Markierung und in vitro-Transdifferenzierung von adulten hämatopoetischen Knochenmarkstammzellen zur therapeutischen Myokardregeneration

Dissertation zur Erlangung des Doktorgrades der Humanbiologie der Medizinischen Fakultät der Universität Ulm

vorgelegt von
Juliane Wiehe aus Ulm

2003
Amtierender Dekan: Prof. Dr. R. Marre
1. Berichterstatter: Prof. Dr. V. Hombach
2. Berichterstatter: Prof. Dr. Schrezenmeier
Tag der Promotion: 17. Oktober 2003
Daniel gewidmet
1 Inhaltsverzeichnis

1 INHALTSVERZEICHNIS ... 1

2 ABKÜRZUNGSVERZEICHNIS .. 1

3 EINLEITUNG... 3

 3.1 STAMMZELLEN .. 4
 3.2 MYOKARDREGENERATION DURCH STAMMZELLEN ... 13
 3.3 MARKIERUNG HUMANER STAMMZELLEN .. 19
 3.4 AUFREINIGUNG VON KARDIOMYOZYTEN AUS STAMMZELLEN 21
 3.5 FRAGESTELLUNG DER DISSERTATION .. 23

4 MATERIAL .. 25

 4.1 ZELLEN, GEWEBE, TIERE, UND BAKTERIENSTÄMME .. 25
 4.2 ZELLKULTUR ... 25
 4.3 OLGONUKLEOTIDE .. 26
 4.4 NUKLEINSÄUREN UND LÄNGENSTANDARDS .. 28
 4.5 ENZYME .. 28
 4.6 ANTIKÖRPER .. 29
 4.7 CHEMIKALIEN .. 29
 4.8 VERBRAUCHSMATERIALIEN .. 30
 4.9 KITS .. 30
 4.10 GERÄTE .. 31
 4.11 DATENVERARBEITUNG .. 31
 4.12 MEDIEN, PUFFER UND LÖSUNGEN .. 32

5 METHODEN .. 36

 5.1 GRUNDFANGENDE METHODEN .. 36
 5.2 METHODEN-TEIL A ... 45
 5.3 METHODEN-TEIL B ... 50

6 ERGEBNISSE .. 53
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenin</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>BMSC</td>
<td>bone marrow stem cell</td>
</tr>
<tr>
<td>bp</td>
<td>basepair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>C</td>
<td>Cytosin</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CMV<sub>enh</sub></td>
<td>cytomegalie virus enhancer element</td>
</tr>
<tr>
<td>DCM</td>
<td>dilated cardiomyopathy</td>
</tr>
<tr>
<td>ddH<sub>2</sub>O</td>
<td>aqua bidest</td>
</tr>
<tr>
<td>ddNTP</td>
<td>2',3'-Didesoxyribonukleosid-5'-Triphosphat</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>desoxyribonukleinacide</td>
</tr>
<tr>
<td>dNTP</td>
<td>2'-Desoxyribonukleosid-5'-Triphosphat</td>
</tr>
<tr>
<td>EB</td>
<td>embryonic body</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamin-N',N',N',N'-Tetraessigsäure</td>
</tr>
<tr>
<td>EGFP</td>
<td>enhanced green fluorescent protein</td>
</tr>
<tr>
<td>ES</td>
<td>embryonic stem cell</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescent activated cell sorting</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>G</td>
<td>Guanin</td>
</tr>
<tr>
<td>GMP</td>
<td>good manufacture practice</td>
</tr>
<tr>
<td>G-SCF</td>
<td>granulocyte colony stimulating factor</td>
</tr>
<tr>
<td>HSC</td>
<td>hematopoietic stem cell</td>
</tr>
<tr>
<td>IL</td>
<td>interleucine</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>LIF</td>
<td>leukemia inhibitor factor</td>
</tr>
<tr>
<td>LNGFR</td>
<td>low affinity nerve growth factor receptor</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>MgCl</td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>MLC</td>
<td>myosin light chain</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger-ribonucleic acid</td>
</tr>
<tr>
<td>NaAc</td>
<td>Natriumacetat</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natronlauge</td>
</tr>
<tr>
<td>p.c.</td>
<td>post conceptionem</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PBSC</td>
<td>peripheral blood stem cells</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonukleinacid</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SCF</td>
<td>stem cell factor</td>
</tr>
<tr>
<td>T</td>
<td>Thymin</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris Acetat-EDTA</td>
</tr>
<tr>
<td>Taq</td>
<td>thermus aquaticus-DNA-Polymerase</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>Vol.</td>
<td>Volumen</td>
</tr>
</tbody>
</table>
3 Einleitung

Einleitung

selbstständig ausrichten und die wesentlichen elektrischen Verbindungen sowie die Blutversorgung entwickeln.

3.1 Stammzellen

Eine Stammzelle besitzt grundsätzlich die Fähigkeit zur ständigen Proliferation und Selbsterneuerung. Unter geeigneten Kulturbedingungen sind manche Stammzellen in der Lage, sich in verschiedene Zelltypen des Körpers zu entwickeln.

3.1.1 Stammzellpopulationen

Bislang wurden drei Gruppen von Stammzellen identifiziert, die nach ihrem Ursprungsort in embryonale-, gewebständige- und Knochenmarkstammzellen unterteilt werden (Bianco, 01).
3.1.1.1 EMBRYONALE STAMMZELLEN

Einleitung

In den Ländern der europäischen Union ist das reproduktive Klonen verboten. Gleiches gilt für das therapeutische Klonen (ausgenommen Großbritannien) und die Herstellung embryonaler Stammzelllinien (ausgenommen Schweden, Großbritannien und Holland). Das deutsche Gesetz setzt im europäischen und internationalen Vergleich einen sehr hohen Schutzstandard für in vitro erzeugte Embryonen.

Es ist bekannt, dass undifferenzierte ES-Zellen zur Bildung von Teratokarzinomen neigen (Wakitani, 03). Die Zelltransplantation von aus ES-Zellen aufgereinigten terminal differenzierten Kardiomyozyten in das Herz führt dagegen zu keiner Ausbildung von Tumoren (Klug, 96), da die Zellen nach Ausdifferenzierung ihre Kapazität zur Proliferation verloren haben.

Im Gegensatz zu murinen haben humane ES-Zellen eine begrenzte Kapazität in Myozyten zu transdifferenzieren. Weitere Unterschiede zum murinen Modell sind die unterschiedliche Expression von bestimmten Markergenen, die Zeitdauer der einzelnen Entwicklungsstadien und das Differenzierungsvermögen nach Entzug von LIF (Kehat, 01).

3.1.1.2 Gewebeständige Stammzellen

Gewebeständige Stammzellen regenerieren Zellen in den Organen. Sie wurden zunächst in hoch proliferierenden Geweben wie der Haut, dem Darmepithel und Haarbälgen identifiziert (Bianco, 00). Aber auch gering proliferierende Gewebe,
wie beispielsweise das Herz und Gehirn, weisen diese Vorläuferzellen auf (Beltrami, 01).

In jüngster Zeit wurde postuliert, dass es sich bei Knochenmarkstammzellen und den einzelnen gewebeständigen Stammzellen um eine einzige Stammzellentität handeln könnte (Lacaud, 01), die möglicherweise bedarfsadaptiert an den Ort der Zellregeneration wandert (Blau, 01).

3.1.1.3 KNOCHENMARKSTAMMZELLEN

Auch Knochenmarkstammzellen sind multipotent, d.h. sie zeigen analog zu den ES-Zellen die Kapazität, in verschiedene Gewebe auszudifferenzieren (Goodell, 01; Krause, 01) (Abb.3.1). Ihr in vitro Expansionspotential ist jedoch verglichen mit ES-Zellen begrenzt (Bianco, 01).

Abb.3.1: Schema des Differenzierungs-Potentials von adulten Knochenmarkstammzellen. Sie haben möglicherweise das Potential, neben der Hämatopoese in verschiedene Zelltypen wie Hepatozyten, Nervenzellen, Adipozyten, Osteozyten, Epithelzellen, Skelettmuskelzellen und Kardiomyozyten auszudifferenzieren. (nach Winslow, 01)

Bisher konnten drei adulte Stammzelltypen im Knochenmark definiert werden: Hämagangioblasten, mesenchymale Stammzellen und hämatopoetische
Stammzellen. Unklar ist noch, ob diese drei adulten Zelltypen im Knochenmark aus einer einzigen Progenitorzelle hervorgehen. Zellen der "Sidepopulation" (s. unten) sind wahrscheinlich eine Unterpopulation einer dieser Stammzellgruppen.

Die Untersuchungen mit adulten Stammzellen weisen auf eine Multipotenz dieser Zellen hin. Die Gefahr einer Teratom-Entstehung ist nicht vorhanden. Die adulte Knochenmarkstammzelle könnte therapeutisch zum Zellersatz vieler Organe im autologen System ohne Risiko von Abstoßungsreaktionen verabreicht werden. Neuere Daten liefern Hinweise, dass in naher Zukunft die adulte Knochenmarkstammzelle einen Zellersatz verschiedener Organe gewährleisten kann (Theisse, 00; Liechty, 00; Zulewski, 00). Damit könnten die ethischen Probleme einer therapeutischen Verwendung embryonaler Stammzellen gelöst werden.

3.1.2 Knochenmarkstammzellen

3.1.2.1 Hämangioblasten

Hämangioblasten sind in der Lage, Gefäße zu regenerieren. Sie wurden bislang nur in embryonalen in vitro Systemen charakterisiert (Lacaud, 01).

3.1.2.2 Mesenchymale Stammzellen

Mesenchymale Stammzellen (MSC) wurden erstmalig 1968 von Friedenstein et al. beschrieben (Friedenstein, 68). Es sind in vivo ruhende, nicht phagozytierende, Fibroblasten ähnliche Zellen, die in vitro adhären und Kolonien ausbilden, die verschiedene mesenchymale Zelltypen wie Adipozyten, Chondrozyten oder Stromazellen beinhalten. Im Gegensatz zu HSC können sich MSC über viele Passagen hinweg teilen und sind in Kultur gehalten negativ für CD34 (Guo, 01). Bezüglich ihrer Oberflächenmarker sind MSC bisher schlecht charakterisiert. Es gibt Evidenzen, dass MSC das Potential haben, in mesenchymale Organgewebe wie Knochen, Fett, Stromamark, Skelett- und Herzmuskel auszudifferenzieren (Horwitz 99; Toma, 02; Bianco, 01). Untersuchungen der Arbeitsgruppe von Verfaillie legen nahe, dass aus isolierten MSC Gewebe aller drei Grundgewebeschichten (Endo-, Meso- und Ektoderm) des Körpers gezüchtet
werden können, und liefern ein weiteres Indiz für die Multipotenz der adulten MSC (Jiang, 02).

3.1.2.3 ZELLEN DER "SIDEPOPULATION"

Murine Zellen der "Sidepopulation" (SP) sind eine Untergruppe hämatopoetischer Knochenmarksstammzellen, können aber auch aus nicht-hämatopoetischen Geweben, wie z.B. Skelettmuskulatur isoliert werden (Asakura, 02). Sie sind definiert als Zellen, die bei einer FACS-Färbung mit dem Fluoreszenzfarbstoff Hoechst 33342 ein typisches Fluoreszenz-Muster aufweisen. Sie haben eine kleine, runde Form, sind CD34⁻ und exprimieren Oberflächenmarker wie c-kit und SCA-1 (Jackson, 01).

3.1.2.4 HäMATOPOETISCHE STAMMZELLEN

Knochenmarkständige hämatopoetische Stammzellen (HSC) sind adulte Stammzellen, die sich aus totipotenten Stammzellen entwickelt haben. Sie teilen sich in vivo kontinuierlich, werden in vitro nicht adhärent, imponieren als einfach strukturierte, zytoplasmaarme Zellen mit großem Kern und Nukleoli und differenzieren zu den einzelnen Komponenten des blutbildenden Systems aus (Bianco, 01). Sie können klonale Nachkommen generieren und haben die Fähigkeit, sich selbst zu erneuern. HSC sind gut charakterisiert und die bislang einzige Stammzelltätigkeit, die in der klinischen Routine im Rahmen der autologen und allogenen Transplantation bei hämatologischen Erkrankungen wie Leukämien, Lymphomen oder Multiplen Myelomen eingesetzt wird (Appelbaum, 01; Döhner, 01; Druker, 02; Harousseau, 95). Sie werden aus Knochenmark oder peripherem Blut, z.B. nach Mobilisation mit granulocyte colony stimulating factor (G-CSF) isoliert (Bacicallup, 02; Schreiner, 96), kommen aber auch im Nabelschnurblut oder der adulten Leber vor. HSC können an dem Phänotyp ihrer Zelloberflächenmoleküle erkannt werden. Als gängiger Marker zur Identifizierung dieser Zellen hat sich das Oberflächenmolekül CD34 (s.u.) etabliert. Andere verwendete Marker sind c-kit, Thy-1 und AC133.
Seit neuerem gibt es Daten im murinen System, dass HSC neben der Hämatopoese unter geeigneten Bedingungen auch das Potential haben, in andere Zellen (Graf, 02) wie Muskelzellen (Ferrari, 98), Herzmuskelzellen (Orlic, 01 b; Müller, 02), Hepatozyten (Lagasse, 00), Astrozyten (Kopen, 99) und Nervenzellen (Brazelton, 00) auszudifferenzieren. Im humanen System konnte bei allogen transplantierten Patienten mit Geschlechtschromosomen-Mismatch mittels FISH (Fluoreszenz in situ Hybridisierung) eine Ausdifferenzierung transplantierter Stammzellen in Leberzellen gezeigt werden (Petersen, 99). Körbling wies eine Transdifferenzierung humaner, zirkulierender Stammzellen nach allogener Stammzelltransplantation in Leber-, Haut- und Zellen des Gastrointestinaltraktes nach (Körbling, 02). Man schätzt, dass CD34+ HSC, bezogen auf alle mononukleären Zellen, im Knochenmark mit einer Frequenz von 1-2% vorkommen (Strauss, 91).

