatisiert. Der
neue, automatisierte Fluorimetertest weist im Vergleich zum klassischen Focus-
Reduktionstest wesentliche Vorteile auf und stellt aufgrund der objektiven
schnellen Befunderhebung eine wichtige Weiterentwicklung für die Testung
antiviraler Substanzen dar. Vor allem die Durchführung von „Hochdurchsatz“-
Untersuchungen wird dadurch erleichtert.

Für die eingesetzten Immunsuppressiva konnten in den getesteten klinisch
relevanten Konzentrationen verschiedene Interaktionsmuster mit der CMV-
Replikation nachgewiesen werden. Mycophenolat war sowohl als Einzelsub-
stanz als auch in Kombination mit Ganciclovir ohne Einfluss auf die CMV-
Replikation (in Konzentrationen von 0,8ng/ml bis 500ng/ml). Cyclosporin A (in
Konzentrationen von 8ng/ml bis 5000ng/ml) zeigte eine intrinsische antivirale Wirkung gegen CMV, welche sich in Kombination mit GCV additiv verstärkte. Die MAP-Kinase-Inhibitoren 3736 und 3830 (in Konzentrationen von 0,02µM bis 200µM) zeigten ebenfalls eine intrinsische antivirale Wirkung, die sich in Kombination mit GCV additiv potenzierte. Everolimus zeigte (in Konzentrationen von 4nM bis 2500nM) keine intrinsische antivirale Wirkung. In Kombination mit GCV wurde aber ein synergistisch hemmender Effekt auf die CMV-Replikation nachgewiesen. Decortin H zeigte dosisabhängig stimulierende bzw. antagonistische Effekte bezüglich der CMV-Replikation (bei Konzentrationen von 0,64µg/ml bis 80µg/ml). In hohen Konzentrationen (ab 400µg/ml) konnte eine intrinsische antivirale Wirkung, sowie eine additive Wirkung bei Kombination mit GCV erzielt werden.

6. Literaturverzeichnis

47. **Johnson, R. A., Huong, S. M., and Huang, E. S. 1999.** Inhibitory effect of 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole on HCMV DNA replication and permissive infection. Antiviral Res. 41: 101-111.

75. **Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J., and Davis, R. J. 1995.** Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270: 7420-7426.

7. Danksagung

Ein herzliches Dankeschön, an…

Herrn Professor Dr. Thomas Mertens für die Überlassung des Themas und die Übernahme des Referates.

Herrn Privatdozent Dr. Lutz von Müller für die ausgezeichnete Betreuung.

Frau Professor Dr. Barbara Spellerberg für die Übernahme des Koreferates.

Frau Dipl.-Biol. Sarah Straschewski für die Informationen und Anregungen zum Thema Zytomegalievirus.

Frau Anke Lüske für die hervorragende Betreuung im Labor.

Herrn Thomas Schmid für die Hilfe bei der EDV-technischen Umsetzung dieser Arbeit.

Frau Katharina Macula für die vielen gemeinsam verbrachten Arbeitsstunden und die tolle Zusammenarbeit im Labor.

die gesamte Abteilung für Virologie des mikrobiologischen und immunologischen Instituts der Universität Ulm, insbesondere an Frau Dr. Barbara Reinhard, Herrn Dr. Jens von Einem, Frau Dr. Giada Frascaroli und Frau Ingrid Bennett.

meine Eltern, meine Schwester und meine Freunde für die großartige Unterstützung.
„Aus Gründen des Datenschutzes wurde in der Onlineversion auf die Veröffentlichung des Lebenslaufes verzichtet.“