Elektrophysiologische Korrelate
der Lese-Rechtschreibstörung
- eine EEG-Studie

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät der Universität Ulm

eingereicht von

Kilian Gust
geboren in Stuttgart

2008
Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin

1. Berichterstatter: Prof. Dr. Dr. Manfred Spitzer
2. Berichterstatter: Prof. Dr. Rainer Küfer

Tag der Promotion: 23. April 2009
Inhaltsverzeichnis

Abkürzungsverzeichnis .. III

1. Einleitung ... 1
 1.1 Theoretische Grundlagen ... 4
 1.1.1 Das Elektroenzephalogramm (EEG) ... 4
 1.1.1.1 Das ereigniskorrelierte Potential (EKP) .. 4
 1.1.1.2 Die mismatch negativity (MMN) .. 5
 1.1.2 Ursachenmodelle und Hypothesen der LRS-Entstehung .. 8
 1.1.2.1 Genetische Disposition ... 8
 1.1.2.2 Visuelles Defizit .. 8
 1.1.2.3 Auditorische Störungen ... 9
 1.1.2.4 Störung der phonologischen Bewusstheit ... 13
 1.1.2.5 Stufensmodell der Entstehung einer LRS .. 13
 1.2 Ziele der durchgeführten Studie ... 14

2. Material und Methoden .. 16
 2.1 Votum der Ethikkommission .. 16
 2.2 Studienaufbau ... 16
 2.3 Probandenkollektiv .. 18
 3.4 Studienplan ... 18
 2.5 Beschreibung der diagnostischen Testverfahren .. 21
 2.5.1 Intelligenztest CFT-1 ... 21
 2.5.2 Salzburger Lese- und Rechtschreibtest (SLRT) ... 21
 2.5.3 Basiskompetenzen für Lese-Rechtschreibleistungen (BAKO) 23
 2.6 Beschreibung der EEG-Untersuchung mit Messung der mismatch negativity (MMN) und
 des verwendeten Stimulationsmaterials ... 26
 2.6.1 Die akustischen Stimuli .. 26
 2.6.2 EEG-Aufzeichnung ... 26
 2.6.3 EEG-Experiment ... 28
 2.6.4 Ablauf der EEG-Sitzung ... 28
 2.7 Auswertung der erhobenen Daten .. 31
 2.7.1 Auswertung des CFT-1 ... 31
 2.7.2 Auswertung des SLRT ... 31
 2.7.3 Auswertung des BAKO 1-4 ... 31
 2.7.4 Vorverarbeitungsschritte der EEG-Rohdaten ... 31
 2.7.5 Statistische Auswertung ... 33

3. Ergebnisse .. 34
 3.1 Ergebnisse der Gesamtstichprobe ... 34
 3.1.1 Ergebnisse des CFT-1 .. 34
 3.1.2 Ergebnisse des Salzburger Lese-/Rechtschreibtest (SLRT) 35
 3.1.3 Vergleich der Ergebnisse des BAKO mit den Ergebnissen des
 Salzburger Lese-/Rechtschreibtest (SLRT) ... 36
3.2 Ergebnisse der Versuchs- und Kontrollgruppe .. 37
 3.2.1 Ergebnisse des Salzburger Lese-/Rechtschreibtest (SLRT) 38
 3.2.1.1 Ergebnisse im Leseteil des SLRT .. 38
 3.2.1.2 Ergebnisse im Rechtschreibteil des SLRT .. 40
 3.2.2 Ergebnisse des BAKO ... 41
 3.2.3 Ergebnisse der EEG-Untersuchung mit Messung der MMN 42
 3.2.3.1 Ergebnisse des Sinustonpaares .. 42
 3.2.3.2 Ergebnisse der Sprachstimuluspaare /ba/ vs. /da/ 46
 3.2.4 Vergleich der EEG-Daten (Sprachstimuli) mit Ergebnissen der psychometrischen Testverfahren zur Lese- und Rechtschreibfähigkeit ... 52
 3.2.5 Vergleich der EEG-Daten (Sprachstimuli) mit Ergebnissen dem psychometrischen Testverfahren zur Überprüfung der phonologischen Bewusstheit – „Basiskompetenzen für Lese-Rechtschreibleistungen“ (BAKO) .. 54

4. Diskussion ... 56
 4.1 CFT-1 ... 57
 4.2 SLRT .. 57
 4.2.1 Leseteil des SLRT .. 58
 4.2.2 Rechtschreibteil des SLRT ... 58
 4.3 Die Phonologische Bewusstheit überprüft mit dem BAKO 59
 4.4 Elektrophysiologische Daten ... 60
 4.4.1 MMN bei Sinustönen und Sprachreizen .. 60
 4.4.2 Vergleich der elektrophysiologischen Daten mit den psychometrischen Daten aus den einzelnen Testverfahren ... 64

5. Zusammenfassung ... 67

6. Literaturverzeichnis ... 68

Anhang .. 79

Danksagungen ... 95
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP</td>
<td>Akustisch evoziertes Potential</td>
</tr>
<tr>
<td>Ag</td>
<td>Silber</td>
</tr>
<tr>
<td>AgCl</td>
<td>Silberchlorid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Varianzanalyse (engl.: Analysis of variance)</td>
</tr>
<tr>
<td>BAKO</td>
<td>Test „Basiskompetenzen für Lese-Rechtschreibleistungen“</td>
</tr>
<tr>
<td>BAKGES</td>
<td>Gesamtpunktzahl im BAKO</td>
</tr>
<tr>
<td>BAKOLA</td>
<td>Punkte im Subtest „Lautkategorisierung“ des BAKO</td>
</tr>
<tr>
<td>BAKOPH</td>
<td>Punkte im Subtest „Phonemersetzung“ des BAKO</td>
</tr>
<tr>
<td>BAKOPW</td>
<td>Punkte im Subtest „Pseudowörter“ des BAKO</td>
</tr>
<tr>
<td>BAKORW</td>
<td>Punkte im Subtest „Restwortbestimmung“ des BAKO</td>
</tr>
<tr>
<td>BAKOVL</td>
<td>Punkte im Subtest „Vokallängenbestimmung“ aus BAKO</td>
</tr>
<tr>
<td>BAKOVO</td>
<td>Punkte im Subtest „Vokalersetzung“ des BAKO</td>
</tr>
<tr>
<td>BAKOUUM</td>
<td>Punkte im Subtest „Wortumkehr“ aus BAKO</td>
</tr>
<tr>
<td>Bsp.</td>
<td>Beispiel</td>
</tr>
<tr>
<td>C3 / C4</td>
<td>Links-/rechtshemisphärische zentrale Elektrodenpositionen</td>
</tr>
<tr>
<td>CD</td>
<td>Compact disc</td>
</tr>
<tr>
<td>CFT-1</td>
<td>Culture Fair Intelligence Test - Scale 1</td>
</tr>
<tr>
<td>CGM</td>
<td>Corpus geniculatum mediale</td>
</tr>
<tr>
<td>Cz</td>
<td>Zentrale Elektrodenposition in Medianlinie</td>
</tr>
<tr>
<td>df</td>
<td>Anzahl der Freiheitsgrade</td>
</tr>
<tr>
<td>DSM-IV</td>
<td>Diagnostic and Statistical Manual of Mental Disorders</td>
</tr>
<tr>
<td>EEG</td>
<td>Elektroenzephalographie</td>
</tr>
<tr>
<td>ELE</td>
<td>Elektrodenposition</td>
</tr>
<tr>
<td>ERP</td>
<td>Event related potential</td>
</tr>
<tr>
<td>EKP</td>
<td>Ereigniskorrelliertes Potential</td>
</tr>
<tr>
<td>ERTS</td>
<td>Experimental Run Time System</td>
</tr>
<tr>
<td>F</td>
<td>Testwert</td>
</tr>
<tr>
<td>F3 / F4</td>
<td>Links-/rechtshemisphärische frontale Elektrodenpositionen</td>
</tr>
<tr>
<td>FC3 / FC4</td>
<td>Links-/rechtshemisphärische fronto-zentrale Elektrodenpositionen</td>
</tr>
<tr>
<td>fMRT</td>
<td>Funktionelle Magnetresonanztomographie</td>
</tr>
<tr>
<td>FPz</td>
<td>Erdungselektrode</td>
</tr>
<tr>
<td>Fz</td>
<td>Frontale Elektrodenposition in Medianlinie</td>
</tr>
<tr>
<td>GESF</td>
<td>Gesamtrechtschreibfehler im Salzburger Lese-Rechtschreibtest</td>
</tr>
<tr>
<td>GF</td>
<td>Fehler der Groß-/Kleinschreibung im Salzburger Lese-Rechtschreibtest</td>
</tr>
<tr>
<td>GLF</td>
<td>Gesamtlesefehler im Salzburger Lese-Rechtschreibtest</td>
</tr>
<tr>
<td>GLZT</td>
<td>Gesamtleszeit im Salzburger Lese-Rechtschreibtest</td>
</tr>
<tr>
<td>GRP</td>
<td>Gruppe</td>
</tr>
<tr>
<td>HEOG</td>
<td>Horizontales Elektro-Okulogramm</td>
</tr>
<tr>
<td>HW</td>
<td>Häufige Wörter (Subtest des Leseteils des Salzburger Lese-Rechtschreibtests)</td>
</tr>
<tr>
<td>HWF</td>
<td>Lesefehler „Häufige Wörter“ im Leseteil des Salzburger Lese-Rechtschreibtests</td>
</tr>
<tr>
<td>HWZ</td>
<td>Lesezeit „Häufige Wörter“ im Leseteil des Salzburger Lese-Rechtschreibtests</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff / Beschreibung</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases, 10. Revision</td>
</tr>
<tr>
<td>IQ</td>
<td>Intelligenzquotient</td>
</tr>
<tr>
<td>ISI</td>
<td>Interstimulusintervall</td>
</tr>
<tr>
<td>kOhm</td>
<td>Kilo-Ohm</td>
</tr>
<tr>
<td>LRS</td>
<td>Lese-Rechtschreibstörung</td>
</tr>
<tr>
<td>M</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>MEG</td>
<td>Magnetenzephalographie</td>
</tr>
<tr>
<td>MMN</td>
<td>mismatch negativity</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>ms</td>
<td>Millisekunden</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolt</td>
</tr>
<tr>
<td>µV</td>
<td>Mikrovolt</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>NF</td>
<td>Nicht-lauttreue Rechtschreibfehler im Salzburger Lese-Rechtschreibtest</td>
</tr>
<tr>
<td>OF</td>
<td>Orthographische Rechtschreibfehler im Salzburger Lese-Rechtschreibtest</td>
</tr>
<tr>
<td>N2a</td>
<td>mismatch negativity</td>
</tr>
<tr>
<td>N2b</td>
<td>elektrophysiologisches Korrelat eines aktiven Diskriminationsprozesses</td>
</tr>
<tr>
<td>p</td>
<td>Statistische Signifikanz</td>
</tr>
<tr>
<td>Pkt</td>
<td>Punkte</td>
</tr>
<tr>
<td>PR</td>
<td>Prozentrang</td>
</tr>
<tr>
<td>r</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung (engl.: standard deviation)</td>
</tr>
<tr>
<td>SLRT</td>
<td>Salzburger Lese-Rechtschreibtest</td>
</tr>
<tr>
<td>SS</td>
<td>Sprachstimulus</td>
</tr>
<tr>
<td>STIM</td>
<td>Stimulus</td>
</tr>
<tr>
<td>T</td>
<td>Text (Subtest des Leseteils des Salzburger Lese-Rechtschreibtests)</td>
</tr>
<tr>
<td>t(n-2)</td>
<td>T-Verteilung mit (n-2)-Freiheitsgraden</td>
</tr>
<tr>
<td>TS</td>
<td>Tonstimulus</td>
</tr>
<tr>
<td>TLF</td>
<td>Lesefehler „Text“ des Salzburger Lese-Rechtschreibtest</td>
</tr>
<tr>
<td>TLZ</td>
<td>Lesezeit „Text“ des Salzburger Lese-Rechtschreibtests</td>
</tr>
<tr>
<td>VEOG</td>
<td>Vertikales Elektro-Okulogramm</td>
</tr>
<tr>
<td>vs.</td>
<td>gegenüber (lat.: versus)</td>
</tr>
<tr>
<td>WÄPW</td>
<td>Wortähnliche Pseudowörter (Leseteil des Salzburger Lese-Rechtschreibtests)</td>
</tr>
<tr>
<td>WAF</td>
<td>Lesefehler „wortähnliche Pseudowörter“ des Salzburger Lese-Rechtschreibtests</td>
</tr>
<tr>
<td>WAZ</td>
<td>Lesezeit „wortähnliche Pseudowörter“ des Salzburger Lese-Rechtschreibtests</td>
</tr>
<tr>
<td>WUÄPW</td>
<td>Wortunähnliche Pseudowörter (Subtest des Leseteils des Salzburger Lese-Rechtschreibtest)</td>
</tr>
<tr>
<td>WUF</td>
<td>Lesefehler „wortunähnliche Pseudowörter“ des Salzburger Lese-Rechtschreibtests</td>
</tr>
<tr>
<td>WUZ</td>
<td>Lesezeit „wortunähnliche Pseudowörter“ des Salzburger Lese-Rechtschreibtests</td>
</tr>
<tr>
<td>ZW</td>
<td>Zusammengesetzte Wörter (Subtest des Leseteils des Salzburger Lese-Rechtschreibtests)</td>
</tr>
<tr>
<td>ZWF</td>
<td>Lesefehler „Zusammengesetzte Wörter“ des Salzburger Lese-Rechtschreibtests</td>
</tr>
<tr>
<td>ZWZ</td>
<td>Lesezeit „Zusammengesetzte Wörter“ des Salzburger Lese-Rechtschreibtests</td>
</tr>
</tbody>
</table>
1. Einleitung

In den letzten Jahren haben sich viele Studien mit der Lese-Rechtschreibstörung (LRS) oder auch Dyslexie befasst. Vor allem die interdisziplinäre Forschung von Ärzten, Biologen, Pädagogen und Psychologen hat zu neuen Erkenntnissen über die möglichen Ursachen der LRS geführt, jedoch führen Unterschiede bei der Betrachtung von Ursache und Entstehungsprozess der LRS in den einzelnen Fachrichtungen zu Schwierigkeiten, eine einheitliche Definition der LRS zu finden. Häufig werden die Begriffe Legasthenie, Lese-Rechtschreibstörung, Lese-Rechtschreibschwäche und Dyslexie synonym verwendet, wobei in der angloamerikanischen Literatur der Begriff „dyslexia“ eine reine Leseschwäche beschreibt.

Was ist die LRS?

Bei der LRS handelt es sich um eine Teilleistungsstörung. Es treten also Schwierigkeiten beim Lese- und Schreibprozess unabhängig von Leistungen in anderen schulischen Bereichen und der Intelligenz auf. So wird im ICD-10 die Diagnose LRS lediglich bei Vorhandensein eines normalen oder überdurchschnittlichen Intelligenzniveaus vergeben.

Bei epidemiologischen Untersuchungen wurde eine Prävalenz im deutschen Sprachraum von 4-7 % ermittelt (WARNKE 2008), die der Prävalenz im englischen Sprachraum entspricht, welche mit 4-8 % angegeben wird (SHAYWITZ et al. 1990; LEWIS et al. 1992).

Diagnostische Kriterien der LRS nach dem ICD-10

Das Hauptmerkmal der LRS ist eine umschriebene und bedeutsame Beeinträchtigung in der Entwicklung der Lesefertigkeiten, die nicht allein durch das Entwicklungsalter, Visusprobleme oder unangemessene Beschulung erklärbar ist. Das Leseverständnis, die Fähigkeit, gelesene Worte wieder zu erkennen, vorzulesen und Leistungen, für welche Lesefähigkeit nötig ist, können sämtlich betroffen sein. Bei umschriebenen Lesestörungen sind Rechtschreibstörungen häufig und persistieren oft bis in die Adoleszenz, auch wenn einige Fortschritte im

Leitsymptome der Lesestörung (WARNKE et al. 2007)
- Auslassen, Ersetzen, Verdrehen oder Hinzufügen von Worten oder Wortteilen
- Niedrige Lesegeschwindigkeit
- Startschwierigkeiten beim Vorlesen, langes Zögern oder Verlieren der Zeile im Text
- Ungenaues Phrasieren
- Vertauschen von Wörtern im Satz oder von Buchstaben in den Wörtern

Hinzu kommen Defizite im Leseverständnis:
Die Beeinträchtigung Gelesenes wiederzugeben und aus dem Gelesenen Schlüsse zu ziehen oder Zusammenhänge daraus zu ersehen.

Rechtschreibfehler im Rahmen der Lese-Rechtschreibstörung (LRS) zeigen sich häufig durch (nach WARNKE et al. 2007):
- Reversionen: innerhalb eines Wortes werden Buchstaben verdreht, besonders oft bei den Buchstabenpaaren "b-d" und "p-q"
- Reihenfolgefehler: in einem Wort werden die Buchstaben umgestellt
- Auslassen von einzelnen Buchstaben oder Wortteilen
- Einfügen von falschen Buchstaben oder Wortteilen
- Regelfehler: Fehler in der Groß- und Kleinschreibung, Dehnungsfehler
- Wahrnehmungsfehler: ähnlich klingende Buchstaben werden verwechselt, z.B. d - t oder g - k
- Fehlerinkonstanz: Ein und dasselbe Wort wird auch nach unter Umständen mehrjähriger Übung wird dasselbe Wort unterschiedlich fehlerhaft geschrieben.
1. Einleitung

26. Die Katze \underline{sitzt} vor der Tür.

27. Nun \underline{wollen} wir ein Lied singen.

28. Inge und Rudi haben sich im Wald \underline{erreicht}.

29. Ich liege im weichen \underline{Matratz}.

30. Er \underline{schleicht} den Schlüssel an die Tür.

31. Er muss \underline{larm} nach Hause kommen.

32. Meine Freunde \underline{weinen} in einem Dorf.

33. Die Kinder pflücken süße \underline{Beeren}.

34. Das Buch ist \underline{Dichten} als die Zeitung.

35. Der Bub hat starke \underline{Schmerzen}.

36. Ich kaufe einen neuen \underline{Schuh}.

37. Das Kind \underline{rennt} auf die Straße.

38. Klaus kauft ein \underline{Motorrad}.

39. Manuel \underline{zieht} seinen Pullover aus.

40. Wir \underline{verschlimmert} leise zu sein.

\textit{Abb. 1:} Typisches Beispiel eines Lückentextes im Rahmen des Salzburger Lese-Rechtschreibtests (SLRT) für ein Kind mit einer Lese-Rechtschreibstörung.
1. Einleitung

1.1 Theoretische Grundlagen

1.1.1 Das Elektroenzephalogramm (EEG)

Das EEG ist ein Verfahren zur Messung von Hirnströmen. Es erlaubt sowohl die Ableitung der spontanen Hirnlektrischen Aktivität, als auch wie im Falle dieser Studie die Ableitung ereigniskorrelierter Potentialer (EKPs), also der elektrischen Antwort auf die kognitive Verarbeitung von Stimuli (BERLIT 2007).

Im Vergleich zu anderen Techniken zur Bestimmung der Hirnaktivität bietet das EEG den Vorteil einer hohen zeitlichen Auflösung. Diese Vorteile werden jedoch von Nachteilen begleitet, die sich auf die geringe räumliche Auflösung beziehen (SCHLÖGL 2003).