Ein praktisches Problem für die therapeutische Verwendung dieser Zellen liegt darin, dass es bis heute nicht möglich ist, HSC über längere Zeit ohne Verlust ihres Stammzellpotentials in vitro zu expandieren.

3.1.3 Stammzellmarker

Humane HSC exprimieren CD34, können aber auch CD34- sein (Dick, 99). Einige Stammzellpopulationen exprimieren Oberflächenmarker wie AC133 oder Thy-1 (Yin, 97). Sie sind meistens c-kit negativ (Peault, 93; Miraglia, 97). Eindeutige zelluläre Marker zur Charakterisierung der Reife und Funktion von Stammzelltypen fehlen bislang. Anzumerken ist, dass sich die humanen Oberflächenmarker von den murinen unterscheiden (Tab.3.1).
Einleitung

Tabelle 3.1: Entsprechende Zell-Oberflächenmarker bei Maus und Mensch

<table>
<thead>
<tr>
<th>Maus</th>
<th>Mensch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD34⁻</td>
<td>CD34⁺</td>
</tr>
<tr>
<td>SCA-1⁺</td>
<td>CD59⁺</td>
</tr>
<tr>
<td>???</td>
<td>AC133⁺</td>
</tr>
<tr>
<td>Thy-i⁺</td>
<td>Thy-i⁺</td>
</tr>
<tr>
<td>c-kit⁺</td>
<td>c-kit⁻</td>
</tr>
</tbody>
</table>

Zelloberflächenmarker für die Charakterisierung der Reife und Funktion von murinen und humanen adulten Stammzellen (HSC). Die Marker sind nicht kongruent. Eindeutige zelluläre Marker fehlen bislang.

3.1.3.1 CD34

Histologisch befinden sich CD34⁺ Stammzellen in geringen Mengen bereits im peripheren Blut. Mit Hilfe von Stimulationsfaktoren (G-CSF) können die CD34⁺ Zellen im peripheren Blut aber auf ein vielfaches angereichert werden. In dieser Phase gelingt es dann leicht, den CD34⁺ Stammzellanteil auf die für eine Transplantation benötigte Zellzahl von über 2 Mio./kg Körpergewicht zu vermehren.

3.1.4 Transkriptionelle Kontrolle in der Herzentstehung

Sowohl ES-Zellen als auch Knochenmarkstammzellen besitzen offenbar das Potential, zu den Gewebsentitäten aller drei Keimblätter auszudifferenzieren.
Einleitung

(s.o.). Anzunehmen ist, dass die Grundmuster dieser Differenzierung ähnlich ablaufen (Wolpert, 94).

Für die Steuerung der Differenzierung maßgeblich ist das Vorhandensein von speziellen Transkriptionsfaktoren, die zu einem bestimmten Entwicklungszeitpunkt an einem definierten Ort im Embryo exprimiert werden (Kuo, 92). Die entscheidenden Prinzipien sind dabei Musterbildung einerseits und Zelldifferenzierung andererseits. Diese beiden Prinzipien spielen während der Embryonalentwicklung ineinander (Wolpert, 94). Es ist noch weitgehend unbekannt, wie die kleine Anzahl an gewebeabhängigen Transkriptionsfaktoren ein komplexes Muster von entwicklungs- und gewebespezifischer Genexpression während der myokardialen Differenzierung entstehen lässt. Indizien sprechen dafür, dass auch in adulten Stammzellen frühe Transkriptionsfaktoren, die Musterbildung und Zelldifferenzierung steuern, eine wichtige Rolle spielen (Molkentin, 96).

3.1.5 Kardiale Markergene

Das Muster der Genexpression von kontraktilen Proteinen in der kardiogenen Zone ist hoch dynamisch und artspezifisch. Die Diversifikation beginnt kurz nach der Gastrulation. Obwohl Muskelzellen des Atriums und des Ventrikels mehrere myofibrilläre Gene koexprimieren, werden einige Gene begrenzt in einer der beiden Herzkammern exprimiert und bleiben auch weiterhin auf diese Region...
beschränkt; so z.B. αMHC (*atrial myosin heavy chain*), das fast ausschließlich im Atrium exprimiert wird, oder das MLC-2v (*myosin light chain*) Gen, eines der frühesten bekannten Markergene in der ventrikulären Muskel-Zelllinie (Lee, 92; O'Brien, 93).

3.2 **Myokardregeneration durch Stammzellen**

Kardiovaskuläre Erkrankungen wie der Myokardinfarkt oder die Dilatative Kardiomyopathie führen zum Verlust von Kardiomyozyten und folglich zur Verschlechterung der Herzfunktion. Da Kardiomyozyten eine streng limitierte Teilungskapazität haben, kann das zerstörte Gewebe nicht ersetzt werden. Die Anwendung einer kardiovaskulären Zelltherapie ist eine vielversprechende Möglichkeit, degeneriertes Gewebe zu ersetzen.

3.2.1 **Regeneration durch Embryonale Stammzellen**

Einleitung

1985 gelang es Doetschmann et al. erstmals, murine ES-Zellen zu schlagenden Embryonic Bodies auszudifferenzieren zu lassen. In einer späteren Studie wurden murine ES-Zellen zusammen mit Mäuse-Fibroblasten und LIF (Leukämie inhibierender Faktor) in Cokultur gehalten, um eine vorzeitige Differenzierung zu verhindern (Müller, 00). Nach Entzug von LIF bildeten sich 2-3 Tage später runde Aggregate - "Embryonic Bodies (EBs)" - aus, in denen sich ES-Zellen spontan zu diversen Zellreihen, wie Blutzellen, neuralen Zellen, aber auch zu Kardiomyozyten entwickelten. Nach 10-12 Tagen konnten die ersten schlagenden Aggregate innerhalb der EBs ausgemacht werden. Dabei ließen sich ca. 5-8% aller Zellen der EBs als schlagende Myozyten charakterisieren (Itskovitz-Eldor, 00; Kehat, 01). Die Transplantation selektionierter Kardiomyozyten führte in experimentellen Untersuchungen zur funktionellen Myokardregeneration (Klug, 96).

Experimente an humanen ES-Zellen lassen jedoch vermuten, dass zwischen dem humanen und murinen Stammzellmodell beträchtliche Unterschiede bestehen, die in der Bewertung der Ergebnisse am murinen Modell berücksichtigt werden müssen (s. 3.1.1.2. ES-Zellen). Die Daten vom murinen Modell sind daher nicht uneingeschränkt auf das humane System zu übertragen.

3.2.2 Regeneration durch adulte Stammzellen

Mit dem Ziel, durch Stammzellen eine Neogenese von Kardiomyozyten, Endothelzellen und glatter Gefäßmuskulatur zu erreichen, wurden tierexperimentelle und klinische Pilotstudien initiiert, deren Ergebnisse große wissenschaftliche Beachtung und Interesse gefunden haben. So gibt es Evidenzen dafür, dass eine spontane Kardiomyozytenreplikation unter physiologischen und vor allem pathophysiologischen Bedingungen abläuft (Beltrami, 01; Kamihata, 01; Kocher, 01; Orlic, 01 c; Anversa, 98). Nach wie vor existiert allerdings viel Skepsis bezüglich einer möglichen Plastizität adulter
Einleitung

Eine Grundlage zur kardiovaskulären Stammzelltherapie mit Hilfe adulter Stammzellen stellt die Arbeit von Orlic et al. dar, die demonstrierte, dass sich HSC zu Kardiomyozyten differenzieren können (Orlic, 01c). Weiterhin konnte in vivo im Ratten-Modell mit ischämischen Arealen des Herzens gezeigt werden, dass wenige Wochen nach Injektion mesenchymaler Knochenmarkstammzellen diese in das Endokard und Gefäß-Endothel der Tiere integriert wurden (Wang, 01). Der Kontakt zum umliegenden Gewebe scheint dabei eine herausragende Rolle zu spielen (Badorff, 03). Man vermutet, dass alle Zellarten gewebespezifische Signale abgeben, die dazu führen, dass eine Stammzelle funktionell wie morphologisch die Gestalt einer bestimmten Gewebeart annimmt. Möglicherweise ist Wundgewebe prädestiniert für eine Applikation von Stammzellen, da es aus neu produziertem Bindegewebe besteht und entsprechende Cytokine abgibt, die bei einer Geweberegeneration von Vorteil sein könnten (Gazit, 99; Lee, 01).

deren Implantation. Sowohl eine Transdifferenzierung als auch eine Zellfusion würden jedoch zur funktionellen Organregeneration beitragen.

3.2.2.1 Regeneration durch mesenchymale Stammzellen

Mesenchymale Knochenmarkstammzellen haben das Potential in verschiedene Gewebe zu transdifferenzieren. Im murinen Modell konnte nach Transplantation mesenchymaler Stammzellen in nekrotisiertes Myokardgewebe sowohl eine Differenzierung der Zellen zu Kardiomyozyten-ähnlichen Zellen, als auch eine Besserung der Herzfunktion nachgewiesen werden (Tomita, 99).

Auf den ersten Blick scheinen die durchgeführten Experimente im murinen Modell vielversprechende Ansätze zur Zelltherapie zu liefern. Ein Kritikpunkt ist jedoch der fehlende Nachweis einer Integration der Spenderzellen in das Empfängermyokard. Ein weiterer Schwachpunkt ist die unbefriedigende Anzahl sich ansiedelnder mesenchymaler Zellen im Empfängergewebe und die schlechte Charakterisierung mesenchymaler Stammzellen (s. 3.1.2.2).

3.2.2.2 Regeneration durch Zellen der "Sidepopulation"

Die Arbeitsgruppe von Goodell konnte eine Regeneration von degeneriertem Myokard, sowie eine funktionelle Verbesserung in Tieren nachweisen, die nach Transplantation mit einer „Sidepopulation“ (SP) von Knochenmarkstammzellen in den Herzmuskel sowohl neues Myokard als auch Blutgefäße entwickelten (Jackson, 01, Majka, 03).
3.2.2.3 Regeneration durch hämatopoetische Stammzellen

Nach Mobilisierung von HSC aus dem Knochenmark in das periphere Blut mit G-CSF zeigte sich im murinen Infarkt-Modell eine signifikante Regeneration von nekrotischem Myokardgewebe. Die regenerierenden Zellen gehen vermutlich aus mobilisierten zirkulierenden Knochenmarkstammzellen hervor (Anversa, 02; Orlic, 01c). Orlic et al. isolierten eine Lin-/c-kit+ Population aus HSC der Maus und injizierten sie in die Herzen sympgener Mäuse, bei denen zuvor ein Myokardinfarkt induziert worden war. Die Ergebnisse zeigten, dass das Knochenmark Zellen enthält, die ein funktionsfähiges, vaskularisiertes Myokard regenerieren können (Orlic, 01a,c). Es gibt Evidenzen, dass - ausgelöst durch physiologischen Stress und Gewebsverletzungen - Cytokine und Chemokine ausgeschüttet werden, die für die Mobilisierung von Progenitorzellen aus dem Knochenmark in die periphere Zirkulation verantwortlich sein könnten (Takahashi, 99). Möglicherweise ist dies, zusammen mit dem Angebot zirkulierender Stammzellen im degenerierten Gewebe, die Voraussetzung dafür, dass eine Transdifferenzierung von HSC stattfinden kann (Lagasse, 00; Brazelton, 00; Bjornson, 99; Mezey, 00).

Humane adulte endotheliale Progenitorzellen (EPC) können aus CD34+ hämatopoetischen Stammzellen gewonnen werden. Werden sie mit kardialen Myozyten neugeborener Ratten kokultiviert, können sie in vitro in Kardiomyozyten differenzieren. Diese Zellen sind daher potentiell für eine Zelltherapie degenerativer Herzerkrankungen geeignet (Badorff, 03). In zwei klinischen Studien zeigten Strauer und Assmus, dass sich bei Infarkt-Patienten nach Injektion von autologen hämatopoetischen Knochenmarkstammzellen in das degenerierte Myokard die Herzmuskelkraft funktionell verbesserte (Strauer, 01, 02; Assmus, 02). Auf zellulärer Ebene wurde jedoch beim Menschen eine Regeneration von Herzmuskelgewebe nach transmuralem Infarkt bislang nicht gezeigt. Kürzlich gelang es erstmals, in einer Studie mit Patientinnen, denen männliches Knochenmark transplantiert worden war, in einer post mortem Analyse

3.2.2.4 THERAPIE MYOKARDIALER ERKRANKUNGEN MIT ADULTEN STAMMZELLEN

Einleitung

3.3 Markierung humaner Stammzellen

Wie oben erwähnt, wurden kürzlich klinische Studien publiziert, in denen mittels funktioneller Untersuchungen (Echokardiographie, Herzkatheter mit Ventrikulographie) gezeigt werden konnte, dass die Transplantation von humanen, autologen, adulten Knochenmarkstammzellen möglicherweise zur Regeneration der Narbe nach transmuralem Herzinfarkt führt (Strauer, 02; Assmus, 02). Als Ursache wurde eine stammzellassoziierte Kardiomyo- und Angioneogenese angenommen. Eine solche wurde jedoch bislang beim Menschen noch nicht auf zellulärer Ebene nachgewiesen. Um einen solchen Nachweis zu erbringen, wäre eine mögliche Strategie, die Zellen vor einer

Abb.3.2 Therapie eines myokardialen Infarktes durch Applikation von adulten Knochenmarkstammzellen. a: In den Ramus interventricularis anterior (RIVA) wird der Katheter eingeführt, um die Stammzellen direkt ins degenerierte Myokard zu injizieren. b: die Zellen könnten sich dann im degenerierten Gewebe ansiedeln und zu Kardiomyozyten differenzieren.
Transplantation ins degenerierte Myokard zu markieren und anschließend im Herzmuskel zu detektieren. Für die Markierung CD34⁺ Knochenmarkstammzellen muss ein Verfahren gewählt werden, das für den Patienten nicht toxisch und leicht praktizierbar ist, eine einfache Detektion der Zellen zulässt und möglichst in klinischen Studien am Menschen bereits geprüft wurde. Die Verwendung radioaktiv markierter Strukturen scheint nicht sinnvoll, da die Zellen nach Applikation nach eventuellem Homem, wegen des zu erwartenden Verdünnungseffektes, höchst wahrscheinlich nicht mehr szintigraphisch im Myokard nachweisbar sind. Das grünfluoreszierende EGFP-Gen hat sich in tierexperimentellen in vivo Studien bewährt (Hansen, 02), kann aber wegen seiner Immunogenität beim Menschen nicht verwendet werden (Rosenzweig, 01). Da eine Markierung der Stammzellen dem Patienten keinen unmittelbaren Nutzen bringt, wäre außerdem die Applikation des "in vivo nicht untersuchten Gens" ethisch nicht zu rechtfertigen. Das Neomycin-Resistenzgen erfüllt im großen und ganzen die Anforderungen, die an ein Marker-Gen gestellt werden, kommerziell sind aber keine Antikörper verfügbar, die eine anschließende Detektion erlauben würden (Stewart, 99).

