Analyse klinischer und pathologischer Faktoren für die Prognose von Patienten mit Rektumkarzinom anhand von 796 Patienten der FOGT-2-Studie

Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm

Vorgelegt von Barbara Harscher, Ulm
2011
Amtierender Dekan: Prof. Dr. Thomas Wirth

1. Berichterstatter: Prof. Dr. Von Wichert
2. Berichterstatter: Prof. Dr. Knippschild

Tag der Promotion: 28.10.2011
Inhaltsverzeichnis

Abkürzungsverzeichnis .. III

1. Einleitung ... 1

2. Patienten, Material und Methoden ... 7
 2.1 Patienten, Ein- und Ausschlusskriterien ... 7
 2.2 Studienbeschreibung ... 8
 2.2.1 Chemotherapie ... 8
 2.2.2 Immuntherapie .. 9
 2.2.3 Radiotherapie ... 9
 2.2.4 Therapieaufschub und Therapieabbruch .. 10
 2.2.5 Stratifizierung und Randomisierung .. 10
 2.2.6 Follow up ... 11
 2.3 Datenerhebung und Statistik ... 12
 2.3.1 Datenerhebung .. 12
 2.3.2 Datenauswertung .. 13
 2.3.3 Statistische Analyse .. 15

3. Ergebnisse ... 17
 3.1 Univariate Analyse des Einflusses möglicher prognostischer Faktoren auf die
 Überlebenszeit ... 18
 3.1.1 Einfluss des Alters bei Therapiebeginn ... 18
 3.1.2 Einfluss des Geschlechts ... 20
 3.1.3 Einfluss der Tiefenausdehnung des Primärtumors (pT-Stadium) 22
 3.1.4 Einfluss des Lymphknotenstatus (pN-Stadium) ... 24
 3.1.5 Einfluss des gesamten TNM-Stadiums zusammengefasst in UICC-Stadien 26
 3.1.6 Einfluss des Gradings .. 29
3.1.7 Einfluss der OP-Methode beziehungsweise der Höhenlokalisation des Tumors ... 30
3.1.8 Einfluss des Body Mass Index (BMI) .. 32
3.1.9 Einfluss der Klinikart .. 34
3.1.10 Einfluss der Toxizität .. 36
3.1.11 Einfluss der Dauer der Chemotherapie 38
3.1.12 Gesamtüberlebensdauer in Abhängigkeit von der Vollständigkeit der Chemotherapie und deren Toxizität .. 43
3.2 Multivariate Analyse potentiell prognostisch wichtiger Einflussgrößen auf die Prognose von Patienten mit Rektumkarzinom 46

4. Diskussion ... 50
5. Zusammenfassung ... 58
6. Literaturverzeichnis .. 60
7. Anhang .. 66
 7.1 Ersterhebungsbogen ... 66
 7.2 Toxizitätsbogen ... 69
 7.3 Verlaufsbogen ... 70
 7.4 Rezidivbogen ... 75
 7.5 Abschlussbogen, Karnowski-Index, Fragebogen zur OP-Methode 76
8. Danksagungen ... 78
9. Lebenslauf ... 79
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-FU</td>
<td>5-Fluorouracil</td>
</tr>
<tr>
<td>5-bzw. 3-JGÜR</td>
<td>5-bzw. 3-Jahresgesamtüberlebensrate</td>
</tr>
<tr>
<td>95%-KI</td>
<td>Konfidenzintervall (95%)</td>
</tr>
<tr>
<td>ASS</td>
<td>Acetylsalicylsäure</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CEA</td>
<td>Carcinoembryonales Antigen</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>FOBT</td>
<td>Fäkaler okkuler Bluttest</td>
</tr>
<tr>
<td>FOGT</td>
<td>Forschungsgruppe Onkologie Gastrointestinaler Tumoren</td>
</tr>
<tr>
<td>FS</td>
<td>Folinsäure</td>
</tr>
</tbody>
</table>
G Grading IV

Hep Hepatitis

HIV Human immunodeficiency Virus

INF-Alpha Interferon- Alpha

LEV Levamisol

N Anzahl der Patienten

NIH National Institute of Health

PTZ Plasmathrombinzeit

R₀ Kein Residualtumor

TNM Tumor-Nodus (Lymphknoten)- Metastasen- Einteilung

UICC Union internationale contre le cancer

WHO World Health Organisation
1. Einleitung

Im Jahr 2006 stellte das kolorektale Karzinom mit 412 900 Neuerkrankungen die zweithäufigste bösartige Neubildung nach dem Brustkrebs dar [Ferlay et al., 2006]. Mit 207 400 Todesfällen steht diese Krebsart auch an zweiter Stelle der krebsbedingten Todesursachen hinter dem Bronchialkarzinom. Die Anzahl der Todesfälle aufgrund kolorektaler Karzinome stieg seit 2004 um 1,8% [Ferlay et al., 2006].

Wie beim Kolonkarzinom kommt auch bei Rektumkarzinom der Vorsorge ein hoher Stellenwert zu, denn durch sie könnten über 90 % der Rektumkarzinome verhindert werden [Kornmann et al., 2007]. Für Personen, die keiner Risikogruppe für das Auftreten von kolorektalen Karzinomen angehören wird als Goldstandard in der Vorsorge eine komplette Koloskopie ab dem 50. Lebensjahr empfohlen, bei unauffälligem Befund sollte diese nach zehn Jahren wiederholt werden. Alternativ hierzu gibt es die Möglichkeit der jährlichen FOBT, die allerdings eine deutlich niedrigere Spezifität und Sensitivität besitzt. Personen, die zum Beispiel eine positive Familienanamnese aufweisen, sollten allerdings schon deutlich früher und engmaschiger kontrolliert werden [Schmiegel et al., 2008].

Desweiteren gilt ein hoher BMI im Allgemeinen als Risikofaktor für das kolorektale Karzinom. Für das Rektumkarzinom speziell gilt aber, dass dieser Zusammenhang nur für Männer zutreffend ist. Außerdem scheint vermehrte körperliche Aktivität das Risiko für das Auftreten eines Rektumkarzinoms im Gegensatz zum Risiko für die Entstehung eines Kolonkarzinoms nicht zu senken [Larsson et al., 2007].

Zu den weiteren Risikofaktoren für die Entstehung von Rektumkarzinomen zählen das Alter, Nikotinabusus und der Alkoholkonsum [Wei et al., 2004]. Für den Alkoholkonsum gilt, dass der Genuss von 14 Getränken Bier und Schnaps pro
Woche das Risiko für ein Rektumkarzinom verdreifacht. Wird allerdings mehr als 30% des Alkohols in Form von Wein konsumiert, verringert sich das Risiko wieder deutlich und beträgt nur noch gut das Anderthalbfache eines Nicht-Trinkers [Pedersen et al., 2002].

Bei Verdacht auf ein Rektumkarzinom sollte vor Beginn der Therapie eine komplette Koloskopie mit Biopsie zur histologischen Diagnosesicherung durchgeführt werden, außerdem eine Oberbauchsonografie, ein Röntgen-Thorax sowie eine Bestimmung des CEA-Spiegels. Zur Bestimmung des Abstandes des unteren Tumorrandes von der Linea Dentata und damit zur Planung der operativen Therapie ist eine starre Rektoskopie durchzuführen. Die Endosonographie dient der Bestimmung der Infiltrationstiefe [Schmiegel et al., 2008].

Als kurative chirurgische Maßnahmen kommen die (tiefe) anteriore Resektion für Tumoren, die im oberen Abschnitt des Rektums liegen und die abdomino-perineale Rektumextirpation sowie eine intersphinktäre Rektumresektion für Tumoren im unteren Anteil in Betracht [Hohenberger, 2007]. Nur bei sehr kleinen Tumoren kommen lokale Operationsverfahren in Frage.

Postoperativ ist eine Klassifizierung im TNM-System durchzuführen, inklusive Grading, R-Klassifikation, Anzahl der untersuchten Lymphknoten und Abstand von den Resektionsrändern, denn nur mithilfe dieser Angaben gelingt es, den Tumor zuverlässig einem Stadium zuzuordnen, was einen wichtigen Faktor für die Prognose des Patienten darstellt [Schmiegel et al., 2008].

Bei der multimodalen Therapie des Rektumkarzinoms gilt heute als Standard die kombinierte neoadjuvante Radiochemotherapie, wodurch die Lokalrezidivrate deutlich gesenkt werden kann [Schmiegel et al., 2008].

Eine Bestrahlung wird beim Rektumkarzinom ab UICC-Stadium II empfohlen. Verschiedene Metaanalysen sowie die CAO/AIO/ARO-94 Studie haben gezeigt, dass die Lokalrezidivrate unter neoadjuvanter Radiotherapie geringer ist. Außerdem zeigte sich eine geringere Rate an postoperativen Komplikationen und eine höhere Rate an sphinktererhaltenden Operationen. [Colorectal Cancer Collaborative Group, 2001] [Sauer et al., 2004]. Problematisch an der neoadjuvanten Therapie ist allerdings die Gefahr des „Overstagings“, bei dem Patienten aufgrund falscher präoperativer Stadieneinteilung ohne potentiellen Nutzen neoadjuvant behandelt wurden [Kornmann et al., 2007]. Des Weiteren gibt es auch Studien, die zu dem Ergebnis gekommen sind, dass die Prognose bei Rektumkarzinom durch neoadjuvanten
Radiotherapie bei qualitativ hochwertiger Chirurgie nicht beeinflusst wird [Sauer et al., 2004] und mit einer erheblichen Toxizität verbunden ist [Peeters et al., 2005]. Seit über 40 Jahren bildet die Chemotherapie mit 5-FU und Folinsäure die Basis für die adjuvante Chemotherapie des Rektumkarzinoms [Nagy et al., 2008].

5-Fluoruracil (5-FU) ist ein Wirkstoff, der durch die Ähnlichkeit seiner Struktur zu den Pyrimidinbasen Cytosin und Thymin anstelle derer er in DNA und RNA eingebaut wird, das Wachstum des Tumors hemmt. Außerdem wird durch 5-FU die Thymidylatsynthase inhibiert, die als limitierendes Enzym bei der DNA-Synthese eine Schlüsselrolle spielt [Link et al., 2005]. Die zusätzliche Gabe von Folinsäure macht eine höhere Dosierung von 5-FU möglich und verstärkt dessen zytostatische Wirkung.

zu einer niedrigeren Toxizität als die Therapie mit Bolusgaben von 5-FU [Kim et al., 2005].

Sowohl für die Entstehung als auch für die Prognose des kolorektalen Karzinoms ist der Body Mass Index der Patienten ein Faktor, der bedeutsam zu sein scheint und zum Beispiel von Meyerhardt und seinen Mitarbeitern genauer untersucht wurde. Während weder bei männlichen noch bei weiblichen Patienten die Gesamtsterblichkeit durch den Body Mass Index beeinflusst wurde zeigte sich für männlichen Patienten, dass ein höherer BMI eine höhere Lokalrezidivrate nach sich zog. Außerdem kam es in der Therapie von übergewichtigen Patienten, männlichen wie weiblichen, in einem höheren Prozentsatz dazu, dass keine sphinktererhaltende Operation durchgeführt werden konnte, sowie zu einem erhöhten Risiko von
perioperativen Komplikationen wie zum Beispiel einer Anastomoseninsuffizienz [Meyerhardt et al., 2003].
Andere Studien zeigten jedoch signifikante Unterschiede auch in den Überlebensraten bezogen auf den BMI. Bei den Dulk und seinen Mitarbeitern zum Beispiel hatten Patienten mit einem mittleren BMI die besten Überlebenschancen, die schlechtesten Raten waren bei untergewichtigen Patienten zu finden [Den Dulk et al., 2007].
Beim Einfluss des Geschlechts auf die Prognose sind in der Literatur unterschiedliche Angaben zu finden. Hodgson und seine Mitarbeiter fanden annähernd gleiche 2-JGÜR für Männer und Frauen bei Patienten mit Rektumkarzinomen im Stadium I bis III [Hodgson et al., 2003]. Auch bei Cerottini zeigen sich keine großen Unterschiede in der 5-JGÜR hinsichtlich des Geschlechts [Cerottini et al., 1999]. In der Analyse von Den Dulk fand sich ein Überlebensvorteil für das männliche Geschlecht [Den Dulk et al., 2007].
In der Analyse, die Cerottini und seine Mitarbeiter bei durchgeführt haben zeigte sich, dass auch das Alter der Patienten einen signifikanten Einfluss auf das Überleben hat. Patienten im Alter zwischen 50 und 69 haben hier einen Überlebensvorteil gegenüber Patienten, die bei Therapiebeginn jünger als 49 Jahre alt waren. Noch schlechter ist die Prognose allerdings bei über 70 Jährigen [Cerottini et al., 1999].
Szynglarewicz untersuchte den Einfluss des Alters nach Sphinkter-erhaltenden Operationen und zeigte, dass bei Patienten über 60 Jahren das Krebs-spezifische Überleben nur bei 38% liegt, wohingegen jüngeren Patienten eine Überlebensrate von 63% aufweisen [Szynglarewicz et al., 2008].
Die Höhenlokalisation des Tumors im Rektum wurde von Den Dulk und seinen Mitarbeitern als potentieller prognostischer Faktor untersucht. Tumoren, die weniger als zwei Zentimeter vom unteren Rektumrand entfernt sind haben laut dieser Studie sowohl ein höheres Risiko für Lokalrezidive als auch eine schlechtere Überlebensrate als höher sitzende Tumore [Den Dulk et al., 2007].
Ein weiterer Faktor, der potentiell die Prognose von Patienten mit Rektumkarzinom bestimmen könnte ist die Art des behandelnden Krankenhauses beziehungsweise die Menge der behandelten Patienten. Diesen Zusammenhang untersuchten Meyerhardt und seine Mitarbeiter. Sie fanden heraus, dass insgesamt das Patientenaufkommen des Krankenhauses weder die Überlebensrate noch die Rate von Rezidiven signifikant beeinflusst. Allerdings zeigte sich in ihrer Studie, dass in
Zentren mit geringem Patientenaufkommen deutlich öfter eine Abdomino-perineale Rektumextirpation durchgeführt wird, und zwar unabhängig von der Höhenlokalisation des Tumors, was durch die Anlage eines permanenten Kolostomas zu einer eingeschränkten Lebensqualität führt [Meyerhardt et al., 2003]. Bei Rogers und seinen Mitarbeitern zeigten sich hingegen signifikant höhere Überlebensraten für Patienten, die in Krankenhäusern mit hohem Patientenaufkommen behandelt wurden. Der gleiche Zusammenhang ist auch bei der Analyse der Daten nach dem Operationsvolumen von einzelnen Chirurgen zu sehen [Rogers et al., 2006]. Zielsetzung dieser Arbeit sollte es nun sein, anhand der vorliegenden Datensätze von 796 Patienten aus der FOGT-2-Studie, einer randomisierten deutschen Phase III Multizenterstudie, die bei einem fortgeschrittenen Rektumkarzinom im UICC Stadium II und III mit einer adjuvanten, 5-FU basierten Chemotherapie sowie einer Radiotherapie behandelt wurden, klinische und pathologische Faktoren zu identifizieren, welche die Prognose beeinflussen. Das Wissen um solche Faktoren könnte bei der Einteilung der Patienten in Risikogruppen hilfreich sein und so dazu beitragen Therapieoptionen abzuwägen. Zu diesem Zweck wurden folgende Faktoren auf ihren Einfluss auf das Gesamtüberleben hin untersucht:

- Alter bei Therapiebeginn
- Geschlecht
- Pathologisches TNM- Stadium bzw. UICC-Stadium
- Grading
- OP-Methode bzw. Höhenlokalisation des Tumors
- BMI
- Fallzahl der teilnehmenden Zentren
- Toxizität und Dauer der adjuvanten Chemotherapie
2. Patienten, Material und Methoden

2.1 Patienten, Ein- und Ausschlusskriterien

Die Rekrutierung der an der Studie teilnehmenden Patienten erfolgte durch die jeweiligen, an der Studie beteiligten Mitglieder der FOGT-Gruppen.

Zugelassen zu dieser Studie waren Patienten mit Rektumkarzinom, welches potentiell kurativ nach den „Richtlinien zur operativen Therapie maligner Tumoren“ der Deutschen Gesellschaft für Chirurgie (Ch.Herfahrt, P.Schlag (Eds.), Demeter, Gräfelfing 1992) komplett ohne Nachweis eines makroskopischen oder mikroskopischen Tumorrestes (R₀) reseziert wurde. Der Tumor sollte mit seiner unteren Begrenzung unterhalb der peritonealen Umschlagfalte oder tiefer als 16 cm ab Hintonscher Linie liegen, sowie nach der UICC-Klassifikation, im Stadium II (T₃₄N₀M₀) oder Stadium III (TₓN₁₋₃M₀) eingeordnet werden können.

Vor der Aufnahme in die Studie erfolgte bei den potentiellen Studienteilnehmern eine gründliche körperliche Untersuchung, sowie eine Rektos-/Koloskopie, ein Röntgen-Thorax, eine Oberbauchsonographie und eine Laborkontrolle die die Bestimmung eines kompletten Blutbildes, des Gesamtbilirubins, des Serumkreatinins, der PTZ und des Tumormarkers CEA beinhaltete.

In die Studie aufgenommen wurden Patienten, die sowohl oben genannte Kriterien erfüllten als auch folgende Laborparameter zeigten: Leukozyten > 3,5 x 10⁹ pro Liter, Thrombozyten > 100 x 10⁹ pro Liter, Serumkreatinin < 2 mg pro Deziliter, Gesamtbilirubin < 2 mg pro Deziliter, PTZ > 60%.

Als Ausschlusskriterien wurden schwere, die Lebenserwartung reduzierende, internistische Krankheiten, wie zum Beispiel dekompensierter Diabetes mellitus schwere Herzinsuffizienz oder Cerebralsklerose sowie floride Infektionen (inklusive
HIV-Seropositivität oder Hep.-B Antigen) festgelegt. Weitere Faktoren, welche die Teilnahme an der Studie nicht erlaubten, waren Zweitumore (ohne adäquat behandeltes Basaliom oder Spinaliom der Haut und in Situ Karzinome der Cervix uteri), vorangegangene Chemotherapien, Schwangerschaft oder keine wirksame Kontrazeption während der Studie, ZNS-Erkrankungen oder der Nachweis von Metastasen des Primärtumors. Auch eine dekompensierte Leberfunktion oder ein Karnofski-Index < 70 % (siehe Anhang 6) schlossen von der Teilnahme an der Studie aus.

2.2 Studienbeschreibung

Im Kontrollarm der Studie (Arm A) wurde empfohlen, die Patienten mit der von der NIH zum Zeitpunkt der Planung der Studie als Standarttherapie genannten Kombination aus 5-FU und Levamisol zu behandeln [NIH consensus conference, 1990].

Im Arm B wurde diese Therapie durch Folinsäure, im Arm C durch Interferon alpha 2a ergänzt.

2.2.1 Chemotherapie

Mit der adjuvanten Chemotherapie sollte im Zeitraum zwischen dem 1. und 14. postoperativen Tag begonnen werden.

Der erste Zyklus wurde über fünf Tage durchgeführt. 450mg/m² 5-FU wurden hierfür pro Tag über 60-120 Minuten intravenös verabreicht. Ab dem 33. postoperativen Tag wurde die 5-FU Gabe ambulant an einem Tag der Woche bis zur 52. Woche nach der Operation fortgeführt.

Die Toxizität wurde zwischen den Zyklen beobachtet, anhand der Standartkriterien der WHO (siehe Anlage) ausgewertet und die 5-FU Dosis dementsprechend
angepasst. Wenn sich kein Hinweis auf eine Toxizität ergab wurde die Dosis in 10% Schritten bis maximal 500mg /m² gesteigert, wurde eine Toxizität vom WHO-Grad 1 oder 2 gefunden blieb die Dosis unverändert. Bei einer Toxizität vom Grad 3 und 4 musste die Dosis um 10% reduziert werden.

Im Arm B der Studie wurde vor der 5-FU Gabe noch 200mg / m² Folinsäure (Rescuvolin, medac, Hamburg, Germany) als Kurzinfusion verabreicht.

2.2.2 Immuntherapie

2.2.3 Radiotherapie

Spätestens in der 6. postoperativen Woche sollte mit der perkutanen Strahlentherapie mit Photonen eines Linearbeschleunigers begonnen werden. Die Gesamtdosis lag bei 45-50,4 Gy, die in Einzeldosen zu je 1,8 Gy aufgeteilt und fünf Mal wöchentlich verabreicht wurden. Als Zielvolumen wurden das Tumorbett und die regionären Lymphknoten des Beckens festgelegt.

Um die im Bestrahlungsfeld liegenden Organe so gut wie möglich zu schützen, sollte die Bestrahlung in Bauchlage und unter Einsatz einer Lochplatte erfolgen.
Verwendet wurde die 3-Felder Technik in der die Bestrahlung über ein dorsoventrales und zwei seitlich opponierende Felder erfolgt.

Während der Radiotherapie sollte die 5-FU Dosis um 20% gesenkt werden.

2.2.4 Therapieaufschub und Therapieabbruch

Vor jeder Infusion sollten sowohl eine Blutbildkontrolle als auch eine Bestimmung der WHO-Toxizität erfolgen. Alle vier Wochen während der Therapie erfolgte eine Verlaufskontrolle durch ein großes Labor sowie durch eine toxisitätsbezogene Zwischenanamnese und eine körperliche Untersuchung.

Bei Toxizität über Grad WHO 3 war die Chemoimmuntherapie bis zum Abklingen der Symptome zu unterbrechen, der anschließende Zyklus wurde in reduzierter Dosis durchgeführt. Bei guter Verträglichkeit des dosisreduzierten Zyklus konnte der anschließende Zyklus wieder in der normalen Dosierung verabreicht werden.

2.2.5 Stratifizierung und Randomisierung

Bei der Zuteilung zu den Therapiearmen wurden die Tumorinfiltration ins perirektale Fettgewebe, der Lymphknotenbefall, die Anzahl der befallenen Lymphknoten und die behandelnde Klinik als Stratifikationsmerkmale herangezogen. Die Randomisierung erfolgte durch die Abteilung für Biometrie und Medizinische Dokumentation der Universität Ulm.
2.2.6 Follow up

Zusätzlich wurde jeweils einmal im Jahr ein CT des Beckens und eine Oberbauchsonographie durchgeführt und ein Röntgen-Thorax angefertigt.

Bei Patienten mit abdomino-perinealer Rektumextirpation wurde zusätzlich in den Monaten 12, 24 und 48 nach OP eine Kolonkontrastdarstellung, beziehungsweise bei Patienten mit anteriorer Resektion eine Endoskopie durchgeführt.

Dieses Schema sollte über mindestens fünf, fakultativ auch über zehn Jahre fortgeführt werden.

Beim Auftreten von Rezidiven wurden Lokalisation und Zeitpunkt dokumentiert, als Endpunkt der Beobachtung wurde der Zustand des Patienten fünf Jahre nach der operativen Therapie des Primärtumors gewählt. Dokumentiert wurden die Rezidivhäufigkeit, das Auftreten von Sekundärkarzinomen, das Überleben, der Zeitpunkt des Todes und die Todesursache.
2.3 Datenerhebung und Statistik

2.3.1 Datenerhebung

Der genaue Verlauf von Chemotherapie und Radiatio konnte aus dem Verlaufsbo gen (siehe Anhang 3) ersehen werden. Auch ein Therapieabbruch wurde mit der Angabe der Ursache auf diesem Bogen festgehalten (siehe Anhang 3). Rezidive oder Metastasen wurden im Rezidivbogen (siehe Anhang 4) mit Datum des Auftretens und der Lokalisation, sowie der Diagnostikmethode genau dokumentiert.

Aus dem Abschlussbogen (siehe Anhang 5) waren zuletzt noch das letzte Beobachtungsdatum, das Ergebnis der Therapie (tumorfreies Überleben nach 5 Jahren, Rezidiv, Zweittumor, Tod oder Patient Lost to follow up) sowie gegebenenfalls Todesdatum und Todesursache (Tumorbedingt, Therapiebedingt, Zweittumor oder andere Ursache) zu ersehen.

Die Toxizität unter der Chemotherapie wurde in einem gesonderten Toxizitätsbogen (siehe Anhang 2) festgehalten, wobei die Einteilung nach dem WHO- Schema in vier Stufen erfolgte (Stufe I-IV). Die Toxizität der Stufe I-II wurde in der Auswertung der Toxizität der Stufe III bzw. IV gegenübergestellt.

Die Höhenlokalisation des Tumors und die Art der Operation waren prospektiv nicht erfasst worden. Für die Erfassung dieses Merkmals wurden daher von mir Fragebögen für alle teilnehmenden Zentren erstellt und verschickt, auf denen die OP-Methode mit der die einzelnen Patienten behandelt wurden angekreuzt werden sollte (Anhang 7). Für die Patienten der Universität Ulm wurde diese selbst ausgefüllt.

Die
hieraus neu gewonnen Daten lassen mithilfe der OP Methode einen Rückschluss auf die Höhenlokalisation des Tumors im Rektum zu. Als Tumoren im oberen und mittleren Drittel des Rektums wurden für die Auswertung die Tumoren bezeichnet, die durch eine anteriore Rektumresektion entfernt wurden. Abdomino-perineale Rektumextirpationen wurden in der Auswertung als Tumoren des unteren Drittels des Rektums aufgenommen.

2.3.2 Datenauswertung

Die Daten wurden deskriptiv statistisch ausgewertet und absolute und relative Häufigkeiten berechnet.

Die Einteilungen der Merkmale in die einzelnen Klassen orientierten sich an den Einteilungen aus der Promotionsarbeit von C. Ette „Analyse klinischer und pathologischer Faktoren für die Prognose von Patienten mit fortgeschrittenem Kolonkarzinom anhand von 855 Patienten der FOGT-1-Studie“. Die FOGT-1 Studie basierte auf dem gleichen Studienprotokoll wie die dieser Arbeit zugrunde liegende FOGT-2 Studie.

Das Merkmal Alter der Patienten bei Therapiebeginn wurde für die statistische univariate Analyse in drei Gruppen eingeteilt. Die Einteilung erfolgte in Patienten die bei Therapiebeginn jünger waren als 55 Jahre, Patienten im Alter zwischen 55 und 70 Jahren sowie Patienten die älter waren als 70 Jahre.

Das Geschlecht der Patienten wurde in männlich und weiblich unterteilt.