1.1.1.1 Das ereigniskorrelierte Potential (EKP)

Als ereigniskorreliertes Potential bezeichnet man kurze Veränderungen im EEG-Signal in Folge der kognitiven Verarbeitung eines sensorischen Stimulus (KOLB und WISHAW 2003). EKPs eignen sich zur Erfassung kognitiver Operationen, da sie elektrophysiologische Korrelate komplexer Verarbeitungsprozesse darstellen. EKPs werden aus dem EEG über Mittelungen berechnet und

1.1.1.2 Die mismatch negativity (MMN)

Die MMN wird (größtenteils) im Hörkortex erzeugt. Sie reflektiert das Ergebnis eines Vergleichs der Repräsentation der aktuellen Stimulation mit der Repräsentation der Invarianten der vorangegangenen Stimulation. Bei der MMN handelt es sich um eine unwillkürliche, automatisierte Antwort auf einen Stimulus. Sie zeichnet sich durch eine an frontozentralen Elektrodenpositionen (z.B. Fz) erhöhte Negativierung des ereigniskorrellierten Potentials zu abweichenden Reizen (Deviant) im Vergleich zum Potential des Standardreizes im Bereich von etwa 100 bis 250 ms relativ zum Reizbeginn aus. An posterolateralen Elektrodenpositionen (z.B. Linker Mastoid) ist das EKP positiv. Der im EKP reflektierte Unterschied zwischen der Verarbeitung des Standards und des
Deviants wird am besten in der Differenzkurve (Deviant minus Standard) sichtbar (SCHRÖGER und WOLFF 1998) - also der MMN.

![Diagram](attachment:Abb_2.png)

Abb. 2: Beispiel zweier ereigniskorrelierter Potentiale, wobei sich die mismatch negativity (MMN) als Differenz zwischen Deviant- und Standardstimulus errechnet. (modifiziert aus: EST! 2004)
Inzwischen sind mit der MMN auch die Verarbeitung komplexer, temporaler und linguistischer auditiver Reize an gesunden Probanden und an verschiedenen klinischen Populationen untersucht worden. Ein wichtiger Ertrag dieser Forschung ist die Erkenntnis, dass unser auditives System sehr viel an Reizinformation extrahiert, relativ komplexe Invarianten der akustischen Umwelt erkennt und kurzfristig in sensorischen Gedächtnisspuren repräsentiert, auch wenn die Versuchsperson den Reizen keine Beachtung schenkt.

1.1.2 Ursachenmodelle und Hypothesen der LRS-Entstehung

1.1.2.1 Genetische Disposition
Für die LRS konnte eine Assoziation mit mehreren Chromosomen nachgewiesen werden. Zu den in diesem Zusammenhang am besten untersuchten gehören die Chromosomen 6, 7, 13, 15 auf denen sogenannte DYX-Loci gefunden wurden (GIBSON und GRUEN 2008).

1.1.2.2 Visuelles Defizit
Organische Störungen im Bereich des Augapfels

Störungen im Bereich der zentralen visuellen Reizverarbeitung

1.1.2.3 Auditorische Störungen

Der Vorteil der MMN ist, dass sie unabhängig von zugewendeter Aufmerksamkeit auf die Stimuli evoziert werden kann. Sie bildet somit eine präattentive, hoch automatisierte Antwort auf akustische Stimuli ab.

Verschiedenste Untersuchungen (SCHULTE-KÖRNE et al. 2001a) zeigten, dass sich die LRS-Probanden bei der Verarbeitung von reinen Tonhöhenunterschieden unter Verwendung von Sinustönen nicht von den gesunden Kontrollprobanden unterschieden. Bei Studien, die als Stimulusmaterial sich unterscheidende Ton-

SCHULTE-KÖRNE et al. (1999b) konnten keine signifikanten Unterschiede der MMN für Sinustöne mit einem Standardton von 1000 Hz und einem Deviant mit 1050 Hz (p=.55) zwischen den Legasthenikern und der Kontrollgruppe finden, jedoch für die MMN des Phonempaares /ba/ (als Standard) und /da/ (als Deviant) ergab sich ein signifikanter Unterschied (p=.007) zwischen den beiden Gruppen.

In einer fMRT-Studie fanden SHAYWITZ et al. (1998) bei der Kontrollgruppe mit zunehmendem Schwierigkeitsgrad der Aufgaben (Mustervergleich [/N/ vs. /N/], orthographische Verarbeitung [BbBB vs. BbbB], Buchstaben-Reim [„T“ vs. „G“]) eine zunehmende Aktivierung im Temporallappen. Bei den LRS-Probanden wurde die zusätzliche temporale Aktivität nicht beobachtet. Diese zeigten zudem eine Überaktivierung von Arealen im Frontalhirn - was möglicherweise als Kompensationsmechanismus zu interpretieren ist.

SCHULTE-KÖRNE et al. (1998b) untersuchten mittels eines MMN-Paradigmas die Diskriminationsfähigkeit von sprachlichen und nicht-sprachlichen Stimuli bei Probanden mit LRS und Kontrollprobanden. Es zeigte sich, dass sich die MMNs auf die Tonstimuli zwischen den Gruppen nicht unterschieden, wohl aber, wenn es sich um sprachrelevante Verarbeitung von auditive dargebotenen Phonemen handelte.

Die Autoren interpretieren dies dahingehend, dass sich in diesen Befunden ein spezifisches Defizit des phonologischen Systems zeigt, und nicht wie nach der sensorischen Defizithypothese angenommen, ein generelles basales Defizit bei der Verarbeitung akustischer Stimuli.
Abb. 3: Schematischer Aufbau der Hörbahn (aus: SCHÜNKE et al. 2006)
1.1.2.4 Störung der phonologischen Bewusstheit
Phonologische Bewusstheit bezeichnet zum einen die Fähigkeit, lautliche Strukturen von Sprache und Schrift zu erkennen, also das Bewusstsein zu haben, dass alle Wörter aus kleineren Untereinheiten (Phonemen) aufgebaut sind (SCHNEIDER et al. 2000), und zum anderen mit der lautlichen Sprache zu operieren.

1.1.2.5 Stufenmodell der Entstehung einer LRS
Es wird vermutet, dass die Ursache einer gestörten phonologischen Bewusstheit im auditiven System anzusiedeln ist. SCHULTE-KÖRNE et al. (1999b) haben gemäß dieser Annahme ein Stufenmodell aufgestellt, das vier aufeinander aufbauende Ebenen umfasst, die jeweils mit unterschiedlichen diagnostischen Mitteln betrachtet werden können. So geht die Arbeitsgruppe davon aus, dass eine Störung bei der Verarbeitung auditiver Stimuli die Entwicklung einer phonologischen Bewusstheit behindert.

Tab. 1: Stufenmodell der verschiedenen überprüfbaren Ebenen der LRS-Symptomatik basierend auf einer auditiven Störung (nach: SCHULTE-KÖRNE et al. 1999b)

<table>
<thead>
<tr>
<th>Verarbeitungsebene</th>
<th>Paradigma und Prüfmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1: Präattentive und automatische Verarbeitung von auditiven Stimuli</td>
<td>Passives oddball Paradigma, mismatch negativity</td>
</tr>
<tr>
<td>Level 2: Bewusste Verarbeitung von auditiven Stimuli</td>
<td>Lückenerkennung, Ton- und Sprachdiskrimination</td>
</tr>
<tr>
<td>Level 3: Bewusste, phonologische Verarbeitung</td>
<td>Phonologische Bewusstheit: Phonemzählung</td>
</tr>
<tr>
<td>Level 4: Lesen und Schreiben</td>
<td>Lese-/Rechtschreibtest</td>
</tr>
</tbody>
</table>
1.2 Ziele der durchgeführten Studie

Als Grund für die Entstehung einer Lese-Rechtschreibstörung werden durch viele Studien multifaktorielle Ursachen angeführt. Neben Untersuchungen auf Verhaltensebene mit auditorischen Diskriminationstests, gibt es einige Untersuchungen die mittels EEG zum einen die ursächlichen Defizite bei der auditiven Verarbeitung auf unbewusster Ebene beleuchten, zum anderen Studien, die mit Hilfe der MEG oder anderer bildgebenden Verfahren wie der MRT diese anatomisch genauer zu lokalisieren. Zudem werden visuelle Defizite diskutiert und auch Untersuchungen zur Genetik und der Möglichkeit der Vererbung der LRS durchgeführt.

Viele der vorliegenden Studien untersuchen die elektrophysiologische Ebene an kleinen, teilweise inhomogenen Stichproben und vergleichen nicht, inwieweit die Daten auf Verhaltensebene und die klinischen Untersuchungen zusammenhängen – ob also Kinder mit einer stärker ausgeprägten LRS-Symptomatik auch eine entsprechend verminderte MMN aufweisen.

Ziel ist es anhand von Kriterien eine große homogene Gruppe, aus diesem Grunde werden auch nur rechtshändige Jungen in die Studie eingeschlossen, zu rekrutieren und an dieser die LRS auf Verhaltens- und elektrophysiologischer Ebene zu beleuchten.

Diese Studie soll umfassend die Auswirkungen eines Defizits der basalen auditiven Verarbeitung auf mehreren Ebenen untersuchen und zeigen, wie die Daten auf Verhaltensebene sich zu den elektrophysiologischen Ergebnissen Verhalten.

Die Untersuchung soll zudem Aufschluss darüber geben, ob es sich um ein sprachspezifisches oder ein generelles auditives Verarbeitungsdefizit handelt. Aus diesem Grund erfolgt die EEG-Messung zum einen mit sprachlichen Stimuli, zum anderen mit Sinustonstimuli.

Die verwendeten Tests und deren Ergebnisse entsprechen qualitativ den Stufen des Schemas nach SCHULTE-KÖRNE et al. (1999b) (siehe Tab. 1). So werden die Lese-Rechtschreibleistung entsprechend der Ebene 4, wie die phonologische Verarbeitung und die bewusste Verarbeitung von auditiven Stimuli und entsprechend der basalen Ebene die präattentive Verarbeitung mit dem EEG überprüft.

Es wird erwartet, dass es sich bei den Kindern um ein sprachspezifisches auditives Defizit handelt und zudem ein Zusammenhang zwischen dem basalen auditiven Verarbeitungsdefizit, der Leistung auf Ebene der phonologischen Bewusstheit und der Lese- und Rechtschreibleistung nachzuweisen ist.
2. Material und Methoden

2.1 Votum der Ethikkommission

2.2 Studienaufbau
Die durchgeführte Studie lässt sich in drei Teile gliedern. Die ersten beiden Teile der Studie wurden in den Räumen der jeweiligen Schule durchgeführt, der abschließende dritte Teil erfolgte im Forschungs-EEG der Sektion für Kognitive Elektrophysiologie an der Klinik für Psychiatrie und Psychiatrie III des Universitätsklinikums Ulm.

Nach Genehmigung der Studie durch das Oberschulamt, wurde für die ersten beiden Teile der Untersuchung eine Einwilligungserklärung bei den Eltern der Kinder vor Beginn der Untersuchung eingeholt. Für die abschließende EEG-Untersuchung mit Messung der mismatch negativity (MMN) erfolgte die Einholung einer gesonderten Einwilligung von den Eltern der betroffenen Jungen.

Der erste Teil der Studie umfasste als Intelligenztest den Culture fair Intelligence-Test – Scale 1 (CFT-1) und zur Erhebung des Lese- und Schreibniveaus der Probanden diente der Salzburger Lese- und Rechtschreibtest (SLRT), welche im folgenden noch weiter erörtert werden. Diesen beiden Tests wurden alle Studienteilnehmer (n=272) unterzogen.

Nach Auswertung des CFT-1 mussten 18 Kinder aufgrund eines IQ < 85 von der Studie ausgeschlossen werden, da Lese-Rechtschreibstörungen nur für ein normales Intelligenzniveau definiert sind.

Im Anschluss an die Auswertung wurden 84 Schüler aufgrund des erzielten Ergebnisses im SLRT in eine vorläufige Versuchs- und Kontrollgruppe unterteilt. Der Versuchsgruppe (n=50) wurden diejenigen Kinder zugeteilt, die im Lese- und Rechtschreibteil des SLRT eine Leistung kleiner einem Prozentrang 50 (< PR 50)
erzielt hatten. Die Kontrollgruppe (n=34) schloss diejenigen Jungen ein, die im Rechtschreibteil einen Wert > PR 80 und im Leseteil einen Wert > PR 50 erreichten. Diejenigen, die weder der Versuchs- noch Kontrollgruppe zugeteilt wurden nahmen an keinem weiteren Test teil.

Im zweiten Teil wurde der Test „Basiskompetenzen für Lese-Rechtschreibleistungen“ zur Überprüfung der phonologischen Bewusstheit mit jedem der Kinder aus Versuchs- und Kontrollgruppe durchgeführt.

In Hinblick auf die nachfolgende EEG-Untersuchung ergaben sich somit eine Versuchsgruppe mit 22 Jungen und eine Kontrollgruppe von 16 Jungen. Letztendlich wurden insgesamt 38 Kinder im EEG untersucht.

Der dritte Teil beinhaltet die elektrophysiologische EEG-Untersuchung mit Messung der mismatch negativity (MMN) unter Verwendung von akustischen sprachlichen und nicht-sprachlichen Stimuli, um darzulegen, ob es sich bei Kindern mit schwachen Lese-Rechtschreibleistungen, verbunden mit einer gestörten phonologischen Bewusstheit um ein generelles auditives Defizit oder um ein spezifisches Defizit im Rahmen der Sprachverarbeitung handelt.
2.3 Probandenkollektiv
Die Untersuchung wurde an 272 Schülern der 3. Klassestufe (Alter 8;0-10;2), von denen uns die Einverständniserklärung der Eltern vorlag, aus 23 verschiedenen Grundschulen im Schulamtsbezirk Schwäbisch-Gmünd durchgeführt.
Um an der Studie teilzunehmen, mussten die Probanden folgende Einschlusskriterien erfüllen:
• Jungen
• Rechtshänder
• Deutsch als Muttersprache
als Ausschlusskriterien galten:
• die Wiederholung einer Klassenstufe
• eine neurologische Erkrankung in der Eigenanamnese
Diese Kriterien wurden gewählt, um für die abschließende EEG-Untersuchung möglichst homogene Gruppen zu erreichen.

Tab. 2: Beschreibung des Probandenkollektivs innerhalb der Versuchs- und Kontrollgruppe der abschließenden EEG-Untersuchung.

<table>
<thead>
<tr>
<th></th>
<th>Versuchsgruppe (n=22)</th>
<th>Kontrollgruppe (n=16)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter [Monaten] M (SD)</td>
<td>109.68 (4.60)</td>
<td>109.81 (4.42)</td>
<td>.930</td>
</tr>
<tr>
<td>Intelligenzquotient [Punkte] M (SD)</td>
<td>102.27 (13.64)</td>
<td>107.69 (8.78)</td>
<td>.17</td>
</tr>
<tr>
<td>BAKO [richtige Antworten] M (SD)</td>
<td>31.00 (6.53)</td>
<td>63.25 (2.41)</td>
<td><.001</td>
</tr>
</tbody>
</table>

3.4 Studienplan
Die Probanden und deren Eltern wurden durch ein Informations-Schreiben vom Ablauf der Studie unterrichtet, nachdem die Studie durch das zuständige Staatliche Schulamt genehmigt wurde.
Auf eine Freiwilligkeit zur Studienteilnahme wurde ausdrücklich hingewiesen. Nachdem die Eltern der Studienteilnahme ihrer Kinder mittels der beigelegten Einverständniserklärung zugestimmt hatten, wurden der Intelligenztest (CFT-1),
der Lese-Rechtschreibtest (SLRT) und nach Auswertung der beiden genannten Tests zum weiteren Screening auf ein möglicherweise vorliegendes phonologisches Defizit, gegebenenfalls der Test zur Überprüfung der phonologischen Bewusstheit (BAKO) durchgeführt.

Nur Schüler mit einem normalen IQ über 85 Pkt. wurden in die Auswertung der Gesamtstichprobe mit aufgenommen. Probanden mit unterdurchschnittlichen Ergebnissen im SLRT (Leseteil < PR 50 und Rechtschreibteil < PR 50) wurden zur Versuchsgruppe eingeteilt, Kinder mit überdurchschnittlichen Leistungen (Leseteil > PR 50 und Rechtschreibteil > PR 80) wurden zur Kontrollgruppe gezählt. Mit beiden Gruppen wurde im Anschluss der BAKO durchgeführt.

Nach Auswertung der Daten wurden die Eltern schriftlich in Form einer detaillierten Auflistung der Leistungen ihrer Kinder über die Ergebnisse in den vorangegangenen Tests informiert.

2. Material und Methoden

CFT-1 (n=272)

SLRT
[CFT-1: IQ ≥ 85] (n=254)

Unterteilung in

Versuchsgruppe (SLRT - Leseteil und Rechtschreibeitteil < PR 50)

Kontrollgruppe (SLRT - Leseteil > PR 50, Rechtschreibeitteil > PR 80)

Versuchsgruppe

BAKO 1-4 (n=50)

EEG (MMN-Messung)
[BAKO < PR 18] und zusätzliches Einverständnis der Eltern (n=22)

Kontrollgruppe

BAKO 1-4 (n=34)

EEG (MMN-Messung)
[BAKO > PR 75] und zusätzliches Einverständnis der Eltern (n=16)

Abb. 4: Studienplan
2.5 Beschreibung der diagnostischen Testverfahren

2.5.1 Intelligenztest CFT-1
Ein Intelligenztest wurde zu Beginn der Studie durchgeführt, da die LRS nur bei Vorliegen eines normalen bzw. überdurchschnittlichen Intelligenzquotienten definiert ist. Da sich in vielen nicht-sprachfreien Verfahren zur Überprüfung der Intelligenz die Lese- und Rechtschreibfähigkeit der Probanden als Störvariable niederschlägt, wurde auf den „Culture Faire Intelligence Test - Scale 1“ (CFT-1) zurückgegriffen, der lediglich den non-verbalen Intelligenzquotienten abbildet.

Er wurde als Gruppentest durchgeführt, wobei auf eine maximale Größe der Testgruppe von 20 Kindern geachtet wurde und jeweils 10 Kindern ein Testbetreuer zugeordnet war.

2.5.2 Salzburger Lese- und Rechtschreibtest (SLRT)

Der Test ist derart ausgelegt, dass vor allem Unterschiede im unteren Leistungsbereich diagnostiziert und differenziert werden können. Da die Leistungsanforderungen für Kinder mit normalem Lernfortschritt relativ gering sind, werden nur Kinder mit Leistungsschwächen niedrige Testwerte erreichen.
Leseteil des SLRT
Der Leseteil des SLRT überprüft die Lesefertigkeit des Kindes anhand fünf verschiedener Aufgaben. Hierzu gehören Aufgaben, bei denen die Kinder häufige Wörter, zusammengesetzte Wörter, einen kurzen Text und zudem wortähnliche bzw. wortunähnliche Pseudowörter laut vorlesen müssen.

Es wurde bewusst darauf verzichtet, das Textverständnis zu überprüfen, da die entscheidende Beeinträchtigung bei lese-/rechtschreibschwachen Kindern die Wortlesefertigkeit ist; das beeinträchtigte Leseverständnis ist als Folge des langsamen, mühevollen und teilweise fehlerhaften Wortlesens anzusehen.

Die Durchführung erfolgte mit jedem der Kinder einzeln in einen separaten Raum. Sie wurden aufgefordert so schnell wie möglich, jedoch möglichst ohne Fehler, den Text bzw. die verschiedenen Wortfolgen laut vorzulesen.

Rechtschreibteil des SLRT
2.5.3 Basiskompetenzen für Lese-Rechtschreibleistungen (BAKO)

Der BAKO dient der Überprüfung der phonologischen Bewusstheit. Der Test wurde ausgewählt, um Erkenntnisse zu gewinnen, inwieweit Kinder mit unterdurchschnittlichen Leistungen im Bereich des Lesens und Schreibens auch Schwierigkeiten bei der Bearbeitung von Aufgaben haben, welche die phonologische Bewusstheit überprüfen.

