Charakterisierung von Cyclothiazid als Antagonist von humanen P2X$_7$ Rezeptoren

Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm

vorgelegt von
Sascha-Imre Palaskali

Göttingen
2010
Amtierender Dekan: Herr Prof. Dr. Thomas Wirth
1. Berichterstatter: Herr PD Dr. Karl Föhr
2. Berichterstatter: Herr Prof. Dr. Henry Weigt
Tag der Promotion: 10.11.2011
Inhaltsverzeichnis

Abkürzungsverzeichnis

1. Einleitung

1.1 Die purinergen Rezeptoren

1.2 P2X Rezeptoren

1.3 Der P2X\textsubscript{7} Rezeptor

1.4 Rolle der P2X\textsubscript{7} R bei entzündlichen Prozessen

1.5 Membranblebbing durch P2X\textsubscript{7} Rezeptoren

1.6 Porenbildung nach P2X\textsubscript{7} Stimulation

1.7 P2X\textsubscript{7} Rezeptor Antagonisten

1.8 Pathophysiologische Rolle der P2X\textsubscript{7} Rezeptoren

1.9 Zielsetzung

2. Material und Methoden

2.1 Zellkultur

2.2 Die Patch-Clamp-Technik

2.3 Praktische Durchführung der Experimente

2.4 Datenauswertung

3. Ergebnisse

3.1. Verwendete Zellsysteme

3.2 Untersuchungsmethoden

3.3 Charakterisierung des P2X\textsubscript{7} Receptors an humanen dendritischen Zellen
Inhaltsverzeichnis

3.4 Untersuchungen an klonierten pP2X7 Rezeptoren .. 27
3.5 Charakterisierung der Cyclothiazidhemmung ... 31
3.6 Untersuchungen zur Selektivität von CTZ .. 36
3.7 Untersuchung weiterer Substanzen an P2X7 Rezeptoren 37

4. Diskussion ... 39

4.1 Besondere Eigenschaften des P2X7R .. 39
4.2 Wirkungsverlust von CTZ bei wiederholter ATP- Applikation 44
4.3 Einfluss der Substanzstruktur auf die Hemmung des P2X7R 44
4.4 Hemmung anderer Rezeptoren durch Cyclothiazid 45
4.5 Hemmungsmechanismus von Cyclothiazid .. 46
4.6 Speziesspezifische Hemmung durch Cyclothiazid .. 48
4.7 Mögliche klinische Einsatzgebiete für P2X7 Antagonisten 49

5. Zusammenfassung ... 51

6. Literaturverzeichnis .. 52
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxyl-5-methyl-4-isoxazol-propionat</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BzATP</td>
<td>2-,3-O-(benzoyl-4-benzoyl)-ATP</td>
</tr>
<tr>
<td>CTZ</td>
<td>Cyclothiazid</td>
</tr>
<tr>
<td>EC<sub>50</sub></td>
<td>halbmaximale Aktivierungskonzentration</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene-glycol-tetraessigsäure</td>
</tr>
<tr>
<td>FCS</td>
<td>fetales Kälberserum</td>
</tr>
<tr>
<td>G-Protein</td>
<td>Guaninnucleotid-bindendes Protein</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-Amino-Buttersäure</td>
</tr>
<tr>
<td>GFP</td>
<td>Grün fluoreszierendes Protein</td>
</tr>
<tr>
<td>HCT</td>
<td>Hydrochlorothiazid</td>
</tr>
<tr>
<td>HEK293</td>
<td>menschliche embryonale Nierenzellen</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure</td>
</tr>
<tr>
<td>hP2X7R</td>
<td>humaner purinerger-2X7-Rezeptor</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>halbmaximal inhibierende Konzentration</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon Gamma</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1β</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LD-Objektiv</td>
<td>Long-Distance-Objektiv</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum Essential Media</td>
</tr>
<tr>
<td>P2XR</td>
<td>purinerger-2X-Rezeptor</td>
</tr>
<tr>
<td>P2YR</td>
<td>purinerger-2Y-Rezeptor</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphatgepufferte Salzlösung</td>
</tr>
<tr>
<td>Abkürzungsverzeichnis</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>PPADS</td>
<td>pyridoxal-phosphat-6-azophenyl-2',4'-disulfonsäure</td>
</tr>
<tr>
<td>rP2X7R</td>
<td>purinerger-2X7-Rezeptor der Ratten</td>
</tr>
<tr>
<td>TM1/2</td>
<td>Transmembranerabschnitt (\frac{1}{2})</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor-Nekrose-Faktor alpha</td>
</tr>
<tr>
<td>Yo-Pro-1</td>
<td>Propidiumjodid Farbstoff</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Die purinergen Rezeptoren

1.2 P2X Rezeptoren

P2X Rezeptoren sind am häufigsten auf erregbaren Zellen beziehungsweise in endo- und epithelialem Gewebe zu finden (Burnstock 2004). Der Ionenkanal der P2X Rezeptoren ist aus bis zu 3 Untereinheiten aufgebaut. Jede dieser Untereinheiten besitzt zwei Transmembrandomänen, die jeweils mit großen extrazellulären Aminosäurekkettenschleifen verbunden sind. In diesen befinden

1.3 Der P2X\(_7\) Rezeptor

Der P2X\(_7\) Rezeptor wurde zu Beginn seiner Entdeckung bis 1996 als cytolytischer P2Z Rezeptor bezeichnet. Bis dahin galt er noch als unabhängiger Receptor. Nach der Sequenzerierung des Rezeptors wurde er als weitere Isoform (P2X\(_7\)) der P2X-Familie zugeordnet (Surprenant et al. 1996).

1.3.1 Struktur des P2X7 Rezeptors

Mit 595 Aminosäuren sind die Untereinheiten des P2X\(_7\) Receptors die größten in der P2X-Familie. Auch der intrazelluläre C-terminale Anteil ist mit 244 Aminosäuren deutlich länger als bei den anderen Mitgliedern der P2X Familie. Lange galt der P2X\(_7\) Rezeptor als einziger Rezeptor, der sich aus drei gleichen Untereinheiten zusammensetzt. Jedoch deuten neuere Untersuchungen darauf hin, dass nicht nur homotrimerre, sondern auch heterotrimerre P2X\(_7\) Rezeptoren existieren, die sich aus P2X\(_4\) und P2X\(_7\) Untereinheiten zusammensetzen (Guo et al. 2007) (Dubyak 2007). Ansonsten unterscheidet sich der P2X\(_7\) im Verhältnis zu den anderen P2X Rezeptoren kaum, da die P2X Proteine in Bezug auf die grobe Struktur recht konservativ sind.
Einleitung

Abb.1 Schematische Darstellung des P2X$_7$ Rezeptors. N- und C-Terminus liegen intrazellulär und sind mit NH$_2$ und COOH symbolisiert. IN und OUT bezeichnen den jeweiligen intrazellulären und extrazellulären Anteil des Receptors. Die zwei transmembranösen Abschnitte TM1 und TM2 sind über eine extrazelluläre Schleife miteinander verbunden.

1.3.2 Vorkommen des P2X$_7$ Rezeptors
1.3.3 Besondere Eigenschaften des P2X₇ Rezeptors

Einleitung

1.4 Rolle der P2X7R bei entzündlichen Prozessen

1.4.1 P2X7 bedingte IL-1β-Freisetzung

Einleitung

1.5 Membranblebbing durch P2X7 Rezeptoren

1.6 Porenbildung nach P2X7 Stimulation

Einleitung

strukturelle Besonderheit ist essentiell für die Porenbildung. Vor allem die letzten 177 Aminosäuren des C-Terminus spielen eine wichtige Rolle, da ohne diesen Anteil eine Kanalbildung zwar noch möglich ist, eine Porenbildung jedoch nicht mehr (Surprenant et al. 1996).

1.7 P2X7 Rezeptor Antagonisten

Klinisch hätte die Anwendung eines Antagonisten des humanen P2X7 Rezeptors aufgrund seiner häufigen Beteiligung an pathologischen Prozessen eine große Bedeutung.