Die trunkierte Form des low affinity nerve growth factor receptor (ΔLNGFR) würde die gestellten Anforderungen erfüllen (Abb.3.4). Aufgrund der fehlenden intrazytoplastischen Domäne ist diese physiologisch funktionslos und wurde bereits für klinische Applikationen in Studien mit Knochenmarktransplantationen verwendet. Dabei traten bislang keine toxischen Nebenwirkungen auf (Bonini, 97; Mavilio, 94; Ruggieri, 97; Bonini, 98; Verzeletti, 98; Bonini, 03). Im murinen Modell wurde jedoch in einem Fall nach retroviraler Transduktion eine Leukämie induziert (Li, 02). Diese war aber höchst wahrscheinlich nicht auf das Gen selbst zurückzuführen, sondern auf dessen virale stabile Integration in das Empfängergenom und das damit verbundene Ausschalten von Cancer-Supressor-Genen oder Aktivieren von Enhancer-Genen. Ein weiterer wichtiger Vorteil von ΔLNGFR liegt in seiner schnellen und einfachen Detektierbarkeit auf exprimierenden Zellen. LNGFR ist ein Zelloberflächenmarker, der beim Menschen ausschließlich in Nervenzellen exprimiert wird (Hefti, 86), nicht aber in Kardiomyozyten. Bis dato stellt die Ineffizienz der gängigen Gentransfermethoden
in HSC, und die damit verbundene schwache Expression eines Markergens auf transfizierten Zellen, jedoch eines der entscheidensten Probleme dar (Li, 01).

Abb.3.3 Schema des humanen LNGFR Proteins (low affinity nerve growth factor receptor) und seiner trunkierten Form ∆LNGFR. ∆LNGFR fehlt die intrazytoplasmatische Domäne, ohne die keine Signaltransduktion stattfinden kann.

3.4 Aufreinigung von Kardiomyozyten aus Stammzellen

Die Transkription eines Gens erfolgt über die RNA-Polymerase, die an den Promotor eines kodierenden Gens bindet. Es gibt eine Reihe bekannter Promotoren des kardiovaskulären Systems. Grundsätzliches Problem bleibt dabei, Promotoren zu charakterisieren, die spezifisch für die interessierende

Meyer und Müller selektionierte nach Transfektion mit dem MLC-2v Promotor gesteuerten EGFP-Gen aus ES-Zellen Kardiomyozyten. Der MLC-2v Promotor wird am 7. Tag nach der Ausdifferenzierung aktiviert; kardiomyozytäre Zellen sind damit in der Lage, das nachgeschaltete EGFP-Marker-Gen zu aktivieren. Nur ca. 0,2% aller Zellen eines *Embryonic Bodies* (EB) differenzierten spontan zu Kardiomyozyten aus und konnten selektioniert werden. Von den ausgesonderten Zellen wiesen 80% ein typisch ventrikuläres Aktionspotential auf, waren positiv für kardiale Marker und proliferierten für eine Zeitdauer von 16 Tagen (Meyer, 00; Müller, 00).

Einleitung

3.5 Fragestellung der Dissertation

In der vorliegenden Arbeit sollen zwei Strategien verfolgt werden, um einen Beitrag zu einer kardiovaskulären Therapie mit adulten Knochenmarkstammzellen zu leisten.

übertragen werden, sofern die Homing- und Transdifferenzierungseigenschaften dieser Zellen wie oben erwähnt, in vivo charakterisiert werden können.
4 Material

4.1 Zellen, Gewebe, Tiere, und Bakterienstämme

CD34\(^+\) periphere Blutstammzellen Blutspendezentrale Universität-Ulm
CD34\(^+\) Knochenmarkstammzellen Blutspendezentrale Universität-Ulm
Endomyokardbiopsien Kardiologie, Abteilung Innere Medizin II, Universitätsklinikum Ulm
Escherichia coli: INV\(\alpha\)F\(^+\) (TOP-10) Invitrogen, Carlsbad, USA
ES-Zellen Abteilung Immunologie Universität Ulm
Feeder Zellen Abteilung Immunologie Universität Ulm
H9c2 (ECACC 88092904) Cabri Consortium www.cabri.org

4.2 Zellkultur

4.2.1 Medien für die Zellkultur

Dulbecco's Modifiziertes-Eagle's Medium low Glucose (DMEM low) Invitrogen, Carlsbad, USA
Dulbecco's Modifiziertes-Eagle's Medium high Glucose (DMEM high) Invitrogen, Carlsbad, USA
RPMI1640 Invitrogen, Carlsbad, USA
SOC-Medium Invitrogen, Carlsbad, USA
Cellgro scgm Cellgenics, Freiburg, D

4.2.2 Zusätze für die Zellkultur

ESGRO leukemia inhibitor factor (LIF) Chemicon Int. Inc., Temecula, CA
Fetales Kälber Serum (FCS) PAA Laboratories GmbH, Linz, A
L-Glutamine (200MM) Invitrogen, Carlsbad, USA
Monothioglycerol (MTG) Sigma-Aldrich, Deisenhofen, D
Material

Sodium Pyruvate MEM (1000 MM) Invitrogen, Carlsbad, USA
Trypsin/EDTA Biochrom KG, Berlin, D
humanes rekombinantes EPO tebu-bio, Offenbach, D
(Erythropoietin)
humanes rekombinantes SCF R&D Systems, Wiesbaden, D
(stem cell factor)
humanes rekombinantes IL-3 R&D Systems, Wiesbaden, D
(Interleucine 3)
humanes rekombinantes IL-6 R&D Systems, Wiesbaden, D
(Interleucine 6)

4.2.3 Antibiotika
Ampicillin Invitrogen, Carlsbad, USA
Neomycin (Geniticin G418) Invitrogen, Carlsbad, USA
Penicillin/Streptomycin Invitrogen, Carlsbad, USA
Zeocin Invitrogen, Carlsbad, USA

4.2.4 Transfektionsreagenzien
Human CD34 cell Nucleofector™ Amaxa, Biosystems, Köln, D
Solution
Superfect Qiagen GmbH, Hilden, D

4.3 Oligonukleotide
Alle Primer wurden bei MWG Biotech, München, D synthetisiert und lagen als Arbeitslösungen mit einer Konzentration von 10 pmol/µl in ddH₂O gelöst vor. Eingebaute Restriktionsschnittstellen sind grau hinterlegt.
4.3.1 Für die Markierung CD34⁺ PBSC und BMSC

<table>
<thead>
<tr>
<th>Oligo</th>
<th>Sequenz</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNGFR-F</td>
<td>5’-GCG ATG GGG GCA GGT GCC AC-3’</td>
<td>pCR3.1/LNGFR</td>
</tr>
<tr>
<td>LNGFR-R</td>
<td>5’-CTG TCA GCA GCT GAA CCT CCT C-3’</td>
<td>pCR3.1/LNGFR</td>
</tr>
<tr>
<td>LNGFR-F2</td>
<td>5’-CAG GAC AAG CAG AAC AAC GTG-3’</td>
<td>LNGFR-Nachweis</td>
</tr>
<tr>
<td>LNGFR-R2</td>
<td>5’-CTG GCT GGC TAT GAG GTC TTG-3’</td>
<td>LNGFR-Nachweis</td>
</tr>
<tr>
<td>GAPDH-F</td>
<td>5’-AAG AGA GGC ATC CTC ACC CT-3’</td>
<td>GAPDH-Nachweis</td>
</tr>
<tr>
<td>GAPDH-R</td>
<td>5’-TAC ATG GTC GGG GTG TTG AA-3’</td>
<td>GAPDH-Nachweis</td>
</tr>
</tbody>
</table>

4.3.2 Für die Vektorkonstrukte zur Kardiomyozytenselektion

<table>
<thead>
<tr>
<th>Oligo</th>
<th>Sequenz</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV-F</td>
<td>5’-TTC CGC GTT ACA TAA CTT ACG-3’</td>
<td>CMV für pMLC/ZEO</td>
</tr>
<tr>
<td>CMV-R</td>
<td>5’-CAA AAC AAA CTC CCA TTG ACG-3’</td>
<td>CMV für pMLC/ZEO</td>
</tr>
<tr>
<td>MLC-F</td>
<td>5’-TGC TTA ACT GGT ACA GCA GTG TAG C-3’</td>
<td>MLC für pMLC/ZEO</td>
</tr>
<tr>
<td>MLC-Fn</td>
<td>5’-CAA GCT AGC CTT GAA CTC ACT ATG TAG C-3’</td>
<td>MLC für pMLC/ZEO</td>
</tr>
<tr>
<td>MLC-R</td>
<td>5’-TTG CCA CCT CTG GAG AGT TCG AGG AG-3’</td>
<td>MLC für pMLC/ZEO</td>
</tr>
<tr>
<td>MLC-Rn</td>
<td>5’-CTC GAG CCC TGC TGT GGA ACA ATA AAT AC-3’</td>
<td>MLC für pMLC/ZEO</td>
</tr>
<tr>
<td>ZEO-F</td>
<td>5’-AAC TGC GTG CAC TTC GTG GCC GAG GAG-3’</td>
<td>pMLC/ZEO-Nachweis</td>
</tr>
<tr>
<td>ZEO-R</td>
<td>5’-AGC ACC GGA ACG GCA CTG GTC AAC TTG-3’</td>
<td>pMLC/ZEO-Nachweis</td>
</tr>
</tbody>
</table>

4.3.3 Für den Nachweis kardialer Markergene

<table>
<thead>
<tr>
<th>Oligo</th>
<th>Sequenz</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH-F</td>
<td>5’-ACG GAT TTG GCC GTA TTG GC-3’</td>
<td>Expressionskontrolle</td>
</tr>
<tr>
<td>GAPDH-R</td>
<td>5’-CTC CTG GAA GAT GGT GAT G-3’</td>
<td>Expressionskontrolle</td>
</tr>
<tr>
<td>Troponin-F</td>
<td>5’-GCT CTT GTG GAC AAA GTG GAT G-3’</td>
<td>Troponin Nachweis</td>
</tr>
<tr>
<td>Troponin-R</td>
<td>5’-TCC TCC TTC TCC ACC TGC TTG AG-3’</td>
<td>Troponin Nachweis</td>
</tr>
<tr>
<td>cActin-F</td>
<td>5’-TCA TGA AGT GTG ACA TCG ATA TCC-3’</td>
<td>cActin Nachweis</td>
</tr>
<tr>
<td>cActin-R</td>
<td>5’-GCA CAA TAC TGT CCT GAG-3’</td>
<td>cActin Nachweis</td>
</tr>
<tr>
<td>MLC-F</td>
<td>5’-AGC CTC AGA CAC CAT GTC ACC-3’</td>
<td>MLC-2v Nachweis</td>
</tr>
<tr>
<td>MLC-R</td>
<td>5’-TGA AGT TAA TTG GAC CTG GAG-3’</td>
<td>MLC-2v Nachweis</td>
</tr>
<tr>
<td>TEF-F</td>
<td>5’-AAG GGG AGC TCA GCT ATG TGG -3’</td>
<td>TEF1-Nachweis</td>
</tr>
<tr>
<td>TEF-R</td>
<td>5’- TCC ACG GCT CAC TTG AAT G-3’</td>
<td>TEF1-Nachweis</td>
</tr>
</tbody>
</table>
4.4 Nukleinsäuren und Längenstandards

1kb-plus DNA-Ladder Invitrogen, Carlsbad, USA
BK1420-1 (cDNA human brain) Clontech, Palo Alto, USA
Oligo-dT-Primer Invitrogen, Carlsbad, USA
pCR3.1 Invitrogen, Carlsbad, USA
pEGFP-N3 Promega Corp., Madison, USA
pEM7 Invitrogen, Carlsbad, USA
pCR-AB innerhalb der Abteilung Innere Medizin II des Universitätsklinikums Ulm von Dr. TP Zwaka kloniert

4.5 Enzyme

Alle Enzyme (ausgenommen RNAseOut von Qiagen GmbH, Hilden, D) sowie die entsprechenden Puffer und BSA wurden von der Firma New England Biolabs, Beverly, USA verwendet.