Darstellung der einzelnen Untertests des BAKO

Pseudowortsegmentierung

Bsp.: skop - [s] [k] [o] [p]
askletno - [a] [s] [k] [l] [e] [t] [n] [o]
Vokalersetzung
Hierbei haben die Kinder die Aufgabe alle in einem Wort vorkommenden [a] durch ein [i] zu ersetzen, wobei die übrigen Vokale unverändert bleiben sollen und im Anschluss soll das neu entstandene Wort wiedergegeben werden.

Bsp.: Mittag - „Mitt-i-g“
Marmelade - „M-i-rmel-i-de“

Restwortbestimmung

Bsp.: Trick - „rick“
Egelup - „gelup“

Phonemvertauschung

Bsp.: Masse - „amsse“
Ifitak - „fitak“
Lautkategorisierung

Bsp.: Kopf – Turm – tief – Trick
 Haum – laum – faun – gaum

Vokallängenbestimmung

Bsp.: maar – raas – dack – laat
 wuul – suck – tupp – pumm

Wortumkehr
Jedes genannte Wort soll in umgekehrte Reihenfolge (also „rückwärts“) wiedergegeben werden.

Bsp.: ral – „lar“
 eman – „Name“
2.6 Beschreibung der EEG-Untersuchung mit Messung der mismatch negativity (MMN) und des verwendeten Stimulationsmaterials

2.6.1 Die akustischen Stimuli
Als akustische Stimuli zur Erzeugung der MMN während der EEG-Untersuchung wurden zum einen sprachliche Stimuli, zum anderen reine Sinustöne verwendet. Bei den sprachlichen Stimuli handelte es sich um das Phonempaar /ba/ vs. /da/, das von einer weiblichen Stimme gesprochen im Tonstudio aufgezeichnet wurde. Mittels der Bearbeitungssoftware Adobe Audition wurden die Stimuli auf eine einheitliche Lautstärke und Länge von 250 ms inklusive je 3 ms „raise and fall“ gebracht. Bei den Tonstimuli handelte es sich um Sinustöne mit Frequenzen von 500 Hz und 750 Hz und einer Länge von 75 ms inklusive je 3 ms „raise and fall“.

2.6.2 EEG-Aufzeichnung
Die Ableitung erfolgte über 39 Ag/AgCl-Elektroden, gemäß einem erweiterten 10/20-System (JASPER 1958), inklusive zweier Ohrelektroden, einer Nasionelektrode und dreier Elektroden zur Registrierung der Augenbewegungen, wobei am linken Auge sowohl die Registrierung des vertikalen (VEOG) und des horizontalen (HEOG) Elektrookulogramm stattfand, am rechten Auge das VEOG aufgezeichnet wurde. Als Referenzelektrode während der Ableitung diente die linke Ohrelektrode. Als Erdungselektrode diente die Elektrodenposition FPz. Die Positionierung der Elektroden erfolgte, indem die Elektrodenposition Cz durch Bestimmung des Schnittpunktes der Verbindungslinien zwischen den anatomischen Landmarken Nasion und Inion, sowie rechtem und linkem präaurikulären Punkt, die jeweils über den Vertex gemessen wurden.
Nach dem Anpassen der EEG-Haube entsprechend dem Kopfumfang des Kindes wurden die einzelnen Elektrodenpunkte zunächst großzügig mit 70%-igem Alkohol gereinigt und mit der Schleifpaste von kleinen Hautschuppen und Ähnlichem befreit, um den elektrischen Hautwiderstand zu verringern und somit die Leitfähigkeit während der Ableitung zu verbessern. Im Anschluss wurden die Kontaktstellen mit Elektrodengel aufgefüllt und die Elektroden an den jeweiligen Positionen der Haube aufgesteckt.
Nach Verbinden mit dem Aufzeichnungsrechner erfolgte die Impedanzmessung und gegebenenfalls eine Korrektur der Elektroden, so dass Widerstandswerte von < 10 kOhm erzielt wurden.
2.6.3 EEG-Experiment
Während der EEG-Untersuchung wurde den Kindern der Film „Der kleine Eisbär“ (ohne Ton) gezeigt, da die MMN-Messung unter einer Ablenkungsbedingung stattfinden sollte, d.h. die Kinder sollten keinerlei Aufmerksamkeit auf die über Kopfhörer präsentierten Stimuli richten. Die akustischen Stimuli wurden den Kindern mit der Präsentationssoftware ERTS mit einem Interstimulus-Intervall von 600 ms über Kopfhörer dargeboten.

Im verwendeten Versuchsaufbau entsprach bei den folgenden Stimuluspaaren /ba/ vs. /da/ und /500 Hz/ vs. /750 Hz/ jeweils der erste dem „standard“ Stimulus, der 400 mal innerhalb eines Blockes präsentiert wurde und der zweite dem abweichenden Stimulus, der in zufälligen Abständen 100 mal zwischen den „standard“ Stimuli zu hören war, jedoch zwei abweichende Stimuli mindestens von einem „standard“ Stimulus getrennt waren.

Abb. 6: Schematische Darstellung der Stimulusdarbietung für die Sprachlaute (oben) und für die Tonstimuli (unten)

2.6.4 Ablauf der EEG-Sitzung
Überprüfung einer peripheren Hörstörung

Unter Zuhilfenahme einer Stimmgabel (440 Hz) werden die Luft- und die Knochenleitung überprüft. Die Luftleitung wird durch Vorhalten der Stimmgabel vor die Ohrmuschel getestet, die Knochenleitung durch Aufsetzen der Stimmgabel auf das Mastoid.

Mit dem *Test nach Rinne* werden beide Ohren einzeln geprüft. Nach Anschlagen der Stimmgabel wird diese auf das Mastoid des zu testenden Ohres aufgesetzt (Abb. 8a) nach Erlöschen der Tonwahrnehmung beim Probanden erfolgt direktes Vorhalten der Stimmgabel vor das Ohr (Abb. 8b). Im Normalfall ist die Luftleitung etwa 25 dB lauter als die Knochenleitung, so dass nach dem Vorhalten der Ton wieder zu hören sein sollte.

Der *Weber-Test* vergleicht beide Ohren. Nach dem Anschlagen wird die Stimmgabel auf die Schädelmitte aufgesetzt (Abb. 8c) und es wird geprüft, ob der Ton durch die Knochenleitung übertragen in beiden Ohren gleich laut wahrgenommen wird.
Für die weitere Studie kamen nur Kinder in Frage, die im Versuch nach Weber eine mediane Tonwahrnehmung hatten und bei denen der Versuch Rinne positiv ausfiel.

Im Weiteren erfolgte das Anbringen der EEG-Elektroden. In der EEG-Kabine wurden die Elektroden über die Headboxen mit dem Aufzeichnungsrechner verbunden und auf Ihre Impedanz hin überprüft und gegebenenfalls korrigiert.

Die Untersuchung gliederte sich in unterschiedliche Blöcke á 500 Stimuli, welche jeweils ein Stimuluspaar enthielten, so dass zwischen den Untersuchungsabschnitten immer eine Pause entstand, deren Länge die Kinder selbst bestimmen konnten.

Die Kinder wurden angehalten sich so wenig wie möglich während der Aufzeichnung zu bewegen und selten zu blinzeln. Zudem wurden ihnen vermittelt, keine Aufmerksamkeit auf die Tonstimuli zu richten, sondern sich auf das Geschehen im Film zu konzentrieren. In den Pausen zwischen den Aufzeichnungsblöcken wurden sie aufgefordert sich zu bewegen, um den darauffolgenden EEG-Aufzeichnungsabschnitt mit möglichst wenig Bewegungsartefakten durchführen zu können.

2.7 Auswertung der erhobenen Daten

2.7.1 Auswertung des CFT-1
Mit Hilfe eines computerbasierten Auswertungsprogramms wurde der Intelligenzquotient anhand der erzielten Ergebnisse in den einzelnen Subtests und des Alters des Kindes ermittelt.

2.7.2 Auswertung des SLRT
Beim SLRT werden zum einen die Ergebnisse nach einem Prozentrang angegeben, zum anderen ergibt sich ein Kritischer Wert. Beim diesem handelt es sich um eine absolute Grenze, die von den Testautoren aufgrund der Normierung vorgegeben wurde, bei dem hinsichtlich der Fehleranzahl eine Auffälligkeit besteht.

Im Rechtschreibteil wurde zwischen orthographischen Fehlern, nicht-lauttreuen Fehlern und Fehlern der Groß-/Kleinschreibung unterschieden. Wobei die beiden letzteren in Relation zum kritischen Wert angegeben werden, die orthographischen Fehler wurden als Prozentrang angegeben.

2.7.3 Auswertung des BAKO 1-4
Beim BAKO 1-4 wurde der erzielte Punktwert für jeden einzelnen Untertest, sowie die erreichten Gesamtpunkte in den Prozentrang nach der angegebenen Normierung umgerechnet.

2.7.4 Vorverarbeitungsschritte der EEG-Rohdaten
Um Muskelartefakte und andere hochfrequente Störsignale zu eliminieren, wurden die Rohdaten mit einem high-pass Filter von 0,1 Hz und einem low-pass Filter von 16 Hz bereinigt. Da die MMN typischerweise ihre Hauptaktivität in einem Frequenzspektrum von 1-6 Hz hat, sollte diese bei den von uns verwendeten Filtereinstellungen unverfälscht bleiben.

Anschließend wurden die Aufzeichnungsblöcke mittels der von ERTS übermittelten Zeitmarken (Trigger), die zu Beginn eines jeden Stimulus gesetzt wurden, in die einzelnen Segmente unterteilt, so dass nun bei den Sprachstimuli (SS) Segmente mit einer Länge von 850 ms vorlagen, bei den Tonstimuli (TS) mit einer Länge von 675 ms. Die Gesamtlänge der Segmente setzt sich aus Stimulusdauer (SS: 250 ms; TS: 75 ms) und dem interstimulus-Intervall von jeweils 600 ms zusammen.

Im Anschluss folgte eine Baselinekorrektur, die anhand des Mittelwertes, des über eine Zeitdauer von 150 ms vor Stimulusonset aufgezeichneten Datenmaterials, das Segment in der Amplitude korrigiert. Nun folgte die Umrechung der Referenzelektrode auf die Nasion-Elektrode.

Aus den verbleibenden Segmenten wurden für jeden einzelnen Probanden die individuellen EKPs für die jeweiligen Standard- und Deviant-Stimuli berechnet und im Anschluss die Grand Averages für die Stimuli über alle Probanden getrennt für die Versuchs- und Kontrollgruppe.

Die Daten der individuellen EKPs für die Elektroden F3, FC3, C3, F4, FC4 und C4 wurden zur statistischen Auswertung in definierten Zeitfenstern exportiert.
2.7.5 Statistische Auswertung

Diagnostische Tests

Neurophysiologische Daten

Es erfolgte die Exportierung der durch die EEG-Aufzeichnung und mittels BRAIN VISION ANALYSER in EKPs und MMN aufgearbeiteten Rohdaten in STATISTICA. Die EEG-Daten wurden im Zeitintervall 150-600 ms nach Stimulusonset für die sprachlichen Stimuli und 100-550 ms für die Tonstimuli ausgewertet, jeweils untergliedert in 3 Abschnitte von je 150 ms. So wurden mittels einer ANOVA mit Messwiederholungen die MMN-Daten auf Gruppenunterschiede zwischen Versuch- und Kontrollpersonen untersucht, wobei als abhängige Variablen die einzelnen Aufzeichnungskanäle der MMN und als prädiktiver Faktor die Gruppenzugehörigkeit mit eingingen. Als Inner-Gruppen-Faktoren wurden beide Hemisphären, die nach Positionierung in frontalen frontozentrale und zentrale unterteilten Elektroden und die „standard vs. deviant“-Bedingung bei den akustischen Stimuli gewählt.
3. Ergebnisse

3.1 Ergebnisse der Gesamtstichprobe

Im Nachfolgenden werden die Ergebnisse der Gesamtstichprobe dargestellt, wobei sich die Gesamtstichprobe für die Ergebnisse beim CFT-1 aus allen getesteten Probanden zusammensetzt, welche die Einschlusskriterien erfüllt haben (n=272), bei den Ergebnissen des SLRT aus den Probanden mit IQ > 85 (n=254).

3.1.1 Ergebnisse des CFT-1

Die Leistungen der Kinder im CFT-1 zeigen sich als Normalverteilung (min=70; max=142; MW=104). Aufgrund eines erzielten Ergebnisses im CFT-1 unterhalb der unteren Grenze des Normbereiches von IQ < 85 wurden 18 Probanden von der Studienauswertung ausgeschlossen.

Abb. 9: Verteilung des Intelligenzquotienten (IQ) der Gesamtstichprobe (n=272) ermittelt durch den Culture Faire Intelligence Test – Scale 1 (CFT-1).
3. Ergebnisse des Salzburger Lese-/Rechtschreibtest (SLRT)

Betrachtet man die Probanden der Gesamtstichprobe, die einen non-verbalen IQ > 85 haben, (n=254) sieht man, dass die Probanden im Mittel im Vergleich zu der Normierungsgrundlage der Autoren in den einzelnen Subtests wie nachfolgend abschneiden, die eingezeichneten roten Linien entsprechen dem PR 50 in den einzelnen Subtests bezüglich der Lesezeiten. Die grünen Linien geben den kritischen Wert hinsichtlich der Lesefehler an.

Vergleicht man die Summe der Lesenzeiten mit den orthographischen und nicht-lauttreuen Fehlern aus dem Rechtschreibteil des SLRT, für welche man im Gegensatz zu den Fehlern der Groß- und Kleinschreibung ursächlich ein akustisch-phonematisches bzw. phonologisches Defizit ansehen könnte, so ergibt sich eine signifikante Korrelation (r=.644; p<.05). Es zeigt sich also ein signifikanter Zusammenhang zwischen der Lese- und Rechtschreibleistung der Probanden.
3. Ergebnisse

Abb. 11: Korrelation der Gesamtlesezeit (in Sekunden) des Leseteils des Salzburger Lese-Rechtschreibtest mit der Summe der orthographischen und nicht-lauttreuen Rechtschreibfehler (n=254; r =0,644; p<.05)

3.1.3 Vergleich der Ergebnisse des BAKO mit den Ergebnissen des Salzburger Lese-/Rechschreibtest (SLRT)

Aufgrund der erreichten Leistung im SLRT wurde bei 84 Probanden der BAKO durchgeführt. Aufgrund der nicht vorhandenen Normalverteilung der Daten wurde eine Spearman-Rangkorrelation durchgeführt.

Es zeigen sich in allen Subanalysen mit Lesezeit und -fehlern des SLRT-Leseteils, allen Fehlerkategorien des Rechtschreibteils des SLRT, wie auch der Gesamtpunktzahl des Testes zur Überprüfung der phonologischen Fähigkeiten (BAKO) signifikante Korrelationen (p<.01). Die Subtests des SLRT korrelieren aufgrund der Testkonstruktion positiv miteinander, der Zusammenhang mit dem BAKO fällt aufgrund der geringeren erreichten Punktzahl der Kinder mit schwachen Lese-/Rechtschreibleistungen und somit verbundener verlängerter Lesezeit und erhöhter Fehlerzahl negativ aus.

So korrelieren die Gesamtrechtschreibfehler (r=-0,746, p<.01), wie auch die Lesefehler (r=-0,714, p<.01) und die benötigte Lesezeit (r=-0,543, p<.01) aus dem Leseteil aus dem SLRT negativ mit den BAKO-Ergebnissen. Die Daten der einzelnen Subtests des SLRT hingegen positiv miteinander.
3. Ergebnisse

<table>
<thead>
<tr>
<th>Leseteil des SLRT</th>
<th>Rechtsreibe teil des SLRT</th>
<th>BAKO Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit</td>
<td>Fehler</td>
<td>Zeit</td>
</tr>
<tr>
<td>0,499</td>
<td>0,544</td>
<td>0,773</td>
</tr>
<tr>
<td>OF</td>
<td>NF</td>
<td>GF</td>
</tr>
<tr>
<td>0,544</td>
<td>0,634</td>
<td>0,601</td>
</tr>
<tr>
<td>NF</td>
<td>0,634</td>
<td>0,362</td>
</tr>
<tr>
<td>GF</td>
<td>0,298</td>
<td>0,504</td>
</tr>
<tr>
<td>Gesamt</td>
<td>0,514</td>
<td>0,958</td>
</tr>
<tr>
<td>-0,543</td>
<td>-0,714</td>
<td>-0,730</td>
</tr>
</tbody>
</table>

OF: orthographische Fehler, NF: nicht-lauttreue Fehler, GF: Fehler der Groß-/Kleinschreibung

Innerhalb des SLRT zeigen sich signifikante Korrelationen zur Gesamtrechtschreibfehlerzahl mit der Gesamtlesezeit (r=0,514, p<.01) und den Gesamtlesefehlern (r=0,793, p<.01).

3.2 Ergebnisse der Versuchs- und Kontrollgruppe

Tab. 4: Mittelwerte für Kontroll- und Versuchsgruppe in Bezug auf Alter, Intelligenzquotient und Phonematischer Leistung im Test „Basiskompetenzen für Lese-Rechtschreibleistungen“ (BAKO).

<table>
<thead>
<tr>
<th></th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter in Monaten (SD)</td>
<td>109,81 (4,42)</td>
<td>109,68 (4,60)</td>
<td><0,01</td>
<td>.93</td>
</tr>
<tr>
<td>IQ (SD)</td>
<td>107,69 (8,78)</td>
<td>102,27 (13,64)</td>
<td>2,41</td>
<td>.17</td>
</tr>
<tr>
<td>BAKO M (SD)</td>
<td>63,25 (2,41)</td>
<td>31,00 (6,53)</td>
<td>352,80</td>
<td><.001</td>
</tr>
</tbody>
</table>

Betrachtet man nun die Ergebnisse der Versuchs- und der Kontrollgruppe, so werden die Unterschiede der Gruppen sowohl in ihrer Lesegeschwindigkeit, als auch in der Varianz ihrer Ergebnisse deutlich.
3.2.1 Ergebnisse des Salzburger Lese-/Rechtschreibtest (SLRT)

3.2.1.1 Ergebnisse im Leseteil des SLRT

<table>
<thead>
<tr>
<th>Leseteil</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
<th>Signifikanzniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehler [n]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW M (SD)</td>
<td>0,00 (0,00)</td>
<td>1,82 (2,34)</td>
<td><.001</td>
</tr>
<tr>
<td>ZW M (SD)</td>
<td>0,25 (0,45)</td>
<td>1,95 (1,68)</td>
<td><.001</td>
</tr>
<tr>
<td>T M (SD)</td>
<td>0,38 (0,72)</td>
<td>2,18 (1,56)</td>
<td><.001</td>
</tr>
<tr>
<td>WUÄPW M (SD)</td>
<td>0,81 (1,11)</td>
<td>6,05 (4,95)</td>
<td><.001</td>
</tr>
<tr>
<td>WÄPW M (SD)</td>
<td>0,69 (1,14)</td>
<td>4,00 (3,51)</td>
<td><.001</td>
</tr>
<tr>
<td>Zeiten [s]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW M (SD)</td>
<td>17,13 (3,14)</td>
<td>35,95 (11,24)</td>
<td><.001</td>
</tr>
<tr>
<td>ZW M (SD)</td>
<td>14,69 (3,63)</td>
<td>41,14 (16,16)</td>
<td><.001</td>
</tr>
<tr>
<td>T M (SD)</td>
<td>27,44 (7,54)</td>
<td>66,36 (24,31)</td>
<td><.001</td>
</tr>
<tr>
<td>WUÄPW M (SD)</td>
<td>34,81 (5,82)</td>
<td>62,23 (17,32)</td>
<td><.001</td>
</tr>
<tr>
<td>WÄPW M (SD)</td>
<td>33,13 (6,51)</td>
<td>58,41 (14,39)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Betrachtet man die Lesezeiten, welche die Probanden für „echte“ und für Pseudowörter benötigen, so ergibt sich hierbei ein statistisch signifikanter Zusammenhang (r=0,924; p<.05), gleiches gilt für die gemachten Lesefehler (r=0,777; p<.05). Es zeigt sich also, dass die Defizitgruppe gleichermaßen beim Lesen von echten Wörtern und Pseudowörtern Schwierigkeiten hat.
3. Ergebnisse

Abb. 12: Graphische Darstellung der signifikanten unterschiedlichen Mittelwerte (p<.001) und der Standardabweichungen der Lesefehler von Kontroll- und Versuchsgruppe (n=38) in den einzelnen Subtests des Leseteils des Salzburger Lese-Rechtschreibtests (SLRT).