Die geläufigsten P2X7 Antagonisten sind:

Oxidiertes ATP. Inkubiert man Zellen, die den P2X7 Rezeptor auf ihrer Oberfläche exprimieren, für mindestens 2 Stunden mit 100µM oxidiertem ATP, so findet eine irreversible Hemmung des P2X7 Receptors statt (Surprenant et al. 1996). Dieser Effekt tritt nicht nur bei den P2X7 Rezeptoren auf, sondern auch bei anderen P2X Rezeptoren, wie zum Beispiel P2X1 und P2X2 (Evans et al. 1995).
Einleitung

PPADS. Die pyridoxal-phosphat-6-azophenyl-,2′,4′-disulfonsäure (PPADS) ist ein nicht selektiver P2X Rezeptor Antagonist, welcher nicht kompetitiv mit einer IC₅₀ von 1µM den humanen P2X₇ Rezeptor hemmt (Chessell et al. 1998). Die Hemmung ist nicht vollständig reversibel und abhängig von der Inkubationszeit.

Suramin. Das farblose Analogon des Azofarbstoffs Trypanblau zählt wie PPADS zu den nicht selektiven P2X Rezeptor Antagonisten. Den humanen P2X₇ Rezeptor hemmt es kompetitiv mit einer IC₅₀ von 70 µM. Die Hemmung ist nicht vollständig reversibel (Chessell et al. 1998).

Einleitung

AZ11645373. Dieser Antagonist zählt zu den zyklischen Imiden und hemmt den humanen P2X\textsubscript{7} Rezeptor nicht kompetitiv mit einer IC\textsubscript{50} von 7nM. Unter Verwendung von weniger als 1µM des Antagonisten ist die Hemmung reversibel, bei höheren Konzentrationen wird die Hemmung irreversibel. Das Membranpotential und die Konzentration von diveriten Kationen in der extrazellulären Lösung beeinträchtigen die Wirkung des zyklischen Imides nicht. Effekte an den anderen P2X Rezeptoren konnten selbst bei Konzentrationen von mehr als 10 µM nicht gemessen werden. Der P2X\textsubscript{7} von Ratten wies eine Hemmung von weniger als 40 % bei einer Antagonisten-Konzentration von 10µM auf (Stokes et al. 2006).

1.8 Pathophysiologische Rolle der P2X\textsubscript{7} Rezeptoren

In Studien mit P2X\textsubscript{7} defizienten Mäusen zeigte sich die Bedeutung des Rezeptors bezüglich Autoimmunerkrankungen, wie zum Beispiel bei der rheumatoiden Arthritis. Findet sich eine Deletion des P2X\textsubscript{7} Gens, kann die ATP vermittelte Freisetzung von IL-1β nicht mehr stattfinden. Dadurch waren diese Mäuse gegen ein Auftreten von Symptomen und Schädigung von Knorpel durch Antikollagen Antikörper geschützt (Labasi et al. 2002). Ergebnisse aus anderen Studien zeigten auch eine mögliche Beteiligung an chronischen und akuten Schmerzzuständen (Khakh et al. 2006).

1.8.1 Neurodegenerative Erkrankungen

Bei vielen neurodegenerativen Erkrankungen wird vermutet, dass entzündliche Prozesse im zentralen Nervensystem mit besonderem Hinblick auf Mikroglia eine entscheidende Rolle bezüglich der Pathophysiologie spielen. IL-1β ist einer der wichtigsten Mediatoren bei neurodegenerativen Vorgängen und da der P2X\textsubscript{7} Rezeptor zur Prozessierung und Freisetzung von IL-1β befähigt ist, könnte er hier für das Zugrundegehen von Nervenzellen verantwortlich sein (Allan et al. 2001). Bei einer weiteren Studie wurde Hippocampusgewebe von Mäusen mit LPS und ATP inkubiert und anschließend auf Zellschäden untersucht. Man fand apoptotische und stark aktivierte Mikroglia Zellen mit massiver Freisetzung von IL-1β, was auf eine intensive P2X\textsubscript{7} Rezeptor Stimulation hinweist (Bernardino et al. 2001).
Einleitung

1.8.2 Neuropathische Schmerzen
Einleitung

1.8.3 Depression

Einleitung

1.9 Zielsetzung

Material und Methoden

2. Material und Methoden

2.1 Zellkultur

Für die Experimente an P2X7 Rezeptoren wurden zwei unterschiedliche Zelltypen verwendet. Es handelte sich dabei zum einen um humane dendritische Zellen, welche natürlicherweise den P2X7 Rezeptor exprimieren und zum anderen um TsA-Zellen, die mit dem P2X7 Rezeptor von Ratte oder Mensch transfiziert wurden.

Humane dendritische Zellen

Für die Messungen der humanen dendritischen Zellen wurden Zellkulturen angelegt, die aus mononukleären Zellen bestanden. Diese Zellen wurden aus periphere Blut gewonnen und anschließend in einem RPMI 1640 Medium mit 10% fetalem Kälberserum (FCS), 25 mM HEPES Puffer und Antibiotika kultiviert. Nach 2 bis 3 Wochen Kultivierung haben sich unreife dendritische Zellen gebildet. Diese Zellen wurden in Anwesenheit von 100 ng/ml TNF-α für 8 bis 14 Tage rekultiviert, bevor die dann reifen dendritischen Zellen für die Experimente verwendet werden konnten.

TsA-Zellen

Die TsA201 Zelllinie ist ein Abkömmling der humanen embryonalen Nierenzelllinie HEK-293 (ATCC#CRL1537), welche ein T-Antigen gegen das Simian-Virus-40 auf ihrer Oberfläche exprimieren. Sie wurden bei 37°C in einer befeuchteten Atmosphäre mit 95% O₂ und 5% CO₂ kultiviert. Das Nährmedium setzte sich aus MEM mit 50 U Penicillin/ml, 50 µg/ml Streptomycin (Gibco, Eggenstein, Deutschland), 2 mM L-Glutamin (Boehringer, Mannheim, Deutschland), und 10 % (v/v) fetalem Kälberserum (Gibco) zusammen. Die Zellen wurden auf poly-Ornithin beschichteten Schalen kultiviert und wiesen bei Transfektion etwa 40% Konfluenz auf. Für die Transfektion wurde der Trans-Fektion™ kit (Bio-Rad, München, Deutschland) verwendet. Die cDNA's, welche für P2X7-Rezeptoren von Mensch und Ratte kodieren, wurden freundlicherweise von A. Suprenant (Manchester) zur Verfügung gestellt.
Material und Methoden

Durchführung der Transfektion

Vor Messbeginn wurden die konfluent gewachsenen Zellen vereinzelte. Dazu wurden die Zellen einmal mit PBS gespült und anschließend für 5 min mit Accutase (PAA, Pasching, Österreich) bei 37 °C behandelt. Danach wurde die Accutase entfernt, die Zellen mit Medium trituriert und anschließend auf mehrere Schalen verteilt.
2.2 Die Patch-Clamp-Technik

![Vereinfachtes Ersatzschaltbild einer Spannungsklemme](image)

2.2.1 Eigenschaften der Whole-Cell-Konfiguration

2.2.2 Aufbau der Applikationssysteme
Cyclothiazid und ATP wurden mit Hilfe eines computergesteuerten Substanzapplikationssystems (L/M.SPS-8; List, Darmstadt) zugegeben (Abb. 3). In diesem System standen 4 bis 13 getrennte Vorratsgefäße für Lösungen mit Testsubstanzen zur Verfügung. Um ein sicheres Anfluten der Lösungen durch die einzelnen Kanäle zu gewährleisten, wurden sämtliche Vorratsgefäße mit einem Drucksteuersystem (MPCU-3; Lorenz, Lindau) verbunden. Dieses übte zusätzlich zur Schwerkraft einen Druck von zirka 10 - 12 cm H₂O auf die Vorratsgefäße aus. Vom Boden der Vorratsgefäße ging jeweils ein Schlauch aus. Die Enden der Schläuche wurden je nach Experiment an eine 4, 7, 8 oder 13 –Kanal Perfusionsnadel angeschlossen, in deren distalen Teil sich die Substanzzuflüsse vereinten. Die Spitze der Perfusionsnadel wurde unter Zuhilfenahme eines 3-Achs-Mikromanipulators gegenüber der Absaug-/Überlaufnadel ca. 50-100 µm vom Messfeld entfernt in die Messkammer eingebracht. Der Substanzfluss durch die Schläuche wurde durch Magnetklemmventile gesteuert. Eine Steuerungseinheit gestattete sowohl die manuelle Bedienung jedes einzelnen Ventils als auch die Ansteuerung über einen Computer. Die Messkammer stellte eine konventionelle 35 mm Petrischale dar, die in etwa 2 ml extrazelluläre Lösung enthielt. Diese Lösung wurde während den Messungen fortlaufend ausgetauscht, indem über eine Schlauchpumpe mit einer Geschwindigkeit von 4,5 ml/min kontinuierlich extrazelluläre Lösung zugeführt wurde. Das Volumen der Messkammer wurde sowohl über ein lokales Absaugsystem (ca. 1ml/min) durch eine Membranpumpe als auch über einen Überlauf durch eine Vakuumpumpe wieder entfernt, so dass zusammen mit dem Zulauf eine kontinuierliche...
Material und Methoden