Als weiteres Merkmal sollte in der Auswertung der BMI (Body Mass Index) herangezogen werden. Er berechnet sich aus dem Körpergewicht in Kg geteilt durch die Körpergröße in Metern zum Quadrat. Als Normalgewichtig werden Menschen bezeichnet, deren BMI zwischen 20 und 25 kg/m² liegt. Ein BMI unter 18,5 kg/m² bedeutet Untergewicht, ein BMI über 25 kg/m² Übergewicht. Bei einem BMI über 30 kg/m² spricht man von Adipositas. Bei der Auswertung der Daten wurde der BMI in folgende Untergruppen unterteilt: BMI unter 20 kg/m², also Patienten die eher ungewichtig waren; Patienten die mit einem BMI zwischen 20 und 25 kg/m² als normalgewichtig anzusehen waren; übergewichtige Patienten die einen BMI
zwischen 25 und 30 kg/m\(^2\) aufwiesen sowie als letzte Gruppe adipöse Patienten deren BMI über 30 kg/m\(^2\) lag.

Zur Untersuchung der Tumorausdehnung und des Tumorstadiums wurden zunächst das pT- sowie das pN- Stadium einzeln untersucht, wobei bei dem pT-Stadium T1 und T2 mit T3 sowie T4 verglichen wurde. Beim N-Stadium erfolgte die Untersuchung von N0 gegenüber N1 und N2/N3. Eine weitere statistische Analyse untersuchte die Tumorausdehnung anhand der folgenden UICC (Union internationale contre le cancer)- Stadien: UICC Stadium II entspricht den Tumorformeln pT3/pT4 pN0 M0, das UICC Stadium IIIa einem Tumor mit pT1/pT2 pN1 M0, Stadium IIIb entspricht pT3/pT4 pN1 M0, IIIc1 bezeichnet die Tumorformel pT1/2 pN2 M0 und IIIc2 schließlich einen Tumor der Ausdehnung pT3/4 pN2 M0.

Zur Auswertung der Toxizität wurde das WHO-Schema herangezogen. Es teilt die Toxizität in die Stufen 0-4 ein. Für die Auswertung wurde festgelegt, dass die Stufen 0,1 und 2 als keine Toxizität aufgetreten und die Stufen 3 und 4 als Toxizität aufgetreten gelten sollten. Hieraus folgt die Aufteilung in den Arm A mit und ohne Toxizität sowie Arm A und keine Angaben. Analog dazu erfolgte die Einteilung für Arm B und C.

Toxizität und abgeschlossener Chemotherapie, Patienten ohne Toxizität und kompletter Chemotherapie, Patienten ohne Toxizität und abgebrochener Chemotherapie sowie Patienten bei denen keine Angaben vorlagen.

Als letzter Punkt erfolgte die Analyse des Gesamtüberlebens und des rezidivfreien Überlebens der Patienten.

Die Zeitspanne die zur Untersuchung des Gesamtüberlebens herangezogen wurde, begann mit der Gabe der ersten Chemotherapie und endete mit dem Tod des Patienten (Ereignis). Bei Patienten die am Ende des Beobachtungszeitraums nicht verstorben waren wurde als Endpunkt das letzte dokumentierte Beobachtungsdatum gewählt (zensiertes Ereignis).

Als Endpunkt wurden als Ereignis die Feststellung eines Tumorrezidivs oder der Eintritt eines tumorassozierten Todes und als Zensierung ein Tod aufgrund einer anderen Ursache oder das letzte Beobachtungsdatum gewählt.

2.3.3 Statistische Analyse

Im Proportional Hazards Modell wurden die Einflussgrößen BMI (stetig), Alter (>70 Jahre vs. 55 bis unter 70 Jahre vs. <55 Jahre), Geschlecht (weiblich vs. männlich), Grading (I und II vs. III und IV), Dauer der Chemotherapie (bis 13 Wochen vs. 14-39
Wochen vs. 40 bis 52 Wochen) Rezidiv während des Follow-up (ja vs. nein) und Toxizität (ja vs. nein) einer Variablenselektion unterzogen, um unter ihnen potentielle Prognosefaktoren zu finden.

Therapiearm, Klinikart und TNM-Stadium wurden durch das Studiendesign in das Proportional Hazards Modell gezwungen. BMI, Alter, Geschlecht, Grading und Dauer der Chemotherapie gingen als nicht-zeitabhängige Variablen in das Modell ein, Rezidiv und Toxizität als zeitabhängige Variablen, um sie bei Veränderungen während des Follow-up berücksichtigen zu können. Die rückwärtige Elimination mit einem Selektionslevel von 5% diente der Variablenselektion.

Die Ergebnisse der Analyse wurden als Hazard-Ratios, 95% Konfidenzintervalle und p-Werte für die selektierten Prognosefaktoren angegeben.

In einem nächsten Schritt wurden die multivariablen Analysen mit Cox-Regressions-Modellen erstellt. Diese stellten den gleichzeitigen Einfluss mehrerer Variablen darstellen und für das Überleben wichtige prognostische Faktoren herausfinden. Auch in diesem Schritt war die rückwärtige Elimination mit einem Selektionslevel von 5% die Methode der Wahl für die Auswahl der Variablen.

Die Variable OP-Art bzw. Höhenlokalisation des Tumors konnte aufgrund der vielen fehlenden Daten nicht in das erste Proportional Hazards Modell mit einbezogen werden. Mit dem verkleinerten Kollektiv der Patienten, für die die OP-Methode bekannt war, wurde analog ein weiteres Proportional Hazards Modell berechnet.
3. Ergebnisse

Die FOGT-2 Studie zeigte, dass bei Patienten mit fortgeschrittenem Rektumkarzinom weder der Zusatz von Folinsäure (Arm B) noch der Zusatz von INF-Alpha (Arm C) zur Basistherapie mit Radiotherapie, 5-FU und Levamisol einen deutlichen Vorteil im Überleben brachte (Abbildung 1). Therapiearm B, also der Zusatz von Folinsäure, zeigt lediglich in der 3-Jahresüberlebensrate (78,7%) einen geringen Vorteil gegenüber den beiden anderen Therapiearmen. Die 5-Jahresgesamtüberlebensraten aller drei Therapiearme sind jedoch wieder fast identisch. (Tabelle1)

Ergebnisse - 18 -

(gestrichelte Linie). Die Kurven wurden nach der Methode von Kaplan-Meier dargestellt (p=0,6918).

Tabelle 1: Assoziation zwischen Therapiearm und Gesamtüberleben der Rektumkarzinompatienten in der FOGT-2 Studie

<table>
<thead>
<tr>
<th>Rand.arm</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>282</td>
<td>72,8% (67,1%-77,6%)</td>
<td>60,2% (54,1%-65,7%)</td>
<td>45,9%</td>
</tr>
<tr>
<td>B</td>
<td>291</td>
<td>78,7% (73,4%-83,0%)</td>
<td>61,3% (55,3%-66,6%)</td>
<td>42,6%</td>
</tr>
<tr>
<td>C</td>
<td>223</td>
<td>71,3% (64,9%-76,8%)</td>
<td>59,8% (53,0%-66,1%)</td>
<td>44,9%</td>
</tr>
</tbody>
</table>

N: Anzahl der Patienten
3-bzw.5 JGÜR: 3- bzw. 5-Jahresgesamtüberlebensrate
95%- KI: Konfidenzintervall (95%)
FOGT: Forschungsgruppe Onkologie Gastrointestinaler Tumoren
5-FU: 5- Fluorouracil

3.1 Univariate Analyse des Einflusses möglicher prognostischer Faktoren auf die Überlebenszeit

3.1.1 Einfluss des Alters bei Therapiebeginn

Um den Einfluss des Alters der Patienten bei Therapiebeginn auf die Überlebenszeit zu untersuchen, wurden die 3- bzw. 5-Jahresgesamtüberlebensraten verglichen, wobei sich zeigte, dass die Patienten unter 55 Jahren und die Patienten zwischen 55 und 70 Jahren im Vergleich mit älteren Patienten eine längere Überlebenszeit hatten. Patienten, die bei Therapiebeginn schon über 70 Jahre alt waren, zeigten in der 3-Jahresgesamtüberlebensrate ähnliche Werte wie jüngere Patienten, doch die 5-Jahresüberlebensrate war bei diesen älteren Patienten deutlich geringer (Abbildung 2 und Tabelle 2).
Abbildung 2: Darstellung der Gesamtüberlebenszeit aller Patienten mit Rektumkarzinom aus der FOGT-2 Studie, ausgehend vom Zeitpunkt der Resektion des Tumors aufgeschlüsselt nach dem Alter. Die Kaplan-Meier-Kurve der Patienten, die bei Therapiebeginn jünger als 55 Jahre alt waren, wurde durchgezogen dargestellt, die Überlebenskurve der Patienten zwischen 55 und 70 Jahren wurde lang gestrichelt gezeichnet und die der 70-jährigen oder älteren Patienten kurz gestrichelt (p=0,1921).
Ergebnisse

Tabelle 2: Assoziation zwischen Gesamtüberleben aller Rektumkarzinompatienten aus der FOGT-2 Studie und ihrem Lebensalter

<table>
<thead>
<tr>
<th>Lebensalter</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
<th>Rezidivraten</th>
</tr>
</thead>
<tbody>
<tr>
<td><55 Jahre</td>
<td>172</td>
<td>76,6% (69,5%-82,2%)</td>
<td>63,3% (55,6%-70,1%)</td>
<td>44,1%</td>
</tr>
<tr>
<td>55-< 70 Jahre</td>
<td>484</td>
<td>73,3% (69,1%-77,0%)</td>
<td>61,4% (56,8%-65,6%)</td>
<td>43,6%</td>
</tr>
<tr>
<td>> 70 Jahre</td>
<td>140</td>
<td>76,1% (68,1%-82,4%)</td>
<td>54,1% (45,4%-62,0%)</td>
<td>47,3%</td>
</tr>
</tbody>
</table>

N = Anzahl der Patienten
3-bzw.5 JGÜR = 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI = Konfidenzintervall (95%)
FOGT = Forschungsgruppe Onkologie Gastrointestinaler Tumoren
J = Jahre

3.1.2 Einfluss des Geschlechts

Der Vergleich der 3- bzw. 5-Jahresgesamtüberlebensraten hinsichtlich des Geschlechts ist in Abbildung 3 und Tabelle 3 dargestellt. Zu sehen ist, dass hinsichtlich der 3-Jahresgesamtüberlebensrate männliche Patienten einen geringfügigen Überlebensvorteil haben. Die 3-Jahresgesamtüberlebensrate der Männer liegt bei 76%, die der Frauen bei 72%. Dieser gleicht sich aber bis zur 5-Jahresgesamtüberlebensrate wieder aus, die nahezu identisch ist (Männer 60,8%, Frauen 60,0%).
Abbildung 3: Darstellung der Gesamtüberlebenszeit aller Rektumkarzinompatienten aus der FOGT-2 Studie in Abhängigkeit vom Geschlecht. Die Kaplan-Meier-Kurven für männliche Patienten wurde durchgezogen dargestellt, die Kurve für weibliche Patienten wurde gestrichelt dargestellt (p=0,6275).

Tabelle 3: Assoziation zwischen Gesamtüberleben der Rektumkarzinompatienten aus der FOGT-2 Studie und ihrem Geschlecht

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>N</th>
<th>3-JGUR (95%-KI)</th>
<th>5-JGUR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männlich</td>
<td>511</td>
<td>76,0% (72,0%-79,4%)</td>
<td>60,8% (56,3%-65,0%)</td>
<td>45,2%</td>
</tr>
<tr>
<td>Weiblich</td>
<td>285</td>
<td>72,0% (66,3%-76,8%)</td>
<td>60,0% (54,0%-65,5%)</td>
<td>43%</td>
</tr>
</tbody>
</table>
3.1.3 Einfluss der Tiefenausdehnung des Primärtumors (pT-Stadium)

In Abbildung 4 wird die Gesamtüberlebenszeit aufgeschlüsselt nach dem pT-Stadium, also der Tiefenausdehnung des Tumors, dargestellt. Es zeigt sich, daß sehr große Tumoren mit pT4-Stadium die schlechtesten Überlebensraten haben. Sie liegt nach 5 Jahren nur noch bei 36,2%, während im Vergleich Patienten mit einem pT1- oder pT2- Tumor eine 5-Jahresgesamtüberlebensrate von 66,1% aufweisen. Diese unterscheidet sich nur gering von der 5-Jahresgesamtüberlebensrate von T3 Tumoren, die nach 5 Jahren noch bei 62,3% liegt (Tabelle 4).
Abbildung 4: Darstellung der Gesamtüberlebenszeit der Patienten mit Rektumkarzinom aus der FOGT-2 Studie ab Resektion, aufgeschlüsselt nach der Tiefenausdehnung (pT-Stadium des Tumors). Patienten mit T1 und T2-Stadium (Der Tumor überschreitet noch nicht die Muscularis propria) wurden als rote durchgezogene Linie dargestellt. Die blau gestrichelte Linie steht für Patienten mit dem Tumorstadium T3, also einem Tumor, der schon in die Subserosa oder in nicht-peritonealisiertes perirektales Gewebe infiltriert. Die schwarz gestrichelte Linie steht für pT4-Tumore, die das viszerale Peritoneum perforieren oder andere Organe direkt infiltrieren. Die Darstellung der Kurven erfolgte mittels der Methode von Kaplan-Meier (p<0,0001).
Tabelle 4: Assoziation zwischen dem Gesamtüberleben der Rektumkarzinompatienten aus der FOGT-2 Studie und der pT-Kategorie ihres Tumors nach der TNM Klassifikation

<table>
<thead>
<tr>
<th>pT-Stadium</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1/T2</td>
<td>95</td>
<td>82,8% (73,5%-89,1%)</td>
<td>66,1% (55,4%-74,9%)</td>
<td>38,6%</td>
</tr>
<tr>
<td>T3</td>
<td>634</td>
<td>76,2% (72,6%-79,3%)</td>
<td>62,3% (58,3%-66,0%)</td>
<td>43%</td>
</tr>
<tr>
<td>T4</td>
<td>67</td>
<td>47,3% (35,0%-58,7%)</td>
<td>36,2% (24,7%-47,8%)</td>
<td>66,8%</td>
</tr>
</tbody>
</table>