3.2.1.2 Ergebnisse im Rechtschreibteil des SLRT

Die Jungen der Defizitgruppe schneiden ebenso in den Fehlern mit phonematischem Hintergrund \((p<.001)\) (orthographische, nicht-lauttreue Fehler), als auch in den Fehlern der Groß- und Kleinschreibung \((p=.01)\) signifikant schlechter ab als die Kontrollprobanden.

3.2.2 Ergebnisse des BAKO

Die Ergebnisse des BAKO-Tests, welcher auf die phonologische Bewusstheit der Testpersonen abzielt, zeigen eindeutig die Schwierigkeiten, welche die Probanden mit einer LRS aufgrund eines phonematischen Defizits haben. Die Defizitgruppe zeigt in allen Subtests ein signifikant schlechteres Ergebnis als die Kontrollgruppe (p<.001).

3.2.3 Ergebnisse der EEG-Untersuchung mit Messung der MMN

Ausgewertet wurden zum einen die Rohdaten in Form von akustisch evozierten Potentialen (AEP), ausgelöst durch die Einzelstimuli, zum anderen die Kontroll- und Versuchsgruppe hinsichtlich der Differenzkurven - die sich aus dem AEP\textsubscript{Deviant} abzüglich des AEP\textsubscript{Standard} berechnet.

3.2.3.1 Ergebnisse des Sinustonpaares

Im Rahmen der statistischen Analyse wurden die akustisch evozierten Potentiale in drei Intervalle unterteilt, um den zeitlichen Verlauf besser beurteilen und ein Zeitfenster für das Maximum der MMN angeben zu können. Die Zeitintervalle wurden festgesetzt für Zeitintervall 1 (100-250 ms), Zeitintervall 2 (250-400 ms) und Zeitintervall 3 (400-550 ms) jeweils bezogen auf die Zeitspanne nach Stimulusonset. Als Standardstimulus diente ein Sinuston mit einer Frequenz von 500 Hz, als devianter Stimulus ein Sinuston mit 750 Hz. Die jeweils ausgelösten AEPs sind in Abb. 16 dargestellt. Die statistische Auswertung erfolgte mittels einer ANOVA mit Messwiederholungen.

Die sechs ausgewerteten Elektrodenpositionen sind F3, FC3, C3, F4, FC4 und C4. Die multivariante statistische Analyse ergab in keinem der drei ausgewerteten Intervalle signifikante Unterschiede bei den mittels der Tonstimuli ausgelösten, gemessenen Antworten zwischen der Kontroll- und der Versuchsgruppe (Abb. 17 und Abb. 18): Intervall 1 (100-250 ms) \(p=.556 \), Intervall 2 (250-400 ms) \(p=.667 \) und Intervall 3 (400-550 ms) \(p=.947 \).
3. Ergebnisse

3. Ergebnisse

Abb. 17: Graphische Darstellung der Mittelwerte und Standardabweichungen der akustisch evozierten Potentiale (AEP) ausgelöst durch das Stimuluspaar /500 Hz/ vs. /750 Hz/ für die Kontrollgruppe über alle ausgewerteten Zeitintervalle.

Abb. 18: Graphische Darstellung der Mittelwerte und Standardabweichungen der akustisch evozierten Potentiale (AEP) ausgelöst durch das Stimuluspaar /500 Hz/ vs. /750 Hz/ für die Versuchsgruppe über alle ausgewerteten Zeitintervalle.
3.2.3.2 Ergebnisse der Sprachstimuluspaares /ba/ vs. /da/

Im Rahmen der statistischen Analyse wurden die akustisch evozierten Potentiale in 3 Intervalle unterteilt, um den zeitlichen Verlauf besser beurteilen und ein Zeitfenster für das Maximum der MMN angeben zu können. Die Zeitintervalle wurden festgesetzt für Zeitintervall 1 (150-300 ms), Zeitintervall 2 (300-450 ms) und Zeitintervall 3 (450-600 ms) jeweils bezogen auf die Zeitspanne nach Stimulusonset.

Die jeweils ausgelösten AEPs sind in Abb. 23 dargestellt, die sich ergebenden Differenzkurven zeigt die Abbildung 24. Die ANOVA mit Messwiederholungen ergab dabei nachfolgende Ergebnisse:

Ergebnisse im ersten Zeitintervall (150-300 ms):

Es ergeben sich signifikante Unterschiede für die Interaktionen Elektrode*Gruppe (F(2,52)=4,306, p=.019), Stimulus*Gruppe (F(2,52)=6,500, p=.017) und die Interaktion Elektrode*Stimulus*Gruppe (F(2,52)=3,447, p=.039).

Für die Interaktionen Elektrode*Gruppe und Stimulus*Gruppe ergeben sich im post hoc-Test (Bonferoni) keine signifikanten Unterschiede.

Die Interaktion Elektrode*Stimulus*Gruppe weist im post hoc-Test (Bonferoni) signifikante Unterschiede zwischen dem Standard- und dem abweichenden Stimulus in der Kontrollgruppe an FC3/FC4 (p<.01), sowie an den Elektrodenpositionen C3/C4 (p<.001) auf. Für die Defizitgruppe ergeben sich keine signifikanten Unterschiede zwischen dem devianten und dem Standardreiz an allen Elektrodenpositionen.
3. Ergebnisse

Ergebnisse im zweiten Zeitintervall (300-450 ms):

Die statistische Analyse ergibt signifikante Unterschiede für die Interaktionen Elektrode*Gruppe (F(2,52)=3,912, p=.026) und Elektrode*Stimulus*Gruppe (F(2,52)=6,393, p=.003).

Abb. 21: Graphische Darstellung der Mittelwerte und Standardabweichungen für die mittleren ereigniskorrelierten Potentiale (ERP) im Zeitintervall 300-450 ms evoziert durch Stimuluspaar /ba/ - /da/. (Elektrode*Stimulus*Gruppe - F(2,52)=6,393, p=.003) - Kontrollgruppe: Abb. oben, Versuchsgruppe: Abb. unten.
Ergebnisse im dritten Zeitintervall (450-600 ms):
Die beiden Gruppen unterscheiden sich für alle Interaktionen nicht signifikant.

3.2.4 Vergleich der EEG-Daten (Sprachstimuli) mit Ergebnissen der psychometrischen Testverfahren zur Lese- und Rechtschreibfähigkeit

Betrachtet man nun die Zeitintervalle, in denen sich die beiden Gruppen signifikant in ihrer MMN unterscheiden, hinsichtlich des Zusammenhanges zwischen den elektrophysiologischen Daten und den psychometrischen Ergebnissen im SLRT und BAKO, so zeigt sich in einigen der Untertests eine signifikante Korrelation. Da sich die Daten durch die signifikante Unterscheidung der beiden Gruppen nicht normal verteilen, wurde das nicht-parametrische Verfahren der Spearman-Rangkorrelation für die Auswertung der nachfolgenden Daten verwendet.

Im Detail wird nur auf die MMN über den Elektrodenpositionen C3/C4 eingegangen, da sich hier in der Kontrollgruppe die größte MMN zeigte. Die Ergebnisse über allen Elektrodenpositionen können den Tabellen 23 bis 28 im Anhang entnommen werden.

Im Zeitintervall 150-300 ms ergeben sich hinsichtlich der gemachten Lesefehler signifikante Korrelationen für alle Untertests außer dem Text und den wortunähnlichen Pseudowörtern. Bei den Lesezeiten ergeben sich in allen Untertests signifikante Ergebnisse.

In Bezug auf die Lesefehler ergeben sich positive Korrelationen, da die Defizitgruppe eine weniger gute Leistung beim Lesen zeigt, hingegen eine geringere mismatch negativity aufweist. Für die Gesamtlesefehler ergibt sich eine signifikante Korrelation \(r=0,456, p=.015 \). Die Korrelationen der einzelnen Subtests sind in Tabelle 6 aufgeführt. Für die Gesamtlesezeit zeigt sich ebenfalls eine positive Korrelation \(r=0,497, p=.007 \), zudem ergeben sich für alle Subtests ebenso signifikante Korrelationen (Tab. 6).

Im Rechtschreibteil zeigen sich signifikante positive Korrelationen für die orthographischen (\(r=0,503, p=.001 \)) sowie tendenziell für die nicht-lauttreuen Fehler (\(r=0,348, p=.07 \)), hingegen nicht für die Fehler der Groß-/Kleinschreibung.
Tab. 6: Korrelationstabelle zwischen elektrophysiologischen Daten an den Elektrodenpositionen C3/C4 und Ergebnissen im Salzburger Lese-Rechtschreibtest (SLRT) für Versuchs- und Kontrollgruppe im Intervall 150-300 ms.

<table>
<thead>
<tr>
<th>Lesefehler 150 – 300 ms</th>
<th>Gültige</th>
<th>Spearman</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>28</td>
<td>0,492</td>
<td>2,878</td>
<td>0,008</td>
</tr>
<tr>
<td>ZW</td>
<td>28</td>
<td>0,389</td>
<td>2,150</td>
<td>0,041</td>
</tr>
<tr>
<td>T</td>
<td>28</td>
<td>0,207</td>
<td>1,079</td>
<td>0,290</td>
</tr>
<tr>
<td>WUÄPW</td>
<td>28</td>
<td>0,538</td>
<td>3,254</td>
<td>0,003</td>
</tr>
<tr>
<td>WÄPW</td>
<td>28</td>
<td>0,321</td>
<td>1,726</td>
<td>0,096</td>
</tr>
<tr>
<td>Gesamt</td>
<td>28</td>
<td>0,456</td>
<td>2,609</td>
<td>0,015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesezeit 150 – 300 ms</th>
<th>Gültige</th>
<th>Spearman</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>28</td>
<td>0,553</td>
<td>3,384</td>
<td>0,002</td>
</tr>
<tr>
<td>ZW</td>
<td>28</td>
<td>0,402</td>
<td>2,236</td>
<td>0,034</td>
</tr>
<tr>
<td>T</td>
<td>28</td>
<td>0,518</td>
<td>3,086</td>
<td>0,005</td>
</tr>
<tr>
<td>WUÄPW</td>
<td>28</td>
<td>0,605</td>
<td>3,871</td>
<td>0,001</td>
</tr>
<tr>
<td>WÄPW</td>
<td>28</td>
<td>0,387</td>
<td>2,143</td>
<td>0,042</td>
</tr>
<tr>
<td>Gesamt</td>
<td>28</td>
<td>0,497</td>
<td>2,919</td>
<td>0,007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rechtschreibfehler 150 – 300 ms</th>
<th>Gültige</th>
<th>Spearman</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>orthographisch</td>
<td>28</td>
<td>0,582</td>
<td>3,652</td>
<td>0,001</td>
</tr>
<tr>
<td>nicht-lauttreu</td>
<td>28</td>
<td>0,348</td>
<td>1,890</td>
<td>0,070</td>
</tr>
<tr>
<td>Groß-/Kleinschreibung</td>
<td>28</td>
<td>-0,027</td>
<td>-0,140</td>
<td>0,890</td>
</tr>
<tr>
<td>Gesamt</td>
<td>28</td>
<td>0,503</td>
<td>2,971</td>
<td>0,006</td>
</tr>
</tbody>
</table>

Im Zeitintervall 300-450 ms ergibt sich ein nahezu identisches Ergebnis. Es ergeben sich keine signifikanten Ergebnisse hinsichtlich der gemachten Lesefehler in den Untertests Häufige Wörter und Zusammengesetzte Wörter.

So weisen die Gesamtlesefehler eine Korrelation (r=0,475, p=.01), sowie neben allen Subtests (Tab. 7) die Gesamtlesezeit (r=0,482, p<.01) eine signifikante, positiv gerichtete Korrelation auf.

Für den Rechtschreibteil des SLRT ergeben sich, wie schon im Zeitintervall 150-300 ms signifikante Korrelationen für orthographische (r=0,435, p=.021), nicht-lauttreue Fehler (r=0,396, p=.037) und die Gesamtlesefahrzahl (r=0,401, p=.034), bei weiterhin fehlender Korrelation für die Fehler der Groß- und Kleinschreibung.

Es korrelieren also die Rechtschreibleistungen mit phonologischem Hintergrund, hingegen nicht die Regelfehler der Groß- und Kleinschreibung mit den EEG-Daten.
3. Ergebnisse

Tab. 7: Korrelationstabelle zwischen elektrophysiologischen Daten an den Elektrodenpositionen C3/C4 und Ergebnissen im Salzburger Lese-Rechtschreibtest (SLRT) für Versuchs- und Kontrollgruppe im Intervall 300-450 ms.

<table>
<thead>
<tr>
<th>Lesefehler</th>
<th>Gültige</th>
<th>Spearman</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 – 450 ms</td>
<td>n</td>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW</td>
<td>28</td>
<td>0,346</td>
<td>1,882</td>
<td>0,071</td>
</tr>
<tr>
<td>ZW</td>
<td>28</td>
<td>0,283</td>
<td>1,502</td>
<td>0,145</td>
</tr>
<tr>
<td>T</td>
<td>28</td>
<td>0,277</td>
<td>1,469</td>
<td>0,154</td>
</tr>
<tr>
<td>WUÄPW</td>
<td>28</td>
<td>0,416</td>
<td>2,331</td>
<td>0,028</td>
</tr>
<tr>
<td>WÄPW</td>
<td>28</td>
<td>0,360</td>
<td>1,966</td>
<td>0,060</td>
</tr>
<tr>
<td>Gesamt</td>
<td>28</td>
<td>0,475</td>
<td>2,751</td>
<td>0,011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesezeit</th>
<th>Gültige</th>
<th>Spearman</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 – 450 ms</td>
<td>n</td>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW</td>
<td>28</td>
<td>0,477</td>
<td>2,765</td>
<td>0,010</td>
</tr>
<tr>
<td>ZW</td>
<td>28</td>
<td>0,388</td>
<td>2,149</td>
<td>0,041</td>
</tr>
<tr>
<td>T</td>
<td>28</td>
<td>0,460</td>
<td>2,641</td>
<td>0,014</td>
</tr>
<tr>
<td>WUÄPW</td>
<td>28</td>
<td>0,566</td>
<td>3,504</td>
<td>0,002</td>
</tr>
<tr>
<td>WÄPW</td>
<td>28</td>
<td>0,485</td>
<td>2,825</td>
<td>0,009</td>
</tr>
<tr>
<td>Gesamt</td>
<td>28</td>
<td>0,482</td>
<td>2,808</td>
<td>0,009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rechtschreibfehler</th>
<th>Gültige</th>
<th>Spearman</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 – 450 ms</td>
<td>n</td>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>orthographisch</td>
<td>28</td>
<td>0,435</td>
<td>2,463</td>
<td>0,021</td>
</tr>
<tr>
<td>nicht-lauttreu</td>
<td>28</td>
<td>0,396</td>
<td>2,198</td>
<td>0,037</td>
</tr>
<tr>
<td>Groß-/Kleinschreibung</td>
<td>28</td>
<td>0,208</td>
<td>1,084</td>
<td>0,288</td>
</tr>
<tr>
<td>Gesamt</td>
<td>28</td>
<td>0,401</td>
<td>2,235</td>
<td>0,034</td>
</tr>
</tbody>
</table>

3.2.5 Vergleich der EEG-Daten (Sprachstimuli) mit Ergebnissen dem psychometrischen Testverfahren zur Überprüfung der phonologischen Bewusstsein – „Basiskompetenzen für Lese-Rechtschreibleistungen“ (BAKO)

Bei der Betrachtung eines möglichen Zusammenhanges zwischen den elektrophysiologischen Daten und den Ergebnissen des BAKO ergeben sich nachfolgende Resultate.

Im Einzelnen zeigen sich Korrelationen für die Aufgaben der Vokalersetzung, der Vokallänge, der Wortumkehr und der Restwortbestimmung, welche sich im zweiten Zeitintervall nicht mehr zeigt (siehe Tabellen 8 und 9).

Tab. 8: Korrelationstabelle zwischen elektrophysiologischen Daten an den Elektrodenpositionen C3/C4 und den Ergebnissen des Tests „Basiskompetenzen für Lese-Rechtschreibleistungen“ im Zeitintervall 150-300 ms.

<table>
<thead>
<tr>
<th>Gültige</th>
<th>Spearman</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowortsegmentierung</td>
<td>28</td>
<td>0,267</td>
<td>1,411</td>
</tr>
<tr>
<td>Vokalersetzung</td>
<td>28</td>
<td>0,482</td>
<td>2,803</td>
</tr>
<tr>
<td>Restwortbestimmung</td>
<td>28</td>
<td>0,406</td>
<td>2,264</td>
</tr>
<tr>
<td>Phonemvertauschung</td>
<td>28</td>
<td>0,320</td>
<td>1,721</td>
</tr>
<tr>
<td>Lautkategorisierung</td>
<td>28</td>
<td>0,307</td>
<td>1,647</td>
</tr>
<tr>
<td>Vokallänge</td>
<td>28</td>
<td>0,405</td>
<td>2,261</td>
</tr>
<tr>
<td>Wortumkehr</td>
<td>28</td>
<td>0,420</td>
<td>2,358</td>
</tr>
<tr>
<td>Gesamtpunkte</td>
<td>28</td>
<td>0,374</td>
<td>2,055</td>
</tr>
</tbody>
</table>

Tab. 9: Korrelationstabelle zwischen elektrophysiologischen Daten an den Elektrodenpositionen C3/C4 und den Ergebnissen des Tests „Basiskompetenzen für Lese-Rechtschreibleistungen“ im Zeitintervall 300-450 ms.