<table>
<thead>
<tr>
<th>Enzym</th>
<th>Puffer</th>
<th>BSA</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApaI</td>
<td>NEB 4</td>
<td>+</td>
<td>25°C</td>
</tr>
<tr>
<td>CIP</td>
<td>NEB 2, 3, 4,</td>
<td></td>
<td>37°C</td>
</tr>
<tr>
<td>Eco RI</td>
<td>NEB Eco RI</td>
<td></td>
<td>37°C</td>
</tr>
<tr>
<td>NheI</td>
<td>NEB 2</td>
<td>+</td>
<td>37°C</td>
</tr>
<tr>
<td>RNAseOUT</td>
<td>NEB 1</td>
<td>+</td>
<td>37°C</td>
</tr>
<tr>
<td>SacI</td>
<td>NEB Sal I</td>
<td>+</td>
<td>37°C</td>
</tr>
<tr>
<td>SalI</td>
<td>NEB Sal I</td>
<td>+</td>
<td>37°C</td>
</tr>
<tr>
<td>SpeI</td>
<td>NEB 2</td>
<td>+</td>
<td>37°C</td>
</tr>
<tr>
<td>T4-DNA-Ligase</td>
<td>T4-DNA-Ligasepuffer</td>
<td>16°C</td>
<td></td>
</tr>
<tr>
<td>XbaI</td>
<td>NEB 2</td>
<td>+</td>
<td>37°C</td>
</tr>
<tr>
<td>XhoI</td>
<td>NEB 2</td>
<td>+</td>
<td>37°C</td>
</tr>
</tbody>
</table>
4.6 Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller/Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-cardiac Actin (IgG) (Immunfluoreszenz)</td>
<td>Progen Biotechnik, Heidelberg, D</td>
</tr>
<tr>
<td>Anti-cActin (IgG) (FACS)</td>
<td>Alexis, Grünberg, D</td>
</tr>
<tr>
<td>Anti-CD66b</td>
<td>Beckman Coulter Immunotech, Krefeld, D</td>
</tr>
<tr>
<td>Anti-human NGF-Receptor (CL10012)</td>
<td>Cedarlane Laboratories Limited, Hornbay, Ca</td>
</tr>
<tr>
<td>Anti-Maus-Cy3</td>
<td>Dianova, Hamburg, D</td>
</tr>
<tr>
<td>Anti-Troponin I (Immunfluoreszenz)</td>
<td>HyTest Ltd, Turku, Fi</td>
</tr>
<tr>
<td>Anti-Troponin I (IgG) (FACS)</td>
<td>Santa Cruz, Santa Cruz, USA</td>
</tr>
<tr>
<td>Horse anti-mouse, biotinylated</td>
<td>Dianova, Hamburg, D</td>
</tr>
<tr>
<td>IgG1 anti-mouse, PE-conjugated</td>
<td>Becton Dickinson, Heidelberg, D</td>
</tr>
<tr>
<td>Phalloidin-Cy5</td>
<td>Dianova, Hamburg, D</td>
</tr>
</tbody>
</table>

4.7 Chemikalien

<table>
<thead>
<tr>
<th>Chemikalien</th>
<th>Hersteller/Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar</td>
<td>Fluka Chemika, Buchs, CH</td>
</tr>
<tr>
<td>Agarose</td>
<td>Roche Mol. Biochem., Mannheim, D</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>Sigma-Aldrich, Deisenhofen, D</td>
</tr>
<tr>
<td>BSA</td>
<td>Serva Feinbiochemica, Heidelberg, D</td>
</tr>
<tr>
<td>Bovine Albumin 22%</td>
<td>Ortho, Nekargemünd, D</td>
</tr>
<tr>
<td>Dako Fluoreszent Mounting Medium</td>
<td>Dako Corp., Carpintena, Ca, USA</td>
</tr>
<tr>
<td>DMSO</td>
<td>Sigma-Aldrich, Deisenhofen, D</td>
</tr>
<tr>
<td>EDTA</td>
<td>Merk, Darmstadt, D</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Roth & Co., Karlsruhe, D</td>
</tr>
<tr>
<td>Ethanol absolut</td>
<td>Fluka Chemika, Buchs, CH</td>
</tr>
<tr>
<td>Ethidiumbromide</td>
<td>Sigma-Aldrich, Deisenhofen, D</td>
</tr>
<tr>
<td>Formaldehyd</td>
<td>J.T. Baker, NL</td>
</tr>
<tr>
<td>Glycerol</td>
<td>J.T. Baker, NL</td>
</tr>
<tr>
<td>Natrium Acetat</td>
<td>Fluka Chemika, Buchs, CH</td>
</tr>
<tr>
<td>Natrium Chloride</td>
<td>Fluka Chemika, Buchs, CH</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller/Standort</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Natronlauge</td>
<td>Merk, Darmstadt, D</td>
</tr>
<tr>
<td>Normales Maus Serum</td>
<td>Dianova, Hamburg, D</td>
</tr>
<tr>
<td>PBS</td>
<td>Invitrogen, Carlsbad, USA</td>
</tr>
<tr>
<td>Tris Base</td>
<td>Sigma-Aldrich, Deisenhofen, D</td>
</tr>
<tr>
<td>Triton-X100</td>
<td>Merk, Darmstadt, D</td>
</tr>
<tr>
<td>Tryptone</td>
<td>Fluka Chemika, Buchs, CH</td>
</tr>
<tr>
<td>Xylencyanol</td>
<td>Sigma-Aldrich, Deisenhofen, D</td>
</tr>
<tr>
<td>Yeast-Extract</td>
<td>Fluka Chemika, Buchs, CH</td>
</tr>
</tbody>
</table>

4.8 Verbrauchsmaterialien

Kultur-Schalen	Bekton Dickinson, Franklin Lakes, USA
Kultur-Flaschen	Bekton Dickinson, Franklin Lakes, USA
Sterilfilter	Nalgene Nunc Int., Rochester, USA

4.9 Kits

Cytofix/Cytoperm	Becton Dickinson, Heidelberg, D
Eukaryotic TA Expression kit	Invitrogen, Carlsbad, USA
Expand Long Template PCR System	Roche Mol. Biochem., Mannheim, D
High Speed Plasmid Maxi Kit	Qiagen GmbH, Hilden, D
High Speed Plasmid Midi Kit	Qiagen GmbH, Hilden, D
HotStarTaq Master Mix	Qiagen GmbH, Hilden, D
MikroSpin S-300 HR Columns	Amersham Pharmacia Biotech, USA
Omniscript RT Kit	Qiagen GmbH, Hilden, D
Perm/Wash Buffer	Becton Dickinson, Heidelberg, D
pGEM-T-Easy Vector System	Promega Corp., Madison, USA
QIAprep Spin Mini prep Kit	Qiagen GmbH, Hilden, D
QIAquick Gel Extraction Kit	Qiagen GmbH, Hilden, D
RNeasy Mini Kit	Qiagen GmbH, Hilden, D
Shredder Säulen	Qiagen GmbH, Hilden, D
Material

4.10 Geräte

AgaGel Maxi
Becton Dickinson, Heidelberg, D
Biofuge primo R
Heraeus, Hanau, D
FACS-Calibur flow cytometer
Becton Dickinson, Heidelberg, D
Hera Safe (Banch)
Heraeus, Hanau, D
Image Master VDS (Gel-Auswertung)
Amersham Pharmacia, Freiburg, D
Immunfluoreszenz Mikroskop
Zeiss, Jena, D
Inkubator Hera Cell
Heraeus, Hanau, D
Kryotom CM1850
Leica, Nußlock, D
Nuceofector™ transfection system
Amaxa, Biosystems, Köln, D
Schüttelinkubator Certomat H
B.Braun, D
Spektrophotometer DU-640
Beckmann, D
T3 Thermocycler
Biometra, Göttingen, D
UV-Leuchte
Biometra, Göttingen, D
Zell Counter
Schärfe System, Reutlingen, D

4.11 Datenverarbeitung

Auswertung von Nukleotid Sequenzen
Cellquest version 3.1 software
Becton Dickinson, Heidelberg, D
4.12 Medien, Puffer und Lösungen

4.12.1 Zellkultur

4.12.1.1 HSC-Medium

RPMI1640-Medium

- FCS 10%
- PSG 2%
- SCF 50 ng/ml
- IL-3 20 ng/ml
- IL-6 10 ng/ml

4.12.1.2 HSC-Differenzierungs-Medium

Cellgro scgm-Medium

- FCS 10%
- PSG 1%
- a-Thioglycerol 0,5 x 10⁻⁴ M
- IL-3 20 ng/ml
- SCF 100 ng/ml
- EPO 1 U/ml

4.12.1.3 H9c2-Medium

DMEM-low Glucose-Medium

- FCS 10%
- PSG 1%
4.12.1.4 Feeder-Medium

DMEM-high Glucose-Medium
FCS 10%
PSG 1,2%
Sodium Pyruvat+MEM 600 µM
Monothioglycerol 0,02 µl/ml

4.12.1.5 ES-Medium

DMEM-high Glucose-Medium
FCS 15%
PSG 1,2%
Sodium Pyruvat+MEM 600 µM
Monothioglycerol 0,02 µl/ml
Leucemia inhibitor factor (LIF) 0,1 µl/ml

4.12.1.6 PSG

L-Glutamine 50% (v/v)
Penicillin Streptomycin 50% (v/v)

4.12.2 Bakterienkultur

4.12.2.1 LB-Flüssigmedium

Tryptone 10 g
Yeast Extract 5 g
NaCl 10 g
ddH₂O ad 1l
Ampicilline 100 µg/ml
→ pH 7,0
4.12.2.2 **LB-AMP-PLATTEN**

- **Tryptone**: 10 g
- **Yeast Extract**: 5 g
- **NaCl**: 10 g
- **Agar**: 15 g
- **ddH₂O**: ad 1 l
- **Ampicilline**: 100 µg/ml
- → pH 7,0

4.12.3 **Gelelektrophoresepuffer**

4.12.3.1 **50x TAE-ELEKTROPHORESEPUFFER**

- **Tris Base**: 242 g
- **Eisessig**: 57,1 ml
- **EDTA**: 50 mM
- **ddH₂O**: ad 1 l
- → pH 8,0

4.12.3.2 **EDTA-LÖSUNG (0,5 M)**

- **Na₂EDTA x 2H₂O**: 18,6 g
- **H₂O**: ad 100 ml
- → pH 8,0

4.12.3.3 **5X LADEPUFFER**

- **Bromphenolblau**: 0,001% w/v
- **Xylencyanol**: 0,001% w/v
- **EDTA**: 50 mM
- **Glycerol**: 30% v/v
4.12.3.4 Ethidiumbromide-Färbelösung

1x TAE-Puffer 200 ml
Ethidiumbromide 0,005% (v/v)

4.12.4 Immunfluoreszenz

4.12.4.1 Blocking-Buffer

BSA 0,2% (w/v)
PBS 50 ml
5 Methoden

Die molekularbiologischen Grundtechniken stellen im wesentlichen Modifikationen von Standardprotokollen dar.

5.1 Grundlegende Methoden

5.1.1 Präzipitieren von DNA durch Ethanol-Fällung

Die in Puffer oder Wasser gelöste DNA wurde zur vollständigen Nukleinsäure-Fällung mit 1/10 Vol. 3 M NaAc gemischt und durch Zugabe von 2,5 Vol. 100% EtOH gefällt. Die Proben wurden nach Zugabe von Salz und Alkohol für 30 min bei Raumtemperatur mit 15.000 rpm pelletiert. Um kopräzipitiertes Salz möglichst zu entfernen, wurde das DNA-Pellet mit 80% EtOH bei Raumtemperatur gewaschen und anschließend getrocknet.

5.1.2 Aufreinigung von Nukleinsäuren

5.1.2.1 GELEXTRAKTION

Die hochreine Aufreinigung von Restriktionsfragmenten, sowie PCR-Produkten erfolgte durch Extraktion der DNA aus Agarose-Gelen mittels des QIAquick Gelextraction Kit gemäß dem Hersteller-Protokoll.

5.1.2.2 MIKROSPIN-SÄULEN HR300

Mit den Mikrospin Säulen wurden DNA-Fragmente mit einer minimalen Größe von 100 bp aufgereinigt. Das Protokoll entsprach den Angaben des Herstellers.
5.1.3 Quantifizierung von Nukleinsäuren

Eine unbekannte DNA-Konzentration kann durch die Messung der Lichtabsorption bei einer Wellenlänge von \(\lambda = 260 \text{ nm} (A_{260}) \) im Spektralphotometer bestimmt werden. Die von der DNA absorbierte Menge des ultravioletten Lichtes dieser Wellenlänge ist dem DNA-Gehalt in der Probe direkt proportional (Lambert-Beersches-Gesetz). Bei doppelsträngiger DNA entspricht eine Absorption (\(A_{260} \)) von 1,0 einer Konzentration von ca. 50 µg/ml, bei einzelsträngiger RNA entspricht sie etwa 40 µg/ml. Diese Beziehung gilt verlässlich für gemessene Absorptionswerte zwischen 0,1 und 1,0. Über- oder unterschreiten die Werte diese Grenze, so muss die Probe verdünnt bzw. konzentriert werden.

Für die Konzentrationsbestimmung von DNA-Proben wurde eine Verdünnung in ddH₂O hergestellt und diese photometrisch bei \(\lambda = 260 \text{ nm} \) vermessen. Die Konzentrationsbestimmung erfolgte nach der Lambert-Beer'schen Gleichung

\[
\text{Konzentration [DNA]} = A_{260} \times 0,05 \times D \text{ [µg/µl]} \\
\text{Konzentration [RNA]} = A_{260} \times 0,04 \times D \text{ [µg/µl]}
\]

\(A_{260} = \) Absorption bei \(\lambda = 260 \text{ nm} \)
\(D = \) Verdünnungsfaktor
Faktor 0,05 für DNA, Faktor 0,04 für RNA

Um Aufschluss über die Reinheit der DNA-Lösung zu bekommen, wurde die Absorption der Probe bei 280 nm gemessen. Der Quotient \(A_{260}/A_{280} \) ist ein Maß für die Reinheit der isolierten Nukleinsäure und sollte bei doppelsträngiger DNA zwischen 1,8 und 2,0 liegen. Höhere Werte geben einen Hinweis auf die Anwesenheit von RNA oder denaturierter DNA, niedrigere Werte dagegen sind Indiz für Verunreinigungen mit Proteinen.
5.1.4 Restriktionsverdau

Alle Restriktionsverdau wurden in einem maximalen Reaktionsvolumen von 20 µl durchgeführt. Die DNA-Probe (0,1-2 µg je nach Anwendung) wurde mit 1/10 Vol. 10x Puffer, 1/100 Vol. 100x BSA und 10 U Enzym pro 1 µg DNA gemischt (s. 4.5.). Der Ansatz wurde 2-16 h bei der empfohlenen Temperatur inkubiert und anschließend zur Kontrolle gelelektrophoretisch auf einem Agarosegel aufgetrennt.