N Anzahl der Patienten
3-bzw.5 JGÜR 3- bzw. 5-Jahresgesamtüberlebensrate
95%- KI Konfidenzintervall (95%)
TNM Tumor-Nodus (Lymphknoten)-Metastasen-Einteilung
FOGT Forschungsgruppe Onkologie Gastrointestinaler Tumoren

3.1.4 Einfluss des Lymphknotenstatus (pN-Stadium)

Auch der Einfluss des Lymphknotenstatus auf die Gesamtüberlebenszeit wurde untersucht und ist in Abbildung 5 dargestellt. Es zeigt sich erwartungsgemäß, dass Patienten ohne Lymphknotenbeteiligung sowohl nach 3 als auch nach 5 Jahren mit 77% die besten Überlebensraten aufweisen und Patienten mit ausgedehntem Lymphknotenbefall mit 32% die Schlechtesten (Tabelle 5).
Tabelle 5: Assoziation zwischen dem Gesamtüberleben der Rektumkarzinompatienten der FOGT-2 Studie und der pN-Kategorie ihres Tumors

<table>
<thead>
<tr>
<th>pN -Stadium</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>271</td>
<td>85,8% (81,1%-89,5%)</td>
<td>77,4% (71,8%-82,0%)</td>
<td>28,5%</td>
</tr>
<tr>
<td>N1</td>
<td>298</td>
<td>74,7% (69,3%-79,4%)</td>
<td>60,0% (54,0%-65,5%)</td>
<td>45%</td>
</tr>
<tr>
<td>N2 und N3</td>
<td>227</td>
<td>60,8% (54,1%-66,8%)</td>
<td>41,2% (34,6%-47,6%)</td>
<td>63,4%</td>
</tr>
</tbody>
</table>

N: Anzahl der Patienten
3-bzw.5 JGÜR: 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI: Konfidenzintervall (95%)
TNM: Tumor- Nodus (Lymphknoten)-Metastasen-Einteilung
FOGT: Forschungsgruppe Onkologie Gastrointestinaler Tumoren

3.1.5 Einfluss des gesamten TNM-Stadiums zusammengefasst in UICC-Stadien

In einem weiteren Schritt wurde das Gesamtüberleben in Beziehung zum UICC-Stadium gesetzt. Hier zeigte sich, dass Patienten mit einem UICC-Stadium IIIc1, also einem relativ kleinen Primärtumor, dar aber schon in über vier Lymphknoten metastasiert hat, die besten Überlebensraten hatten (3-JGÜR: 91,7%; zum Vergleich: UICC-Stadium IIIa: 79,8%), aber danach abfallen und nach 5 Jahren die Überlebensraten der Patienten mit UICC IIIc1 und IIIa, welche einen kleinen Tumor mit wenig Lymphknotenmetastasen haben, beinahe identisch waren. (5-JGÜR bei Patienten mit Stadium IIIc1: 66,1%; Patienten mit Stadium IIIa:66,2%)

Patienten mit einem Rektumkarzinom im Stadium II, also einem größeren Primärtumor, aber ohne Lymphknoten- oder Fernmetastasen hatten initial eine
schlechtere Prognose als Patienten mit kleinerem Tumor und Lymphknotenmetastasen (3-JGÜR: 85,8%), langfristig sind deren Prognosen aber besser. (5-JGÜR: 77,4%).

Die schlechteste Prognose hatten Patienten mit einem IIIc2 Stadium, also einem großen Primärtumor und schon verbreiteten Lymphknotenmetastasen. Diese wiesen nur noch eine 5-JGÜR von 38,2% auf.

Abbildung 6: Darstellung der Gesamtüberlebenszeit aller Patienten mit Rektumkarzinom aus der FOGT-2 Studie ab dem Zeitpunkt der Resektion des Primärtumors abhängig vom jeweiligen UICC (Union internationale contre le cancer) – Stadium. Die Kurven der jeweiligen Stadien sind nach der Methode von Kaplan-Meier dargestellt. (p < 0,0001).

UICC Stadium II (pT3/4 N0 M0) wurde hell durchgezogen dargestellt, Stadium IIIa (pT1/2 pN1 M0) ist dunkel gestrichelt aufgetragen. Stadium IIIb (pT3/4 pN1 M0) ist die kurz gestrichelte Kurve, Stadium IIIc1 (pT1/2 pN2 M0) wird durch
die dunkle durchgezogene Linie dargestellt und die hell gestrichelte Linie steht für UICC-Stadium IIIc2 (pT3/4 pN2 M0) (p<0,0001).

Tabelle 6: Assoziation zwischen dem Gesamtüberleben der Rektumkarzinompatienten aus der FOGT-2 Studie und dem UICC-Stadium ihres Tumors bei Diagnosestellung

<table>
<thead>
<tr>
<th>UICC- Stadium</th>
<th>N</th>
<th>3-JGUR (95%-KI)</th>
<th>5-JGUR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>II (pT3/4 pN0 M0)</td>
<td>271</td>
<td>85,8% (81,1%-89,5%)</td>
<td>77,4% (71,8%-82,0%)</td>
<td>28,5%</td>
</tr>
<tr>
<td>IIIa (pT1/2 pN1 M0)</td>
<td>71</td>
<td>79,8% (68,3%-87,5%)</td>
<td>66,2% (53,6%-76,1%)</td>
<td>36,1%</td>
</tr>
<tr>
<td>IIIb (pT3/4 pN1 M0)</td>
<td>227</td>
<td>74,1% (67,7%-79,4%)</td>
<td>58,1% (51,2%-64,4%)</td>
<td>47,8%</td>
</tr>
<tr>
<td>IIIc1 (pT1/2 pN2 M0)</td>
<td>24</td>
<td>91,7% (70,6%-97,8%)</td>
<td>66,1% (43,4%-81,4%)</td>
<td>45,8%</td>
</tr>
<tr>
<td>IIIc2 (pT3/4 pN2 M0)</td>
<td>203</td>
<td>57,1% (50,0%-63,6%)</td>
<td>38,2% (31,5%-45,0%)</td>
<td>65,6%</td>
</tr>
</tbody>
</table>

N = Anzahl der Patienten
3-bzw.5 JGÜR = 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI = Konfidenzintervall (95%)
UICC = Union internationale contre le cancer
FOGT = Forschungsgruppe Onkologie Gastrointestinaler Tumoren
3.1.6 Einfluss des Gradings

Bei der Analyse des Einflusses des Gradings auf die Überlebenszeit der Patienten (Abbildung 7) zeigte sich deutlich, dass Patienten mit einem höher differenzierten Tumor, also einem Grading von 1 oder 2 eine bessere Überlebensrate hatten als Patienten mit einem histologisch schlechter differenzierten Tumor mit einem Grading von 3 oder 4 (5-JGÜR: 64,1% zu 47,3%) (Tabelle 7).

Abbildung 7: Darstellung des Einflusses der histologischen Differenzierung des Rektumkarzinoms (Grading) auf die Gesamtüberlebenszeit der Patienten mit Rektumkarzinom aus der FOGT-2 Studie. Histologisch besser differenzierte Tumore (G I und II) wurden als durchgezogene Linie dargestellt, für schlecht bis gar nicht differenzierte Tumore (G III und IV) steht eine gestrichelte Linie. Die Kurven wurden nach der Methode von Kaplan-Meier erstellt (p<0,001).
Tabelle 7: Assoziation zwischen Grading des Tumors und dem Gesamtüberleben der Patienten mit Rektumkarzinom aus der FOGT-2 Studie.

<table>
<thead>
<tr>
<th>Grading</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>G I /G II</td>
<td>605</td>
<td>78,2% (74,6%-81,3%)</td>
<td>64,1% (60,1%-67,9%)</td>
<td>41,6%</td>
</tr>
<tr>
<td>G III / G IV</td>
<td>158</td>
<td>62,4% (54,4%-69,4%)</td>
<td>47,3% (39,2%-54,9%)</td>
<td>56,4%</td>
</tr>
</tbody>
</table>

N: Anzahl der Patienten
3-bzw.5 JGÜR: 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI: Konfidenzintervall (95%)
G: Grading
FOGT: Forschungsgruppe Onkologie Gastrointestinaler Tumoren

3.1.7 Einfluss der OP-Methode beziehungsweise der Höhenlokalisation des Tumors

In der FOGT-Studie wurde die OP-Methode nicht prospektiv dokumentiert. Retrospektiv konnten die Daten für 549 Patienten erhoben werden. Für 249 Patienten war dies leider nicht möglich. Die nachträglich erhobenen Daten zeigen nun folgendes Bild: Patienten, die eine anteriore Rektumresektion erhielten, deren Tumor also im oberen Bereich des Rektums lag, zeigen ein besseres Gesamtüberleben als die übrigen Patienten (5-Jahresgesamtüberlebensrate: 66,4%). Die Patienten mit einer abdomino-perinealen Rektumextirpation, also eher einem Tumor im unteren Drittel des Rektums, haben gegenüber ihnen ein schlechteres Gesamtüberleben mit einer 5-Jahresgesamtüberlebensrate von 51,3% (Tabelle 8).
Tabelle 8: Assoziation zwischen OP-Art bzw. Höhenlokalislation des Tumors und Gesamtüberleben der Rektumkarzinompatienten aus der FOGT-2 Studie

<table>
<thead>
<tr>
<th>Lokalisation bzw. OP-Art</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberer Rektumanteil bzw. anteriore Resektion</td>
<td>359</td>
<td>78,6% (74,0%-82,6%)</td>
<td>65,5% (60,2%-70,2%)</td>
<td>39,6%</td>
</tr>
<tr>
<td>Unterer Rektumanteil bzw. Abdomino-perineale Resektion</td>
<td>188</td>
<td>68,0% (60,7%-74,2%)</td>
<td>51,3% (43,8%-58,3%)</td>
<td>54,8%</td>
</tr>
<tr>
<td>Keine Angaben</td>
<td>249</td>
<td>73,4% (67,4%-78,5%)</td>
<td>60,2% (53,8%-66,1%)</td>
<td>50%</td>
</tr>
</tbody>
</table>

N: Anzahl der Patienten
3-bzw.5 JGÜR: 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI: Konfidenzintervall (95%)
FOGT: Forschungsgruppe Onkologie Gastrointestinaler Tumoren

3.1.8 Einfluss des Body Mass Index (BMI)

Bei der Untersuchung eines Zusammenhangs zwischen dem BMI und dem Gesamtüberleben zeigte sich das in Abbildung 9 dargestellte Bild:

Ab etwa zwei Jahre nach der operativen Entfernung des Tumors hatten Patienten mit einem BMI von weniger als 20, also eher untergewichtige Patienten eine schlechtere Überlebenswahrscheinlichkeit als normal- oder eher übergewichtige Personen. Im Mittel gesehen hatten Personen mit einem moderaten Übergewicht (BMI zwischen 25 und 30) die besten Überlebenschancen (Tabelle 9).
Tabelle 9: Assoziation zwischen Gesamtüberleben der Patienten mit Rektumkarzinom aus der FOGT-2 Studie und ihrem BMI

<table>
<thead>
<tr>
<th>BMI</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>44</td>
<td>68,1% (52,3%-79,8%)</td>
<td>49,8% (34,4%-63,5%)</td>
<td>55,6%</td>
</tr>
<tr>
<td>>20-25</td>
<td>337</td>
<td>75,3% (70,3%-79,6%)</td>
<td>60,0% (54,5%-65,1%)</td>
<td>43%</td>
</tr>
<tr>
<td>>25-30</td>
<td>296</td>
<td>75,6% (70,2%-80,1%)</td>
<td>62,4% (56,5%-67,8%)</td>
<td>45,2%</td>
</tr>
<tr>
<td>>30</td>
<td>106</td>
<td>71,6% (61,9%-79,2%)</td>
<td>63,3% (53,2%-71,9%)</td>
<td>39%</td>
</tr>
</tbody>
</table>

N: Anzahl der Patienten
3- bzw. 5-LGÜR: 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI: Konfidenzintervall (95%)
BMI: Body Mass Index
FOGT: Forschungsgruppe Onkologie Gastrointestinaler Tumoren

3.1.9 Einfluss der Klinikart

Die Gesamtüberlebensrate in Bezug auf die Klinikart, in der die Patienten behandelt wurden, zeigt Abbildung 11. Aus ihr, sowie aus der dazugehörigen Tabelle 11 ist zu ersehen, dass Patienten, die an Häusern der Maximalversorgung oder Universitätskliniken behandelt wurden eine geringfügig bessere Überlebensrate zeigten. Patienten, die in Schwerpunkt- Krankenhäusern oder Häusern der Grund- und Regelversorgung behandelt wurden, haben eine annähernd gleiche Prognose.
Tabelle 11: Assoziation zwischen Gesamtüberleben der Rektumkarzinompatienten aus der FOGT-2 Studie und der Größe der Klinik in der sie behandelt wurden

<table>
<thead>
<tr>
<th>Klinikart</th>
<th>N</th>
<th>3-JGUR (95%-KI)</th>
<th>5-JGUR (95%-KI)</th>
<th>Rezidivrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grund- und Regelversorgung</td>
<td>175</td>
<td>74,1% (66,9%-80,0%)</td>
<td>59,7% (51,9%-66,7%)</td>
<td>45,2%</td>
</tr>
<tr>
<td>Schwerpunkt-krankenhäuser</td>
<td>288</td>
<td>71,1% (65,5%-76,0%)</td>
<td>56,5% (50,5%-62,1%)</td>
<td>48,7%</td>
</tr>
<tr>
<td>Maximalversorgung / Unikliniken</td>
<td>333</td>
<td>77,7% (72,8%-81,8%)</td>
<td>64,4% (58,8%-69,3%)</td>
<td>40,3%</td>
</tr>
</tbody>
</table>

N: Anzahl der Patienten
3- bzw 5-JGÜR: 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI: Konfidenzintervall (95%)
FOGT: Forschungsgruppe Onkologie Gastrointestinaler Tumoren
Kh: Krankenhaus

3.1.10 Einfluss der Toxizität

Die Analyse der Gesamtüberlebenszeit in Abhängigkeit davon, ob während der Chemotherapie eine Toxizität festgestellt wurde zeigte, dass die Überlebenswahrscheinlichkeit von Patienten, bei denen eine Toxizität auftrat nur geringfügig höher lag als bei Patienten, bei denen dies nicht der Fall war. (5-Jahresgesamtüberlebensrate bei Toxizität bei 62% und ohne Toxizität bei 60,8%).
Abbildung 12: Darstellung des Zusammenhangs zwischen Toxizität der Chemotherapie und dem Gesamtüberleben der Patienten mit Rektumkarzinom aus der FOGT-2 Studie ab dem Zeitpunkt der Resektion des Primärtumors. Durchgezogen sind die Patienten dargestellt, bei denen im Verlauf der Therapie eine Toxizität aufgetreten ist, lang gestrichelt die Patienten, bei denen keine Toxizität aufgetreten ist und kurz gestrichelt sind Patienten dargestellt, bei denen kein Formular vorhanden war.