Abb.3 Schematische Abbildung der Messkonfiguration und des Applikationssystem für Testsubstanzen. Über den Substanzzulauf (6) wird die zu testende Substanz in das Perfusionsareal (13) appliziert. In diesem Bereich befindet sich die Zelle, die über eine Glaspipette perforiert wurde. In dieser Glasnadel befindet sich die Ableitelektrode (11). Am Rand der Messkammer (12) befindet sich die Referenzelektrode (10) und der Badablau (8), da sie im Bereich der Messung nicht benötigt werden und dort nur stören würden. Gegenüber des Substanzzulaufes befindet sich die Absaugnadel, welche die über den Substanzzulauf zugeführten Substanzen aus dem Perfusionsareal entfernt. Zusätzlich befindet sich dort eine höher liegende Absaugung (9), welche den Flüssigkeitsspiegel konstant hält und ein Überlaufen verhindert.
2.3 Praktische Durchführung der Experimente

Die überwiegende Zahl an Messungen bestand aus Applikationen von ATP und Cyclothiazid, die mit Hilfe des L/M-SPS-8-Perfusionssystems durchgeführt wurden.

2.3.1 Geräte

2.3.2 Lösungen
Vor Messbeginn wurden die Zellen zweimal mit externer Lösung gespült, welche eine „niedrige“ Konzentration an divalenten Kationen enthielt. Wenn nicht ausdrücklich anders beschrieben, wurde diese extrazelluläre Lösung bei allen Experimenten verwendet. Dies Zusammensetzung der Lösung war (in mM) 140 NaCl, 2.7 KCl, 0,3 CaCl₂, 10 Glukose und 12 HEPES (pH 7.3). Im Unterschied dazu wurden bei der externen Lösung, die „normale“ divalente Kationen beinhaltet, 1 mM MgCl₂ und 1.5 mM CaCl₂ verwendet. Die Pipettenlösung enthielt (in mM) 140 CsCl₂, 2 MgCl₂, 2 ATPx2Na, 2 EGTA und 10 HEPES bei einem pH von 7.2.
2.3.3 Durchführung der Messung in Whole-Cell-Konfiguration

Material und Methoden

2.4 Datenauswertung

2.4.1 Konzentrations-Wirkungs-Kurve
Um den Zusammenhang zwischen dem Agonisten oder dem Antagonisten und der Wirkung auf die Ionenströme der Membran zu untersuchen, wurde die Konzentrations-Wirkungs-Kurve angefertigt. Hierzu werden bei unterschiedlichen Konzentrationen die Amplituden der induzierten Ströme bestimmt und die Werte durch eine logistische Funktion der folgenden Form angenähert:

\[I = I_{\text{Max}} \cdot \frac{[A]^n}{EC_{50}^n + [A]^n} \]

(1)

\(I_{\text{Max}} \) bezeichnet den maximal induzierbaren Strom, \([A]\) die verwendete Agonisten-bzw. Antagonistenkonzentration und \(n \) den Hillkoeffizienten als Maß der Kurvensteigung. \(EC_{50} \) ist bei einer Agonisten-Konzentrations-Wirkungs-Kurve die Konzentration, bei der 50% des maximalen Stromes erreicht wird. Um die Messungen von Zellen mit verschiedenen absoluten Amplituden vergleichen zu können, werden die Ströme \(I \) und \(I_{\text{Max}} \) auf den bei einer sättigenden Konzentration gemessenen maximalen Strom normiert. Zur Bestimmung der gesuchten Parameter \(I_{\text{Max}}, EC_{50} \) und \(n \) stand das Programm SigmaPlot zur Verfügung. Bei der Konzentrations-Wirkungs-Kurve eines Antagonisten, die auch als Hemmkurve bezeichnet und bei einer konstanten Agonistenkonzentration gemessen wird, kann entsprechend dem Parameter \(EC_{50} \) in Gl. (1) ein IC_{50}-Wert ermittelt werden. Die Steigung \(n \) der Kurve ist in diesem Fall negativ. Die Hemmkurve bezieht sich auf einen Strom, der durch eine konstante Agonistenkonzentration hervorgerufen wird.

2.4.2 Statistik
Zusätzlich zu den genannten Methoden wurde zur Auswertung der Ergebnisse bezüglich Wirkung und Selektivität der verwendeten Substanzen, das arithmetische Mittel berechnet.
3. Ergebnisse

3.1. Verwendete Zellsysteme
Im Rahmen der Untersuchung zur Wirkung von Cyclothiazid (CTZ) an P2X\textsubscript{7} Rezeptoren wurden verschiedene Zellsysteme verwendet. Zuerst wurden die P2X\textsubscript{7} Rezeptoren auf humanen dendritischen Zellen charakterisiert, bei denen die hemmende Wirkung von Cyclothiazid innerhalb eines Screenings aufgefallen war. Daneben wurden auch Experimente mit Zellen durchgeführt, die mit P2X\textsubscript{7} Rezeptoren von Mensch (hP2X\textsubscript{7}) und Ratte (rP2X\textsubscript{7}) transfiiziert wurden.

3.2 Untersuchungsmethoden
Alle Untersuchungen wurden mit Hilfe der Patch-Clamp-Technik durchgeführt, bei der Signalform und Größe der durch ATP ausgelösten Ionenströme detektiert wurden. Wenn nicht anders vermerkt, wurde ATP in einer Konzentration von 1 mM und ein Haltepotential von -80 mV verwendet.

3.3 Charakterisierung des P2X\textsubscript{7} Receptors an humanen dendritischen Zellen

3.3.1 Selektive Aktivierung des P2X\textsubscript{7} Receptors
Dendritische Zellen exprimieren nicht nur den P2X\textsubscript{7} Rezeptor, sondern auch andere purinerge Rezeptoren. Daher mussten in einem ersten Schritt Bedingungen gefunden werden, die eine selektive Aktivierung des P2X\textsubscript{7} Receptors erlaubten.

In Voruntersuchungen wurde festgestellt, dass bei der jeweils ersten ATP-Applikation (1 mM) ein desensitivierendes Signal auftrat, das auch durch eine niedrige ATP-Konzentration aktiviert werden konnte. Bei wiederholten ATP-Applikationen traten nur noch nicht-desensitivierende Signale auf. Die desensitivierenden Signale können von den P2X\textsubscript{1}- oder P2X\textsubscript{3} Rezeptoren stammen, die bei weniger als 30 µM ATP aktiviert werden. Durch wiederholte ATP-Applikation, die zu Beginn jeder Messung erfolgte, wurden diese P2X Rezeptoren inaktiviert, so dass die desensitivierenden Signale nicht mehr auftraten. In anschließenden Experimenten waren durch wiederholte Vorstimulation selbst bei 100 µM ATP keine Signale mehr vorhanden (vgl. Abb.6). Durch die wiederholte ATP-Applikation war es somit möglich, selektiv den P2X\textsubscript{7} Receptor zu messen.
3.3.2 Veränderung der Signalamplitude

Nicht nur die Signalform, sondern auch die Signalamplitude ändert sich bei repetitiver Stimulation mit ATP. Am häufigsten stieg die Signalamplitude zu Beginn an, und nach einigen weiteren Applikationen blieb die Signalamplitude konstant (Abb.4).