<table>
<thead>
<tr>
<th>Gültige</th>
<th>Spearman</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowortsegmentierung</td>
<td>28</td>
<td>0,176</td>
<td>0,914</td>
</tr>
<tr>
<td>Vokalersetzung</td>
<td>28</td>
<td>0,436</td>
<td>2,471</td>
</tr>
<tr>
<td>Restwortbestimmung</td>
<td>28</td>
<td>0,189</td>
<td>0,981</td>
</tr>
<tr>
<td>Phonemvertauschung</td>
<td>28</td>
<td>0,335</td>
<td>1,816</td>
</tr>
<tr>
<td>Lautkategorisierung</td>
<td>28</td>
<td>0,365</td>
<td>2,000</td>
</tr>
<tr>
<td>Vokallänge</td>
<td>28</td>
<td>0,488</td>
<td>2,848</td>
</tr>
<tr>
<td>Wortumkehr</td>
<td>28</td>
<td>0,433</td>
<td>2,452</td>
</tr>
<tr>
<td>Gesamtpunkte</td>
<td>28</td>
<td>0,382</td>
<td>2,109</td>
</tr>
</tbody>
</table>

Die erreichte Gesamtpunktzahl im BAKO zeigt im Vergleich mit der MMN im ersten Zeitintervall 150-300 ms (r=0,374, p=.05) und im zweiten Zeitintervall 300-450 ms (r=0,382, p=.045) einen signifikanten Zusammenhang mit den elektrophysiologischen Daten der EEG-Messung hinsichtlich der verwendeten Sprachstimuli.
4. Diskussion

Die phonologische Bewusstheit, die bewusste phonologische Verarbeitung von Lauten, bildet die dritte Stufe im Modell der überprüfbaren Ebenen der LRS-Symptomatik (SCHULTE-KÖRNE et al. 1999b). Der Aufbau der Studie erfolgte in umgekehrter Reihenfolge des o.g. Stufenmodells, nachdem die auf einer basalen auditiven Verarbeitungsstörung basierenden schlechteren Lese-Rechtschreibleistungen zunächst mittels dem SLRT festgestellt, die phonologische Ebene durch den BAKO und zuletzt die präattentive und automatische Verarbeitung von auditiven Stimuli mittels EEG unter Verwendung der MMN untersucht wurden.

Im Nachfolgenden soll zunächst auf die einzelnen Testebenen eingegangen werden, bevor die Ergebnisse der durchgeführten Studie abschließend und zusammenfassend diskutiert werden.
4. Diskussion

4.1 CFT-1
Die Ergebnisse zeigen, dass sich die Gruppen mit und ohne LRS, gemäß den Einschlusskriterien, hinsichtlich ihres nonverbalen IQs nicht signifikant unterscheiden. Die Ergebnisse der Probanden liegen nach der Definition im Studienaufbau über einem IQ 85. Die Werte aller Probanden liegen im durchschnittlichen Bereich (IQ > 100).

4.2 SLRT

Während ein Zusammenhang zwischen Lesezeit und gemachten Lesefehlern auf die benötigte Korrekturzeit der Kinder zurückgeführt werden könnte, so ist die Untersuchung auf einen Zusammenhang zwischen Lesezeit und der Rechtschreibenleistung deutlich interessanter.

Die Korrelation zwischen Lese- und Rechtschreibenleistung zeigt einen signifikanten Zusammenhang (r =.644; p<.05) für alle Probanden, die aufgrund ihres normwertigen IQs in die Studie eingeschlossen wurden. Dieser Zusammenhang zwischen der Lese- und der Rechtschreibenleistung ist insbesondere typisch für Kinder mit LRS. Im Erwachsenenalter hingegen zeigen Betroffene bei konstant schlechter Rechtschreibenleistung (KLICPERA et al. 1993; ESSER und SCHMIDT 1993) eine relative Verbesserung der Leistung bis auf ein mittleres Niveau, so dass mit zunehmendem Alter die Auffälligkeiten in Bezug auf die Leistung in den Hintergrund treten, die verminderte Rechtschreibenleistung jedoch weiterhin besteht.
4.2.1 Leseteil des SLRT

4.2.2 Rechtschreibteil des SLRT
Die elektrophysiologischen Daten sowie die der psychometrischen Tests belegen jedoch eindeutig die Bedeutung der phonologischen Ebene.
4.3 Die Phonologische Bewusstheit überprüft mit dem BAKO

Es wird davon ausgegangen, dass eine Graphem-Phonem-Korrespondenz zum Leseerwerb vorhanden sein muss, so dass, wenn Phoneme nur ungenügend gespeichert oder defizitär verarbeitet werden, als Konsequenz auch nur eine geringe Lese-Rechtschreibleistung erzielt werden kann (RAMUS 2001; RAMUS 2003).

4.4 Elektrophysiologische Daten

4.4.1 MMN bei Sinustönen und Sprachreizen

Die Ergebnisse dieser Studie zeigen lediglich für das verwendete Sprachstimulusmaterial signifikante Unterschiede zwischen der Defizit- und der Kontrollgruppe, jedoch nicht für das Sinustonmaterial. Man kann also davon ausgehen, dass es sich um ein sprachspezifisches Defizit der auditiven Verarbeitung handelt.

Die MMN ist eine auditorische, ereigniskorrelierte Komponente, welche ihr Maximum im Bereich von 100 - 150 ms nach Stimulusonset erreicht (BERTOLI et al. 2001; KUJALA et al. 2001), jedoch ist diese auch abhängig vom Alter der Probanden, so dass einige Untersuchungen zeigen konnten, dass die MMN bei Kindern durchaus deutlich später als beim Erwachsenen auftreten kann. Studien wiesen ein Maximum der MMN bei Kindern im Bereich von 300 - 450 ms auf (KRAUS et al. 1996; SCHULTE-KÖRNE et al. 1998b).
Dies kann durch die erhobenen Daten bestätigt werden, da das Maximum der MMN im zweiten ausgewerteten Zeitintervall (300-450 ms) gefunden wurde.

Die aus MMN-Studien vorliegenden Ergebnisse sind sehr inhomogen (BISHOP 2007). Es kristallisieren sich zwei Theorien heraus, die eine legt einer LRS ein generelles auditives Verarbeitungsdefizit zu Grunde, die andere beschreibt ein sprachspezifisches Defizit. Was schlussendlich ursächlich für die Entstehung einer LRS ist, kann zum aktuellen Zeitpunkt noch nicht endgültig geklärt werden.

In einer Studie konnten BALDEWEG et al. (1999) zeigen, dass auch Erwachsene mit Leseschwäche kleine Tonunterschiede nicht differenzieren konnten. In dieser Untersuchung zeigten die beiden Gruppen keinen signifikanten Unterschied bei der elektrophysiologischen Antwort auf die Tonstimuli.

Auch wenn der absolute Frequenzunterschied mit 440 Hz noch größer als bei dem verwendeten Sinustonmaterial (500 vs. 750 Hz) in dieser Untersuchung ist, so ist die Auswirkung auf die Tonhöhe geringer. Eine Verdopplung der Frequenz führt zu einer Verdopplung der Tonhöhe. So ist also für das menschliche Gehör der subjektive Eindruck einer Frequenzänderung um 440 Hz bei einer Ausgangsfrequenz von 2200 Hz geringer, als eine Differenz von 250 Hz bei einer ursprünglichen Frequenz von 500 Hz.

Es kann sicherlich keine absolute Differenzschwelle angegeben werden, die ein mögliches Defizit aufzeigen kann, vielmehr muss, wenn überhaupt, von einer relativen Tonhöhenänderung ausgegangen werden.

In einer weiteren Untersuchung zum auditiven Verarbeitungsdefizit untersuchten SCHULTE-KÖRNE et al. (1999a) erwachsene Probanden mit Dyslexie und präsentierten ihnen, sich schnell ändernde Tonfolgemuster in fester Reihefolge, die aus vier Tönen mit unterschiedlichen Frequenzen und unterschiedlicher Dauer bestanden. In der abweichenden Bedingung wurde die Tonlänge bei gleichbleibender Tonhöhe geändert. Hier zeigten auch bei diesen nicht-sprachlichen Reizen die Probanden mit Dyslexie im Vergleich zur Kontrollgruppe eine reduzierte MMN.

Für Änderungen der Zeitdauer eines Stimulus in der abweichenden Bedingung fanden BALDEWEG et al. (1999) in ihrer Untersuchung kein Korrelat. Die Kontroll- und LRS-Gruppe wiesen keine signifikanten Unterschiede auf. Hingegen konnten sie bei Tönen mit einer Länge von 50 ms eine verminderte MMN für die Probanden mit einer LRS nachweisen, wenn sich die Tonhöhe in der abweichenden Bedingung unterschied. Der Unterschied zur Kontrollgruppe wurde umso größer, je geringer der Frequenzunterschied zwischen Standard- und abweichendem Ton war. Der Effekt zeigte sich also lediglich bei Aufgaben der
Frequenzdiskriminierung, jedoch nicht bei Aufgaben, welche das zeitliche Auflösungsvermögen der Probanden überprüfte.

In der aktuell durchgeführten Studie konnte mit der MMN lediglich ein signifikanter Unterschied für das verwendete sprachliche Stimulusmaterial nachgewiesen werden.
Dass es sich um ein sprachspezifisches Defizit handelt, bestätigen die Ergebnisse von SERNICLAES et al. (2001), die gezeigt haben, indem sie den Kindern zum einen Sinustöne, zum anderen Sprachstimuli präsentierten. Die Kinder mit LRS schnitten bei den sprachlichen Stimuli schlechter ab, erzielten hingegen bei den Tonstimuli bessere Ergebnisse als die Kinder der Kontrollgruppe.

Abschließend kann zum aktuellen Zeitpunkt aufgrund der Studienlage nicht differenziert werden, ob es sich tatsächlich um ein sprachspezifisches Defizit oder ein generelles auditives Verarbeitungsdefizit handelt, da aufgrund von Untersuchungsbedingungen, unterschiedlichen Probandenkollektiven und verwendeten Stimuli, die dokumentierten Ergebnisse sehr inhomogen sind. Interessant diesbezüglich sind sicherlich Untersuchungen, die verschiedene Verfahren wie EEG und MRT kombinieren oder MEG-Studien, um zum einen die hohe zeitliche Auflösung des einen Verfahrens mit der Bildgebung des anderen zu kombinieren und komplexere Fragestellungen sicherlich mittels MRT klarer darzulegen sind.

4.4.2 Vergleich der elektrophysiologischen Daten mit den psychometrischen Daten aus den einzelnen Testverfahren

Bei der anschließenden Betrachtung der erhobenen Daten ergeben sich signifikante Korrelationen für den SLRT im ersten Zeitintervall in Bezug auf die Gesamtlesezeit, die Gesamtlesefehler und die Rechtschreibfehler, untergliedert in orthographische und nicht-lauttreue Fehler. Erwartungsgemäß ergibt sich keine signifikante Korrelation für die Fehler der Groß-/Kleinschreibung, da hier Regelfehler und weniger Fehler, welche auf ein auditives Defizit zurückzuführen sind, ausschlaggebend sind. Im Zeitintervall 300-450 ms nach Stimulusonset ergeben sich ähnliche Ergebnisse.

Interessanterweise, werden aber im Rahmen der Therapie einer LRS neben dem Training basaler kognitiver Funktionen, dem Re-Programmieren neurologischer Defizite (z.B. Hörtraining) auch Regeltrainings angewendet (DUMONT, 1990), so dass davon ausgegangen werden muss, dass diese nicht das zu Grunde liegende Defizit im Fokus haben, sondern lediglich symptomatisch die LRS versuchen zu kompensieren.

Die Korrelationen zeigen einen signifikanten Zusammenhang zwischen einem auditiven Defizit bei der zentralen präattentiven Verarbeitung einfacher akustischer Sprachstimuli und der daraus resultierenden Lese-/Rechtschreibleistung.

Bei der Betrachtung der EEG-Ergebnisse im Vergleich zu den phonologischen Aufgaben des BAKO, zeigen sich neben dem signifikanten Ergebnis in Bezug auf die erreichte Gesamtpunktzahl, signifikante Zusammenhänge bei den Aufgaben wie der Vokalersetzung, der Vokallängenbestimmung und der Restwortbestimmung, jedoch nicht für die Pseudowortsegmentierung, Phonemvertauschungsaufgaben sowie die Lautkategorisierung.

Bei den Aufgaben, die einen signifikanten Zusammenhang aufweisen, handelt es sich um Aufgaben auf ganz basaler Ebene der phonologischen Verarbeitung. Es sind die Aufgaben des BAKO, welche lediglich eine ganz einfache Aufgabenstellung wie die Vokalersetzung beinhalten, in der jedes in einem Wort vorkommende „a“ in ein „i“ umgewandelt und das sich daraus ergebende Wort wiedergegeben werden muss, Aufgaben der Restwortbestimmung in denen das Wort jeweils ohne sein Anfangsphonem gebildet werden muss, ein Wort, welches aufgrund seiner Vokallänge aus einer Reihe von vier Worten heraus sticht, gefunden werden muss und die Wortumkehr.
Es sind also Aufgaben die primär auf ein kategorales Wahrnehmungsdefizit zurückzuführen sind. Einige Autoren sind der Meinung, dass einer LRS ein Defizit bei der Sprachwahrnehmung zugrunde liegt und die zuverlässige Unterscheidung von Phonemen vermindert ist (JOANISSE et al. 2000; MODY et al. 1997).

Dies würde die gewonnen EEG-Daten stützen, da die defizitäre Gruppe lediglich bei den sprachlichen Stimuli eine signifikant geringere MMN aufweist als die unauffälligen Kontrollprobanden.

Die Ergebnisse könnten derart interpretiert werden, dass die Leistungen in den oben genannten Subtests des BAKO mit der MMN korrelieren, da diese direkt auf einer gestörten Phonem-Wahrnehmung beruhen.

Die Ansprüche an die phonologische Rekodierungsfähigkeit sind geringer als bei den Aufgaben, die neben der phonologischen Ebene auch hohe Anforderungen an das deklative Gedächtnis stellen.

Hierzu zählen Subtests des BAKO wie die Pseudowortsegmentierung, bei der das vorgegebene Non-Wort in seine einzelnen Phoneme zerlegt werden muss. Die eine Komponente fordert auf sprachlicher Ebene die Fähigkeit zur Untergliederung der einzelnen Worte, die andere stellt Anforderungen an die Gedächtnisleistung, sich ein Non-Wort während der Aufgabenstellung merken zu können.

Diese Aufgabe lassen sich also nicht lediglich direkt auf ein basales Wahrnehmungsdefizit zurückführen, sondern es handelt sich um deutlich komplexere Aufgabenstellungen. Es sind Aufgaben, die zwar die phonologische Verarbeitungsfähigkeit des Probanden prüfen, jedoch auf höherer Stufe, welche sicherlich abhängig ist von der basalen auditiven Wahrnehmung, jedoch ebenso von vielen anderen Einflussfaktoren wie der phonologischen De- und Rekodierungsfähigkeit und somit nicht mit den gewonnenen elektrophysiologischen Daten korrelieren.
5. Zusammenfassung

Zum einen konnte ein deutlicher Zusammenhang zwischen der phonologischen Leistung und dem Lese-Rechtschreibniveau aufgezeigt werden, zum anderen zeigte der Vergleich der psychometrischen Testergebnisse mit den elektrophysiologischen Daten einen signifikanten Zusammenhang der basalen, präattentiven auditiven Verarbeitung von Sprachlauten, der Lese-Rechtschreibleistung und den phonologischen Leistungen in einzelnen Subtests des BAKO (Basiskompetenzen für Lese-Rechtschreibleistungen). Es kann also davon ausgegangen werden, dass bei einem Großteil der leserechtschreibschwachen Kinder ein sprachspezifisches Wahrnehmungsdefizit zugrunde liegt.

Diesen Punkt gilt es weiterhin zu klären und ist Grundlage der aktuellen Forschung, so dass weitere Studien, in denen verschiedene Untersuchungsmethoden kombiniert werden, sicherlich Aufschluss darüber liefern werden.

Für die Praxis gilt, es sollte bereits frühzeitig interveniert werden. Es ist gesichert, dass bei Kindern, die im Vorschulalter mindere Leistungen bei phonologischen Aufgaben erzielen, die Leseleistung im Grundschulalter durch ein spezifisch phonologisches Training verbessert werden kann. Durch ein solches Training kann die phonologische Bewusstheit gestärkt und somit die für das Rechtschreiben wichtige phonologische De- und Rekodierungsfähigkeit trainiert werden. Der Einfluss derartiger Frühinterventionen auf die elektrophysiologischen Korrelate der Lese-Rechtschreibstörung ist Gegenstand der aktuellen Forschung.
6. Literaturverzeichnis

6. Bishop DV: Using mismatch negativity to study central auditory processing in developmental language and literacy impairments: where are we, and where should we be going? Psychol Bull 133: 652-672 (2007)

81. Szczulski PA, Manis FR: A comparison of word recognition processes in
dyslexic and normal readers at two reading-age levels. J Exp Child Psychol

82. Tallal P: Auditory temporal perception, phonics, and reading disabilities in

83. Tallal P, Miller S, Fitch RH: Neurobiological basis of speech: a case for the

84. Temple E, Tallal P, Merzenich M: Disruption of the neural response to rapid
acoustic stimuli in dyslexia: Evidence from functional MRI. Proc Natl Acad Sci
USA 97: 13907-13912 (2000)

85. Temple E: Brain mechanisms in normal and dyslexic readers. Curr Opin

86. Vellutino FR, Scanlon DM: Phonological coding, phonological awareness, and
reading ability: Evidence from a longitudinal and experimental study. Merrill

87. Wagner R, Torgesen J: The nature of phonological processing and its causal
role in the acquisition of reading skills. Psychol Bull 101: 192-212 (1987)

Schulte-Körne G, Plume E: Umschriebene Entwicklungsstörungen schulischer
Fertigkeiten. In: Deutsche Gesellschaft für Kinder- und Jugendpsychiatrie und
Psychotherapie u.a. (Hrsg.) Leitlinien zur Diagnostik und Therapie von
psychischen Störungen im Säuglings-, Kindes- und Jugendalter,

89. Warnke A: Umschriebene Entwicklungsstörungen (Teilleistungsstörungen). In:
Remschmidt H (Hrsg.) Kinder- und Jugendpsychiatrie. Eine praktische

Anhang

Tab. 10: Mittelwerte für Kontroll- und Versuchsgruppe der einzelnen Fehlerarten des Rechtschreibteils des Salzburger Lese-Rechtschreibtests

<table>
<thead>
<tr>
<th>Fehler [n]</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF M (SD)</td>
<td>2,31 (1,35)</td>
<td>17,82 (5,74)</td>
<td><.001</td>
</tr>
<tr>
<td>NF M (SD)</td>
<td>0,13 (0,34)</td>
<td>1,64 (1,33)</td>
<td><.001</td>
</tr>
<tr>
<td>GF M (SD)</td>
<td>0,63 (0,81)</td>
<td>3,41 (4,08)</td>
<td>.01</td>
</tr>
</tbody>
</table>

M: Mittelwert, SD: Standardabweichung, p: statistische Signifikanz
orthographische Fehler (OF), nicht-lauttreue Fehler (NF), Fehler der Groß-/Kleinschreibung (GF)

Tab. 11: Mittelwerte für Kontroll- und Versuchsgruppe der einzelnen Subtests und der Gesamtpunkte des Tests „Basiskompetenzen für Lese-Rechtschreibleistungen“

<table>
<thead>
<tr>
<th>Kategorie [Pkt.]</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowörter M (SD)</td>
<td>6,31 (1,45)</td>
<td>3,91 (1,11)</td>
<td><.001</td>
</tr>
<tr>
<td>Vokalersetzung M (SD)</td>
<td>11,00 (0,82)</td>
<td>4,55 (2,56)</td>
<td><.001</td>
</tr>
<tr>
<td>Restwörter M (SD)</td>
<td>6,75 (0,45)</td>
<td>4,18 (1,44)</td>
<td><.001</td>
</tr>
<tr>
<td>Phonemvertauschung M (SD)</td>
<td>9,38 (1,15)</td>
<td>5,45 (1,82)</td>
<td><.001</td>
</tr>
<tr>
<td>Lautkategorisierung M (SD)</td>
<td>7,13 (0,81)</td>
<td>4,23 (1,72)</td>
<td><.001</td>
</tr>
<tr>
<td>Vokallänge M (SD)</td>
<td>7,81 (1,60)</td>
<td>3,00 (1,45)</td>
<td><.001</td>
</tr>
<tr>
<td>Wortumkehr M (SD)</td>
<td>14,88 (1,54)</td>
<td>5,41 (2,70)</td>
<td><.001</td>
</tr>
<tr>
<td>Gesamt M (SD)</td>
<td>63,25 (2,41)</td>
<td>31,00 (6,53)</td>
<td><.001</td>
</tr>
</tbody>
</table>