5.1.5 Agarose-Gelelektrophorese

5.1.6 Polymerase-Ketten-Reaktion (PCR)

Entscheidende Parameter für eine konstruktive Reaktion sind:
1. die Denaturierungstemperatur (abhängig vom Schmelzpunkt der DNA-Matrice und vom G/C-Gehalt der DNA, Optimum 3 °C über dem Schmelzpunkt)
2. die Annealingtemperatur (abhängig von der Länge und der Basensequenz der Primer)
3. der pH-Wert (Optimum zwischen pH 8,3 und pH 8,9 bei RT)
4. die MgCl\textsubscript{2}-Konzentration (Kofaktoren der Taq-Polymerase, Optimum bei 1,2-2,5 mM)
5. die KCl-Konzentration (Optimum 60 mM)
6. die DNA-Konzentration (Optimum bei humaner genomischer DNA bei 200-300 ng pro Reaktion)

5.1.6.1 STANDARD-PCR

Alle PCRs wurden mit dem HotStarTaq Master Mix Kit nach Hersteller-Angaben durchgeführt. Die HotStarTaq-Polymerase gewährt eine hohe PCR-Spezifität und erhöht die Ausbeute des spezifischen PCR-Produkts. Die MgCl\textsubscript{2}- und KCl-Konzentrationen im Puffer liegen im Optimum, so dass eine PCR-Etablierung um einiges erleichtert ist.

Ein typischer Reaktionsansatz wurde nach folgendem Schema zusammengestellt:

<table>
<thead>
<tr>
<th>Volumen (µl)</th>
<th>Komponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 µl</td>
<td>2x HotStarTaq Master Mix</td>
</tr>
<tr>
<td>1 µl</td>
<td>Primer F (10 pmol/µl)</td>
</tr>
<tr>
<td>1 µl</td>
<td>Primer R (10 pmol/µl)</td>
</tr>
<tr>
<td>X µl</td>
<td>DNA (200-300 ng)</td>
</tr>
<tr>
<td>ad 25 µl</td>
<td>ddH\textsubscript{2}O</td>
</tr>
</tbody>
</table>

Die jeweils angewendeten PCR-Programme waren auf die Schmelztemperatur der Primerpaare und die Länge der zu amplifizierenden DNA-Fragmente abgestimmt.
5.1.6.2 LONG-DISTANCE-PCR

Mix I:

3 µl	Primer MLC-F (10 pmol/µl)
3 µl	Primer MLC-R (10 pmol/µl)
5 µl	dNTP
13,6 µl	ddH₂O

Mix II:

5 µl	10x LDIII-Puffer
0,75 µl	Enzym-Mix
19,25 µl	ddH₂O

Anschließend wurden 24,6 µl des Mix I, 25 µl des Mix II und 0,4 µl murine, genomische DNA (ca. 400 ng) gemischt. Die PCR wurde mit dem folgenden Programm durchgeführt:

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>2’</td>
<td>94 °C</td>
</tr>
<tr>
<td>10”</td>
<td>93 °C</td>
</tr>
<tr>
<td>30”</td>
<td>62 °C</td>
</tr>
<tr>
<td>90”</td>
<td>68 °C</td>
</tr>
<tr>
<td>10”</td>
<td>93 °C</td>
</tr>
<tr>
<td>90”+20”/Zyklus</td>
<td>65 °C</td>
</tr>
<tr>
<td>7”</td>
<td>68 °C</td>
</tr>
</tbody>
</table>
5.1.6.3 **NESTED PCR**

Für eine Nested PCR wurde 1 µl eines PCR-Produktes in einer Verdünnung von 1:50 eingesetzt. Die verwendeten Primer hybridisierten dabei innerhalb des amplifizierten PCR-Produktes.

5.1.6.4 **RT-PCR**

Die Reverse-Transkription erfolgte mit Hilfe des *Omniscript*-Kits mit dem folgenden Ansatz:

<table>
<thead>
<tr>
<th>ca 1 µg</th>
<th>RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 µl</td>
<td>10x RT-Puffer</td>
</tr>
<tr>
<td>2 µl</td>
<td>dNTP</td>
</tr>
<tr>
<td>2 µl</td>
<td>Oligo(dT)\textsubscript{12-18}-Primer</td>
</tr>
<tr>
<td>1 µl</td>
<td>RNaseOut (Inhibitor)</td>
</tr>
<tr>
<td>1 µl</td>
<td>Reverse Transkriptase</td>
</tr>
<tr>
<td>ad 20 µl</td>
<td>RNase freies H\textsubscript{2}O</td>
</tr>
</tbody>
</table>

Der Ansatz wurde 1 h bei 37 °C und hinterher 5 min bei 95 °C inkubiert. Die PCR-Amplifikation erfolgte unmittelbar im Anschluss an die Reverse Transkription.
5.1.7 Sequenzierung

Sequenzanalysen wurden extern von der Firma MWG durchgeführt. Dazu wurden präzipitierte DNA und die entsprechenden Primer eingeschickt. Die Sequenizauswertung erfolgte mit dem Programm "Chromas".

5.1.8 RNA-Isolation

RNAsen sind ubiquitär und weisen eine sehr hohe Stabilität auf. Reaktionsgefäße und Pipettenspitzen sollten daher laut Hersteller RNase frei, bzw. autoklaviert sein.

5.1.9 Klonierung von Vektorkonstrukten

Die DNA-Klonierung wird in vier Schritte unterteilt:

1. Konstruktion eines rekombinanten Moleküls durch Ligation der Ziel-DNA mit einem Vektor
2. Transfer des rekombinanten DNA-Moleküls in eine Wirtszelle, in der es unabhängig von den Chromosomen der Wirtszelle replizieren kann (Transformation)
4. Isolation der rekombinanten DNA aus der Kultur eines Klons

5.1.10 Subklonierung zur Generierung von Enzyschnittstellen

Um artifiziell Restriktionsschnittstellen zu generieren, wurden PCR-Produkte in das pGEM-T-Easy Vector System subkloniert. Das Prinzip dieses Verfahrens basiert auf der Addition von singulären Adenosin(A)nukleotiden an das 3'-Ende von PCR-Produkten. Der Vektor besitzt im Gegenzug singuläre 5'-Thymin(T)-

5.1.11 Klonierung von Restriktionsfragmenten nach Restriktion

5.1.11.1 CIPPEN
Um eine Religation linearisierter Vektoren bei Klonierungsstrategien zu vermeiden, müssen die 5'-Enden von der Alkalinen Phosphatase CIP (Calf Intestinal Phosphatase) entphosphoryliert werden. Der Hintergrund durch Klone ohne Insert wird dadurch deutlich vermindert.

Für die Reaktion wurden 0,5 U/µg linearisierte Vektor-DNA eingesetzt und 1 h bei 37 °C inkubiert. Anschließend wurde der Ansatz über Mikrospin-Säulen HR300 zwecks Deaktivierung des Enzyms aufgereinigt.

5.1.11.2 LIGATION
Eine Ligation von DNA-Fragmenten mit Plasmid-Vektoren erfolgte über Nacht bei 16 °C im Thermocycler. Für einen 20 µl-Ansatz wurden 1 µl T4-DNA-Ligase und 1/10 Vol. des 10x T4-Ligase-Puffers eingesetzt. Das molare Verhältnis von Vektor- und Insert-DNA soll dabei ca. 1:3 betragen. Die einzusetzenden Mengen wurden nach der folgenden Formel berechnet:

\[
X \text{ ng [Insert]} = \text{bp [Insert]} \times \text{Konzentration [Vektor]} / \text{bp [Vektor]}
\]

\[
X \text{ ng [Insert]} \Rightarrow Y \text{ µl [Insert]}
\]

\[
3x Y \text{ µl [Insert]} : 1 \text{ µl [Vektor]} \rightarrow 3:1
\]

Die minimal eingesetzte Menge an Vektor-DNA darf 50 ng nicht unterschreiten.

5.1.12 Transformation von Bakterien
Die Transformationen der Vektorkonstrukte wurden konventionell mit INVαF’ (chemisch kompetente E. Coli) nach Protokoll des Herstellers durchgeführt.
5.1.13 Selektion von Zellklonen

Zur Vereinzelung der Zellen wurden 50 µl und 250 µl des Transformationsansatzes auf LB-Amp-Platten ausgestrichen und über Nacht (nicht länger als 16 h) bei 37 °C im Brutschrank inkubiert. Für die DNA-Präparation wurden einzelne Kolonien gepickt und bei 37 °C in 3 ml LB-Flüssigmedium auf dem Schüttler (225 rpm) 16 h kultiviert.

5.1.14 Isolierung von Plasmiden mittels “Mini-, Midi- und Maxipreps“

5.1.15 Transfektion

Die Zahl der Methoden, DNA in eine Zelle zu schleusen ist groß, jedoch besteht bei allen Methoden das Problem, dass die Transfektionseffizienz sehr stark vom Zelltyp und den jeweiligen Bedingungen abhängt. Die Transfizierbarkeit von primären Zelllinien, wie Knochenmark- und embryonalen Stammzellen ist minimal. Nach Austesten unterschiedlicher Reagenzien und Methoden konnten für die einzelnen Zelllinien die optimierten Transfektionsbedingungen ausgewählt werden (s.5.2.7 und 5.3.3).
5.2 Methoden-Teil A

5.2.1 CD34⁺ hämatopoetische Stammzellen

![Abb. 5.1 a) Clinimacs-Gerät zur Aufreinigung von peripheren Blut-Stammzellen. b) Qualitätskontrolle von CD34⁺ peripheren Stammzellen. CD34⁺ Zellen werden mittels fluorescent activating cell sorting (FACS) detektiert.](image-url)
Mittels Durchflußzytometrie (FACS) mit einem PE markierten Antikörper gegen CD34 konnte die Reinheit des Präparates mit >99% für PBSC und >95% für BMSC dokumentiert werden. Die aufgereinigten Zellen wurden in Medium mit 10% DMSO kryokonserviert und bei -130 °C in der Stickstoffdampfphase gelagert.

5.2.1.1 KULTIVIERUNG

Die kryokonservierten Zellen wurden zügig aufgetaut, in einer Dichte von 5-10 x 10^5 Zellen/ml in vorgewärmtes HSC-Medium aufgenommen und bei 37 °C, 5% CO₂ ein bis zwei Stunden vor der Nukleofektion kultiviert. Die Kultur-Bedingungen für CD34⁺ PBSC und BMSC wurden identisch gewählt. Nach Nukleofektion wurden dem Medium die Wachstumsfaktoren SCF (50 ng/ml), IL-3 (10 ng/ml) und IL-6 (20 ng/ml) frisch zugesetzt. Jeden zweiten Tag erfolgte ein Medienwechsel. Für die Differenzierungsanalyse wurden die Zellen in HSC-Differenzierungsmedium mit den Wachstumsfaktoren IL-3, SCF und EPO kultiviert.

5.2.2 Klonierung des pCR3.1/ΔLNGFR-Vektors

5.2.3 Nukleofektion

Die Nukleofektion ist ein neues Verfahren der Elektroporation zur transienten Transfektion von verschiedenen Zellarten (Abb. 5.2). Hierbei handelt es sich um eine nicht-virale Methode, mit der einfach und schnell DNA in den Zellkern eingeschleust werden kann. Die Zellen werden dadurch nicht destruiert. Eine

5.2.4 RT-PCR-Analyse

Eine LNGFR-Expression wurde in ΔLNGFR-, Mock- und untransfizierten CD34⁺ PBSC und BMSC bestimmt.

5.2.5 FACS-Analysen

5.2.5.1 FACS-Analyse für die Expressionskinetik

Mit der Software der Cellquest version 3.1 wurden die Daten schließlich ausgewertet. Dabei wurden die Zellen im Forward Scatter und FL2-Channel gate. Von jeder Probe wurden 10.000 Zellen erfasst, so dass eine statistische Signifikanz gewährte war.

5.2.5.2 FACS-Analyse zur Testung der Differenzierungskapazität

Zur Untersuchung der Differenzierungskapazität nukleofizierter PBSC wurde eine FACS-Doppelfärbung durchgeführt. Die Zellen wurden vor einer 20 minütigen Inkubationszeit mit dem mouse anti-Human NGF-Receptor Antikörper (1:10) in PBS/0,1% BSA gewaschen und nach zwei weiteren Waschschritten mit 3 µl PE-gelabelten IgG1 anti-mouse-Antikörper 20 min markiert. Es folgte ein weiterer PBS-Waschschritt, und ein Abblocken der Antikörper mit Normal-Maus Serum (1:10). Anschließend wurden die Zellen mit FITC-markierten CD66b Antikörpern doppel-gefärbert, gewaschen und in 500 µl PBS/0,1% BSA aufgenommen. Die FACS-Analyse wurde wie unter 5.2.5.1 beschrieben durchgeführt und
ausgewertet. Dabei wurden die Zellen im FL1 gegen FL2-Kanal ausgerichtet. Es wurden jeweils 10.000 Zellen erfasst, um eine statistische Signifikanz zu sichern.

5.2.6 Immunfluoreszenz

10 µl der Zellsuspension der FACS-Analyse (s. 5.3.5) wurden auf einem Objekträger mit einem adäquaten Volumen von DAKO Fluorescent Mounting Medium fixiert. Die Detektion von LNGFR exprimierenden Zellen erfolgte mittels Immunfluoreszenz Mikroskopie (PE-Filter, bzw. FITC-Filter).