Abb. 4: Anstieg der Signalamplitude nach repetitiver ATP-Stimulation.
Beispielmessung von 10 aufeinanderfolgenden ATP-Applikationen an einer humanen dendritischen Zelle. Für die Applikationen wurde 1 mM ATP (Adenosintriphosphat) verwendet.

Ähnlich häufig fiel die Signalamplitude nach dem anfänglichen Anstieg ab und glich sich danach einem Plateau an (Abb.6). In seltenen Fällen erreichten die Signalamplituden kein Plateau und wurden nach dem Anstieg konstant kleiner. Aus diesem Grund wurde vor jeder Messung die Zelle soweit stimuliert, bis die Signale konstant blieben (Abb.5). Konnte keine Plateauphase durch diese Vorstimulation erreicht werden, wurde die Zelle verworfen.

Abb. 5: Repetitive Stimulation einer dendritischen Zelle mit ATP. Beispiel für eine konstante Signalamplitude bei wiederholter ATP-Applikation. Die Zugabedauer von 1 mM ATP (Adenosintriphosphat) ist durch schwarze Striche gekennzeichnet.
3.3.3 Veränderung der Membrankapazität

Ergebnisse

Insgesamt scheint es keinen Zusammenhang zu geben, da die Stromamplitude und die Membrankapazität zu Beginn in entgegengesetzter Richtung verlaufen und erst im weiteren Verlauf einen einheitlichen Trend fortsetzen. Dass die Signalamplitude unabhängig von der Membrankapazität abnimmt, bestätigte sich in weiteren Messungen, bei denen die Stromamplitude kleiner wurde, obwohl die Membrankapazität nicht bzw. nur sehr wenig abgenommen hatte.

3.3.4 Bestimmung der EC$_{50}$ für ATP bei humanen dendritischen Zellen

Im folgenden Experiment war die Fragestellung, in welchem Konzentrationsbereich von ATP die halbmaximale Aktivierung (EC$_{50}$) der P2X7 Rezeptoren liegt. Ein weiteres Ziel dieses Experimentes war es, einen Orientierungswert für die Stimulation der Zellen zu erhalten, um daran die hemmende Wirkung des Cyclothiazids messen zu können. Für den humanen P2X$_7$ Rezeptor ist es typisch, dass ATP Konzentrationen von mehr als 100 µM benötigt werden, um messbare Einwärtsströme zu erzeugen. Daher wurde ATP in Konzentrationen von 0,1, 0,3, 1, 3, 10 mM verwendet. In Abständen von 10 Sekunden wurde aufsteigend 0,1 -10 mM ATP appliziert (Abb.7). Wenn nicht anders beschrieben, wurde nach jeder Applikation einer Substanz mit extrazellulärer Lösung (E13) gespült.

Abb. 7: ATP-Konzentrationsreihe bei einer humanen dendritischen Zelle. Typische Messreihe, bei der ATP (Adenosintriphosphat) als stimulierende Substanz, aufsteigend in Konzentrationen von 0,1 – 10 mM an eine humane dendritische Zelle appliziert wurde. Die jeweiligen Applikationen durch ATP (5s) werden anhand von Balken symbolisiert.
Ergebnisse

Für die Auswertung wurden die einzelnen Signalamplituden jeweils am Ende der ATP-Applikation gemessen. Anschließend wurden die Werte normiert und mit Hilfe der Hill-Gleichung angeglichen. Dabei wurden die höchsten Werte, die bei 10 mM gemessen wurden, als 1 gesetzt. Diese Ergebnisse wurden als Konzentrations-Wirkungs-Kurve dargestellt, bei der gleichzeitig die halbmaximale Aktivierungskonzentration (EC_{50}) für ATP berechnet wurde. Für die humanen dendritischen Zellen wurde eine EC_{50} von $1,01 \pm 0,21$ mM ATP ermittelt (Abb.8).

Abb. 8: Konzentrations-Wirkungs-Kurve von ATP an humanen dendritischen Zellen. Der jeweils höchste Wert in einer Messreihe war bei 10 mM und wurde als 1 gesetzt. An diesen Wert wurden die restlichen Ergebnisse der jeweiligen Messreihe normiert.

3.3.5 Hemmwirkung von CTZ an humanen dendritischen $P2X_7$ Rezeptoren

Für das Experiment wurden 1 mM ATP verwendet, das in etwa der halbmaximalen Aktivierungskonzentration entspricht und ausreichend große Signale generiert. Zu Beginn wurde als Kontrollwert 1 mM ATP gegeben. Nach 5 Sekunden wurde zusätzlich für 10 Sekunden Cyclothiazid appliziert (Abb.9), woraufhin die Signalamplitude zeitabhängig abnahm und dann einen Plateauwert erreichte. Nach kurzzeitiger Applikation von Kontrolllösung zeigt die darauffolgende Messung mit 1mM ATP eine nahezu identische Signalamplitude. Die Hemmwirkung von Cyclothiazid ist somit schnell und vollständig reversibel (Abb.9). Dieser Versuchsaufbau wurde für Cyclothiazid in den Konzentrationen von 0,3, 1, 3, 10, 30, 100 und 300 µM verwendet.
Ergebnisse

Abb. 9: Hemmung von ATP induzierten Strömen durch CTZ an einer humanen dendritischen Zelle. Die Applikation von 100 µM CTZ (Cyclothiazid) und 1 mM ATP (Adenosintriphosphat) werden durch schwarze Striche dargestellt.

Für die Bestimmung der Hemmwirkung wurde die Signalamplitude am Ende der Co-applikation von ATP und Cyclothiazid in Relation zur vorausgehenden Kontrolle (= 100%) gesetzt (Abb.9). Aus den Messungen mit aufsteigenden Cyclothiazidkonzentrationen kann man dann korrespondierend zur EC₅₀ von ATP eine halbmaximal inhibierende Konzentration für Cyclothiazid bestimmen, die IC₅₀.

Für die humanen dendritischen Zellen wurde eine halbmaximal inhibierende Konzentration von 13,6 ± 1,4 µM Cyclothiazid ermittelt (Abb.10).

Abb. 10: Konzentrations-Wirkungs-Kurve von Cyclothiazid (CTZ) an humanen dendritischen Zellen. Für die Bestimmung der IC₅₀ (halbmaximal inhibierende Konzentration) wurde 1 mM ATP (Adenosintriphosphat) verwendet. Wie bei der EC₅₀ (halbmaximale Aktivierungskonzentration) wurden auch hier die Messungen der Signalamplituden normiert. Die maximale Signalamplitude entspricht dem Wert 1.
3.4 Untersuchungen an klonierten P2X\textsubscript{7} Rezeptoren

Da eine genauere Charakterisierung der Wirkung von Cyclothiazid auf den P2X\textsubscript{7} Rezeptor nur möglich ist, wenn man die Aktivität des Rezeptors isoliert betrachten kann, wurden auch Experimente an klonierten P2X\textsubscript{7} Rezeptoren von Mensch (hP2X\textsubscript{7}) und Ratte (rP2X\textsubscript{7}) durchgeführt. Ein entscheidender Unterschied ist, dass im Vergleich zu den humanen dendritischen Zellen bei den Transfizierten ausschließlich P2X\textsubscript{7} Rezeptoren in die Zellmembran eingebaut sind.

3.4.1 Bestimmung der EC\textsubscript{50} für ATP bei den hP2X\textsubscript{7} und rP2X\textsubscript{7} Rezeptoren

Wie bei den human dendritischen Zellen, wurden die transfizierten Zellen zuerst mit aufsteigenden Konzentrationen von ATP stimuliert. Da die rP2X\textsubscript{7} Rezeptoren sensitiver auf ATP Stimulationen reagierten, wurden hier Konzentrationen auch unterhalb von 100 µM verwendet. Die niedrigste Konzentration war 30 µM ATP bei den klonierten rP2X\textsubscript{7} und 100 µM ATP bei den humanen Rezeptoren. Der Ablauf des Experimentes war wie bei den human dendritischen Zellen. Die Auswertung der Messungen ergab eine EC\textsubscript{50} von 125,4 ± 60 µM ATP bei den rP2X\textsubscript{7} Rezeptoren und 925 ± 280 µM ATP bei den hP2X\textsubscript{7} Rezeptoren (Abb.11). Die Messungen zeigen, dass rP2X\textsubscript{7} Rezeptoren eine circa 10-fach höhere Affinität für ATP haben als die humanen P2X\textsubscript{7} Rezeptoren.
Abb. 11: Konzentrations-Wirkungs-Kurve von ATP an klonierten hP2X₇ und rP2X₇ Rezeptoren. Die schwarzen Kreise zeigen die Werte der rP2X₇ (P2X₇ der Ratten) und die weißen die der hP2X₇ (humane P2X₇) Rezeptoren. Die Messwerte von 10 mM wurden in beiden Kurven auf den Wert 1 normiert.