M: Mittelwert, SD: Standardabweichung, p: statistische Signifikanz

Tab. 12: Mittelwerte und Standardabweichungen der mittleren ereigniskorrelierten Potentiale im Intervall 100-250 ms nach Stimulusonset für das Stimuluspaar /500 Hz/ vs. /750 Hz/

<table>
<thead>
<tr>
<th>Elektrodenposition</th>
<th>Stimulus</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-0,20 (0,97)</td>
<td>-0,52 (1,15)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,79 (1,72)</td>
<td>-2,13 (1,83)</td>
</tr>
<tr>
<td>FC3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,56 (1,11)</td>
<td>0,01 (1,48)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>0,19 (1,99)</td>
<td>-1,51 (1,98)</td>
</tr>
<tr>
<td>C3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,17 (0,94)</td>
<td>-0,13 (1,69)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,02 (2,10)</td>
<td>-0,79 (2,37)</td>
</tr>
<tr>
<td>F4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-0,15 (0,78)</td>
<td>-0,80 (1,16)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,72 (1,92)</td>
<td>-1,98 (2,47)</td>
</tr>
<tr>
<td>FC4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,70 (1,03)</td>
<td>-0,04 (1,90)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,22 (1,79)</td>
<td>-0,89 (2,32)</td>
</tr>
<tr>
<td>C4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,50 (1,22)</td>
<td>0,04 (2,00)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>0,19 (1,63)</td>
<td>-0,10 (1,67)</td>
</tr>
</tbody>
</table>

M: Mittelwert, SD: Standardabweichung
Tab. 13: Mittelwerte und Standardabweichungen der mittleren ereigniskorrelierten Potentiale im Intervall 250-400 ms nach Stimulusonset für das Stimuluspaar /500 Hz/ vs. /750 Hz/

<table>
<thead>
<tr>
<th>Elektrodenposition</th>
<th>Stimulus</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-1,77 (1,12)</td>
<td>-2,58 (2,06)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,29 (2,53)</td>
<td>-1,74 (2,82)</td>
</tr>
<tr>
<td>FC3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-1,43 (1,51)</td>
<td>-2,30 (1,74)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,21 (2,93)</td>
<td>-1,39 (2,60)</td>
</tr>
<tr>
<td>C3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-0,86 (1,71)</td>
<td>-1,75 (1,50)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,30 (2,83)</td>
<td>-0,58 (2,50)</td>
</tr>
<tr>
<td>F4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-2,21 (1,28)</td>
<td>-3,12 (1,77)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-1,03 (2,71)</td>
<td>-1,82 (2,12)</td>
</tr>
<tr>
<td>FC4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-1,34 (1,70)</td>
<td>-2,58 (1,78)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-1,04 (2,75)</td>
<td>-1,32 (2,35)</td>
</tr>
<tr>
<td>C4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-0,11 (1,79)</td>
<td>-1,42 (1,49)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,18 (2,73)</td>
<td>0,14 (2,29)</td>
</tr>
</tbody>
</table>

M: Mittelwert, SD: Standardabweichung

Tab. 14: Mittelwerte und Standardabweichungen der mittleren ereigniskorrelierten Potentiale im Intervall 400-550 ms nach Stimulusonset für das Stimuluspaar /500 Hz/ vs. /750 Hz/

<table>
<thead>
<tr>
<th>Elektrodenposition</th>
<th>Stimulus</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,02 (1,01)</td>
<td>-0,60 (1,21)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,86 (2,40)</td>
<td>-1,56 (2,41)</td>
</tr>
<tr>
<td>FC3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,06 (0,82)</td>
<td>-0,65 (1,21)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,48 (2,56)</td>
<td>-1,62 (3,11)</td>
</tr>
<tr>
<td>C3 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,07 (0,72)</td>
<td>-0,67 (1,20)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>0,09 (2,39)</td>
<td>-0,79 (3,18)</td>
</tr>
<tr>
<td>F4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>-0,26 (0,81)</td>
<td>-0,80 (0,82)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,54 (2,62)</td>
<td>-1,56 (2,83)</td>
</tr>
<tr>
<td>FC4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,10 (0,81)</td>
<td>-0,80 (0,87)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>-0,68 (2,33)</td>
<td>-1,50 (3,08)</td>
</tr>
<tr>
<td>C4 M (SD) [μV]</td>
<td>/500 Hz/</td>
<td>0,43 (0,85)</td>
<td>-0,64 (0,76)</td>
</tr>
<tr>
<td></td>
<td>/750 Hz/</td>
<td>0,49 (2,15)</td>
<td>0,03 (2,64)</td>
</tr>
</tbody>
</table>

M: Mittelwert, SD: Standardabweichung
Tab. 15: Mittelwerte und Standardabweichungen der mittleren ereigniskorrelierten Potentiale im Intervall 150-300 ms nach Stimulusonset für das Stimuluspaar /ba/ vs. /da/

<table>
<thead>
<tr>
<th>Elektrodenposition</th>
<th>Stimulus</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,42 (2,21)</td>
<td>-2,51 (1,77)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-2,53 (2,48)</td>
<td>-2,43 (2,49)</td>
</tr>
<tr>
<td>FC3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,21 (1,84)</td>
<td>-2,32 (1,84)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-2,92 (1,90)</td>
<td>-2,18 (3,24)</td>
</tr>
<tr>
<td>C3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-0,92 (1,67)</td>
<td>-1,68 (2,06)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-3,00 (1,79)</td>
<td>-1,39 (3,54)</td>
</tr>
<tr>
<td>F4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,36 (1,67)</td>
<td>-2,52 (1,51)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-1,91 (1,53)</td>
<td>-2,69 (2,68)</td>
</tr>
<tr>
<td>FC4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-0,63 (1,39)</td>
<td>-1,95 (1,87)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-2,09 (1,40)</td>
<td>-2,24 (2,68)</td>
</tr>
<tr>
<td>C4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-0,07 (1,46)</td>
<td>-0,86 (2,24)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-1,73 (1,80)</td>
<td>-0,47 (2,94)</td>
</tr>
</tbody>
</table>

M: Mittelwert, SD: Standardabweichung

Tab. 16: Mittelwerte und Standardabweichungen der mittleren ereigniskorrelierten Potentiale im Intervall 300-450 ms nach Stimulusonset für das Stimuluspaar /ba/ vs. /da/

<table>
<thead>
<tr>
<th>Elektrodenposition</th>
<th>Stimulus</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,55 (1,71)</td>
<td>-2,68 (1,94)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-3,19 (2,61)</td>
<td>-3,05 (2,61)</td>
</tr>
<tr>
<td>FC3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,52 (1,57)</td>
<td>-2,57 (1,91)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-3,20 (2,68)</td>
<td>-2,87 (2,53)</td>
</tr>
<tr>
<td>C3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,09 (1,70)</td>
<td>-1,84 (2,07)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-3,19 (2,48)</td>
<td>-1,59 (2,19)</td>
</tr>
<tr>
<td>F4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,91 (1,25)</td>
<td>-2,65 (1,96)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-3,14 (1,74)</td>
<td>-3,81 (2,55)</td>
</tr>
<tr>
<td>FC4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,60 (1,17)</td>
<td>-2,56 (2,58)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-3,35 (2,05)</td>
<td>-3,37 (2,52)</td>
</tr>
<tr>
<td>C4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-0,90 (1,60)</td>
<td>-1,47 (2,81)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-2,91 (2,06)</td>
<td>-1,32 (2,36)</td>
</tr>
</tbody>
</table>

M: Mittelwert, SD: Standardabweichung
Tab. 17: Mittelwerte und Standardabweichungen der mittleren ereigniskorrelierten Potentiale im Intervall 450-600 ms nach Stimulusonset für das Stimuluspaar /ba/ vs. /da/

<table>
<thead>
<tr>
<th>Elektrodenposition</th>
<th>Stimulus</th>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,08 (1,48)</td>
<td>-1,60 (1,33)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-2,50 (2,29)</td>
<td>-2,48 (1,65)</td>
</tr>
<tr>
<td>FC3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,09 (1,26)</td>
<td>-1,52 (1,25)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-2,30 (2,72)</td>
<td>-2,00 (2,01)</td>
</tr>
<tr>
<td>C3 M (SD) [μV]</td>
<td>/ba/</td>
<td>-0,66 (1,45)</td>
<td>-0,97 (1,34)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-1,86 (3,17)</td>
<td>-0,64 (2,51)</td>
</tr>
<tr>
<td>F4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,46 (1,10)</td>
<td>-1,95 (1,00)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-3,08 (1,74)</td>
<td>-2,99 (2,39)</td>
</tr>
<tr>
<td>FC4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-1,24 (0,89)</td>
<td>-1,77 (1,31)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-2,89 (1,89)</td>
<td>-2,46 (2,51)</td>
</tr>
<tr>
<td>C4 M (SD) [μV]</td>
<td>/ba/</td>
<td>-0,51 (1,27)</td>
<td>-0,71 (1,48)</td>
</tr>
<tr>
<td></td>
<td>/da/</td>
<td>-1,98 (2,10)</td>
<td>-0,60 (2,78)</td>
</tr>
</tbody>
</table>

M: Mittelwert, SD: Standardabweichung
Tab. 18: Ergebnisse der Varianzanalyse für das Tonstimuluspaar /500 Hz/ vs. /750 Hz/ im Zeitintervall 100-250 ms nach Stimulusonset

<table>
<thead>
<tr>
<th>Effekt</th>
<th>df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischensubjektfaktor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRP</td>
<td>1</td>
<td>2,71</td>
<td>.115</td>
</tr>
<tr>
<td>Fehler</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innersubjektfaktoren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM</td>
<td>1</td>
<td>0,78</td>
<td>.387</td>
</tr>
<tr>
<td>Fehler</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*GRP</td>
<td>1</td>
<td>0,22</td>
<td>.646</td>
</tr>
<tr>
<td>Fehler</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE</td>
<td>2</td>
<td>23,73***</td>
<td>.000</td>
</tr>
<tr>
<td>ELE*GRP</td>
<td>2</td>
<td>1,77</td>
<td>.184</td>
</tr>
<tr>
<td>Fehler</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIM</td>
<td>1</td>
<td>3,14</td>
<td>.092</td>
</tr>
<tr>
<td>Fehler</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIM*GRP</td>
<td>1</td>
<td>0,36</td>
<td>.556</td>
</tr>
<tr>
<td>Fehler</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*ELE</td>
<td>2</td>
<td>1,45</td>
<td>.247</td>
</tr>
<tr>
<td>HEMELEGRP</td>
<td>2</td>
<td>0,78</td>
<td>.465</td>
</tr>
<tr>
<td>Fehler</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*STIM</td>
<td>1</td>
<td>0,14</td>
<td>.716</td>
</tr>
<tr>
<td>HEMSTIMGRP</td>
<td>1</td>
<td>0,75</td>
<td>.397</td>
</tr>
<tr>
<td>Fehler</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE*STIM</td>
<td>2</td>
<td>4,63*</td>
<td>.016</td>
</tr>
<tr>
<td>ELESTIMGRP</td>
<td>2</td>
<td>0,98</td>
<td>.386</td>
</tr>
<tr>
<td>Fehler</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMELESTIM</td>
<td>2</td>
<td>0,20</td>
<td>.820</td>
</tr>
<tr>
<td>HEMELESTIM*GRP</td>
<td>2</td>
<td>1,05</td>
<td>.358</td>
</tr>
</tbody>
</table>

*df: Freiheitsgrade, F: Testwert, p: statistische Signifikanz
ELE: Elektrodenposition, GRP: Gruppe, HEM: Hemisphäre, STIM: Stimuluspaar*
Tab. 19: Ergebnisse der Varianzanalyse für das Tonstimuluspaar /500 Hz/ vs. /750 Hz/ im Zeitintervall 250-400 ms nach Stimulusonset

<table>
<thead>
<tr>
<th>Effekt</th>
<th>df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischensubjekteffekt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRP</td>
<td>1</td>
<td>1,44</td>
<td>.244</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Innersubjekteffekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM</td>
<td>1</td>
<td>0,13</td>
<td>.720</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>HEM*GRP</td>
<td>1</td>
<td>0,32</td>
<td>.578</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ELE</td>
<td>2</td>
<td>15,99***</td>
<td>.000</td>
</tr>
<tr>
<td>ELE*GRP</td>
<td>2</td>
<td>0,61</td>
<td>.548</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>STIM</td>
<td>1</td>
<td>4,69*</td>
<td>.043</td>
</tr>
<tr>
<td>STIM*GRP</td>
<td>1</td>
<td>0,19</td>
<td>.667</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>HEM*ELE</td>
<td>2</td>
<td>11,63***</td>
<td>.000</td>
</tr>
<tr>
<td>HEMELEGRP</td>
<td>2</td>
<td>0,13</td>
<td>.874</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>HEM*STIM</td>
<td>1</td>
<td>0,05</td>
<td>.831</td>
</tr>
<tr>
<td>HEMSTIMGRP</td>
<td>1</td>
<td>1,09</td>
<td>.308</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ELE*STIM</td>
<td>2</td>
<td>1,07</td>
<td>.352</td>
</tr>
<tr>
<td>ELESTIMGRP</td>
<td>2</td>
<td>3,05</td>
<td>.058</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>HEMELESTIM</td>
<td>2</td>
<td>0,78</td>
<td>.464</td>
</tr>
<tr>
<td>HEMELESTIM*GRP</td>
<td>2</td>
<td>0,35</td>
<td>.707</td>
</tr>
</tbody>
</table>

df: Freiheitsgrade, F: Testwert, p: statistische Signifikanz
ELE: Elektrodenposition, GRP: Gruppe, HEM: Hemisphäre, STIM: Stimuluspaar
Tab. 20: Ergebnisse der Varianzanalyse für das Tonstimuluspaar /500 Hz/ vs. /750 Hz/ im Zeitintervall 400-550 ms nach Stimulusonset

<table>
<thead>
<tr>
<th>Effekt</th>
<th>df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischensubjekteffekt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRP</td>
<td>1</td>
<td>2,59</td>
<td>.123</td>
</tr>
<tr>
<td>Fehler</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innersubjekteffekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM</td>
<td>1</td>
<td>0,20</td>
<td>.663</td>
</tr>
<tr>
<td>HEM*GRP</td>
<td>1</td>
<td>0,00</td>
<td>.995</td>
</tr>
<tr>
<td>Fehler</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE</td>
<td>2</td>
<td>13,22***</td>
<td>.000</td>
</tr>
<tr>
<td>ELE*GRP</td>
<td>2</td>
<td>0,21</td>
<td>.813</td>
</tr>
<tr>
<td>Fehler</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIM</td>
<td>1</td>
<td>0,65</td>
<td>.429</td>
</tr>
<tr>
<td>STIM*GRP</td>
<td>1</td>
<td>0,00</td>
<td>.946</td>
</tr>
<tr>
<td>Fehler</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*ELE</td>
<td>2</td>
<td>3,71*</td>
<td>.033</td>
</tr>
<tr>
<td>HEMELEGRP</td>
<td>2</td>
<td>0,13</td>
<td>.877</td>
</tr>
<tr>
<td>Fehler</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*STIM</td>
<td>1</td>
<td>0,29</td>
<td>.597</td>
</tr>
<tr>
<td>HEMSTIMGRP</td>
<td>1</td>
<td>0,08</td>
<td>.783</td>
</tr>
<tr>
<td>Fehler</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE*STIM</td>
<td>2</td>
<td>11,80***</td>
<td>.000</td>
</tr>
<tr>
<td>ELESTIMGRP</td>
<td>2</td>
<td>0,84</td>
<td>.441</td>
</tr>
<tr>
<td>Fehler</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMELESTIM</td>
<td>2</td>
<td>0,84</td>
<td>.439</td>
</tr>
<tr>
<td>HEMELESTIM*GRP</td>
<td>2</td>
<td>1,48</td>
<td>.239</td>
</tr>
</tbody>
</table>

df: Freiheitsgrade, F: Testwert, p: statistische Signifikanz
ELE: Elektrodenposition, GRP: Gruppe, HEM: Hemisphäre, STIM: Stimuluspaar
Tab. 21: Ergebnisse der Varianzanalyse für das Sprachstimuluspaar /ba/ vs. /da/ im Zeitintervall 150-300 ms nach Stimulusonset

<table>
<thead>
<tr>
<th>Effekt</th>
<th>df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischensubjekteffekt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRP</td>
<td>1</td>
<td>0,20</td>
<td>.662</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innersubjekteffekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM</td>
<td>1</td>
<td>4,68*</td>
<td>.040</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*GRP</td>
<td>1</td>
<td>0,75</td>
<td>.395</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE</td>
<td>2</td>
<td>12,50***</td>
<td>.000</td>
</tr>
<tr>
<td>ELE*GRP</td>
<td>2</td>
<td>4,31*</td>
<td>.019</td>
</tr>
<tr>
<td>Fehler</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIM</td>
<td>1</td>
<td>5,29*</td>
<td>.030</td>
</tr>
<tr>
<td>STIM*GRP</td>
<td>1</td>
<td>6,50*</td>
<td>.017</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*ELE</td>
<td>2</td>
<td>7,95**</td>
<td>.001</td>
</tr>
<tr>
<td>HEMELEGRP</td>
<td>2</td>
<td>0,39</td>
<td>.680</td>
</tr>
<tr>
<td>Fehler</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*STIM</td>
<td>1</td>
<td>0,23</td>
<td>.636</td>
</tr>
<tr>
<td>HEMSTIMGRP</td>
<td>1</td>
<td>1,79</td>
<td>.193</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE*STIM</td>
<td>2</td>
<td>1,22</td>
<td>.304</td>
</tr>
<tr>
<td>ELESTIMGRP</td>
<td>2</td>
<td>3,45*</td>
<td>.039</td>
</tr>
<tr>
<td>Fehler</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMELESTIM</td>
<td>2</td>
<td>0,82</td>
<td>.445</td>
</tr>
<tr>
<td>HEMELESTIM*GRP</td>
<td>2</td>
<td>0,41</td>
<td>.665</td>
</tr>
</tbody>
</table>

df: Freiheitsgrade, F: Testwert, p: statistische Signifikanz
ELE: Elektrodenposition, GRP: Gruppe, HEM: Hemisphäre, STIM: Stimuluspaar
Tab. 22: Ergebnisse der Varianzanalyse für das Sprachstimuluspaar /ba/ vs. /da/ im Zeitintervall 300-450 ms nach Stimulusonset