5.2.7 Immunhistochemie

5.2.8 Myokardbiopsien

Alle anderen hier nicht aufgeführten Methoden des Teils A basieren auf den oben beschriebenen Grundtechniken.
5.3 Methoden-Teil B

5.3.1 Klonierung des pMLC/ZEO Vektors

Aus muriner genomischer DNA wurde ein PCR-Produkt des MLC-2v-Promotors mittels Nested Long Distance PCR generiert (Primer MLC-F/MLC-R; MLC-Fn/MLC-Rn), in T-Easy subkloniert und sequenziert. Nach Restriktion mit Nhe I und Xho I konnte ein 1903 bp langes Fragment gelextrahiert und in den Nhe I/Xho I geöffneten und geclonierten pEM7-Vektor zwischen den CMV-Enhancer und Sh ble (Zeocin-Resistenzgen) eingesetzt werden.

5.3.2 Klonierung des pMLC/ZEO/NEO Vektors

5.3.3 Zellkultur

5.3.3.1 Kultivierung von H9c2 Zellen

5.3.3.2 KULTIVIERUNG VON EMBRYONALEN-STAMM-ZELLEN

Ausdifferenzierung

5.3.4 Transfektion

5.3.5 Toxizitätskurven

5.3.6 RT-PCR-Analyse

Zur Detektion der Expression kardialer Markergene wurde eine RT-PCR Analyse von transfizierten Zellen durchgeführt. Nach den oben beschriebenen Protokollen wurde Gesamt RNA extrahiert (5.1.8), revers transkribiert (5.1.6.4) und mittels PCR (5.1.6.1) mit den entsprechenden Primern (4.3.3) amplifiziert.

5.3.7 Immunfluoreszenz

Alle anderen hier nicht aufgeführten Methoden des Teils B basieren auf den oben beschriebenen Grundtechniken.
6 Ergebnisse

6.1 A: Markierung humaner CD34⁺ hämatopoetischer Stammzellen

6.1.1 Klonierung des ∆LNGFR-Vektorkonstruktes

Ein 834 bp großes Fragment der trunkierten Form des *low affinity nerve growth factor receptor* Gens (∆LNGFR) wurde mittels PCR aus der cDNA menschlichen Gehirngewebes amplifiziert und in den pCR3.1 Vektor inseriert. Eine anschließende Sequenzanalyse ergab die korrekte Nukleotidsequenz (Abb. 6.1).

![Abb. 6.1](image) Das 834 bp großes PCR-Fragment der trunkierten Form des *low affinity nerve growth factor receptor* Gens (∆LNGFR), wurde isoliert und in den pCR3.1 Vektor kloniert. Eine anschließende Sequenzanalyse ergab die richtige Sequenz.
6.1.2 FACS-Analyse ΔLNGFR-transfizierter PBSC und BMSC

Die Transfektionseffizienz ΔLNGFR transfizierter CD34⁺ PBSC und BMSC wurde mittels Durchflußzytometrie ermittelt. Die Abb. 6.2 zeigt ein repräsentatives Beispiel einer FACS-Analyse 4 h (PBSC) bzw. 84 h (BMSC) nach Nukleofektion: 44% ΔLNGFR transfizierter PBSC und 38% ΔLNGFR transfizierter BMSC sind positiv für LNGFR, wohingegen auf Mock-transfizierten Zellen keine Expression nachweisbar ist.

Eine Expressions-Kinetik von LNGFR in transfizierten CD34⁺ PBSC und BMSC wurde mittels FACS-Analyse zu verschiedenen Zeitpunkten nach der Nukleofektion erstellt (Abb. 6.3). 4 h post transfectionem waren durchschnittlich 39% der CD34⁺ PBSC positiv für LNGFR (n=3). Der Anteil LNGFR positiver Zellen dünnste sich in der proliferierenden Kultur nach 36 h auf 31%, nach 84 h auf 22%, nach 120 h auf 14% und nach 200 h auf 7% aus (Abb. 6.3 a). Die Expression des Rezeptors auf BMSC differierte gegenüber PBSC: bei BMSC wurde eine maximale Expression von LNGFR (26%) 84 h nach der Nukleofektion detektiert. In Analogie zu den PBSC sank der Anteil LNGFR-exprimierender Zellen nach 120 h durchschnittlich (n=3) auf 15% und nach 200 h auf 4% (Abb. 6.3 b).
6.1.3 Vitalität \(\Delta \text{LNGFR}-\text{transfizierter PBSC und BMSC} \)

Die Vitalität transfizierter Zellen wurde quantifiziert und mit derjenigen unbehandelter Zellen verglichen. Obwohl die Vitalität transfizierter PBSC und BMSC innerhalb der ersten 84 h nach der Nukleofektion von 80% bei PBSC, bzw. 52% bei BMSC auf 50%, bzw. 42% sank, erholten sich die Zellen nach 200 h wieder und zeigten einen Anstieg der Vitalität auf 79%, bzw. 56% (Abb. 6.4).

6.1.4 RT-PCR \(\Delta \text{LNGFR} \)-transfizierter PBSC und BMSC

Zur Detektion der \(\Delta \text{LNGFR} \) Expression wurde nach 36 h eine RT-PCR Analyse von \(\Delta \text{LNGFR} \)-, Mock- und untransfizierten CD34\(^+\) PBSC und BMSC durchgeführt.

Abb.6.5 RT-PCR von ∆LNGFR-, Mock- und untransfizierten CD34⁺ PBSC und BMSC 36h nach Nukleofektion. Ausschließlich ∆LNGFR-transfizierte Zellen exprimieren das Markergen. Als Expressionskontrolle dient das *Housekeeping* Gen GAPDH

6.1.5 Immunfluoreszenz ∆LNGFR transfizierter PBSC und BMSC

Die Detektion mittels Immunfluoreszenz Mikroskopie von ∆LNGFR auf exprimierenden Zellen erfolgte 36 h nach der Nukleofektion. Der Rezeptor konnte auf der Membran ∆LNGFR-transfizierter PBSC und BMSC detektiert werden; Mock-transfizierte Zellen waren negativ für LNGFR (Abb.6.6).
Ergebnisse

Abb. 6.6 Immunfluoreszenz Mikroskopie ΔLNGFR- und Mock-transfizierter PBSC und BMSC 36 h nach Nukleofektion. ΔLNGFR-transfizierte Zellen exprimieren LNGFR auf ihrer Zelloberfläche, wohingegen Mock-transfizierte Zellen keine Expression aufweisen.

6.1.6 Immunhistochemie ΔLNGFR transfizierter PBSC und BMSC

ΔLNGFR- und Mock-transfizierte Zellen wurden 36 h nach Nukleofektion geerntet und kryofixiert. Die LNGFR-Detektion erfolgte mittels Avidin-Biotin-Färbung.

Abb. 6.7 Immunhistochemische Anfärbung ΔLNGFR- und Mock-transfizierter PBSC bzw. BMSC 36 h nach Nukleofektion. ΔLNGFR-transfizierte Zellen zeigen im Gegensatz zu Mock-transfizierten Zellen eine LNGFR-Expression auf ihrer Membran.
\[\triangle \text{LNGFR} \] transfizierte Zellen exprimierten den Rezeptor auf ihrer Membran, wohingegen Mock-transfizierte Zellen negativ waren (Abb. 6.7).

6.1.7 Untersuchung des transienten Transfektionscharakters

Zusätzlich zur FACS-Analyse wurde der transienten Expressionscharakter \[\triangle \text{LNGFR} \]-transfizierter PBSC in einer immunhistochemischen Expressions-Kinetik, sowie mittels RT-PCR verifiziert.

Abb. 6.8 Immunhistochemische Expressions-Kinetik \[\triangle \text{LNGFR} \]-transfizierter PBSC

36 h, 120 h und 200 h nach Nukleofektion zur Bestätigung des transienten Charakters der Nukleofektion. Nach 200 h können nahezu keine Zellen mehr detektiert werden.

Abb. 6.9 Expressions-Kinetik von LNGFR in transfizierten CD34\(^+\) HSC 36h, 120 h und 200 h nach Transfektion mittels RT-PCR zur Bestätigung des transienten Charakters der Nukleofektion. Nach 120 h nimmt die Signalstärke deutlich ab, nach 200 h ist kein Signal mehr detektierbar. Als Expressionskontrolle wurde das Housekeeping Gen GAPDH verwendet.
Für die immunhistochemische Färbung wurden die Zellen 36 h, 120 h und 200 h nach Nukleofektion kryofixiert und mittels Avidin-Biotin-Methode angefärbt (Abb.6.8). Für die RT-PCR wurde zu den entsprechenden Zeitpunkten DNA isoliert und amplifiziert (siehe auch 6.1.6) (Abb.6.9). In Analogie zu den FACS-Daten nahm die Anzahl positiver Zellen in der proliferierenden Kultur ab.

6.1.8 Differenzierungskapazität nukleofizierter PBSC

![FACS-Doppelfärbung von Mock- und ΔLNGFR transfizierten CD34⁺ HSC mit Antikörpern gegen LNGFR und den Granulozytenmarker CD66b 1, 4, 7 und 10 Tage nach Nukleofektion. Der Anteil LNGFR positiver Zellen nimmt bezogen auf alle Zellen stärker ab, als bezogen auf die CD66b-positiven Zellen.](attachment:image)
Von diesen exprimieren ca. 30% LNGFR. Nach vier Tagen lag der Anteil CD66b positiver Zellen bei 20%, davon 50% positiv für LNGFR. Eine Woche nach der Nukleofektion zeigten nur noch ca. 10% granulozytären Charakter, 40% davon exprimierten zusätzlich LNGFR. Nach zehn Tagen waren 19% CD66b positive Zellen detektierbar, von denen jedoch nur noch ca. 5% eine LNGFR-Expression vorwiesen. Auf Mock transfizierten HSC konnte keine LNGFR-Expression detektiert werden. Die Abb. 6.11 repräsentiert den Verlauf der LNGFR/CD66b-Expression über die erwähnte Zeitspanne von 10 Tagen.

Die Abb. 6.12 zeigt die lichtmikroskopische (a) und immunfluoreszenz (b-d) Aufnahmen CD66b/LNGFR-gefärbter ΔLNGFR transfizierter CD34⁺ HSC vier Tage nach Nukleofektion. Eine der beiden CD66b-positiven Zellen exprimiert zusätzlich LNGFR.
Ergebnisse

Abb. 6.12 Immunfluoreszenz von CD66b/LNGFR-doppelgefärbten ∆LNGFR-transfizierter CD34⁺ HSC 4 Tage nach Nukleofektion. grün: CD66b; rot: LNGFR. Eine der beiden CD66b positiven Zellen exprimiert auch nach der Differenzierung noch LNGFR.

6.1.9 LNGFR-Expression in Myokardbiopsien

Um ∆LNGFR als geeignetes Markergen in humanem Myokard zu definieren wurden Myokardbiopsien aus dem rechtsventrikulären Septum gegen LNGFR angefärbt.

Abb. 6.13 LNGFR-Expression in Myokardbiopsien. Kardiomyozyten sind negativ für LNGFR, nur ein intramyokardialer Nervenstrang zeigt eine positive Anfärbung (Pfeil)

6.2 B: Isolation ventrikulärer Kardiomyozyten aus Stammzellen

6.2.1 Klonierungsexperimente zur Generierung der Selektionskonstrukte

6.2.1.1 Klonierung des pMLC/ZEO Selektionsvektors

Um die Funktionalität einer genetischen Selektion kardiomyozytärer Progenitorzellen aus Stammzellen mittels promotorgesteuerter Antibiotika-Resistenz untersuchen zu können, wurde das Vektorkonstrukt pMLC/ZEO generiert, welches die Basis des genetischen Selektionsmechanismus bildet. Bestandteile des Vektors sind einerseits das Zeocin-Resistenzgen (Sh ble), das unter der Kontrolle des 1,9 kb langen ventrikspezifischen MLC-2v-Promotors liegt und andererseits das 0,4 kb große CMV-Enhancer-Element (CMV_enh) zur Verstärkung der MLC-2v-Promotoraktivität in MLC-2v-exprimierenden Zellen (Abb. 6.14).

6.2.1.2 Klonierung von pMLC/ZEO/NEO

Zur Konstruktion von pMLC/ZEO/NEO wurde dem pMLC/ZEO-Selektionsvektor eine 1,4 kb große Neomycin-Resistenz-Kassette nachgeschaltet (*Abb. 6.15*).

6.2.2 Selektion von transfizierten H9c2 Zellen

Das Prinzip der genetischen Selektion von Kardiomyozyten aus Stammzellen mit Hilfe einer MLC-2v-Promotor gesteuerten Antibiotikaresistenz wurde zunächst mit

Nachdem die minimal toxische Zeocin-Konzentration für H9c2 Zellen mittels einer Zeocin-Toxizitätskurve ermittelt (150 µg/ml) (Tab. 6.1) und die Transfektionsbedingungen mittels β-Gal-Test optimiert waren, wurden H9c2-Zellen mit dem linearisierten Vektor konstrukt stabil transfiziert und nach 24 h in Kultur mittels Zeocin selektioniert.

Tab. 6.1: Zeocin-Toxizitätskurve von H9c2-Zellen.

<table>
<thead>
<tr>
<th>Zeocin</th>
<th>0 µg/ml</th>
<th>50 µg/ml</th>
<th>100 µg/ml</th>
<th>150 µg/ml</th>
<th>200 µg/ml</th>
<th>250 µg/ml</th>
<th>300 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>nach 2d</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nach 3d</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nach 4d</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nach 7d</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ergebnisse

6.2.3 Selektion von Kardiomyozyten aus ES-Zellen mittels pMLC/ZEO/NEO

Ein Protokoll zur Doppelselektion wurde an murinen ES-Zellen etabliert (Abb. 6.18).
Ergebnisse

Abb. 6.18: Schema der Kardiomyozyten-Selektion aus ES-Zellen mittels pMLC/ZEO/NEO

Murine ES-Zellen wurden freundlicherweise von der Abteilung Immunologie des Universitätsklinikums Ulm zur Verfügung gestellt. Nach ausreichender Expansion auf murinen embryonalen Fibroblasten (Feeder-Zellen) in ES-Medium wurden die Zellen mit dem lineарisiertem pMLC/ZEO/NEO-Konstrukt mittels Lipofektion stabil transfiziert und nach 24 h mit einer minimal-toxischen Konzentration von 240 µg/ml Neomycin (G418, Geniticin), behandelt (Tab. 6.2).