Die Kurven wurden nach der Methode von Kaplan-Meier erstellt (p=0,5881).
Tabelle 12: Assoziation zwischen dem Gesamtüberleben der Patienten mit Rektumkarzinom aus der FOGT-2 Studie und der Toxizität der Chemotherapie basierend auf 5-FU und Levamisol, welche sie erhalten haben.

<table>
<thead>
<tr>
<th>Toxizität der Therapie</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>196</td>
<td>77,9% (71,4%-83,1%)</td>
<td>62,0% (54,7%-68,5%)</td>
</tr>
<tr>
<td>Nein</td>
<td>504</td>
<td>73,9% (69,8%-77,6%)</td>
<td>60,8% (56,3%-65,0%)</td>
</tr>
<tr>
<td>Formular fehlt</td>
<td>96</td>
<td>70,7% (60,4%-78,7%)</td>
<td>55,5% (45,0%-65,4%)</td>
</tr>
</tbody>
</table>

N = Anzahl der Patienten
3- bzw 5-LGÜR = 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI = Konfidenzintervall (95%)
FOGT = Forschungsgruppe Onkologie Gastrointestinaler Tumoren
5-FU = 5-Flourouracil

3.1.11 Einfluss der Dauer der Chemotherapie

Bei der Betrachtung der Ergebnisse zum Einfluss der Dauer der Chemotherapie auf das Gesamtüberleben fällt auf, dass die Patienten, die ihre Chemotherapie vollständig erhalten haben, mit einer 5-Jahresüberlebensrate von 74,8% eine deutlich verbesserte Prognose hatten als ihre Mitpatienten, die die Chemotherapie abbrachen. (Abbildung 13, Tabelle 13) Die schlechtesten Werte in der Überlebensdauer erreichten die Patienten, deren Chemotherapie zwischen 14 und 26 Wochen dauerte, sie haben eine 5-Jahresüberlebensrate von nur 25,6 %. Im Vergleich dazu schnitten Patienten, die ihre Chemotherapie schon nach weniger als 13 Wochen abbrachen mit einer 5-Jahresgesamtüberlebensrate von 47,7% deutlich besser ab.
Tabelle 13: Assoziation zwischen Gesamtüberleben der Patienten mit Rektumkarzinom aus der FOGT-2 Studie und Dauer der Chemotherapie basierend auf 5-FU und Levamisol, welche sie erhalten haben

<table>
<thead>
<tr>
<th>Dauer der Chemotherapie</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis 3 Monate</td>
<td>83</td>
<td>63,2% (51,6%-72,8%)</td>
<td>47,7% (36,3%-58,3%)</td>
</tr>
<tr>
<td>>3 – 6 Monate</td>
<td>74</td>
<td>35,1% (24,5%-45,9%)</td>
<td>25,6% (16,3%-35,9%)</td>
</tr>
<tr>
<td>>6 - 9 Monate</td>
<td>53</td>
<td>49,1% (35,1%-61,6%)</td>
<td>35,5% (22,9%-48,3%)</td>
</tr>
<tr>
<td>>9 – 12 Monate</td>
<td>81</td>
<td>72,2% (60,9%-80,7%)</td>
<td>55,2% (43,5%-65,5%)</td>
</tr>
<tr>
<td>Komplett</td>
<td>409</td>
<td>88,6% (85,1%-91,3%)</td>
<td>74,8% (70,2%-78,8%)</td>
</tr>
<tr>
<td>Unbekannt</td>
<td>96</td>
<td>70,7% (60,4%-78,8%)</td>
<td>55,8% (45,0%-65,4%)</td>
</tr>
</tbody>
</table>

N Anzahl der Patienten
3- bzw 5-JGÜR 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI Konfidenzintervall (95%)
Wo Wochen
FOGT Forschungsgruppe Onkologie Gastrointestinaler Tumoren
5-FU 5-Fluorouracil

Auch eine Anpassung der Intervalle in einer zweiten Analyse bestätigt dieses Ergebnis. In dieser Berechnung wurden alle Patienten, die die Chemotherapie länger als 40 Wochen erhalten haben in einer Gruppe zusammengefasst. Diese Gruppe von Patienten weist immer noch eine 5-Jahresgesamtüberlebensrate von 71,6% auf. Die schlechteste Prognose hat auch hier das Patientenkollektiv mit einer mittelangen Dauer der Chemotherapie, also Patienten, die zwischen 14 und 39 Wochen ihre
Ergebnisse

Therapie erhalten haben. Sie haben eine 5-Jahresgesamtüberlebensrate von nur 29,7%. Erstaunlich ist, dass die Patienten, die ihre Therapie weniger als 13 Wochen erhalten haben mit einer 5-Jahresgesamtüberlebensrate von 47,7% eine deutlich bessere Prognose aufweisen als dieses Kollektiv.

Tabelle 14: Assoziation zwischen Gesamtüberleben der Patienten mit Rektumkarzinom aus der FOGT-2 Studie und Dauer der Chemotherapie basierend auf 5-FU und Levamisol, welche sie erhalten haben

<table>
<thead>
<tr>
<th>Dauer der Chemotherapie</th>
<th>N</th>
<th>3-JGÜR (95%-KI)</th>
<th>5-JGÜR (95%-KI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis 13 Wochen</td>
<td>83</td>
<td>63,2% (51,6%-72,8%)</td>
<td>47,7% (36,3%-58,3%)</td>
</tr>
<tr>
<td>14-39 Wochen</td>
<td>127</td>
<td>40,9% (32,4%-49,3%)</td>
<td>29,7% (22,0%-37,8%)</td>
</tr>
<tr>
<td>40-52 Wochen</td>
<td>490</td>
<td>85,9% (82,5%-88,7%)</td>
<td>71,6% (67,3%-75,4%)</td>
</tr>
<tr>
<td>Unbekannt</td>
<td>96</td>
<td>70,7% (60,4%-78,8%)</td>
<td>55,8% (45,0%-65,4%)</td>
</tr>
</tbody>
</table>

N: Anzahl der Patienten
Wo: Wochen
3- bzw 5-LGÜR: 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI: Konfidenzintervall (95%)
FOGT: Forschungsgruppe Onkologie Gastrointestinaler Tumoren
5-FU: 5-Fluorouracil
3.1.12 Gesamtüberlebensdauer in Abhängigkeit von der Vollständigkeit der Chemotherapie und deren Toxizität

In der Praxis hat sich gezeigt, dass Patienten bei Toxizität eher auf eigenen Wunsch die Chemotherapie abbrechen als bei toxizitätsfreiem Verlauf der Therapie. Da die Dauer der Chemotherapie einen Einfluss auf die Prognose hat, soll hier nun der Einfluss der Kombination von Toxizität und Dauer der Chemotherapie auf die Gesamtüberlebenszeit untersucht werden. Um dies zu vereinfachen wurden für den Faktor „Dauer der Chemotherapie“ nur noch zwei Kategorien untersucht, nämlich „Chemotherapie komplett“ und „Chemotherapie abgebrochen“.

In der Abbildung 15 wird dieser Zusammenhang graphisch dargestellt und es zeigt sich, dass Patienten die ihre Chemotherapie komplett erhielten eine bessere Überlebensprognose hatten. Dieser Überlebensvorteil war unabhängig von der Toxizität der Therapie zu beobachten und betrug in der 5-Jahresgesamtüberlebensrate in der Gruppe mit Toxizität 74,6% und in der Gruppe ohne Toxizität 74,9%.

Bei Patienten, die ihre Chemotherapie nicht vollständig erhielten war der Unterschied zwischen den Patienten mit und ohne Toxizität ausgeprägter. Die schlechteste Überlebenswahrscheinlichkeit hatten die Patienten, die ihre Chemotherapie abbrachen obwohl bei ihnen keine Toxizität aufgetreten war. Ihre 5-Jahresüberlebensrate lag nur bei 39,7%, während Patienten, die ihre Chemotherapie wegen toxischer Wirkung abbrachen nach 5 Jahren noch eine Überlebenswahrscheinlichkeit von 46,4% aufwiesen.

Die blaue gestrichelte Kurve bezeichnet Patienten, bei denen keine Toxizität auftrat und die ihre Chemotherapie komplett erhielten, die blaue durchgezogene Linie Patienten, die zwar keine Toxizität zeigten, die Chemotherapie aber trotzdem aus anderen Gründen abbrachen.

Die Kurven wurden nach der Methode von Kaplan-Meier erstellt (p<0,0001).
Tabelle 15: Assoziation zwischen dem Gesamtüberleben der Rektumkarzinompatienten aus der FOGT-2 Studie und der Toxizität der Chemotherapie, abhängig von der Vollständigkeit der Chemotherapie

<table>
<thead>
<tr>
<th>Toxizität</th>
<th>Chemotherapie</th>
<th>N</th>
<th>3-JGUR (95%-KI)</th>
<th>5-JGUR (95%-KI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>Abgebrochen</td>
<td>87</td>
<td>63,2% (52,2%-72,4%)</td>
<td>46,4% (35,5%-56,6%)</td>
</tr>
<tr>
<td>Ja</td>
<td>Komplett</td>
<td>109</td>
<td>90,7% (83,4%-94,9%)</td>
<td>74,6% (65,1%-81,8%)</td>
</tr>
<tr>
<td>Nein</td>
<td>Abgebrochen</td>
<td>204</td>
<td>52,5% (45,3%-59,2%)</td>
<td>39,7% (32,9%-46,5%)</td>
</tr>
<tr>
<td>Nein</td>
<td>Komplett</td>
<td>300</td>
<td>88,2% (83,9%-91,4%)</td>
<td>74,9% (69,4%-79,5%)</td>
</tr>
<tr>
<td>Formular fehlt</td>
<td>Formular fehlt</td>
<td>96</td>
<td>70,7% (60,4%-78,7%)</td>
<td>55,8% (45,0%-65,4%)</td>
</tr>
</tbody>
</table>

N = Anzahl der Patienten
3- bzw. 5-LGÜR = 3- bzw. 5-Jahresgesamtüberlebensrate
95%-KI = Konfidenzintervall (95%)
FOGT = Forschungsgruppe Onkologie Gastrointestinaler Tumoren
3.2 Multivariante Analyse potentiell prognostisch wichtiger Einflussgrößen auf die Prognose von Patienten mit Rektumkarzinom

Therapie, Klinikart und Stadium des Tumors wurden aufgrund des Studiendesigns in das Modell gezwungen. Von den weiteren Variablen waren BMI, Alter, Geschlecht, Grading und Dauer der Chemotherapie nicht zeitabhängig, während Rezidiv und Toxizität der Chemotherapie als zeitabhängige Variablen in die Analyse eingingen und daher zeitpunktbezogen bei der Modellierung berücksichtigt wurden. Für die Auswahl der Variablen wurde die rückwärtige Elimination mit einem Selektionslevel von 5% verwendet, die Ergebnisse wurden durch Hazard Ratio, 95%-Konfidenzintervall sowie den p-Wert beschrieben.