<table>
<thead>
<tr>
<th>Effekt</th>
<th>df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischensubjekteffekt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRP</td>
<td>1</td>
<td>0,09</td>
<td>.763</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innersubjekteffekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM</td>
<td>1</td>
<td>0,05</td>
<td>.832</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*GRP</td>
<td>1</td>
<td>0,03</td>
<td>.867</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE</td>
<td>2</td>
<td>12,99***</td>
<td>.000</td>
</tr>
<tr>
<td>ELE*GRP</td>
<td>2</td>
<td>3,91*</td>
<td>.026</td>
</tr>
<tr>
<td>Fehler</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIM</td>
<td>1</td>
<td>9,53**</td>
<td>.005</td>
</tr>
<tr>
<td>STIM*GRP</td>
<td>1</td>
<td>3,96</td>
<td>.057</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*ELE</td>
<td>2</td>
<td>6,66**</td>
<td>.003</td>
</tr>
<tr>
<td>HEMELEGRP</td>
<td>2</td>
<td>0,47</td>
<td>.626</td>
</tr>
<tr>
<td>Fehler</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*STIM</td>
<td>1</td>
<td>0,24</td>
<td>.627</td>
</tr>
<tr>
<td>HEMSTIMGRP</td>
<td>1</td>
<td>0,87</td>
<td>.358</td>
</tr>
<tr>
<td>Fehler</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE*STIM</td>
<td>2</td>
<td>0,48</td>
<td>.619</td>
</tr>
<tr>
<td>ELESTIMGRP</td>
<td>2</td>
<td>6,39**</td>
<td>.003</td>
</tr>
<tr>
<td>Fehler</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMELESTIM</td>
<td>2</td>
<td>0,53</td>
<td>.591</td>
</tr>
<tr>
<td>HEMELESTIM*GRP</td>
<td>2</td>
<td>1,83</td>
<td>.171</td>
</tr>
<tr>
<td>Fehler</td>
<td>52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

df: Freiheitsgrade, F: Testwert, p: statistische Signifikanz

ELE: Elektrodenposition, GRP: Gruppe, HEM: Hemisphäre, STIM: Stimuluspaar
Tab. 23: Ergebnisse der Varianzanalyse für das Sprachstimuluspaar /ba/ vs. /da/ im Zeitintervall 450-600 ms nach Stimulusonset

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwischensubjeckteffekt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRP</td>
<td>1</td>
<td>0.03</td>
<td>.854</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innersubjeckteffekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM</td>
<td>1</td>
<td>1.71</td>
<td>.202</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*GRP</td>
<td>1</td>
<td>0.03</td>
<td>.853</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE</td>
<td>2</td>
<td>24.70***</td>
<td>.000</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE*GRP</td>
<td>2</td>
<td>2.58</td>
<td>.085</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIM</td>
<td>1</td>
<td>5.09*</td>
<td>.033</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIM*GRP</td>
<td>1</td>
<td>1.41</td>
<td>.246</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*ELE</td>
<td>2</td>
<td>11.98***</td>
<td>.000</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMELEGRP</td>
<td>2</td>
<td>0.13</td>
<td>.876</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEM*STIM</td>
<td>1</td>
<td>0.50</td>
<td>.485</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMSTIMGRP</td>
<td>1</td>
<td>0.02</td>
<td>.886</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE*STIM</td>
<td>2</td>
<td>3.84*</td>
<td>.028</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELESTIMGRP</td>
<td>2</td>
<td>2.07</td>
<td>.137</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMELESTIM</td>
<td>2</td>
<td>0.14</td>
<td>.868</td>
</tr>
<tr>
<td>Fehler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMELESTIM*GRP</td>
<td>2</td>
<td>0.09</td>
<td>.915</td>
</tr>
</tbody>
</table>

df: Freiheitsgrade, F: Testwert, p: statistische Signifikanz
ELE: Elektrodenposition, GRP: Gruppe, HEM: Hémisphére, STIM: Stimuluspaar
Tab. 24: Korrelationstabelle der Ergebnisse im Salzburger Lese-Rechtschreibtest zur mismatch negativity ausgelöst durch das Sprachstimuluspaar /ba/ vs. /da/ an den einzelnen Elektrodenpositionen im Zeitintervall 150-300 ms nach Stimulusonset.

<table>
<thead>
<tr>
<th>Leseteil des SLRT</th>
<th>Gültige n</th>
<th>Spearman r</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWF & F 3/4</td>
<td>28</td>
<td>0,032</td>
<td>0,165</td>
<td>0,870</td>
</tr>
<tr>
<td>HWF & FC 3/4</td>
<td>28</td>
<td>0,364</td>
<td>1,994</td>
<td>0,057</td>
</tr>
<tr>
<td>HWF & C 3/4</td>
<td>28</td>
<td>0,492</td>
<td>2,878</td>
<td>0,008</td>
</tr>
<tr>
<td>HWZ & F 3/4</td>
<td>28</td>
<td>0,078</td>
<td>0,401</td>
<td>0,692</td>
</tr>
<tr>
<td>HWZ & FC 3/4</td>
<td>28</td>
<td>0,437</td>
<td>2,475</td>
<td>0,020</td>
</tr>
<tr>
<td>HWZ & C 3/4</td>
<td>28</td>
<td>0,553</td>
<td>3,384</td>
<td>0,002</td>
</tr>
<tr>
<td>ZWF & F 3/4</td>
<td>28</td>
<td>-0,153</td>
<td>-0,787</td>
<td>0,438</td>
</tr>
<tr>
<td>ZWF & FC 3/4</td>
<td>28</td>
<td>0,122</td>
<td>0,629</td>
<td>0,535</td>
</tr>
<tr>
<td>ZWF & C 3/4</td>
<td>28</td>
<td>0,389</td>
<td>2,150</td>
<td>0,041</td>
</tr>
<tr>
<td>ZWZ & F 3/4</td>
<td>28</td>
<td>-0,183</td>
<td>-0,951</td>
<td>0,351</td>
</tr>
<tr>
<td>ZWZ & FC 3/4</td>
<td>28</td>
<td>0,209</td>
<td>1,088</td>
<td>0,286</td>
</tr>
<tr>
<td>ZWZ & C 3/4</td>
<td>28</td>
<td>0,402</td>
<td>2,236</td>
<td>0,034</td>
</tr>
<tr>
<td>TLF & F 3/4</td>
<td>28</td>
<td>0,064</td>
<td>0,328</td>
<td>0,745</td>
</tr>
<tr>
<td>TLF & FC 3/4</td>
<td>28</td>
<td>0,095</td>
<td>0,486</td>
<td>0,631</td>
</tr>
<tr>
<td>TLF & C 3/4</td>
<td>28</td>
<td>0,207</td>
<td>1,079</td>
<td>0,290</td>
</tr>
<tr>
<td>TLZ & F 3/4</td>
<td>28</td>
<td>-0,107</td>
<td>-0,550</td>
<td>0,587</td>
</tr>
<tr>
<td>TLZ & FC 3/4</td>
<td>28</td>
<td>0,293</td>
<td>1,561</td>
<td>0,131</td>
</tr>
<tr>
<td>TLZ & C 3/4</td>
<td>28</td>
<td>0,518</td>
<td>3,086</td>
<td>0,005</td>
</tr>
<tr>
<td>WUF & F 3/4</td>
<td>28</td>
<td>0,048</td>
<td>0,247</td>
<td>0,807</td>
</tr>
<tr>
<td>WUF & FC 3/4</td>
<td>28</td>
<td>0,352</td>
<td>1,918</td>
<td>0,066</td>
</tr>
<tr>
<td>WUF & C 3/4</td>
<td>28</td>
<td>0,538</td>
<td>3,254</td>
<td>0,003</td>
</tr>
<tr>
<td>WUZ & F 3/4</td>
<td>28</td>
<td>-0,053</td>
<td>-0,270</td>
<td>0,789</td>
</tr>
<tr>
<td>WUZ & FC 3/4</td>
<td>28</td>
<td>0,379</td>
<td>2,086</td>
<td>0,047</td>
</tr>
<tr>
<td>WUZ & C 3/4</td>
<td>28</td>
<td>0,605</td>
<td>3,671</td>
<td>0,001</td>
</tr>
<tr>
<td>WAF & F 3/4</td>
<td>28</td>
<td>-0,165</td>
<td>-0,852</td>
<td>0,402</td>
</tr>
<tr>
<td>WAF & FC 3/4</td>
<td>28</td>
<td>0,045</td>
<td>0,232</td>
<td>0,819</td>
</tr>
<tr>
<td>WAF & C 3/4</td>
<td>28</td>
<td>0,321</td>
<td>1,726</td>
<td>0,096</td>
</tr>
<tr>
<td>WAZ & F 3/4</td>
<td>28</td>
<td>-0,170</td>
<td>-0,880</td>
<td>0,387</td>
</tr>
<tr>
<td>WAZ & FC 3/4</td>
<td>28</td>
<td>0,191</td>
<td>0,993</td>
<td>0,330</td>
</tr>
<tr>
<td>WAZ & C 3/4</td>
<td>28</td>
<td>0,387</td>
<td>2,143</td>
<td>0,042</td>
</tr>
<tr>
<td>Rechtschreibteil des SLRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF & F 3/4</td>
<td>28</td>
<td>0,141</td>
<td>0,726</td>
<td>0,474</td>
</tr>
<tr>
<td>OF & FC 3/4</td>
<td>28</td>
<td>0,485</td>
<td>2,831</td>
<td>0,009</td>
</tr>
<tr>
<td>OF & C 3/4</td>
<td>28</td>
<td>0,582</td>
<td>3,652</td>
<td>0,001</td>
</tr>
<tr>
<td>NF & F 3/4</td>
<td>28</td>
<td>-0,118</td>
<td>-0,604</td>
<td>0,551</td>
</tr>
<tr>
<td>NF & FC 3/4</td>
<td>28</td>
<td>0,218</td>
<td>1,138</td>
<td>0,265</td>
</tr>
<tr>
<td>NF & C 3/4</td>
<td>28</td>
<td>0,348</td>
<td>1,890</td>
<td>0,070</td>
</tr>
<tr>
<td>GF & F 3/4</td>
<td>28</td>
<td>-0,296</td>
<td>-1,580</td>
<td>0,126</td>
</tr>
<tr>
<td>GF & FC 3/4</td>
<td>28</td>
<td>-0,139</td>
<td>-0,715</td>
<td>0,481</td>
</tr>
<tr>
<td>GF & C 3/4</td>
<td>28</td>
<td>-0,027</td>
<td>-0,140</td>
<td>0,890</td>
</tr>
<tr>
<td>Gesamtscores des SLRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLF & F 3/4</td>
<td>28</td>
<td>-0,021</td>
<td>-0,106</td>
<td>0,916</td>
</tr>
<tr>
<td>GLF & FC 3/4</td>
<td>28</td>
<td>0,241</td>
<td>1,266</td>
<td>0,217</td>
</tr>
<tr>
<td>GLF & C 3/4</td>
<td>28</td>
<td>0,456</td>
<td>2,609</td>
<td>0,015</td>
</tr>
<tr>
<td>GLZT & F 3/4</td>
<td>28</td>
<td>-0,120</td>
<td>-0,614</td>
<td>0,544</td>
</tr>
<tr>
<td>GLZT & FC 3/4</td>
<td>28</td>
<td>0,288</td>
<td>1,532</td>
<td>0,138</td>
</tr>
<tr>
<td>GLZT & C 3/4</td>
<td>28</td>
<td>0,497</td>
<td>2,919</td>
<td>0,007</td>
</tr>
<tr>
<td>GESF & F 3/4</td>
<td>28</td>
<td>0,023</td>
<td>0,119</td>
<td>0,906</td>
</tr>
<tr>
<td>GESF & FC 3/4</td>
<td>28</td>
<td>0,388</td>
<td>2,147</td>
<td>0,041</td>
</tr>
<tr>
<td>GESF & C 3/4</td>
<td>28</td>
<td>0,503</td>
<td>2,971</td>
<td>0,006</td>
</tr>
</tbody>
</table>

Tab. 25: Korrelationstabelle der Ergebnisse im Salzburger Lese-Rechtschreibtest zur mismatch negativity ausgelöst durch das Sprachstimuluspaar /ba/ vs. /da/ an den einzelnen Elektrodenpositionen im Zeitintervall 300-450 ms nach Stimulusonset.

<table>
<thead>
<tr>
<th>Leseteil des SLRT</th>
<th>Gültige n</th>
<th>Spearman r</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWF & F 3/4</td>
<td>28</td>
<td>0,310</td>
<td>1,660</td>
<td>0,109</td>
</tr>
<tr>
<td>HWF & FC 3/4</td>
<td>28</td>
<td>0,339</td>
<td>1,838</td>
<td>0,078</td>
</tr>
<tr>
<td>HWF & C 3/4</td>
<td>28</td>
<td>0,346</td>
<td>1,882</td>
<td>0,071</td>
</tr>
<tr>
<td>HWZ & F 3/4</td>
<td>28</td>
<td>0,313</td>
<td>1,683</td>
<td>0,104</td>
</tr>
<tr>
<td>HWZ & FC 3/4</td>
<td>28</td>
<td>0,382</td>
<td>2,108</td>
<td>0,045</td>
</tr>
<tr>
<td>HWZ & C 3/4</td>
<td>28</td>
<td>0,477</td>
<td>2,765</td>
<td>0,010</td>
</tr>
<tr>
<td>ZWF & F 3/4</td>
<td>28</td>
<td>0,260</td>
<td>1,373</td>
<td>0,181</td>
</tr>
<tr>
<td>ZWF & FC 3/4</td>
<td>28</td>
<td>0,221</td>
<td>1,155</td>
<td>0,258</td>
</tr>
<tr>
<td>ZWF & C 3/4</td>
<td>28</td>
<td>0,283</td>
<td>1,502</td>
<td>0,145</td>
</tr>
<tr>
<td>ZWZ & F 3/4</td>
<td>28</td>
<td>0,187</td>
<td>0,971</td>
<td>0,340</td>
</tr>
<tr>
<td>ZWZ & FC 3/4</td>
<td>28</td>
<td>0,256</td>
<td>1,353</td>
<td>0,188</td>
</tr>
<tr>
<td>ZWZ & C 3/4</td>
<td>28</td>
<td>0,388</td>
<td>2,149</td>
<td>0,041</td>
</tr>
<tr>
<td>TLF & F 3/4</td>
<td>28</td>
<td>0,283</td>
<td>1,503</td>
<td>0,145</td>
</tr>
<tr>
<td>TLF & FC 3/4</td>
<td>28</td>
<td>0,169</td>
<td>0,875</td>
<td>0,389</td>
</tr>
<tr>
<td>TLF & C 3/4</td>
<td>28</td>
<td>0,277</td>
<td>1,469</td>
<td>0,154</td>
</tr>
<tr>
<td>TLZ & F 3/4</td>
<td>28</td>
<td>0,200</td>
<td>1,038</td>
<td>0,309</td>
</tr>
<tr>
<td>TLZ & FC 3/4</td>
<td>28</td>
<td>0,312</td>
<td>1,672</td>
<td>0,106</td>
</tr>
<tr>
<td>TLZ & C 3/4</td>
<td>28</td>
<td>0,460</td>
<td>2,641</td>
<td>0,014</td>
</tr>
<tr>
<td>WUF & F 3/4</td>
<td>28</td>
<td>0,382</td>
<td>2,108</td>
<td>0,045</td>
</tr>
<tr>
<td>WUF & FC 3/4</td>
<td>28</td>
<td>0,441</td>
<td>2,506</td>
<td>0,019</td>
</tr>
<tr>
<td>WUF & C 3/4</td>
<td>28</td>
<td>0,416</td>
<td>2,331</td>
<td>0,028</td>
</tr>
<tr>
<td>WUZ & F 3/4</td>
<td>28</td>
<td>0,349</td>
<td>1,901</td>
<td>0,068</td>
</tr>
<tr>
<td>WUZ & FC 3/4</td>
<td>28</td>
<td>0,461</td>
<td>2,650</td>
<td>0,014</td>
</tr>
<tr>
<td>WUZ & C 3/4</td>
<td>28</td>
<td>0,566</td>
<td>3,504</td>
<td>0,002</td>
</tr>
<tr>
<td>WAF & F 3/4</td>
<td>28</td>
<td>0,247</td>
<td>1,300</td>
<td>0,205</td>
</tr>
<tr>
<td>WAF & FC 3/4</td>
<td>28</td>
<td>0,272</td>
<td>1,442</td>
<td>0,161</td>
</tr>
<tr>
<td>WAF & C 3/4</td>
<td>28</td>
<td>0,360</td>
<td>1,966</td>
<td>0,060</td>
</tr>
<tr>
<td>WAZ & F 3/4</td>
<td>28</td>
<td>0,220</td>
<td>1,151</td>
<td>0,260</td>
</tr>
<tr>
<td>WAZ & FC 3/4</td>
<td>28</td>
<td>0,323</td>
<td>1,739</td>
<td>0,094</td>
</tr>
<tr>
<td>WAZ & C 3/4</td>
<td>28</td>
<td>0,485</td>
<td>2,825</td>
<td>0,009</td>
</tr>
<tr>
<td>Rechtschreibteil des SLRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF & F 3/4</td>
<td>28</td>
<td>0,292</td>
<td>1,559</td>
<td>0,131</td>
</tr>
<tr>
<td>OF & FC 3/4</td>
<td>28</td>
<td>0,345</td>
<td>1,872</td>
<td>0,072</td>
</tr>
<tr>
<td>OF & C 3/4</td>
<td>28</td>
<td>0,435</td>
<td>2,463</td>
<td>0,021</td>
</tr>
<tr>
<td>NF & F 3/4</td>
<td>28</td>
<td>0,169</td>
<td>0,873</td>
<td>0,391</td>
</tr>
<tr>
<td>NF & FC 3/4</td>
<td>28</td>
<td>0,260</td>
<td>1,373</td>
<td>0,182</td>
</tr>
<tr>
<td>NF & C 3/4</td>
<td>28</td>
<td>0,396</td>
<td>2,198</td>
<td>0,037</td>
</tr>
<tr>
<td>GF & F 3/4</td>
<td>28</td>
<td>0,067</td>
<td>0,345</td>
<td>0,733</td>
</tr>
<tr>
<td>GF & FC 3/4</td>
<td>28</td>
<td>0,160</td>
<td>0,826</td>
<td>0,416</td>
</tr>
<tr>
<td>GF & C 3/4</td>
<td>28</td>
<td>0,208</td>
<td>1,084</td>
<td>0,288</td>
</tr>
<tr>
<td>Gesamtscores des SLRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLF & F 3/4</td>
<td>28</td>
<td>0,387</td>
<td>2,143</td>
<td>0,042</td>
</tr>
<tr>
<td>GLF & FC 3/4</td>
<td>28</td>
<td>0,411</td>
<td>2,298</td>
<td>0,030</td>
</tr>
<tr>
<td>GLF & C 3/4</td>
<td>28</td>
<td>0,475</td>
<td>2,751</td>
<td>0,011</td>
</tr>
<tr>
<td>GLZT & F 3/4</td>
<td>28</td>
<td>0,224</td>
<td>1,170</td>
<td>0,253</td>
</tr>
<tr>
<td>GLZT & FC 3/4</td>
<td>28</td>
<td>0,330</td>
<td>1,780</td>
<td>0,087</td>
</tr>
<tr>
<td>GLZT & C 3/4</td>
<td>28</td>
<td>0,482</td>
<td>2,808</td>
<td>0,009</td>
</tr>
<tr>
<td>GESF & F 3/4</td>
<td>28</td>
<td>0,212</td>
<td>1,104</td>
<td>0,280</td>
</tr>
<tr>
<td>GESF & FC 3/4</td>
<td>28</td>
<td>0,296</td>
<td>1,580</td>
<td>0,126</td>
</tr>
<tr>
<td>GESF & C 3/4</td>
<td>28</td>
<td>0,401</td>
<td>2,235</td>
<td>0,034</td>
</tr>
</tbody>
</table>

Tab. 26: Korrelationstabelle der Ergebnisse im Salzburger Lese-Rechtschreibtest zur mismatch negativity ausgelöst durch das Sprachstimuluspaar /ba/ vs. /da/ an den einzelnen Elektrodenpositionen im Zeitintervall 450-600 ms nach Stimulusonset.