Tab. 6.2 Neomycin-Toxizitätskurve von ES-Zellen.

<table>
<thead>
<tr>
<th>Neomycin</th>
<th>0 µg/ml</th>
<th>50 µg/ml</th>
<th>100 µg/ml</th>
<th>150 µg/ml</th>
<th>200 µg/ml</th>
<th>250 µg/ml</th>
<th>300 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>nach 2d</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>nach 3d</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>nach 4d</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>nach 7d</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von den überlebenden Klonen (Abb. 6.19) wurde schließlich die RNA extrahiert und mittels RT-PCR auf die ventrikulären Marker MLC-2v, cActin und TEF-1 untersucht (Abb. 6.20). Die selektionierten Zellen zeigten für die untersuchten kardialen Marker ein positives Signal.

Tab. 6.3 Zeocin-Toxizitätskurve von ES-Zellen

<table>
<thead>
<tr>
<th>Zeocin</th>
<th>0 µg/ml</th>
<th>50 µg/ml</th>
<th>100 µg/ml</th>
<th>150 µg/ml</th>
<th>200 µg/ml</th>
<th>250 µg/ml</th>
<th>300 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>nach 2d</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>nach 3d</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>nach 4d</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nach 7d</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Ergebnisse

Abb. 6.20 a: Ausdifferenziertes EB-Klon, der nach Transfektion mit pMLC/ZEO/NEO eine Neomycin- und Zeocin-Behandlung überlebt hat; b: Nachweis kardialer Markergene (MLC-2v, cActin, TEF-1 (Pfeile)) in überlebenden Klonen mittels PCR.

Zusätzlich wurde eine immunhistochemische Troponin I-Färbung durchgeführt, mit der die überlebenden Zellen auf Proteinebene ebenfalls als kardiomyozytär identifiziert werden konnten (Abb. 6.21).

Abb. 6.21 Immunfluoreszenz Mikroskopie von ausdifferenzierten ES-Klonen nach Neomycin- und Zeocin-Selektion gegen Troponin (rot). Das Cytoskelett wurde gegen f-Actin angefärbt (grün).
Insgesamt konnte hiermit nachgewiesen werden, dass eine genetische Doppelselektion von Kardiomyozyten aus Stammzellen mit dem in dieser Arbeit vorgestellten genetischen Mechanismus prinzipiell realisierbar ist.
7 Diskussion

Prinzipiell kommen für eine Geweberegeneration zwei therapeutische Strategien in Frage. Erstens, die intrakoronare Applikation undifferenzierter Stammzellen in das Myokard mittels Herzkatheter, und zweitens die Injektion terminal differenzierter Kardiomyozyten, bzw. deren Progenitorzellen, in das Organ.
7.1 A: Markierung humaner CD34⁺ hämatopoetischer Stammzellen

Die Nukleofektion ist eine neue Technologie, die auf der Elektroporation beruht und Nukleinsäuren schonend in die Zellen befördert, ohne dabei die Zellvitalität bedeutend zu beeinträchtigen (Hamm, 02; Nambar, 03; Trompeter, 03; Martinez-Gonzalez, 03). In dieser Arbeit konnte nachgewiesen werden, dass transfizierte HSC ihr Differenzierungsvermögen durch die Nukleofektions-Prozedur nicht verlieren, und ein potentieller Weg zur Bewertung der Homing Eigenschaften und des Transdifferenzierungs-Potentials intrakoronarer HSC mittels immunhistochemischer Färbung gegen LNGFR in Myokardbiopsien wird aufgezeigt.
Diskussion

Unbehandelte CD34⁺ Zellen zeigten keine Expression von LNGFR (Abb.6.7). Da LNGFR auch auf Kardiomyozyten nicht vorhanden ist (Abb.6.13) - mit Ausnahme auf Nervenzellen von intramyokardialen Nervensträngen - stellt der Receptor ein gutes Kandidatengen dar, um HSC vor einer autologen Transplantation zu markieren.

Bei optimierten Nukleofektions-Bedingungen konnte nach 4 h, bzw. 48 h eine Transfektionseffizienz von durchschnittlich 39% in CD34⁺ PBSC bzw. 26% in CD34⁺ BMSC erlangt werden (Abb.6.3).

Die Vitalität der Zellen wird durch die Nukleofektions-Prozedur geringfügig beeinflusst, d.h. nach der Transfektion sinkt sie zunächst auf ca. 50%, steigt aber bereits nach 5 Tagen wieder auf den Ausgangswert von 80% an. Ein Grund für den Vitalitätsverlust könnte sein, dass die Zellen verfugungsbedingt vor und nach der CD34 Selektion eingefroren werden mussten. Der physiologische Stress, der beim Auftauen, sowie die direkt anschließende Nukleofektions-Prozedur wird möglicherweise nur schwer von den Zellen überlebt. Es ist außerdem anzunehmen, dass zudem ein negativer Einfluss auf deren DNA-Aufnahmefähigkeit hervorgerufen wurde. Bei Verwendung von frischen HSC wäre demnach eine höhere Transfektionseffizienz sowie Vitalität zu erwarten.

Die Lokalisation des Rezeptors auf der Membranoberfläche konnte neben der FACS-Analyse durch die Immunfluoreszenz Mikroskopie sowie der Immunhistochemie bestätigt werden (Abb.6.6 + Abb.6.7). Mock- und untransfizierte Zellen zeigten weder in den FACS-Analysen noch in der Immunfluoreszenz Mikroskopie oder der immunhistochemischen Anfärbung eine Expression von LNGFR. Durch eine molekulargenetische Analyse (RT-PCR) konnte zusätzlich eine mRNA Expression von LNGFR in ausschließlich ΔLNGFR-transfizierten HSC bestätigt werden (Abb.6.5).

Die zeitabhängigen Kinetiken der Expression von LNGFR bei PBSC und BMSC unterschieden sich im Expressionsgipfel, den PBSC nach 4 h und BMSC nach 84 h erreichten. Ein Grund dafür könnte die unterschiedliche Aufarbeitung der Zellen sein: PBSC sind mit G-CSF stimuliert periphere Blutstammzellen, die sich möglicherweise in einem anderen Stadium der Reifung befinden und folglich eine
höhere Expressionskapazität aufweisen als "native" BMSC, die direkt aus dem Knochenmark gewonnen werden.

Wegen des transienten Charakters der Nukleofektion, und weil Fremd-DNA bei der Zellteilung nicht an die Tochterzellen weitergegeben wird, dünnnte sich der Anteil LNGFR positiver Zellen im Verlauf in der proliferierenden Kultur aus. Nach 120 h exprimierten noch 14% der PBSC und 15% der BMSC den Rezeptor. Die zeitabhängige Abnahme der Rezeptorexpression konnte qualitativ auch mittels der Immunhistochemie und auf molekularer Ebene in einer RT-PCR bestätigt werden (Abb. 6.8 + Abb. 6.9).

7.1.1 Einfluss der Nukleofektion auf das Differenzierungspotential der HSC

Diskussion

angewandte Methode (Zwaka, 02; Wojnicz, 01; Pauschinger, 99), mit der das Verhalten ∆LNGFR markierter CD34+ HSC nach intrakoronarer Transplantation untersucht werden könnte. Bei einer in vivo Applikation von autologen, markierten CD34+ Stammzellen ins Myokard von Patienten mit Dilatativer Kardiomyopathie wäre damit ein Nachweis einer Transdifferenzierung der Zellen auch noch nach längerer Zeit denkbar. Die krankheitsinduzierte Wundheilung im entzündeten Gewebe der Patienten könnte die zu erwartende Regeneration durch die applizierten Stammzellen zusätzlich fördern (Gazit, 99; Lee 01; Leferovich, 01) und das Homing der markierten Zellen begünstigen.

Da die Nukleofektion eine transiente Transfektionsmethode ist, ist die Häufigkeit einer stabilen genomischen Integration im Gegensatz zur viralen Transduktion entscheidend reduziert (Li, 02). Durch eine stabile Integration eines retroviralen Vektors könnten Krebs-Enhancer-Gene aktiviert, bzw. Krebs-Supressor-Gene inaktiviert werden, und damit eine Krebsentstehung begünstigen. Dieser Aspekt ist insbesondere deshalb relevant, da eine Markierung mit ∆LNGFR für eine in vivo Applikation kontrovers diskutiert wurde. Während in einigen Studien sowohl im Tier- als auch im humanen Modell die Sicherheit einer ∆LNGFR-Markierung gezeigt werden konnte (Bonini 97, 98; Verzeletti 98), berichteten Li et al., dass ein ∆LNGFR enthaltender viraler Vektor eine maligne Zellproliferation begünstigt (Li 02; Hacein-Bey-Abina 03). Vor kurzem wurde jedoch in einem Überblick der bisherigen Ergebnisse eine Markierung mit ∆LNGFR als Markergen als nicht toxisch und sicher beschrieben (Bonini, 03).

7.2 B: *In vitro* Isolation von Kardiomyozyten aus Stammzellen

Eine vielversprechende Strategie zur Gewinnung einer "reinen" Kardiomyozyten-Progenitor-Kultur aus Knochenmarkstammzellen, ist das Promotor gestützte Aufreinigungsverfahren. Grundsätzliches Problem bleibt dabei, Promotoren zu charakterisieren, die spezifisch für die interessierende Zelltypen sind und keine Expression in anderen Geweben hervorrufen.

7.2.1 Nachweis der Funktionsfähigkeit der Promotor gesteuerten Selektion

Um die Funktionalität des Verfahrens auszutesten wurde ein Vektorkonstrukt (pMLC/ZEO) erstellt, das eine *Myosin-Light-Chain-2v* (MLC-2v) Promotor-gesteuerte Zeocin-Resistenz beinhaltet. Der 1,9 kb große Promotor des MLC-2v Gens wird spezifisch während der Herzbildung ab dem achten Tag p.c. exprimiert (O'Brien, 93; Meyer 00) und später fast ausschließlich in den Ventrikeln vorgefunden (Franz, 93). Der dem Promotor vorangeschaltete CMV-Enhancer (CMV_{enh}) erhöht die Promotor-Aktivität von MLC-2v signifikant und verursacht eine verstärkte Expression des Resistenzgens, ohne die Gewebespezifität von MLC-2v bedeutend zu beeinflussen (Müller, 00). Als Modellsystem diente die humane
Diskussion

In ähnlichen Experimenten selektierten und charakterisierten Müller, Klug (Klug, 98) und Kolosov (Kolosov, 98) Kardiomyozyten aus Embryonic Bodies (EB). Bei den letzteren beiden waren die Kardiomyozyten jedoch nicht für eine Zelltransplantation ins Ventrikelgewebe geeignet, da der Promotor des αMHC, bzw. α-Actin Gens benutzt wurde, die beide nicht die Spezifität besitzen, zwischen verschiedenen Typen von Kardiomyozyten zu differenzieren. Müller et al. (Müller, 00) selektionierten Kardiomyozyten aus EBs mittels des ventrikelspezifischen MLC-2v Promotors, der einem EGFP-Gen vorangeschaltet war. Im Gegensatz zu diesen Arbeiten wurde in dieser Dissertation ein System entwickelt, mit Hilfe dessen sich transfizierte, ventrikuläre Kardiomyozyten durch Antibiotikaselektion aus ES-Zellen isolieren lassen. Der Vorteil dieses Ansatzes liegt im Gewinn einer reinen Kardiomyozytenpopulation ohne weitere Aufreinigung positiver Zellen. Für eine therapeutische Anwendung beim Menschen ist es empfehlenswert die einzelnen Selektionsschritte so gering wie möglich zu halten. Später soll das Protokoll auf humane CD34⁺ HSC übertragen werden, mit dem langfristigen Ziel, die isolierten Progenitorzellen autolog zu transplantieren und eine Regeneration des degenerierten Myokards zu bewirken.

7.2.2 Nachweis der Selektionierbarkeit mittels MLC-2v-Promotor

Zellen konnte, im Gegensatz zu untransfizierten Zellen, das Vektor-Konstrukt molekulargenetisch nachgewiesen werden (Abb. 6.17). Diese Zellen änderten außerdem ihre Morphologie von einer spindelförmigen, dreieckigen zu einer flachen, polymorphen Form mit vielen Pseudopodien-ähnlichen Fortsätzen (Abb. 6.16). Dieses Phänomen ist ein erster Hinweis darauf, dass die Zellen anfangen zu differenzieren und wird gewöhnlich auch bei primären Kardiomyozyten-Kulturen beobachtet (Bugaisky, 89; Li, 96).

Mit Hilfe des H9c2-Modells konnte gezeigt werden, dass der MLC-2v-Promotor im Vektorkonstrukt aktiv genug arbeitet, um die nachgeschaltete Zeocin-Resistenz ausreichend stark anzuschalten. Auf dieser Basis wurde daher das Protokoll der Doppelselektion aufgebaut.

7.2.3 Nachweis der Funktionsfähigkeit einer Doppelselektion

7.3 Aussichten

Die dargestellten Untersuchungen zeigten, dass CD34⁺ HSC für humane in vivo Untersuchungen markiert werden konnten. Bevor die markierten Zellen Patienten mit DCM verabreicht werden dürfen, um damit das Verhalten der Zellen und deren therapeutischen Nutzen in vivo zu untersuchen, muss zum einen das Protokoll entsprechend der "good manufacture practice" (GMP)-Richtlinien verändert werden, und zum anderen ein positives Votum der "Kommission für somatische Genterapie" der Bundes Ärzte Kammer (BAeK) vorliegen.