3.4.2 Bestimmung der IC₅₀ für CTZ bei hP2X₇ und rP2X₇ Rezeptoren

Genau wie bei den humanen dendritischen Zellen wurde nach der Bestimmung der EC₅₀ eine ATP-Konzentration ausgewählt, die ausreichend große Signalamplituden generierte, um die hemmende Wirkung des Cyclothiazids gut erfassen zu können. Bei beiden P2X₇ Rezeptoren wurde 1 mM ATP als Stimulation verwendet. Der Versuchsablauf ist der gleiche wie bei den humanen dendritischen Zellen. Auch hier wurden Cyclothiazid-Konzentrationen von 0,3 bis 300 µM verwendet.

Die hemmende Wirkung des Cyclothiazids wurde für beide P2X₇ Rezeptoren wie bei den humanen dendritischen Zellen ermittelt, indem die Signalamplitude der ATP-Stimulation mit der darauffolgenden Co-applikation von Cyclothiazid verglichen wurde. Diese Ergebnisse wurden normiert und als Konzentrations-Wirkungs-Kurve dargestellt (Abb.12). Daraus ergab sich eine halbmaximal inhibierende Konzentration von 16,1 ± 1,7 µM für die humanen und 123,1 ± 7,7 µM Cyclothiazid für die rP2X₇ Rezeptoren.
Abb. 12: Konzentrations-Wirkungs-Kurve für CTZ bei den P2X₇ Rezeptoren von Ratte und Mensch. Die schwarzen Kreise zeigen die Werte der rP2X₇ (P2X₇ der Ratten) und die weißen Quadrate die der hP2X₇ (humane P2X₇) Rezeptoren. Die normierten Signalamplituden wurden prozentual dargestellt.

Anhand dieser Daten lässt sich eine ungefähr gleiche Sensitivität der nativen dendritischen Zellen (13,6 ± 1,4µM CTZ) und der hP2X₇ Rezeptoren ableiten. Die rP2X₇ Rezeptoren haben hingegen eine in etwa 10-fach niedrigere Sensitivität für Cyclothiazid. Wie auch bei den humanen dendritischen Zellen, ist die Hemmung durch Cyclothiazid vollständig reversibel.

3.4.3 Cyclothiazidhemmung in Abhängigkeit divalenter Kationen
Ergebnisse

Experimenten untersucht, ob Änderungen der Kationenverhältnisse ebenfalls Auswirkungen auf die Hemmung von Cyclothiazid haben. Zu Beginn wurde die EC$_{50}$ für ATP neu bestimmt, da sie bekanntermaßen bei höheren divalenten Kationenkonzentrationen ansteigt. So zeigte sich auch hier eine Erhöhung der EC$_{50}$ bei den Messungen mit dem rP2X$_7$ von 0,125 ± 0,06 mM ATP in niedrigen (Abb.11), auf 1,87 ± 0,035 mM ATP in normalen Kationenverhältnissen (Abb.13B). Die Versuche mit dem hP2X$_7$ Rezeptor zeigten ebenfalls ein Anstieg der EC$_{50}$ von 0,925 ± 0,28 mM ATP in reduzierter (Abb.11), auf 4,27 ± 0,27 mM ATP in normalen Kationenkonzentrationen (Abb.13A).

Um ausreichend große Signalamplituden zu erhalten, wurden für die Bestimmung der IC$_{50}$, ATP-Konzentrationen verwendet, die in etwa der doppelten EC$_{50}$ bei normaler Kationenkonzentration entsprachen. Dementsprechend wurden beim hP2X$_7$ und rP2X$_7$ Rezeptor 10 beziehungsweise 3 mM ATP verwendet. Bei den rP2X$_7$ Rezeptor ergab sich eine IC$_{50}$ von 54,62 ± 5,164 µM Cyclothiazid in physiologischer Kationenkonzentration. Aus den Messungen mit dem hP2X$_7$ resultierte eine IC$_{50}$ von 21,2 ± 1,19 µM Cyclothiazid.
3.5 Charakterisierung der Cyclothiazidhemmung

3.5.1 Cyclothiazidhemmung nach wiederholten ATP- und CTZ- Applikationen

In vorherigen Experimenten wurde des Öfteren beobachtet, dass nach längerer Behandlung einer Zelle die Hemmwirkung des Cyclothiazid abnahm. Um diese Beobachtung näher charakterisieren zu können, wurde ein Experiment gestaltet, bei dem die Auswirkung wiederholter ATP- und Cyclothiazid-Applikation auf die hemmende Wirkung von Cyclothiazid untersucht wurde. Der Versuchsablauf wurde wie in Abbildung 14 durchgeführt. Bei dem hP2X₇ Rezeptor wurden 1 mM ATP mit 20 µM Cyclothiazid und bei den rP2X₇ Rezeptoren 0,5 mM ATP und 120 µM Cyclothiazid verwendet.

![Diagramm: Veränderung der CTZ-Hemmung nach wiederholten Applikationen. Exemplarische Messung an dem rP2X₇ Rezeptor. Die Applikation von 0,5 mM ATP (Adenosintriphosphat) wird durch die unteren Balken, die Applikation von 120 µM Cyclothiazid (CTZ) durch die oberen symbolisiert.]
Ergebnisse

Bei den rP2X₇ Rezeptoren ergab sich zwischen der ersten und fünften Messung eine Abnahme der Hemmung um 30%. Die Hemmung des hP2X₇ nahm um 5.5% ab (Abb.15).

![Graph A](image1.png)

Abb. 15: Hemmung durch Cyclothiazid nach wiederholter CTZ- und ATP-Applikation. A zeigt die Ergebnisse für den rP2X₇ (P2X₇ der Ratten) und B die für den hP2X₇ (humaner P2X₇) Rezeptor. Der Wert 1 gibt die Hemmung bei der ersten Applikation an. Darauffolgende Messungen wurden im Verhältnis zu diesem Wert normiert. Bei dem hP2X₇ Rezeptor wurden 1 mM ATP (Adenosintriphosphat) mit 20 µM Cyclothiazid und bei den rP2X₇ Rezeptoren 0,5 mM ATP und 120 µM Cyclothiazid verwendet.

3.5.2 Hemmwirkung von CTZ bei unterschiedlichem Membranpotential

In allen bisherigen Experimenten wurde das Membranpotential konstant bei -80 mV gehalten. Da Studien über Antagonisten des P2X₇ Receptors eine Abhängigkeit ihrer Wirkung vom Membranpotential zeigten, wurde im Folgenden untersucht, ob die hemmende Wirkung von Cyclothiazid ebenfalls vom Membranpotential abhängig ist. Für die Messungen an den hP2X₇ und rP2X₇ Rezeptoren wurden Membranpotentiale im Bereich von -80 mV bis +40 mV in 20 mV Abständen untersucht, wobei die Reihenfolge der einzelnen Membranpotentiale zufällig gewählt wurde. Da bei einem Membranpotential von 0 mV keine Ionenströme messbar sind, wurde dieser Wert nicht in die Experimente aufgenommen. Um einen Drift der Signalamplituden abschätzen zu können, wurde zu Beginn und am Ende jeder Messreihe beim Potentialwert von -80 mV getestet.
Ergebnisse

Die Messung verlief wie in Abbildung 16 dargestellt und wurde bei sämtlichen Membranpotentialen angewendet. Für die hP2X₇ Rezeptoren wurden 20µM Cyclothiazid und 1mM ATP verwendet und für den rP2X7 120µM Cyclothiazid und 0,5mM ATP.