Nach dieser multivariaten Analyse wird die Überlebenszeit von Patienten mit Rektumkarzinom vor allem von den Variablen Alter der Patienten bei
Therapiebeginn, Dauer der Chemotherapie, Auftreten eines Rezidivs und dem pathologischen TNM-Stadium beeinflusst (Tabelle 16).
Tabelle 16: Schrittweise multivariate Cox-Regressionsanalyse der Variablen im untersuchten Kollektiv der Patienten mit Rektumkarzinom aus der FOGT-2-Studie

<table>
<thead>
<tr>
<th>Faktoren</th>
<th>HR</th>
<th>95% -KI</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapiearm:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td>0,919</td>
</tr>
<tr>
<td>A</td>
<td>1,05</td>
<td>0,78 – 1,40</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1,06</td>
<td>0,78 – 1,45</td>
<td></td>
</tr>
<tr>
<td>Klinikart:</td>
<td></td>
<td></td>
<td>0,460</td>
</tr>
<tr>
<td>Uni/Maximalversorgung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grund-/Regelversorgung</td>
<td>1,23</td>
<td>0,89 – 1,70</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktkrankenhäuser</td>
<td>1,09</td>
<td>0,82 – 1,47</td>
<td></td>
</tr>
<tr>
<td>UICC-Stadium:</td>
<td></td>
<td></td>
<td>0,0003</td>
</tr>
<tr>
<td>Stadium II (pT3/4 N0)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stadium IIIa (pT1/2 N1)</td>
<td>1,38</td>
<td>0,82 – 2,30</td>
<td></td>
</tr>
<tr>
<td>Stadium IIIb (pT3/4 N1)</td>
<td>1,22</td>
<td>0,85 – 1,75</td>
<td></td>
</tr>
<tr>
<td>Stadium IIIc1 (pT1/2 N2/3)</td>
<td>0,74</td>
<td>0,35 – 1,56</td>
<td></td>
</tr>
<tr>
<td>Stadium IIIc2 (pT3/4 N2/3)</td>
<td>1,96</td>
<td>1,39 – 2,78</td>
<td></td>
</tr>
<tr>
<td>Alter</td>
<td></td>
<td></td>
<td>0,004</td>
</tr>
<tr>
<td><60</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60–<70</td>
<td>1,14</td>
<td>0,86 – 1,51</td>
<td></td>
</tr>
<tr>
<td>>70</td>
<td>1,75</td>
<td>1,26 – 2,43</td>
<td></td>
</tr>
<tr>
<td>Dauer der Chemotherapie</td>
<td></td>
<td></td>
<td><0,0001</td>
</tr>
<tr>
<td>Bis 13 Wochen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14–39 Wochen</td>
<td>0,90</td>
<td>0,61 – 1,33</td>
<td></td>
</tr>
<tr>
<td>>40 Wochen</td>
<td>0,51</td>
<td>0,35 – 0,73</td>
<td></td>
</tr>
<tr>
<td>Rezidiv</td>
<td></td>
<td></td>
<td>< 0,0001</td>
</tr>
<tr>
<td>Nein</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>32,51</td>
<td>21,78 – 48,50</td>
<td></td>
</tr>
</tbody>
</table>

HR: Hazard Ratio
95%-KI: Konfidenzintervall (95%)
p-Wert: Probability- Wert
FOGT: Forschungsgruppe Onkologie Gastrointestinaler Tumoren
UICC: Union internationale contre le cancer
Tabelle 17: Schrittweise multivariate Cox-Regressionsanalyse der Variablen im reduzierten Kollektiv der Patienten mit Rektumkarzinom aus der FOGT-2-Studie mit Kenntnis zur OP-Methode bzw. der Höhenlokalisation des Tumors

<table>
<thead>
<tr>
<th>Faktoren</th>
<th>HR</th>
<th>95%-KI</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapiearm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td>0,761</td>
</tr>
<tr>
<td>A</td>
<td>0,92</td>
<td>0,65-1,3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,86</td>
<td>0,58-1,29</td>
<td></td>
</tr>
<tr>
<td>Klinikart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uni/Maximalversorgung</td>
<td>1</td>
<td></td>
<td>0,665</td>
</tr>
<tr>
<td>Grund-/ Regelversorgung</td>
<td>1,18</td>
<td>0,82-1,72</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktkrankenhäuser</td>
<td>1,05</td>
<td>0,72-1,5</td>
<td></td>
</tr>
<tr>
<td>UICC-Stadium:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stadium II (pT3/4 N0)</td>
<td>1</td>
<td></td>
<td>0,001</td>
</tr>
<tr>
<td>Stadium IIIa (pT1/2 N1)</td>
<td>1,86</td>
<td>1,01-3,45</td>
<td></td>
</tr>
<tr>
<td>Stadium IIIb (pT3/4 N1)</td>
<td>1,36</td>
<td>0,86-2,14</td>
<td></td>
</tr>
<tr>
<td>Stadium IIIc1 (pT1/2 N2/3)</td>
<td>0,88</td>
<td>0,38-2,05</td>
<td></td>
</tr>
<tr>
<td>Stadium IIIc2 (pT3/4 N2/3)</td>
<td>2,29</td>
<td>1,47-3,57</td>
<td></td>
</tr>
<tr>
<td>Alter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>1</td>
<td></td>
<td>0,003</td>
</tr>
<tr>
<td>60-<70</td>
<td>1,21</td>
<td>0,85-1,72</td>
<td></td>
</tr>
<tr>
<td>>70</td>
<td>2,00</td>
<td>1,33-2,99</td>
<td></td>
</tr>
<tr>
<td>Dauer der Chemotherapie</td>
<td></td>
<td></td>
<td><0,0001</td>
</tr>
<tr>
<td>Bis 13 Wochen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-39 Wochen</td>
<td>0,99</td>
<td>0,60-1,65</td>
<td></td>
</tr>
<tr>
<td>>40 Wochen</td>
<td>0,48</td>
<td>0,30-0,76</td>
<td></td>
</tr>
<tr>
<td>Rezidiv</td>
<td></td>
<td></td>
<td><0,0001</td>
</tr>
<tr>
<td>Ja</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nein</td>
<td>32,15</td>
<td>19,63-52,65</td>
<td></td>
</tr>
</tbody>
</table>

- **HR**: Hazard Ratio
- **95%-KI**: Konfidenzintervall (95%)
- **p-Wert**: Probability- Wert
- **FOGT**: Forschungsgruppe Onkologie Gastrointestinaler Tumoren
- **UICC**: Union internationale contre le cancer
4. Diskussion

Zu diesem Zweck wurden die vorliegenden Datensätze von 796 Patienten, die von August 1992 bis Februar 2002 an der Universitätsklinik Ulm und den anderen an der Studie teilnehmenden Kliniken aufgrund eines Rektumkarzinoms behandelt worden waren, nach den Faktoren Alter, Geschlecht, Body Mass Index, pathologisches TNM-Stadium, Grading, Größe des behandelnden Zentrums, Toxizität der Therapie, Therapiedauer und OP-Art analysiert.

Die Analyse der Gesamtüberlebenszeit nach dem Alter der Patienten zeigte in den vorliegenden Daten, dass ältere Patienten langfristig eine kürzere Überlebenszeit haben als Jüngere. Auch in der Literatur findet man ähnliche Ergebnisse, zum Beispiel bei Den Dulk und seinen Mitarbeitern [Den Dulk et al.,2007]. Auch Szynglarewicz et al. fanden in ihrer Studie bessere Überlebenszeiten für Patienten, die jünger als 60 Jahre alt waren.[Szynglarewicz et al., 2006].

Cerrotini und seine Mitarbeiter hingegen untersuchten retrospektiv 801 Patienten und fanden mit 42% beziehungsweise 31% die schlechtesten 5-Jahresgesamtüberlebensraten für Patienten die jünger als 50 Jahre oder älter als 80 Jahre waren [Cerrotini et al., 1999]. Zu ähnlichen Ergebnissen kamen Monnet und seine Mitarbeiter [Monnet et al., 1999].

Oñate-Ocaña hatte in seiner Studie das Ziel, Faktoren zu erkennen, die Patienten mit kolorektalen Karzinomen im Stadium N0 zu Hochrisikopatienten machen. Hier zeigte
sich einen leichter Überlebensvorteil für männliche Patienten, die in seiner Studie eine 5-Jahresgesamtüberlebensrate von 83% aufwiesen, gegenüber weiblichen Patienten mit 73%. Auch in der multivariaten Analyse war das weibliche Geschlecht als, wenn auch untergeordneter, negativer Prädiktor zu erkennen [Oñate-Ocaña et al., 2003].

Den Dulk hingegen zeigte einen leichten Überlebensvorteil für Patienten weiblichen Geschlechts [Den Dulk et al., 2007]. Insgesamt kann aus keiner der vorliegenden Studien ein eindeutiger Einfluss des Geschlechts auf die Prognose bei Rektumkarzinom hergeleitet werden.

Die Tiefenäusdehnung des Primärtumors hingegen, ausgedrückt durch das pT-Stadium zeigt sich als prognostisch relevantes Kriterium für die Überlebenszeit bei Rektumkarzinom und zeigte in der Zusammenschau der Studien auch ein eindeutigeres Ergebnis. Tumoren mit weniger Ausdehnung in die Tiefe, also T1 und T2 Tumore, haben eine deutlich bessere Prognose als ausgedehnt in die Tiefe wachsende Tumore im Stadium T4. Die Ergebnisse von Gunderson und seinen Mitarbeitern zeigen ein ähnliches Bild wie die Ergebnisse der FOGT-Studie. Er errechnete für Patienten mit einem Rektumkarzinom im Stadium T1 bis T2 eine 5-Jahresgesamtüberlebensrate von 75%, die 5-Jahresgesamtüberlebensrate der Patienten in unserer Studie lag bei 66%. Für Patienten mit einem T3-Rektumkarzinom gibt er eine 5-Jahresgesamtüberlebensrate von 60 % an, in der vorliegenden Studie kamen wir auf 62%. Die schlechteste Prognose haben auch bei Gunderson die Patienten mit einem T4-Tumor bei einer 5-Jahresgesamtüberlebensrate von 47 % [Gunderson et al.,2004].

Auch Den Dulk zeigt in seiner Studie einen Überlebensvorteil von Patienten mit T1 oder T2 Tumoren gegenüber Patienten mit Tumoren der Stadien T3 und T4 [Den Dulk et al.,2007]. In der Studie von Oñate-Ocaña und seinen Mitarbeitern zeigte sich, dass die Karzinom-abhängige Überlebenszeit signifikant vom T-Stadium des Primärtumors abhängt. Hier zeigte sich eine 5-Jahresüberlebensrate von Patienten mit T1 Tumor von 100%, für Patienten mit T2 Tumor von 88%, für Patienten mit T3 Tumor von 83% und die Patienten mit einem T4-Stadium hatten wiederum die schlechteste Überlebensrate mit nur noch 35% [Oñate-Ocaña et al., 2003].

Als weiterer potentiell prognostisch wichtiger Faktor wurde der Lymphknotenstatus der Patienten untersucht. Bei der Auswertung der vorliegenden Daten der FOGT-Studie zeigte sich ein eindeutiges Ergebnis. Patienten mit Lymphknoten-negativem
Rektumkarzinom hatten mit einer 5-Jahresgesamtüberlebensrate von 77% das beste Ergebnis, gefolgt von den Patienten mit N1-Stadium, die eine 5-Jahresgesamtüberlebensrate von 60% aufwiesen. Als prognostisch am schlechtesten einzuschätzen ist ein Rektumkarzinom im N2/N3 Stadium. Hier sinken die Überlebenschancen auf bis zu 40%.

Auch diese Ergebnisse deckten sich mit den Ergebnissen aus anderen Studien. So zeigte auch Gunderson, dass die Überlebensraten nach 5 Jahren mit zunehmendem N-Stadium signifikant schlechter werden. Im Stadium N0 lagen sie bei 74%, im Stadium N1 bei 64% und im Stadium N2 nur noch bei 48% [Gunderson et al., 2003]. In der Studie von Den Dulk wurde auch der Einfluss des Lymphknotenstatus untersucht und auch er kommt zum Ergebnis, dass die Überlebensrate mit zunehmendem N-Stadium immer schlechter wird. Patienten mit N1-Stadium haben eine zweimal schlechtere Prognose als Patienten im N0-Stadium und im N2-Stadium ist die Prognose sechsmal schlechter. Auch für das Risiko des Auftretens eines Lokalrezidives gilt ein positiver Lymphknotenstatus laut seiner Studie als signifikanter klinischer Parameter [Den Dulk et al., 2007].

Des Weiteren wurde die Einteilung der UICC (Union internationale contre le cancer) auf ihren Wert als prognostischer Marker beim Rektumkarzinom untersucht. Hierbei werden verschiedene Kombinationen von pT und pN –Stadien verglichen. Bei Patienten im Stadium II (pT3 oder T4 und N0) zeigten sich nach fünf Jahren die besten Überlebensraten mit 77%. Patienten mit einem kleineren Primärtumor (pT1 oder 2) und Lymphknotenmetastasen (pN1)(UICC Stadium IIIa) und Patienten mit Tumor im Stadium pT3/4 mit tumorfreien Lymphknoten (UICC Stadium IIIc1) hatten mit 5-Jahresgesamtüberlebensraten von 66% die gleiche Prognose. Als prognostisch ungünstiger erwiesen sich die UICC-Stadien IIIb (pT3/4 N1) mit einer Überlebensrate von 58% und das UICC Stadium IIic2 (pT3/4 N2) mit nur noch 38%.

Auch Gunderson und seine Mitarbeiter untersuchten den Zusammenhang zwischen N/T-Stadium und der Überlebenszeit. Die besten Überlebenszeiten hatten in dieser Studie Patienten mit UICC-Stadium IIIa also T1/2 und N1 mit einer Gesamtüberlebenszeit von 79%. Patienten mit T3N0- bzw. T4N0 –Tumoren (UICC-Stadium II) hatten in dieser Studie ein etwas schlechteres Gesamtüberleben mit 75% bzw. 62%. Bei der Untersuchung der Überlebenszeit von Patienten im UICC-Stadium IIIb zeigte sich ein deutlicher Unterschied im Überleben. Patienten mit einem T3N1 Tumor hatten mit 75% 5-Jahresgesamtüberlebensrate eine ähnlich gute
Ergebnisse

Cerottini kam in seiner Studie auf 5-Jahresüberlebensraten von 75% für Patienten im Stadium Dukes A (T1/2 N0 M0), 61% für Dukes B (T3/4 N0 M0), 34% für Dukes C (Tx N1/2 M0) und 4% für Dukes D (Tx, Nx M0) [Cerottini et al., 1999]. Weitere Studien kamen alle zu ähnlichen Ergebnissen. Dies zeigt den prognostisch wichtigen Wert der auf dem TNM-System beruhenden Stadieneinteilungen der UICC.