8 Zusammenfassung

Zudem wurden erste positive Ergebnisse der Isolierung und Anreicherung kardiomyozytärer Vorläuferzellen aus Stammzellen mittels eines genetischen Selektionsverfahren präsentiert. Das Verfahren soll künftig auf humane CD34⁺ HSC übertragen werden, um ein Protokoll zur Isolierung einer kardiomyozytären Population für autologe Transplantationen bei Patienten mit degnerativen Myokarderkrankungen bereitzustellen.
9 Literatur

8. **Bacigalupo A, Frassoni F, Van Lint MT.** Bone marrow or peripheral blood as a source of stem cells for allogeneic transplantation. *Hematologica.* 2002;87:4-8.

10 Anhänge

10.1 Begriffserklärungen

Adulte Stammzelle:
Undifferenzierte Zelle in differenziertem Gewebe, die sich selbst erneuern und mit bestimmten Begrenzungen differenzieren kann.

Embryonic Body:
ES-Zellaggregat, das bei Entzug von LIF anfängt auszudifferenzieren.

Gastrulation:
Als Gastrulation bezeichnet man die Bildung der Keimblätter (Mesoderm, Endoderm, Ektoderm) durch Einstülpung der Blastula. Die embryonalen Zellen werden dabei neu organisiert und umgeordnet. In der menschlichen embryonal Entwicklung beginnt die Gastrulation am Tag 14 und endet am Tag 19 p.c..

GMP-Richtlinien:
Good manufacturing practices: WHO-Richtlinien über die Anforderungen, die an die Qualität von Arzneimitteln gestellt werden.

Klonalität:
Klonalität beschreibt die Fähigkeit von Zellen bei der Zellteilung Tochterzellen zu entwickeln, die exakt die gleichen genetischen und funktionellen Eigenschaften haben wie die Mutterzelle.

Multipotenz:
Plastizität:
Als Plastizität bezeichnet man die Fähigkeit einer Stammzelle, Deszendanten hervorzubringen, die nicht mehr aus demselben embryonalen Keimblatt stammen. Beispiele hierfür sind Knochenmarkszellen (Mesoderm), die zu Neuronen (Ektoderm) differenzieren.

Pluripotenz:
Im Lateinischen bedeutet der Begriff "plus" soviel wie "viel, mehr". Unter Wissenschaftlern wird der Begriff Pluripotenz benutzt, um Stammzellen zu beschreiben, die in der Lage sind, sich in Zellen aller drei embryonalen Keimblätter - Endoderm, Mesoderm und Ektoderm - zu differenzieren, wobei die Fähigkeit zur Differenzierung in extraembryonales Gewebe verloren geht. Danach sind pluripotente Zellen nicht mehr in der Lage, einen lebensfähigen Organismus auszubilden.

Progenitorzellen:
Eine Progenitorzelle, die in der Literatur auch synonym als Vorläuferzelle oder Precursor-Zelle bezeichnet wird, ist eine partiell differenzierte Zelle, die aber noch zur Zellteilung fähig ist und noch das Entwicklungspotential für mehrere Zelllinien besitzt, bevor sie auf die Entwicklung nur einer Linie festgelegt ist. Die Unterscheidung zwischen Progenitorzellen und adulten Stammzellen wird folgendermaßen vorgenommen: Bei der Teilung einer adulten Stammzelle ist meistens eine der zwei entstandenen Zellen eine Stammzelle, die sich weiterhin uneingeschränkt teilen kann, die andere Zelle geht in eine Differenzierungsteilung über. Im Gegensatz dazu kommt es bei einer Zellteilung von Progenitorzellen zu zwei Zellen, die beide nur noch zu einer begrenzten Anzahl an Differenzierungsteilungen fähig sind. Progenitorzellen können zwar Zellen in großer Quantität produzieren und spielen bei Regenerationsprozessen eine wichtige Rolle, dabei ist ihr Differenzierungspotential aber in der Regel auf eine bestimmte Zellreihe beschränkt.
Teratom:
Teratome bestehen aus differenziertem Gewebe und undifferenzierten Stammzellen. Es sind Tumoren, die aus Gewebe der drei embryonalen Keinblätter bestehen und gewöhnlich in den Eierstöcken oder Hoden gefunden werden. Sie können aber auch bei der Applikation pluripotenter Stammzellen entstehen.

Totipotenz:

10.2 Poster
Objective:

Background:
Hematopoietic stem cells (HSC) might have the potential to transdifferentiate into a variety of tissues and have already been used as a novel therapy for tissue repair. However, direct in vivo evidence for homing of autologous human HSC and transdifferentiation into organ cells has not yet been provided. Genetic labeling of HSC with a non-toxic cell marker is mandatory.

Methods:
Using the novel technology of nucleofection we transfected CD34 positive selected peripheral blood (PBSC) and bone marrow (BMSC) stem cells with the truncated form of the low affinity nerve growth factor receptor (deltaLNGFR). Expression and cell-surface presentation were investigated using RT-PCR, FACS, immunofluorescence microscopy and immunohistochemistry. Additionally, biopsies of different normal tissues were analysed immunohistochemically.

This genetic labeling technique for CD34 positive HSC is efficient, non-toxic and does not affect stem cell potential and may thus be an important step towards the investigation of their homing characteristics and transdifferentiation capability in humans.

Results:

Expression analysis of deltaLNGFR-transfected HCS

Figure 1: FACS-analysis of deltaLNGFR in CD34 positive PBSC and BMSC.
FACS analysis using anti-human NGF-Receptor antibody was performed 4 h after nucleofection. In this example, 44 % of deltaLNGFR-transfected CD34-positive PBSC and 38 % of deltaLNGFR-transfected CD34-positive BMSC showed positive expression of deltaLNGFR, whereas mock-transfected cells showed no expression.

Figure 2A: Kinetics of deltaLNGFR expression in CD34-positive PBSC and BMSC.
A mean of 42 % of CD34 positive PBSC showed deltaLNGFR staining 4 hours after transfection with a decrease to 27 % after 36 h, 18 % after 94 h, 13 % after 128 hours and 7 % after 200 hours. BMSC showed similar maximum of deltaLNGFR expression 72 h after transfection (21 %) and continued to express the receptor for at least 200 h.

Figure 2B: Viability of transfected CD34-positive PBSC and BMSC after nucleofection.
Viability in transfected PBSC decreased from 80 % to 45 % within 84 h and recovered to about 70 % after 200 h. In analogy for the data in PBSC, viability of transfected BMSC decreased from 52 % (24 h) to 42 % (72 h). Both in these experiments cell viability remained in 55 % (72 h) / 20 % (200 h).

Figure 3A+B: Immunofluorescence microscopy (3A) and Immunohistochemistry (3B) of deltaLNGFR-transfected CD34-positive PBSC and BMSC.
Cells stained with anti-human NGF-Receptor antibody 24 hours after nucleofection showed positive immunofluorescence microscopy using a PE-filter. DeltaLNGFR transfected cells were positive for LNGFR (a) whereas mock-transfected were negative. Immunohistochemistry of deltaLNGFR-transfected CD34 positive PBSC and BMSC showed positive expression of deltaLNGFR 24 h after nucleofection (a,c) whereas mock-transfected (b,d) and untransfected (not shown) CD34-positive cells were negative.

Figure 4: RT-PCR analysis of deltaLNGFR-transfected CD34-positive stem cells.
deltaLNGFR-transfected cells express the receptor (1), whereas no expression was detected in mock-transfected (2) and untransfected (3) cells. (4) mg PCR (5) serves as positive control GAPDH served as housekeeping gene.

Figure 5: deltaLNGFR in different normal tissues.
Immunohistochemical staining using anti-human NGF-Receptor antibody of normal tissues shows deltaLNGFR expression in intramyocardial nerve strand (arrow) and normal tissues.

Figure 6: Cells derived from mock- and deltaLNGFR-transfected CD34 positive HSC.
CD66b and deltaLNGFR staining on day 4 after nucleofection, 25 % of cultured CD34 positive HSCs showed differentiation into CD66b positive granulocytes. More than 50 % of these transdifferentiated CD66b positive cells expressed deltaLNGFR on day 4 and 7, whereas mock-transfected cells were deltaLNGFR negative.

Figure 7: Light and immunofluorescence microscopy of cells derived from mock- and deltaLNGFR-transfected CD34 positive HSC.
Light microscopy and immunofluorescence microscopy showing identically stained cells (a). Two cells derived from CD34 positive HSC 4 days after nucleofection under the light microscopy, immunofluorescence microscopy (b-d) shows the same cells stained with anti-LNGFR (c) and anti-CD66b (d) antibodies. Only the upper cell stained positively for deltaLNGFR (red colour) (c). Immunofluorescent staining for both antigens revealed double positive staining for the upper cell only.

Conclusions:

In summary, we describe an efficient procedure for transient and non-toxic genetic labeling of CD34 positive PBSC and BMSC. This labeling does not affect differentiation capability of HSC. Differentiated HSC-derived cells showed a conserved expression of LNGFR in comparison to proliferating HSC. Therefore, transient transfection using the method of nucleofection is useful to detect the transgene during the process of differentiation of transfected HSC. As most normal tissues do not express LNGFR, labeling of HSC with this marker might be useful for homing and transdifferentiation studies in humans.
11 Danksagungen

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben.

Herrn Prof. Dr. Vinzenz Hombach, ärztlicher Direktor des Universitätsklinikums Ulm, Abt. Innere II, Kardiologie, danke ich für seine Unterstützung und sein Interesse an dieser Arbeit. Bei Herrn Prof. Dr. H. Schrezenmeier, Leiter der Blutspendezentrale Ulm, möchte ich mich für die Übernahme des Zweitgutachtens bedanken.

Mein besonderer Dank gilt Herrn PD Dr. med. M. phil. Jan Torzewski für die Überlassung des Themas, die Bereitstellung des Arbeitsplatzes und die gute und erfolgreiche Zusammenarbeit auf dem Gebiet der Stammzellforschung. Seine Diskussionsbereitschaft und Unterstützung in allen Belangen haben mir sehr viel bedeutet.

Tausend Dank auch an die technischen Assistenten des Labors, sowohl für die zwischenmenschliche, als auch für die hervorragende arbeitstechnische Unterstützung, die ich hier erfahren habe: Magdalena Bienek-Ziolkowski, Andrea Bucher und Simone Miller.

Dr. Dimitar Manolov danke ich für seine unzähligen Tipps in technischen und theoretischen Fragen und seinen Humor, der für eine nette Atmosphäre im Laboralltag beitrug.

Einen großen Dank auch an Thomas Prill für den tollen Einsatz, die nette Gesellschaft und seine amüsierenden Worte während seiner Doktorarbeit.

Außerdem danke ich Dr. Jochen Greiner für die gute Zusammenarbeit in unserem Stammzellprojekt, sowie für die Durchsicht dieser Arbeit.
Vielen Dank auch an Daniel Walcher, dass er sich die Zeit genommen hat meine Arbeit durch zu sehen.

Danken möchte ich auch Dr. Thomas P. Zwaka, für die gute Betreuung im Projekt der Kardiomyozyten-Selektion.

Bei Dr. med. Markus Wiesneth bedanke ich mich für die Bereitstellung und Aufreinigung der CD34⁺ Knochenmarkstammzellen und die bedingungslose Unterstützung in technischen sowie theoretischen Belangen.

Meinen Eltern danke ich von Herzen, dass sie mich schon während meines Studiums bedingungslos unterstützt und motiviert haben, und mir auch heute noch immer zur Seite stehen, wenn "Not am Manne ist".

Für die Liebe von meinem Mann Daniel, seine Geduld, Unterstützung und Motivation durch seine positive, optimistische Lebenserwartung bin ich unendlich dankbar.

Schließlich danke ich meinem Herrn Jesus Christus für seine Führung und seine Hilfe, speziell während der letzten drei Jahre. Was wär ich ohne ihn!!? He is in control!

Die vorliegende Arbeit wurde im molekular-genetischen Labor des Universitätsklinikums Ulm, Abteilung Innere Medizin II, Kardiologie unter der Leitung von Prof. Dr. med. V. Hombach und der wissenschaftlichen Betreuung von PD Dr. med. M. phil J. Torzewski angeferret.
12 Lebenslauf

Dienstadresse: Molekularbiologisches Labor
Kardiologie, Abteilung Innere Medizin II
Universitätsklinikum Ulm
Robert-Koch-Str.8
89081 Ulm
Tel.: 0731-500-24370 Fax: 0731-500-24442
e-mail: juliane.wiehe@medizin.uni-ulm.de

Name: Juliane Marie Ingeborg Wiehe
geborene Hilker

Nationalität deutsch

Geburtsdatum 18.01.1976

Geburtsort Ulm

Eltern Jochen Hilker, Diplom Ingenieur
Christiane Hilker

Familienstand verheiratet

Ehemann Daniel Wiehe

Schule 1982-1986: Michel-Buck-Schule, Ehingen
1986-1995: Gymnasium Ehingen
Juni 1995: Abschluß Allgemeine Hochschulreife
Lebenslauf

Studium

10/1995 - 09/1997
Universität Ulm
Studiengang: Biologie

09/1997 - 03/1998
Trinity Western University, Langley, Kanada B.C.
Studiengang: Biologie

04/1998 - 03/2000
Eberhard-Karls-Universität, Tübingen
Diplomprüfung (Humangenetik, Immunologie, Humanphysiologie)

Diplomarbeit

03/2000 - 03/2001
Arbeitsgruppe Dr. rer. nat. B. Wissinger
Molekulargenetischen Labor, Universitäts-Augenklinik Tübingen Abt. II
Thema: Struktur und Expression der humanen Rot- und Grünopsingene

Diplom

03/2001
Anerkennung als Diplombiologin

Promotion

04/2001-10/2003
Titel: Dr.biol.hum.
Arbeitsgruppe PD Dr. J. Torzewski
Thema: Markierung und In vitro-Transdifferenzierung von adulten hämatopoetischen Knochenmarksstammzellen zur therapeutischen Myokardregeneration.