Abb. 16: Messablauf zur Untersuchung der potentialabhängigen Hemmung von P2X7 Rezeptoren durch Cyclothiazid. Beispielmessung am rP2X₇ (P2X₇ der Ratten) Rezeptor bei +40 mV. Es wurden 0,5 mM ATP (Adenosintriphosphat) und 120 µM Cyclothiazid (CTZ) verwendet. Anm. Da hier ein positives Membranpotential verwendet wurde, resultierten unter den gewählten Bedingungen Auswärtsströme, die per Definition mit positiven Ausschlägen dargestellt werden.

Die Veränderung des Membranpotentials hat keine Auswirkungen auf die Hemmung des hP2X₇ durch Cyclothiazid (Abb.17A). Beim rP2X₇ nimmt die Hemmwirkung mit positiv werdendem Potential ab. Da dies dem allgemeinen Trend folgt (vgl. erste und letzte Messung bei -80 mV), ist die Abnahme insgesamt gering (Abb.17B).
Ergebnisse

Abb. 17: Hemmungswirkung von CTZ bei verschiedenen Membranpotentialen. Abbildung 17A zeigt den rP2X_7 (P2X_7 der Ratten) und 17B den hP2X_7 (humaner P2X_7) Rezeptor. Die Werte für die Hemmung durch Cyclothiazid wurden normiert, wobei der Wert 1 eine vollständige und 0 keine Hemmung bezeichnet. Da -80 mV jeweils zu Beginn und am Ende des Experiments gemessen wurde, wurden diese beiden Werte auch in der Abbildung als erster und letzter Wert dargestellt, um den Trend zu verdeutlichen.

3.5.3 Untersuchung zum Hemmungsmechanismus von CTZ
In diesem Experiment wurde untersucht, ob die Hemmung durch Cyclothiazid kompetitiv oder nicht kompetitiv ist. Dazu wurden ATP-Konzentrationen von 0,03 bis 10 mM und Cyclothiazid bei der jeweiligen halbmaximal inhibierenden Konzentration verwendet. Beim rP2X_7 wurde dementsprechend 120 µM CTZ und beim hP2X_7 15 µM verwendet. Der Versuchsaufbau für sämtliche Konzentrationen wird in Abbildung 18 dargestellt. Die Reihenfolge der einzelnen Applikationen wurde wie bei der Potentialmessung zufällig gewählt.

Abb. 18: Hemmung durch CTZ bei Stimulation mit ATP. Beispielmessung am rP2X_7 (P2X_7 der Ratten) Rezeptor. Die obere Linie zeigt den Bereich, in dem 120 µM Cyclothiazid (CTZ) gegeben wurde, und die untere beschreibt die Applikation von 0,3 mM ATP (Adenosintriphosphat).
Ergebnisse

Die Auswertung der Messungen ergab eine halbmaximale Aktivierungskonzentration von 1218 ± 73 µM für den hP2X₇ Rezeptor (Abb.19). Dieser Wert ist nicht signifikant höher als der in Abwesenheit von Cyclothiazid (925 ± 280 µM ATP) und deutet daher auf einen nicht kompetitiven Mechanismus. Bei dem rP2X₇ Rezeptor hingegen hat sich ein Wert von 533 ± 140 µM ATP ergeben (Abb.19). Ohne CTZ ergab sich ein viel niedrigerer Wert von nur 125 µM ATP. Daher ist eine kompetitive Hemmung des rP2X₇ Rezeptors durch Cyclothiazid wahrscheinlich.

\[
\begin{align*}
\text{rP2X}_7 & \quad \text{ATP [mM]} \\
0 & 0.1 & 1 & 10 \\
\text{normalisierte Stromamplitude} & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 \\
\text{EC50 - CTZ: } & 0.125 \pm 0.06 \text{ mM} \\
\text{EC50 + CTZ: } & 0.533 \pm 0.14 \text{ mM}
\end{align*}
\]

\[
\begin{align*}
\text{hP2X}_7 & \quad \text{ATP [mM]} \\
0 & 0.1 & 1 & 10 \\
\text{normalisierte Stromamplitude} & -0.2 & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 \\
\text{EC50 - CTZ: } & 997 \pm 211 \text{ µM} \\
\text{EC50 + CTZ: } & 1218 \pm 73 \text{ µM}
\end{align*}
\]

Bezüglich des Hemmungsmechanismus durch Cyclothiazid scheint sich der humane P2X₇ Rezeptor deutlich von dem der Ratte zu unterscheiden. Aufgrund des überraschenden Befundes, dass Cyclothiazid den humanen P2X₇ nicht-kompetitiv und den der Ratte kompetitiv blockiert, wurden die Bestimmungen zur IC₅₀ für den rP2X₇ Rezeptor wiederholt, da mit 1 mM ATP eine stark von der EC₅₀ abweichende Aktivatorkonzentration verwendet wurde. Diese Versuche wurden daher mit einer ATP-Konzentration von 125 µM ATP wiederholt, die exakt der EC₅₀ des rP2X₇ Rezeptors entsprach. Unter diesen Bedingungen resultierte eine halbmaximale Hemmung von 18,7 ± 3,24 µM Cyclothiazid, was die tatsächliche IC₅₀ darstellt. Die halbmaximal inhibierende Konzentration beider P2X₇ Rezeptoren ist somit gleich, in Bezug auf den Hemmungsmechanismus unterscheiden sie sich jedoch komplett, da der humane P2X₇ kompetitiv und der rP2X₇ Rezeptor nicht kompetitiv durch CTZ gehemmt wird.
3.6 Untersuchungen zur Selektivität von CTZ

Um die Wirkung des Cyclothiazids weiter abgrenzen zu können, wurde die Wirkung des Cyclothiazids auch an anderen P2X-Rezeptoren untersucht. Für diese Untersuchung standen der humane P2X$_4$ und P2X$_5$ Rezeptor zur Verfügung. Der hP2X$_4$R wurde mit 20µM und der hP2X$_5$R mit 10µM ATP stimuliert. An beiden Rezeptoren wurde Cyclothiazid in einer Konzentration von 300 µM getestet. Es ergab sich eine Rest-Rezeptoraktivität von 44,9 ± 9 % für den hP2X$_4$ Rezeptor. Die Werte für den hP2X$_5$R waren 0,4 ± 0,1 % und 2 ± 1,7 % für den hP2X$_7$ Rezeptor (Abb.20).

\[\text{Abb. 20: Cyclothiazidwirkung an diversen humanen P2X-Rezeptoren.} \]
Es wurden 20 µM, 10 µM und 1 mM ATP (Adenosintriphosphat) für die hP2X$_4$, hP2X$_5$ und hP2X$_7$ Rezeptoren verwendet. Getestet wurde jeweils 300 µM Cyclothiazid.
3.7 Untersuchung weiterer Substanzen an P2X₇ Rezeptoren

Neben dem Cyclothiazid wurden weitere Substanzen, die in ihrer Struktur dem Cyclothiazid sehr ähnlich sind, auf eine hemmende Wirkung des P2X₇ Receptors von Ratte und Mensch getestet. In den vorherigen Versuchen war die höchste Cyclothiazidkonzentration 300 µM, daher wurden die Substanzen Hydrochlorothiazid, Norbornen und Diazoxid in einer Konzentration von 300 µM und einer ATP-Konzentration von 1 mM untersucht (Abb.21).

Abb. 21: Strukturformeln von Cyclothiazid, Hydrochlorothiazid und Diazoxid. Es werden die unterschiedlichen Strukturen der getesteten Substanzen im Vergleich zum Cyclothiazid dargestellt.
Ergebnisse

Zuerst wurde das Hydrochlorothiazid getestet, da es als Medikament schon zugelassen ist (Abb. 22). Der Unterschied zum Cyclothiazid besteht darin, dass dem Hydrochlorothiazid der Norbornenrest fehlt. Für den humanen P2X7 Rezeptor ergab sich eine Rest-Receptoraktivität von 78,6 ± 4,5 % und für den der Ratte von 92,7 ± 6,2 %. Da die sehr stark verminderte Hemmwirkung durch das Fehlen des Norbornenrestes zustande kam, wurde im Folgenden Norbornen getestet. Auch hier hat sich gezeigt, dass die Rezeptoraktivität nur wenig vermindert war. Unter Norbornen ergab sich eine Rest-Rezeptoraktivität von 80 ± 5,3 % beim hP2X₇ und 90 ± 4,3 % beim rP2X₇. Schließlich wurde Diazoxid getestet. Ein entscheidender Unterschied zum CTZ ist eine Methyl-Gruppe, die sich anstelle des Norbornenrestes befindet. Unter Diazoxid zeigte sich eine Rest-Rezeptoraktivität von 92 ± 5,4 % für den humanen und 92 ± 11 % für den P2X₇ Rezeptor der Ratten.