Desweiteren scheint auch der Grad der Differenzierung des Tumors als prognostischer Faktor eine wichtige Rolle zu spielen. In der FO GT Studie zeigte sich ein deutlich langes Überleben von Patienten mit gut oder mäßig differenziertem Tumor (Grading I oder II) von 64% nach 5 Jahren gegenüber Patienten mit schlechter differenziertem Tumor (Grading III oder IV) mit einer 5-Jahresgesamtüberlebensrate von 47%. In seiner Untersuchung kam Szynglarewicz zu dem Ergebnis, dass bei Rektumkarzinomen in den UICC-Stadien II und III Patienten mit einem gut differenzierten Tumor vom Grad I oder II eine Tumorspezifische Überlebensrate von 56% haben, während die Überlebensrate von Patienten mit einem drittgradig differenzierten Tumor bei 47% liegt [Szynglarewicz et al., 2008]. In seiner Untersuchung zur Identifikation von Hochrisikopatienten mit Lymphknoten-negativem kolorektalem Karzinom untersuchte Oñate-Ocaña mit seinen Mitarbeitern auch den Einfluss des Gradings auf das Gesamtüberleben. Auch seine Ergebnisse bestätigten die besten 5-Jahresüberlebensraten für Patienten mit gut differenziertem Tumor. Diese lagen bei 90%, während Patienten mit mäßig
differenziertem Tumor auf eine 5-Jahresgesamtüberlebensrate von 74% kamen. Die schlechteste Prognose hatten wiederum schlecht differenzierte Tumore mit 60% [Oñate-Ocaña et al., 2004]. Schon 1928 untersuchte Rankin und Broders den Einfluss der histologischen Differenzierung auf die Gesamtsterblichkeit bei Rektumkarzinom, und kamen zu dem Ergebnis, dass Tumoren mit mindestens 75% differenzierten Zellen die niedrigste Gesamtsterblichkeit aufwiesen [Rankin et al., 1928].

Der Einfluss der Klinikart auf das Gesamtüberleben der Patienten war in unserer Studie nicht signifikant. In den Ergebnissen zeigte sich auch kein nennenswerter Unterschied in den Überlebensraten. Mit einer 5-Jahresgesamtüberlebensrate von 64% hatten Patienten, die in einer Universitätsklinik oder einem Haus der Maximalversorgung behandelt wurden einen geringen Überlebenvorteil gegenüber Patienten aus einem Haus der Grund- und Regelversorgung bzw. einem Schwerpunktkrankenhaus mit 5-Jahresüberlebensrate von jeweils etwa 60%.

Die 5-Jahresgesamtüberlebensraten lagen alle zwischen 66% und 63%. In seiner Arbeit zeigt sich aber, dass in einem Krankenhaus mit hohem Patientenvolumen bezüglich Rektumkarzinom die Rate von Sphinkter-erhaltenden Operationen ansteigt ohne dass gleichzeitig auch die Rezidivrate steigt [Meyerhardt et al., 2004].

Schrag et al. untersuchten den Einfluss des Patientenvolumens sowohl des Krankenhauses als auch des einzelnen Operateurs. Ihr Ziel war es herauszufinden, ob die Erfahrung des Chirurgen oder das Patientenvolumen des Krankenhauses den größeren Einfluss auf das Überleben der Patienten haben. Die Fallzahlen des behandelnden Krankenhauses hatten keinen signifikanten Einfluss auf das

In der FOGT-1 Studie konnte bei der Untersuchung dieser Parameter gezeigt werden, dass sowohl bei Patienten mit als auch ohne Toxizität die Prognose besser ist wenn die Chemotherapie komplett abgeschossen wurde, als bei Patienten die aus
welchen Gründen auch immer ihre Chemotherapie abbrachen [Kornmann et al., 2008].

5. Zusammenfassung

Bei der vorliegenden Arbeit handelt es sich um die retrospektive Untersuchung der Daten von 796 Patienten mit Rektumkarzinom, die an der FOGT (Forschungsgruppe Onkologie Gastrointestinaler Tumoren) -2 Studie teilgenommen hatten. Ziel hierbei war, den Einfluss potentiell wichtiger klinische und pathologische Faktoren auf das Gesamtüberleben der Patienten zu untersuchen. Bei diesen Patienten handelte es sich um Patienten im UICC (Union international contre le cancer) Stadium II und III, also T3-4N0M0 oder T3N1-3M0, die chirurgisch durch eine R0-Resektion, also ohne Residualtumor postoperativ, behandelt wurden. Sie erhielten eine einheitliche adjuvante Radiotherapie und eine adjuvante, auf 5-FU (=5-Fluoruracil) basierte Chemotherapie. Es wurde mittels uni- und multivariater Analyse der Einfluss folgender Parameter auf die Gesamtüberlebenszeit analysiert: Alter bei Therapiebeginn, Geschlecht, Body Mass Index, pathologisches TNM (Tumor/ Nodus/ Metastasen)- und UICC-Stadium, Grading, Höhe des Tumors, Fallzahl der teilnehmenden Zentren sowie die Toxizität und Dauer der adjuvanten Chemotherapie. Bezüglich der univariaten Analyse waren die Ergebnisse der 5-Jahresgesamtüberlebensraten vergleichbar mit denen anderer Studien ähnlichen Profils. Es stellte sich heraus, dass in der univariaten Analyse die Faktoren pT-Stadium (p<0,0001), pN-Stadium (p<0,0001), UICC-Stadium (p<0,0001), Grading (p<0,001) sowie die Dauer der Chemotherapie (p<0,0001) die Überlebenschancen signifikant beeinflussen. Des Weiteren scheint auch die Höhenlokalisation des Tumors eine Rolle als prognostischer Faktor zu spielen (p=0,008). Die multivariate Analyse sowohl für alle Patienten als auch beschränkt auf das verkleinerte Patientenkollektiv mit bekannter OP-Methode ergab einen signifikanten Einfluss auf die Prognose von Rektumkarzinompatienten durch die Faktoren UICC- bzw. TNM-Stadium, Alter der Patienten bei Therapiebeginn, Dauer der Chemotherapie und Auftreten eines Rezidivs. Diese Angaben lassen sich auch in aktueller Literatur wiederfinden. Faktoren wie Klinikart, BMI, Toxizität der Chemotherapie oder das Geschlecht hatte in dieser Studie allerdings einen geringerem Einfluss auf das Gesamtüberleben der Patienten. Hierzu finden sich aber zum Teil in der Literatur Studien mit gegensätzlichen Angaben.
Durch die Kenntnis solcher prognostischer Faktoren lassen sich möglicherweise Patienten mit Rektumkarzinom besser in Risikogruppen einteilen, was zu einer Verbesserung der Therapieplanung beiträgt.

In den UICC-Stadien II und III, die laut den aktuellen Leitlinien für die Behandlung des kolorektalen Karzinoms gleich therapiert werden, existieren zum Beispiel deutliche Unterschiede in der Prognose, die von einer 5-Jahresgesamtüberlebensrate von 77% für Patienten im Stadium II bis zu 38% für Patienten im Stadium IIIc2 reicht. Hier könnte eine die Zuteilung der Patienten in spezifischere Risikogruppen für eine angepasstere Therapie sorgen. Auch könnte beim Design zukünftiger Studien eine feinere Unterteilung der Patientenkollektive weitere Erkenntnisse zum Einfluss des Tumorstadiums auf Therapie und Überleben ergeben. Grading oder Höhenlokalisation bzw. die OP-Art des Tumors könnten ebenfalls für eine solche differenziertere Einteilung herangezogen werden, da auch diese Faktoren eine Rolle zu spielen scheinen. Zusammenfassend lässt sich aber sagen, dass Faktoren wie Tumorgröße, Lymphknotenstatus und Grading, die schon jetzt eine wichtige Rolle in der Prognosefindung spielen, die wichtigsten Einflussfaktoren bilden.
6. Literaturverzeichnis

3. den Dulk, Marcel MD; Mariijnen, Corrie A. M. MD, PhD; Putter, Hein PhD; Rutten, Harm J. T. MD, PhD; Beets, Geerard L. MD, PhD; Wiggers, Theo MD, PhD; Nagtegaal, Iris D. MD, PhD; van de Velde, Cornelis J. H. MD, PhD, FRCS, FRCPs: Risk Factors for Adverse Outcome in Patients With Rectal Cancer Treated With an Abdominoperineal Resection in the Total Mesorectal Excision Trial; Ann Surg 246: 83-90, 2007

23. Monnet E, Faivre J Raymond L, Garau I: Influence of Stage at diagnosis on survival differences for rectal cancer in three European populations; Br J Can, 81: 463-468, 1999

25. NIH consensus conference: adjuvant therapy for patients with colon and rectal Cancer; JAMA 264:1444-1450, 1990

7. Anhang

7.1 Ersterhebungsbogen (Anhang 1)

Ersterhebungsbogen

Initialen: Gest.
Geb.-Datum:
Geschlecht:

Hausarzt:
Anschrift:
Telefon:

KOLON o REKTUM o

I. Stationäre Aufnahme

1. Präoperatives Tumorstaging erfolgt:
 - Tumorlokalisation, KE oder Koloskopie, Rektoskopie
 - OBS
 - Röntgen-Thorax 2 E
 - Tumormarker: CEA
 - Rektum: i.v.-Pyelogramm (fakultativ)

2. Maligne Zweiterkrankung (außer Basaliom, Spinaliom d. Haut, Zervix-Ca. in situ)
 - o nein

3. Vorausgegangene Chemo- oder Immuntherapie
 - o nein

4. Internistische Begleiterkrankungen:
 - Therapiepflichtige Herzinsuffizienz
 - Herzinfarktanamnese
 - Dekomp. Diabetes mellitus
 - Cerebralsklerose
 - Schwere Lebererkrankung / -funktionsstörung
 - (Albumin < 2g)

 - o nein

5. Schwangerschaftsausschluß während der Therapie
 - o ja

 - o nein
Ersterhebungsbogen

6. ZNS-Erkrankung

7. Laborchemischer Ausschluß:
 (Ist einer der folgenden Parameter pathologisch?)
 - Leukozyten ≤ 3,5 \times 10^9/l
 - Thrombozyten ≤ 100 \times 10^9/l
 - Serumkreatinin > 2 mg/dl
 - Gesamtbilirubin > 2 mg/dl (34,2 \mu mol/l oder 1,25 x obere Norm)
 - PTZ < 60%

 0 nein 0 ja

8. Nicht zu unterbrechende Therapie mit
 Allopurinol, Dipyridamol, Trimethoprim
 Pyrimidamin, Cortison, Prostaglandin E2
 Syntheschemmer (ASS 100 ist erlaubt)

 0 nein 0 ja

9. Körpergröße \underline{ cm} Körpergewicht \underline{ kg}
 KOF \underline{} m^2

II. Operation

1. Kurativ mit Lymphdissektion einschl. 0 ja 0 nein
 gesondert ausgewiesenen Gefäßstamm, ggf.
 mit Netzresektion, Sicherheitsabstand > 3cm.

2. Intraoperatives klinisches Staging nach TNM:
 T \underline{} N \underline{} M \underline{}

3. Tumorklassifikation:
 Kolon 0 ja
 Rektum 0 ja

4. Besonderheiten

III. Pathologisches Tumorstadium:
 pT \underline{} pN \underline{} pM \underline{} G \underline{}
Ersterhebungsbogen

IV. Postoperativer Verlauf, Wertung

1. Karnofsky Index ≤ 70 %
 o nein o ja
2. Patient qualifiziert für die adjuvante postoperative systemische Chemotherapie:
 - Tumor kurativ reseziert
 - Kolon: UICC III o, UICC II/T4;
 Rektum: UICC II + III
 - keine Fernmetastasen
 - alle weiteren Aufnahmekriterien erfüllt
 - keine Ausschlusskriterien vorhanden
 o ja o nein
3. Therapie bei komplikationslosem Verlauf spätestens am 14. postop.Tag möglich
 o ja o nein

IV. Einleitung der Therapie

1. o Randomzuteilung telefonisch im Studiensekretariat erfragen
 (Dr.K.H. Link, Frau Rappenecker, Frau Feuchter, Tel.: 0731 / 502-7208 oder 0731/502-7220, FAX: 0731 / 502-7214; erforderliche Angaben: Name, Geb.Dat., Klinik, Lokalisation + Stadium)
 Lokalisation: o Kolon o Rektum
 Randomisationsarm: o A o B o C
 Randomisations-Nr.: □□/□□□□

2. o Therapiepatient, Aufklärung/Unterschrift, Dokumentation eingeleitet

3. o Patient hat adjuvante Therapie abgelehnt, wird dokumentiert

4. o Patient hat Random-Zuteilung abgelehnt, erhält Therapie nach Arm o A o B o C (Zutreffendes bitte ankreuzen)

5. Therapiebeginn: □□□ □□□

6. o Dokumentationsbogen angelegt

7. o Rektum: Radiatio veranlaßt.