<table>
<thead>
<tr>
<th>Leseteil des SLRT</th>
<th>Gültige n</th>
<th>Spearman r</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWF & F 3/4</td>
<td>28</td>
<td>0.229</td>
<td>0.145</td>
<td>0.885</td>
</tr>
<tr>
<td>HWF & FC 3/4</td>
<td>28</td>
<td>0.213</td>
<td>1.113</td>
<td>0.276</td>
</tr>
<tr>
<td>HWF & C 3/4</td>
<td>28</td>
<td>0.342</td>
<td>1.859</td>
<td>0.074</td>
</tr>
<tr>
<td>HWZ & F 3/4</td>
<td>28</td>
<td>-0.036</td>
<td>-0.186</td>
<td>0.854</td>
</tr>
<tr>
<td>HWZ & FC 3/4</td>
<td>28</td>
<td>0.092</td>
<td>0.473</td>
<td>0.640</td>
</tr>
<tr>
<td>HWZ & C 3/4</td>
<td>28</td>
<td>0.270</td>
<td>1.429</td>
<td>0.165</td>
</tr>
<tr>
<td>ZWF & F 3/4</td>
<td>28</td>
<td>-0.200</td>
<td>-1.042</td>
<td>0.307</td>
</tr>
<tr>
<td>ZWF & FC 3/4</td>
<td>28</td>
<td>-0.204</td>
<td>-1.060</td>
<td>0.299</td>
</tr>
<tr>
<td>ZWF & C 3/4</td>
<td>28</td>
<td>-0.077</td>
<td>-0.396</td>
<td>0.695</td>
</tr>
<tr>
<td>ZWZ & F 3/4</td>
<td>28</td>
<td>-0.205</td>
<td>-1.069</td>
<td>0.295</td>
</tr>
<tr>
<td>ZWZ & FC 3/4</td>
<td>28</td>
<td>-0.046</td>
<td>-0.236</td>
<td>0.815</td>
</tr>
<tr>
<td>TLF & F 3/4</td>
<td>28</td>
<td>0.112</td>
<td>0.575</td>
<td>0.570</td>
</tr>
<tr>
<td>TLF & FC 3/4</td>
<td>28</td>
<td>0.064</td>
<td>0.325</td>
<td>0.748</td>
</tr>
<tr>
<td>TLF & C 3/4</td>
<td>28</td>
<td>-0.046</td>
<td>-0.233</td>
<td>0.818</td>
</tr>
<tr>
<td>TLZ & F 3/4</td>
<td>28</td>
<td>0.037</td>
<td>0.189</td>
<td>0.852</td>
</tr>
<tr>
<td>TLZ & FC 3/4</td>
<td>28</td>
<td>-0.113</td>
<td>-0.581</td>
<td>0.566</td>
</tr>
<tr>
<td>TLZ & C 3/4</td>
<td>28</td>
<td>0.033</td>
<td>0.166</td>
<td>0.869</td>
</tr>
<tr>
<td>WUF & F 3/4</td>
<td>28</td>
<td>0.245</td>
<td>1.289</td>
<td>0.209</td>
</tr>
<tr>
<td>WUF & FC 3/4</td>
<td>28</td>
<td>0.095</td>
<td>0.487</td>
<td>0.630</td>
</tr>
<tr>
<td>WUF & C 3/4</td>
<td>28</td>
<td>0.131</td>
<td>0.673</td>
<td>0.507</td>
</tr>
<tr>
<td>WUZ & F 3/4</td>
<td>28</td>
<td>0.325</td>
<td>1.754</td>
<td>0.091</td>
</tr>
<tr>
<td>WUZ & FC 3/4</td>
<td>28</td>
<td>-0.026</td>
<td>-0.131</td>
<td>0.897</td>
</tr>
<tr>
<td>WUZ & C 3/4</td>
<td>28</td>
<td>0.084</td>
<td>0.430</td>
<td>0.670</td>
</tr>
<tr>
<td>WUZ & C 3/4</td>
<td>28</td>
<td>0.313</td>
<td>1.683</td>
<td>0.104</td>
</tr>
<tr>
<td>WAF & F 3/4</td>
<td>28</td>
<td>-0.022</td>
<td>-0.111</td>
<td>0.913</td>
</tr>
<tr>
<td>WAF & FC 3/4</td>
<td>28</td>
<td>-0.014</td>
<td>-0.072</td>
<td>0.943</td>
</tr>
<tr>
<td>WAF & C 3/4</td>
<td>28</td>
<td>0.260</td>
<td>1.370</td>
<td>0.182</td>
</tr>
<tr>
<td>WAZ & F 3/4</td>
<td>28</td>
<td>-0.155</td>
<td>-0.799</td>
<td>0.432</td>
</tr>
<tr>
<td>WAZ & FC 3/4</td>
<td>28</td>
<td>-0.041</td>
<td>-0.208</td>
<td>0.837</td>
</tr>
<tr>
<td>WAZ & C 3/4</td>
<td>28</td>
<td>0.185</td>
<td>0.958</td>
<td>0.347</td>
</tr>
<tr>
<td>Rechtschreibteil des SLRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF & F 3/4</td>
<td>28</td>
<td>0.074</td>
<td>0.379</td>
<td>0.708</td>
</tr>
<tr>
<td>OF & FC 3/4</td>
<td>28</td>
<td>0.149</td>
<td>0.771</td>
<td>0.448</td>
</tr>
<tr>
<td>OF & C 3/4</td>
<td>28</td>
<td>0.348</td>
<td>1.891</td>
<td>0.070</td>
</tr>
<tr>
<td>NF & F 3/4</td>
<td>28</td>
<td>-0.103</td>
<td>-0.530</td>
<td>0.601</td>
</tr>
<tr>
<td>NF & FC 3/4</td>
<td>28</td>
<td>0.036</td>
<td>0.186</td>
<td>0.854</td>
</tr>
<tr>
<td>NF & C 3/4</td>
<td>28</td>
<td>0.215</td>
<td>1.122</td>
<td>0.272</td>
</tr>
<tr>
<td>GF & F 3/4</td>
<td>28</td>
<td>-0.448</td>
<td>-2.558</td>
<td>0.017</td>
</tr>
<tr>
<td>GF & FC 3/4</td>
<td>28</td>
<td>-0.482</td>
<td>-2.802</td>
<td>0.009</td>
</tr>
<tr>
<td>GF & C 3/4</td>
<td>28</td>
<td>-0.290</td>
<td>-1.543</td>
<td>0.135</td>
</tr>
<tr>
<td>Gesamtscores des SLRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLF & F 3/4</td>
<td>28</td>
<td>0.026</td>
<td>0.134</td>
<td>0.894</td>
</tr>
<tr>
<td>GLF & FC 3/4</td>
<td>28</td>
<td>0.253</td>
<td>1.335</td>
<td>0.193</td>
</tr>
<tr>
<td>GLF & C 3/4</td>
<td>28</td>
<td>0.253</td>
<td>1.335</td>
<td>0.193</td>
</tr>
<tr>
<td>GLTZ & F 3/4</td>
<td>28</td>
<td>-0.154</td>
<td>-0.797</td>
<td>0.433</td>
</tr>
<tr>
<td>GLTZ & FC 3/4</td>
<td>28</td>
<td>-0.012</td>
<td>-0.060</td>
<td>0.953</td>
</tr>
<tr>
<td>GLTZ & C 3/4</td>
<td>28</td>
<td>0.209</td>
<td>1.092</td>
<td>0.265</td>
</tr>
<tr>
<td>GESF & F 3/4</td>
<td>28</td>
<td>-0.045</td>
<td>-0.230</td>
<td>0.820</td>
</tr>
<tr>
<td>GESF & FC 3/4</td>
<td>28</td>
<td>0.028</td>
<td>0.144</td>
<td>0.886</td>
</tr>
<tr>
<td>GESF & C 3/4</td>
<td>28</td>
<td>0.237</td>
<td>1.243</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Tab. 27: Korrelationstabelle der Ergebnisse im Test „Basiskompetenzen für Lese-Rechtschreibleistungen“ zur mismatch negativity ausgelöst durch das Sprachstimuluspaar /ba/ vs. /da/ an den einzelnen Elektrodenpositionen im Zeitintervall 150-300 ms nach Stimulusonset.

<table>
<thead>
<tr>
<th>Elektrodenpositionen</th>
<th>Gültige n</th>
<th>Spearman r</th>
<th>t(n-2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAKOPW & F 3/4</td>
<td>28</td>
<td>0,084</td>
<td>0,431</td>
<td>0,670</td>
</tr>
<tr>
<td>BAKOPW & FC 3/4</td>
<td>28</td>
<td>-0,159</td>
<td>-0,823</td>
<td>0,418</td>
</tr>
<tr>
<td>BAKOVO & F 3/4</td>
<td>28</td>
<td>-0,012</td>
<td>-0,661</td>
<td>0,952</td>
</tr>
<tr>
<td>BAKOVO & FC 3/4</td>
<td>28</td>
<td>-0,360</td>
<td>-1,966</td>
<td>0,060</td>
</tr>
<tr>
<td>BAKOVO & C 3/4</td>
<td>28</td>
<td>-0,482</td>
<td>-2,803</td>
<td>0,009</td>
</tr>
<tr>
<td>BAKORW & F 3/4</td>
<td>28</td>
<td>-0,092</td>
<td>-0,471</td>
<td>0,641</td>
</tr>
<tr>
<td>BAKORW & FC 3/4</td>
<td>28</td>
<td>-0,285</td>
<td>-1,518</td>
<td>0,141</td>
</tr>
<tr>
<td>BAKORW & C 3/4</td>
<td>28</td>
<td>-0,406</td>
<td>-2,264</td>
<td>0,032</td>
</tr>
<tr>
<td>BAKOPH & F 3/4</td>
<td>28</td>
<td>-0,173</td>
<td>-0,896</td>
<td>0,378</td>
</tr>
<tr>
<td>BAKOPH & FC 3/4</td>
<td>28</td>
<td>-0,205</td>
<td>-1,067</td>
<td>0,296</td>
</tr>
<tr>
<td>BAKOPH & C 3/4</td>
<td>28</td>
<td>-0,320</td>
<td>-1,721</td>
<td>0,097</td>
</tr>
<tr>
<td>BAKOLA & F 3/4</td>
<td>28</td>
<td>-0,055</td>
<td>-0,282</td>
<td>0,781</td>
</tr>
<tr>
<td>BAKOLA & FC 3/4</td>
<td>28</td>
<td>-0,285</td>
<td>-1,517</td>
<td>0,141</td>
</tr>
<tr>
<td>BAKOLA & C 3/4</td>
<td>28</td>
<td>-0,307</td>
<td>-1,647</td>
<td>0,112</td>
</tr>
<tr>
<td>BAKOVL & F 3/4</td>
<td>28</td>
<td>-0,001</td>
<td>-0,006</td>
<td>0,996</td>
</tr>
<tr>
<td>BAKOVL & FC 3/4</td>
<td>28</td>
<td>-0,269</td>
<td>-1,427</td>
<td>0,166</td>
</tr>
<tr>
<td>BAKOVL & C 3/4</td>
<td>28</td>
<td>-0,405</td>
<td>-2,261</td>
<td>0,032</td>
</tr>
<tr>
<td>BAKOUm & F 3/4</td>
<td>28</td>
<td>0,062</td>
<td>0,315</td>
<td>0,756</td>
</tr>
<tr>
<td>BAKOUm & FC 3/4</td>
<td>28</td>
<td>-0,240</td>
<td>-1,263</td>
<td>0,218</td>
</tr>
<tr>
<td>BAKOUm & C 3/4</td>
<td>28</td>
<td>-0,420</td>
<td>-2,358</td>
<td>0,026</td>
</tr>
<tr>
<td>BAKGES & F 3/4</td>
<td>28</td>
<td>-0,060</td>
<td>-0,307</td>
<td>0,761</td>
</tr>
<tr>
<td>BAKGES & FC 3/4</td>
<td>28</td>
<td>-0,280</td>
<td>-1,487</td>
<td>0,149</td>
</tr>
<tr>
<td>BAKGES & C 3/4</td>
<td>28</td>
<td>-0,374</td>
<td>-2,055</td>
<td>0,050</td>
</tr>
</tbody>
</table>

Tab. 28: Korrelationstabelle der Ergebnisse im Test „Basiskompetenzen für Lese-Rechtschreibleistungen“ zur mismatch negativity ausgelöst durch das Sprachstimuluspaar /ba/ vs. /da/ an den einzelnen Elektrodenpositionen im Zeitintervall 300-450 ms nach Stimulusonset.

<table>
<thead>
<tr>
<th>Testkategorie</th>
<th>Elektrodenposition</th>
<th>Anzahl</th>
<th>Korrelationskoeffizient</th>
<th>t-Verteilung mit (n-2)-Freiheitsgraden</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAKOPW</td>
<td>F 3/4</td>
<td>28</td>
<td>-0,045</td>
<td>-0,230</td>
<td>0,820</td>
</tr>
<tr>
<td>BAKOPW</td>
<td>FC 3/4</td>
<td>28</td>
<td>-0,036</td>
<td>-0,184</td>
<td>0,855</td>
</tr>
<tr>
<td>BAKOPW</td>
<td>C 3/4</td>
<td>28</td>
<td>-0,176</td>
<td>-0,914</td>
<td>0,369</td>
</tr>
<tr>
<td>BAKOVO</td>
<td>F 3/4</td>
<td>28</td>
<td>-0,209</td>
<td>-1,088</td>
<td>0,287</td>
</tr>
<tr>
<td>BAKOVO</td>
<td>FC 3/4</td>
<td>28</td>
<td>-0,340</td>
<td>-1,844</td>
<td>0,077</td>
</tr>
<tr>
<td>BAKOVO</td>
<td>C 3/4</td>
<td>28</td>
<td>-0,436</td>
<td>-2,471</td>
<td>0,020</td>
</tr>
<tr>
<td>BAKORW</td>
<td>F 3/4</td>
<td>28</td>
<td>-0,014</td>
<td>-0,074</td>
<td>0,942</td>
</tr>
<tr>
<td>BAKORW</td>
<td>FC 3/4</td>
<td>28</td>
<td>-0,024</td>
<td>-0,122</td>
<td>0,904</td>
</tr>
<tr>
<td>BAKORW</td>
<td>C 3/4</td>
<td>28</td>
<td>-0,189</td>
<td>-0,981</td>
<td>0,336</td>
</tr>
<tr>
<td>BAKOPH</td>
<td>F 3/4</td>
<td>28</td>
<td>-0,155</td>
<td>-0,799</td>
<td>0,431</td>
</tr>
<tr>
<td>BAKOPH</td>
<td>FC 3/4</td>
<td>28</td>
<td>-0,156</td>
<td>-0,804</td>
<td>0,429</td>
</tr>
<tr>
<td>BAKOPH</td>
<td>C 3/4</td>
<td>28</td>
<td>-0,335</td>
<td>-1,816</td>
<td>0,081</td>
</tr>
<tr>
<td>BAKOLA</td>
<td>F 3/4</td>
<td>28</td>
<td>-0,048</td>
<td>-0,246</td>
<td>0,808</td>
</tr>
<tr>
<td>BAKOLA</td>
<td>FC 3/4</td>
<td>28</td>
<td>-0,248</td>
<td>-1,304</td>
<td>0,204</td>
</tr>
<tr>
<td>BAKOLA</td>
<td>C 3/4</td>
<td>28</td>
<td>-0,365</td>
<td>-2,000</td>
<td>0,056</td>
</tr>
<tr>
<td>BAKOVL</td>
<td>F 3/4</td>
<td>28</td>
<td>-0,313</td>
<td>-1,682</td>
<td>0,105</td>
</tr>
<tr>
<td>BAKOVL</td>
<td>FC 3/4</td>
<td>28</td>
<td>-0,374</td>
<td>-2,054</td>
<td>0,050</td>
</tr>
<tr>
<td>BAKOVL</td>
<td>C 3/4</td>
<td>28</td>
<td>-0,488</td>
<td>-2,848</td>
<td>0,008</td>
</tr>
<tr>
<td>BAKOUM</td>
<td>F 3/4</td>
<td>28</td>
<td>-0,107</td>
<td>-0,551</td>
<td>0,586</td>
</tr>
<tr>
<td>BAKOUM</td>
<td>FC 3/4</td>
<td>28</td>
<td>-0,229</td>
<td>-1,198</td>
<td>0,242</td>
</tr>
<tr>
<td>BAKOUM</td>
<td>C 3/4</td>
<td>28</td>
<td>-0,433</td>
<td>-2,452</td>
<td>0,021</td>
</tr>
<tr>
<td>BAKGES</td>
<td>F 3/4</td>
<td>28</td>
<td>-0,143</td>
<td>-0,739</td>
<td>0,467</td>
</tr>
<tr>
<td>BAKGES</td>
<td>FC 3/4</td>
<td>28</td>
<td>-0,216</td>
<td>-1,130</td>
<td>0,269</td>
</tr>
<tr>
<td>BAKGES</td>
<td>C 3/4</td>
<td>28</td>
<td>-0,382</td>
<td>-2,109</td>
<td>0,045</td>
</tr>
</tbody>
</table>

Tab. 29: Korrelationstabelle der Ergebnisse im Test „Basiskompetenzen für Lese-Rechtschreibleistungen“ zur mismatch negativity ausgelöst durch das Sprachstimuluspaar /ba/ vs. /da/ an den einzelnen Elektrodenpositionen im Zeitintervall 450-600 ms nach Stimulusonset.

<table>
<thead>
<tr>
<th>Gültige</th>
<th>Spearman</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>r</td>
</tr>
<tr>
<td>BAKOPW & F 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOPW & FC 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOPW & C 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOVO & F 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOVO & FC 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOVO & C 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKORW & F 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKORW & FC 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKORW & C 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOPH & F 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOPH & FC 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOPH & C 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOLA & F 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOLA & FC 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOLA & C 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOVL & F 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOVL & FC 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOVL & C 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOUM & F 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOUM & FC 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKOUM & C 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKGES & F 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKGES & FC 3/4</td>
<td>28</td>
</tr>
<tr>
<td>BAKGES & C 3/4</td>
<td>28</td>
</tr>
</tbody>
</table>

Danksagungen

Mein ganz besonderer Dank gilt PD Dr. Dipl.-Psych. Markus Kiefer, der mich während der gesamten Arbeit unterstützt hat und für Fragen und mit seiner Hilfe jederzeit zur Verfügung stand. Danke für die viele Zeit, die Du investiert hast während der Konzeption der Studie, der Auswertung der Daten und auch schlussendlich der Korrektur dieser Arbeit.

Danke auch an meinen Mitstreiter Ulrich Bitz für die gute Zusammenarbeit, der sich zur gleichen Zeit mit den Erstklässlern und deren Hirnströmen beschäftigt hat.

Sowie Corinna Schwedler, die uns ihre Stimme für die Stimuli geliehen hat, die wir uns Tag für Tag während der EEG-Aufzeichnungen anhören durften.

Meinen Dank möchte ich auch an die beiden EEG-Assistentinnen Frau Günter und Frau Zischler richten, die uns in die Handhabung mit der Ausrüstung eingeführt haben und immer da waren, wenn man sie gebraucht hat.

Danke auch an das gesamte Team des ZNL in Ulm, das die vielen Stunden an dieser Arbeit in den Räumen der alten Kienlesbergkaserne nicht nur erträglich, sondern auch erfreulich gemacht haben.

Ein besonderer Dank sei an die Kinder, deren Eltern, sowie an alle Lehrer und Schulleiter der mitwirkenden Schulen gerichtet, ohne deren Unterstützung diese Studie nicht durchführbar gewesen wäre.

Abschließend ein von Herzen kommendes Dankeschön an meine Eltern, die mir mein Studium überhaupt ermöglicht haben und mich auch weiterhin unterstützen.

Allen anderen, die wie immer bei derartigen Aufzählungen vergessen werden, ein nicht minderes Danke.