Abb. 22: Wirkung von HCT, Norbornen und Diazoxid auf die P2X7 Rezeptoraktivität.
Links wird die Wirkung an humanen P2X7 Rezeptoren und rechts die der Ratten gezeigt. Die Testsubstanzen wurden alle in einer Konzentration von 300 µM und einer ATP (Adenosintriphosphat)-Konzentration von 1 mM untersucht. Die Werte wurden normiert und prozentual dargestellt.
Diskussion

4. Diskussion

4.1 Besondere Eigenschaften des P2X₇R

Diskussion

4.1.1 Signalanstieg bei wiederholter ATP-Applikation

Diskussion

4.1.2 Abnahme der Signalamplitude bei wiederholter ATP-Applikation

Nach dem initialen Signalanstieg bei wiederholter ATP-Applikation wurde an humanen dendritischen Zellen in der Regel eine Signalabnahme beobachtet, die häufig mit einer Abnahme der Membrankapazität einherging. Eine Abnahme der Membrankapazität wurde auch an humanen THP-1-Monozyten und Zellen des HEK293 Expressionssystems nach repetitiver ATP-Applikation beobachtet (MacKenzie et al. 2001). Dabei zeigte sich, dass nach zweiminütiger Agonisten Applikation die Membrankapazität um 22 ± 2% abnahm. Eine signifikante Rolle spielten hierbei aber nur die ersten 2 bis 5 Minuten; danach war die Abnahme der Membrankapazität vernachlässigbar. In dieser Studie wurde lediglich die Abnahme der Membrankapazität untersucht. Auf einen möglichen Zusammenhang mit der Signalgröße wurde nicht eingegangen. In der vorliegenden Arbeit haben wir unter anderem untersucht, ob es einen Zusammenhang zwischen Abnahme der Signalamplitude und Abnahme der Membrankapazität gibt. Unter der Voraussetzung, dass P2X7 Rezeptoren gleichmäßig auf der Membran verteilt sind, würde sich bei einer Abnahme der Membrankapazität, die proportional zur Membranfläche ist, die Anzahl der P2X7 Rezeptoren verringern, was die Signalabnahme erklären könnte. Insgesamt scheint ein Zusammenhang zwischen den beiden Parametern jedoch unwahrscheinlich, da bei einigen Messungen die Signalamplitude abgenommen hatte, obwohl die Membrankapazität konstant blieb. Die Abnahme der Signalamplitude könnte auch mit dem Phosphorylierungsgrad des P2X7 Receptors zusammenhängen. Es ist belegt, dass eine Abnahme der Signalamplitude durch Dephosphorylierung des P2X7 Receptors zustande kommt, wenn dieser mit einer
Diskussion

Supramaximalen Agonistenkonzentration stimuliert wird. Folgerichtig kommt es in Gegenwart eines Phosphatase-Inhibitors nach ATP-Stimulation zu keiner Abnahme der Signalamplitude (Kim et al. 2001). Da in den Versuchen dieser Arbeit nur submaximale ATP Konzentrationen verwendet wurden und die Signalamplituden erst später kleiner geworden sind, kann auch dieser Ansatz die Beobachtungen nur bedingt erklären.

4.1.3 Bestimmung der halbmaximalen Aktivierungskonzentration

4.1.4 Wirkung divalenter Kationen auf P2X7 Rezeptoren

Die EC$_{50}$ von humanen P2X$_7$ Rezeptoren ist von 0,925 ± 0,28 in niedriger auf 4,27 ± 0,27 mM ATP in normaler Kationenkonzentration angestiegen. Bei den P2X$_7$ Rezeptoren der Ratten hat sich die EC$_{50}$ von 0,125 ± 0,06 in niedrigen auf 1,872 ± 0,035 mM ATP, in normalen Kationenkonzentrationen erhöht. Ähnliches zeigten diverse Studien, in denen ein Anstieg der EC$_{50}$ in normalen Kationenkonzentrationen beschrieben wurde (Surprenant et al. 1996, North et al. 2000, Stokes et al. 2006).
4.2 Wirkungsverlust von CTZ bei wiederholter ATP- Applikation

Die im Vorfeld beobachteten Hemmungsverluste nach wiederholten Applikationen von CTZ konnten nur zum Teil bestätigt werden. Die humanen P2X\textsubscript{7} Rezeptoren zeigten selbst nach 5 Wiederholungen mit 5,5 % Verlust kaum Veränderung in ihrer Hemmung durch CTZ, wohingegen die rP2X\textsubscript{7} Rezeptoren mit 30 % Hemmungsverlust deutlich stärker beeinflusst wurden. Da die Porenbildung und der Hemmungsverlust mit wiederholter ATP Applikation auftreten, könnte dies der Grund für das unterschiedliche Verhalten beider Rezeptoren sein (Pelegrin et al. 2006). In diversen Studien mit P2X\textsubscript{7} Antagonisten wurde beschrieben, dass das Hemmungsverhalten der Antagonisten nach wiederholter ATP Gabe deutlich abnahm oder überhaupt nicht mehr vorhanden war (Buell et al. 1998)(Chessell et al. 1998, Buell et al. 1998)(Hibell et al. 2000). Möglicherweise kann CTZ bei den humanen P2X\textsubscript{7} Rezeptoren unabhängig von der Affinitätssteigerung des P2X\textsubscript{7} Rezeptors hemmen und bei den P2X\textsubscript{7} Rezeptoren der Ratte nicht. Speziesspezifische Unterschiede kann man somit nicht nur bei unterschiedlichen divalenten Kationenkonzentrationen, sondern auch bei repetitiver CTZ Applikation beobachten.

4.3 Einfluss der Substanzstruktur auf die Hemmung des P2X\textsubscript{7}R

Die Experimente mit Substanzen, die dem Cyclothiazid strukturell ähnlich sind, zeigten, dass keiner dieser Stoffe eine nur annähernde Hemmwirkung wie CTZ aufwies. Das Diuretikum Hydrochlorothiazid (HCT) unterscheidet sich von Cyclothiazid durch einen Norbornenrestes und wird schon seit Jahren klinisch verwendet. Jedoch hatte HCT kaum Hemmung an dem P2X\textsubscript{7} Receptor. Daher hätte das Schlüsselmolekül der Norbornenrest sein können. Aber auch das Norbornen hemmte den P2X\textsubscript{7} Rezeptor nur sehr gering. Somit ergibt sich die Vermutung, dass das Molekül Cyclothiazid als Ganzes für die Hemmung verantwortlich sein muss. Bei anderen P2X\textsubscript{7} Antagonisten führten leichte Modifizierungen der Grundsubstanz zu einem veränderten Wirkungsverhalten. So zeigten Derivate des P2X\textsubscript{7} Antagonisten Adamantylmethyl-benzamids verbesserte physikalische Eigenschaften, wie höhere Löslichkeit und metabolische Stabilität. Ein weiterer Abkömmling konnte die orale Bioverfügbarkeit erhöhen und wies niedrigere Plasmaproteinbindung auf (Furber et al. 2007). Ein ähnliches Bild zeigte
Diskussion

sich bei Derivaten von Imidazolen (Gleave et al. 2010), Acetamiden (Beswick et al. 2010) und Cyanoguanidinen (Perez-Medrano et al. 2009). Häufig waren die vorgenommenen Veränderungen nur sehr gering, wie etwa ein Austausch ähnlicher Amine oder Amide (Furber et al. 2007).

4.4 Hemmung anderer Rezeptoren durch Cyclothiazid

ausreichende Desensitivierung der AMPA-Rezeptoren gewährleisten zu können, werden 100µM Cyclothiazid benötigt (Fucile et al. 2006). Mit einer IC$_{50}$ von 57,6 µM werden GABA Rezeptoren gehemmt (Deng et al. 2003). Da die IC$_{50}$ für P2X$_7$ bei ca. 16 µM liegt, haben diese die größte Affinität zu Cyclothiazid.