Datum

Unterschrift
7.2 Toxizitätsbogen (Anhang 2)

Toxizitätsbogen

<table>
<thead>
<tr>
<th>Anhang 69</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutung</td>
<td>keine</td>
<td>Persistiert</td>
<td>geringer Bluverlust</td>
<td>starker Bluverlust</td>
<td>bedrohliche Blutung</td>
</tr>
<tr>
<td>Fieber</td>
<td>kein</td>
<td>1 - 38°C</td>
<td>1 - 36 - 40°C</td>
<td>1 > 40°C</td>
<td>Febris und Bluverlust</td>
</tr>
<tr>
<td>Infektion</td>
<td>keine</td>
<td>gering, keine Therapie</td>
<td>orale Antibiotika notwendig</td>
<td>parenterale Antibiotika notwendig</td>
<td>Segen und unbestimmten Schwere</td>
</tr>
<tr>
<td>Gastrointestinale Nebenwirkungen</td>
<td>keine</td>
<td>nephritisches Krankheitsbild</td>
<td>nephritisches Krankheitsbild</td>
<td>nephritisches Krankheitsbild</td>
<td>nephritisches Krankheitsbild</td>
</tr>
<tr>
<td>Ubelkeit / Erbrechen</td>
<td>keine</td>
<td>Übelkeit, kein Erbrechen</td>
<td>unangenehmes Erbrechen</td>
<td>akutemetische Therapie notwendig</td>
<td>akutemetische Therapie notwendig</td>
</tr>
<tr>
<td>Durchfall</td>
<td>kaum</td>
<td>vorübergehend < 2 Tage</td>
<td>mehr als 2 Tage</td>
<td>> 2 Tage</td>
<td>schwer</td>
</tr>
<tr>
<td>Obstipation</td>
<td>keine</td>
<td>gering, keine Therapie notwendig</td>
<td>deutlich, orale Laxanzien notwendig</td>
<td>Gesunde</td>
<td>Anzeichen einer Infarktbildung</td>
</tr>
<tr>
<td>Allergische Reaktionen</td>
<td>keine</td>
<td>Ödeme</td>
<td>Bronchospasmus, kein parenterale Therapie notwendig</td>
<td>Bronchospasmus, parenterale Therapie notwendig</td>
<td>Anaphylaxie</td>
</tr>
<tr>
<td>Kutane Nebenwirkungen</td>
<td>keine</td>
<td>Rötung</td>
<td>leichtere Desquamationen, Blasen, Juckreiz</td>
<td>rasante Desquamation, Ulkation</td>
<td>exakte Dermatitis, Reaktionen, Intervention notwendig</td>
</tr>
<tr>
<td>Haarnest</td>
<td>keine</td>
<td>gering</td>
<td>deutliche, feucht, nasse, Alopezie</td>
<td>komplett</td>
<td>kompletter Haarnaustausch, Haarwurzel, Haarwurzelabschnitte</td>
</tr>
<tr>
<td>Neurologische Nebenwirkungen</td>
<td>keine</td>
<td>unerwartet</td>
<td>vorübergehend gehäuft</td>
<td>Symptome</td>
<td>Symptome</td>
</tr>
<tr>
<td>Stoffwechselzustand</td>
<td>keine</td>
<td>Peripherie und/oder unerwartete Schwierigkeiten</td>
<td>schmerzhafter Peripherie und/oder geringe Musterbewegungen</td>
<td>Insuffizienz</td>
<td>Insuffizienz</td>
</tr>
<tr>
<td>Schmerz</td>
<td>keine</td>
<td>gering</td>
<td>gering</td>
<td>gering</td>
<td>gering</td>
</tr>
<tr>
<td>Renale Nebenwirkungen</td>
<td>keine</td>
<td>< 0,3 g/100 ml</td>
<td>0,3 - 1,5 g/100 ml</td>
<td>> 1,5 g/100 ml</td>
<td>> 1,5 g/100 ml</td>
</tr>
<tr>
<td>Nierenfunktion</td>
<td>keine</td>
<td>renale Schädigung</td>
<td>minimal</td>
<td>minimal</td>
<td>minimal</td>
</tr>
<tr>
<td>Pulmonale Nebenwirkungen</td>
<td>keine</td>
<td>obstruktive Symptomatik</td>
<td>Asthma, Lungenfunktionsstörung</td>
<td>Asthma, Lungenfunktionsstörung</td>
<td>Asthma, Lungenfunktionsstörung</td>
</tr>
<tr>
<td>Optik</td>
<td>keine</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>Kardiologische Nebenwirkungen</td>
<td>keine</td>
<td>Schmerzen, unerwartete signifikante Faktoren</td>
<td>Schmerzen, unerwartete signifikante Faktoren</td>
<td>Schmerzen, unerwartete signifikante Faktoren</td>
<td>Schmerzen, unerwartete signifikante Faktoren</td>
</tr>
<tr>
<td>Rhythmusstörungen</td>
<td>keine</td>
<td>Sinusbradykardie > 110 Schläge/min in Ruhe</td>
<td>Vorhofflimmern, AV-Block</td>
<td>Multitabekardie, AV-Block</td>
<td>Multitabekardie, AV-Block</td>
</tr>
<tr>
<td>Funktionsstörungen</td>
<td>keine</td>
<td>asymptomatisch, abnormale Funktionen nachweisbar</td>
<td>Funktionsstörungen, kein Therapie notwendig</td>
<td>Funktionsstörungen, kein Therapie notwendig</td>
<td>Funktionsstörungen, kein Therapie notwendig</td>
</tr>
</tbody>
</table>
7.3 Verlaufsform (Anhang 3)

ADJUVANTE THERAPIE BEI KOLON-UND REKTUMKARZINOMEN

EIN PROTOKOLL DES TUMORZENTRUMS ULM UND DER ONKOLOGISCHEN

STUDIENGRUPPE "GASTROINTESTINALE TUMOREN"

Verlaufsform

Initialen:

Geb.-Datum:

Geschlecht:

KOLON O REKTUM O

STUDIENARM O A O B O C

1. **Therapieverlauf**

1. Dosierungen:

- Resuvolin (FS) (medac, Rezept): 200 mg/m²
- 5-FU (N.N., Rezept): 450 mg/m² (-20% b. Radiatio)
- Ergamisol (Levamisol) (Janssen, Rezept): 3 x 50 mg/d, Tag 1-3
- Roferon-A (Interferon alfa-2a) (Roche): 6 x 10⁶ I.E./d, Tag 1, 3, 5

Anfangsdosierung (1. stationärer Zyklus):

Datum:

Körpergewicht (kg):

Körpergröße (cm):

Körperoberfläche (m²):

FS (mg) (Arm B):

5-FU (mg):

2. **Infusionszeiten:**

- FS: 0. - 10. Minute (Perfusor)
- 5-FU: 10. - 70. (110.) Minute (Perfusor)

Infusion über butterfly oder Braunüle; Parallel 500 ml 0.9% NaCl.

Begleitmedikation mit Allopurinol, Dipyridamol, Trimethoprim, Pyrimidamin, Cortison, Prostaglandin EZ Synthesehemmer (außer ASS 100) ausgeschlossen, Patient darüber aufgeklärt.

Datum

Unterschrift
Verlaufsboigen

3. Ambulante Chemotherapie:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>2, 8 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2, 6, 8, 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studiennummer:
Verlaufsbo gen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>2, 3, 8, 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Bei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Dosis-red.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td>red.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Aufschub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>schub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td>bzw.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Abbruch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>bruch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>bitte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td>Punkt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>bzw.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>2, 8</td>
<td></td>
<td></td>
<td>aus-ful-len</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>1, 4, 5/7, 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Untersuchungen:
1 kleines BB
2 großes Labor
3 OBS
4 Thorax 2E
5 KE
6 CT-Becken nur bei Rektum
7 Endoskopie
8 Anamnese, klinischer Untersuchungsbefund
9 CEA
** Support. Therapie: **
- 1 keine
- 2 antiemetisch (Vomex A)
- 3 Anti-Diarrhoe (Imodium)
- 4 Anti-Dermatitis (Vit. B6)
- 5 Antipyretisch (Benuron)
- 6 Reizblase (Spasmourgenin)

4. Dosisreduktionen / Aufschub der Chemotherapie:

<table>
<thead>
<tr>
<th>Zyklus-Woche</th>
<th>Medikament***</th>
<th>Grund</th>
<th>Neue Dosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** 1 = Rescuvolin (FS)
2 = 5-FU
3 = Ergamisol (Levamisol)
4 = Roferon-A (Interferon alfa-2a)

5. Therapieabbruch der Chemotherapie:

<table>
<thead>
<tr>
<th>Zyklus-Woche</th>
<th>Ursache</th>
</tr>
</thead>
</table>
| | 1 = Toxizität
2 = Wunsch des Patienten (Abschluß-Bogen)
3 = Rezidiv/Metastasen (Rezidiv-Bogen)
4 = Patient verstorben (Abschluß-Bogen)

Datum Unterschrift
Verlaufsbothe

6. Strahlentherapie (nur Rektum):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>Bei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>Red.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>bzw.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>Abbruch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>bruch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>bitte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>7.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Strahlentoxizität (nur Rektum):

<table>
<thead>
<tr>
<th>Zyklus-Woche</th>
<th>Dauer in Wochen</th>
<th>Beschwerden (bzw. Reduktions-/Abbruchgrund)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datum

Unterschrift
7.4 Rezidivbogen (Anhang 4)

Rezidivbogen

Studiennummer:

Klinik-Stempel:

<table>
<thead>
<tr>
<th>Kolon</th>
<th>Rektum</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

STUDIENARM

AoBoCo

Rezidiv-/Metastasensicherung unter Therapie / in der Nachsorge:

Rezidiv-/Metastasierungsdatum:

<table>
<thead>
<tr>
<th>Anastomosenrezidiv (Histologie)</th>
<th>ja</th>
<th>nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominelle Lymphome (CT mit Progredienz oder Histologie)</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Lebermetastasen (CT)</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Ascites (Zytologie)</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Lungenmetastasen (Thorax 2E)</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Knochenmetastasen (Szintigramm + Tomogramm/CT)</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Beckenrezidiv (CT, Progredienz, Harnstau, Knochenschmerzen)</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Sonstige Lokalisation wenn ja, welche:</td>
<td>ja</td>
<td>nein</td>
</tr>
</tbody>
</table>

(Diagnostikmethode: ..)

Datum

Unterschrift
7.5 Abschlussbogen (Anhang 5)

Abschlussbogen

Initialen:
Geb.-Datum:
Geschlecht:

<table>
<thead>
<tr>
<th>KOLON</th>
<th>REKTUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>STUDIENARM</td>
<td>A</td>
</tr>
</tbody>
</table>

1. Letztes Beobachtungsdatum:

2. Abschließende Beurteilung:

☐ 1 = kein Tumor nach 5 Jahren
☐ 2 = Überleben nach 5 Jahren, aber Rezidiv
☐ 3 = Überleben nach 5 Jahren, aber Zweittumor
☐ 4 = Patient verstorben
☐ 5 = Lost to follow up

3. Bei Verstorbenen bitte angeben:

☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ Todesdatum

4. Todesursache:

☐ 1 = tumorbedingt
☐ 2 = therapiebedingt, welche:
☐ 3 = Zweittumor, welcher:
☐ 4 = andere Ursachen, welche:
☐ 5 = nicht bekannt

Datum ___________________________ Unterschrift ___________________________
7.6 Karnofsky-Index (Anhang 6)

Leistungsindex und Erfolgsbeurteilung

Leistungsindex

<table>
<thead>
<tr>
<th>ECOG</th>
<th>Karnofsky</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 %</td>
</tr>
<tr>
<td>1</td>
<td>81 - 90 %</td>
</tr>
<tr>
<td>2</td>
<td>60 - 70 %</td>
</tr>
<tr>
<td>3</td>
<td>40 - 50 %</td>
</tr>
<tr>
<td>4</td>
<td>20 - 30 %</td>
</tr>
</tbody>
</table>

* Eastern Cooperative Oncology Group

7.7 Fragebogen zur OP-Methode (Anhang 7)

Studiennr.: 65/2101
Name: H.G.
Geburtsdatum: 08.08.36

Bitte Ankreuzen:
- Anteriore Rektumresektion
- Abdominoperineale Rektumexstirpation
- Hartmann-OP
- Sonstiges (Bitte angeben) ____________________________
8. Danksagungen

Zum Abschluss dieser Arbeit möchte ich mich bei Allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Ich danke Frau Prof. Dr. Henne-Brunns und Herrn Prof. Kornmann für das Überlassen dieses Themas und für die Unterstützung während der Durchführung.

Desweiteren möchte ich Frau Sander aus der Abteilung Medizinische Dokumentation und Biometrie der Universität Ulm für die Unterstützung bei der statistischen Auswertung der Daten und der Erstellung der Schaubilder danken.

Auch an Frau Keller-Veith aus dem Studiensekretariat für die FOGT-Studienreihe geht mein Dank für die Unterstützung bei der Erhebung der Daten zur OP-Methode.

Nicht zuletzt geht mein Dank an meine Eltern, die mir mein Studium ermöglicht und mich unterstützt haben.
9. Lebenslauf

Name: Harscher
Vorname: Barbara Maria
Geburtsdatum: 29.03.1984
Geburtsort: Ulm/Donau
Staatsbürgerschaft: Deutsch
Familienstand: Ledig

Beruflicher Werdegang:

1990-1994: Grund- und Hauptschule Laichingen
Wintersemester 2003/2004: Studium der Medizin an der Universität Ulm
Herbst 2005: Ärztliche Vorprüfung
August 2008: Eintritt ins Praktische Jahr
Dezember 2009: Approbation
Januar 2010: Assistenzärztin in der Klinik für Orthopädie und Unfallchirurgie, Klinik am Eichert, Göppingen