4.5 Hemmungsmechanismus von Cyclothiazid

4.5.1 Kompetitive und nicht-kompetitive Hemmung
Die meisten Antagonisten des P2X$_7$ Receptors wie, Suramin, PPADS, oxidiertes ATP, KN-62, Calmidizolum und Brilliant Blue G hemmen unabhängig von der Agonisten Konzentration und damit über einen nicht-kompetitiven Mechanismus (North 2002). In An- und Abwesenheit von Cyclothiazid war die EC$_{50}$ für ATP bei den humanen P2X$_7$ Rezeptoren nahezu gleich. Auch bei sehr hohen ATP-Konzentrationen (10 mM) konnte die maximale Signalamplitude nicht erreicht werden, so dass die Hemmung durch CTZ ebenfalls auf nicht-kompetitive Art und Weise erfolgte. Für den P2X$_7$ Rezeptor der Ratte wurde ein gleicher Hemmungsmechanismus vermutet und damit eine Hemmung unabhängig von der ATP Konzentration vorausgesetzt. Daher wurde bei der Messung der IC$_{50}$ nicht die EC$_{50}$ von ATP verwendet, sondern eine höhere, die größere Signalamplituden generierte. Überraschenderweise zeigte der P2X$_7$ Rezeptor der Ratten jedoch ein genau gegenläufiges Verhalten. Die EC$_{50}$ stieg unter Co-Applikation von CTZ an. Bei supramaximalen ATP-Konzentrationen war keine Hemmungswirkung mehr vorhanden. Daher war die Hemmung durch CTZ bei den P2X$_7$ Rezeptoren der Ratten abhängig von der ATP Konzentration und somit kompetitiv. Nach dieser Erkenntnis wurde die IC$_{50}$ Messung mit der EC$_{50}$ von ATP wiederholt. Die IC$_{50}$ ist von 123 µM auf 18,79 µM CTZ gesunken. Für den humanen P2X$_7$ Rezeptor ergab sich eine IC$_{50}$ von 16.7 ± 1.7µM CTZ. N-(Adamantan-1-ylmethyl)-5-[(3R-aminopyrrolidin-1-yl)methyl]-2-chlor-benzamid (AACBA) hemmt mit einer IC$_{50}$ von 85 und 980 nM den humanen und rP2X$_7$ Rezeptor (Broom et al. 2008). Mit einer IC$_{50}$ von 7 nM blockiert AZ11645373 den hP2X$_7$ Rezeptor, hat aber keine Wirkung am P2X$_7$ Rezeptor der Ratten. Auch diverse andere P2X$_7$ Antagonisten wie Calmidazolum, KN-62 (Chessell et al. 1998) und [3H]2-cyano-1-[(1S)-1-phenylethyl]-3-quinolin-5-ylguanidin (Donnelly-Roberts et al. 2009b), hemmen im
Diskussion

nanomolaren Bereich. Cyclo-thiazid scheint etwas weniger potent zu hemmen, hat dafür aber den Vorteil, den P2X₇ Receptor von Mensch und Ratte mit nahezu gleicher IC₅₀ zu hemmen.

4.5.2 Einfluss divalenter Kationen auf die Hemmung durch CTZ

4.5.3 Wirkungseintritt und Reversibilität von CTZ

Im Vergleich zu den anderen P2X₇ Antagonisten, - wie oxidiertem ATP - bei dem eine Vorinkubation von mindestens 2 Stunden nötig ist (Surprenant et al. 1996), oder PPADS, bei dem erst nach 30 Minuten Auswaschzeit die Hemmung reversibel ist (Chessell et al. 1998), werden für die Verwendung von CTZ keine Vorinkubation oder verlängerte Auswaschzeiten benötigt. Die Wirkung tritt direkt nach Applikation ein, ist vollständig reversibel und daher besser für Versuche

4.5.4 Hemmung des P2X₇R bei unterschiedlichem Membranpotential

4.6 Speziesspezifische Hemmung durch Cyclothiazid

4.7 Mögliche klinische Einsatzgebiete für P2X7-Antagonisten

werden, dass weder durch mechanische noch durch thermische Stimulationen eine neuropathische Überempfindlichkeit erzeugt werden konnte (Chessell et al. 2005). Patienten mit chronischen neuropathischen Schmerzen könnten daher von einem P2X\textsubscript{7} Antagonisten profitieren. Weitere Studien deuten darauf hin, dass P2X\textsubscript{7} Rezeptoren eine wichtige Rolle bei der Entstehung von Depressionen spielen. Es stellte sich heraus, dass hohe Konzentrationen von IL-1\textbeta Symptomatiken hervorrufen, die der einer Depression entsprechen. Da P2X\textsubscript{7} Antagonisten die Freisetzung von IL-1\textbeta unterbinden, wären Depressionen mit proinflammatorischer Komponente ein vielversprechendes therapeutisches Ziel (Smith 1991). Ein weiteres Gebiet für einen möglichen P2X\textsubscript{7} Rezeptor Antagonisten ist die Behandlung von neoplastischen Lymphozyten. Auf diesen wird der P2X\textsubscript{7} Rezeptor in großer Anzahl exprimiert. Bei Versuchen mit Mäusen konnte gezeigt werden, dass Metastasierungen in Lymphknoten drastisch reduziert werden könnten, wenn der P2X\textsubscript{7} Rezeptor gehemmt wird (Ren et al. 2010).

Insgesamt wäre somit die Bandbreite klinischer Einsatzgebiete für P2X\textsubscript{7} Antagonisten enorm. Ein wesentlicher Vorteil von Cyclothiazid gegenüber anderen P2X\textsubscript{7}-Antagonisten besteht darin, dass es mit gleicher Sensitivität bei Mensch und Ratte wirkt, wodurch optimale Bedingungen für die Testung am Tiermodell gegeben wären. Zudem wurde Cyclothiazid als Diuretikum und Hypertensivum klinisch erforscht und als Medikament zugelassen. Daher sind auch klinischen Parameter bekannt (Jounela et al. 1985). Diese Eigenschaften zeichnen Cyclothiazid als geeigneten Kandidaten für die Entwicklung eines klinisch einsetzbaren P2X\textsubscript{7} Receptor Antagonisten aus.
5. Zusammenfassung

Native und clonierte humane P2X$_7$ Rezeptoren wurden gleichermaßen durch Cyclothiazid gehemmt, so dass nach Bestimmung der halbmaximalen inhibierenden Konzentration (IC$_{50}$) nur noch die clonierten P2X$_7$ Rezeptoren verwendet wurden. In folgenden Experimenten wurde Cyclothiazid auf speziesspezifische Hemmung untersucht. Dabei zeigte sich, dass sowohl der P2X$_7$ Rezeptor der Ratte (18,7 ± 3,24 µM) als auch der des Menschen (16,7 ± 1,7 µM) mit gleicher Intensität gehemmt wurde. Die Hemmung beider Rezeptoren war vollständig reversibel. Unterschiede zeigten sich jedoch beim Hemmungsmechanismus. Humane P2X$_7$ Rezeptoren wurden nicht-kompetitiv, die der Ratten kompetitiv gehemmt. Zudem war die Hemmung unabhängig von der divalenten Kationenkonzentration und des eingestellten Membranpotentials.

Aufgrund der seltenen Eigenschaft der nahezu gleichen IC$_{50}$ von P2X$_7$ Rezeptoren der Ratte und Mensch stellt Cyclothiazid einen geeigneten Antagonisten für Testungen am Tiermodell dar. Zudem sind klinische Parameter bekannt, da Cyclothiazid als Diuretikum und Hypertensivum eingesetzt wurde. Insgesamt wäre Cyclothiazid unter Berücksichtigung dieser Eigenschaften eine geeignete Substanz für weitere Untersuchungen zur Entwicklung eines klinisch einsetzbaren P2X$_7$ Rezeptor Antagonisten.
Literaturverzeichnis

6. Literaturverzeichnis

38. Filippini A, Taffs R E, Agui T, Sitkovsky M V: Ecto-ATPase activity in cytolysis a

63. Lazarowski E R, Boucher R C, Harden T K: Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and

87. Perregaux D, Gabel C A: Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated
by these agents is a necessary and common feature of their activity. J. Biol. Chem., 269: 15195-15203 (1994)

