Signalwege der C-Peptid-induzierten Proliferation glatter Gefäßmuskulzellen

Dissertation
zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm

von

Paulina Poletak
aus Krakau

2007
Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin
1. Berichterstatter: PD Dr. Daniel Walcher
2. Berichterstatter: PD Dr. Georg von Boyen
Tag der Promotion: 19.06.2008
Meinen Eltern
Inhaltsverzeichnis

1. Einleitung ... 1
 1.1 Atherosklerose ... 1
 1.2 Glatte Gefäßmuskelzellen und Atherosklerose 5
 1.3 Diabetes mellitus Typ 2 und Atherosklerose 9
 1.4 C-Peptid und Atherosklerose .. 11
 1.5 Fragestellung und Zielsetzung ... 14

2. Material und Methoden .. 15
 2.1 Material .. 15
 2.1.1 Substanzen und Lösungen ... 15
 2.1.2 Geräte und Kits .. 18
 2.2 Methoden ... 19
 2.2.1 Zellkultur .. 19
 2.2.2 Western Blot Analysen ... 19
 2.2.3 Densitometrische Auswertung ... 23
 2.2.4 Statistische Analyse .. 23

3. Ergebnisse ... 24
 3.1 C-Peptid aktiviert die Src-Kinase in glatten Gefäßmuskelzellen 24
 3.2 C-Peptid aktiviert die PI3-Kinase in glatten Gefäßmuskelzellen 26
 3.3 C-Peptid aktiviert die MAP-Kinase ERK1/2 in glatten
 Gefäßmuskelzellen .. 29
 3.4 C-Peptid aktiviert den MAP-Kinase Signalweg in glatten
 Gefäßmuskelzellen über die Src- und die PI3-Kinase 32
 3.5 Zusammenfassung aller Ergebnisse .. 36
4. Diskussion.. 37
 4.1 C-Peptid... 37
 4.2 Src-Kinase ... 39
 4.3 PI3-Kinase ... 40
 4.4 MAP-Kinase ERK1/2 ... 41
 4.5 Der intrazelluläre Signalweg bei der durch C-Peptid induzierten
 Proliferation glatter Gefäßmuskeln.. 42
 4.6 Pathophysiologische Relevanz... 45

5. Zusammenfassung.. 48

6. Literaturverzeichnis... 49

7. Danksagung .. 61
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Abbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Nicht-enzymatisch glykierte Endprodukte
 (advanced glycation endproducts)</td>
</tr>
<tr>
<td>AKT</td>
<td>Proteinkinase B</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Varianzanalyse (analysis of variance)</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>bFGF</td>
<td>basaler Fibroblastenwachstumsfaktor
 (basic fibroblast growth factor)</td>
</tr>
<tr>
<td>BSA</td>
<td>Rinderserumalbumin
 (bovine serum albumine)</td>
</tr>
<tr>
<td>CD</td>
<td>Differenzierungsantigen
 (cluster of differentiation)</td>
</tr>
<tr>
<td>Co</td>
<td>Kontrolle
 (control)</td>
</tr>
<tr>
<td>C-Peptid</td>
<td>Verbindungspeptid
 (connecting peptide)</td>
</tr>
<tr>
<td>c-Src</td>
<td>zelluläre Sarkom-Kinase
 (cellular-sarcoma-kinase)</td>
</tr>
<tr>
<td>ERK</td>
<td>Extrazellulär Signal-regulierte Kinase,
 =MAPK</td>
</tr>
<tr>
<td>et al.</td>
<td>und andere
 (et alii)</td>
</tr>
<tr>
<td>FAK</td>
<td>Fokale Adhäsions-Kinase</td>
</tr>
<tr>
<td>HI</td>
<td>Hitzeinaktiviert</td>
</tr>
<tr>
<td>HRP</td>
<td>Meerrettichperoxidase
 (horse radish peroxidase)</td>
</tr>
<tr>
<td>ICAM</td>
<td>Interzelluläres Adhäsionsmolekül
 (intercellular adhesion molecule)</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulinähnlicher Wachstumsfaktor
 (insulin-like growth factor)</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LDL</td>
<td>Lipoproteine geringer Dichte (low-density-lipoproteins)</td>
</tr>
<tr>
<td>LY294002</td>
<td>2-(4-Morpholiny1)-8-phenyl-4H-1-benzopyran-4-one,
 Inhibitor der Phosphatidylinositol 3-Kinase</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

MAPK
Mitogen-aktivierte Protein-Kinase

MAPKKK
Mitogen-aktivierte Protein-Kinase Kinase Kinase

MCP
Chemotaktisches Monozytenprotein

(\textit{monocyte chemotactic protein})

MEK
=MAPK

µg
Mykrogramm

min
Minute

µl
Mykroliter

µmol
Mykromol

MMPs
Matrix-Metalloproteininasen

n
Fallzahl

nmol
Nanomol

NO
Stickstoffmonoxid

NP40
Nonyl-phenoxy-polyethoxy-ethanol 40

p
Signifikanzniveau

p-
phospho

PBS
Phosphate Buffered Saline, Pufferlösung

PD98059
2’-Amino-3’-methoxyflavone, Inhibitor der Extrazellulär

Signal-regulierten Kinase

PDGF
Plättchenabhängiger Wachstumsfaktor

(\textit{platelet derived growth factor})

PDGFR
Plättchenabhängiger Wachstumsfaktor-Rezeptor

(\textit{platelet derived growth factor receptor})

PI3-Kinase
Phosphatidylinositol 3-Kinase

PKB
Proteinkinase B

PMA
Phorbol Myristate Acetate

PMSF
Phenylmethylsulfonylfluorid

PP2
4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-
d]pyrimidine, Inhibitor der Sarkom-Kinase

Raf
=MAPKKK

Ras
Ratten-Sarkom assoziierte GTPase
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
</table>
| RASMC | Glatte aortale Rattenmuskelzelle
 (rat aortal smooth muscle cell) |
| RPM | Umdrehungen pro Minute *(rounds per minute)* |
| RSV | Rous-Sarkom-Virus |
| SDS | Natriumdodecylsulfat *(sodium dodecyl sulphate)* |
| SEM | Standardfehler des Mittelwertes
 (standard error of the mean) |
| SMC | Glatte Muskelzelle *(smooth muscle cell)* |
| Src | Sarkom-Kinase *(sarcoma-kinase)* |
| TNF-α | Tumor-Nekrose-Faktor-alpha |
| Tween | Polyoxyethylene-sorbitan-monolaurate |
| V | Volt |
| VCAM | Vaskuläres Adhäsionsmolekül
 (vascular cell adhesion molecule) |
| VSMC | Glatte Gefäßmuskelzelle
 (vascular smooth muscle cell) |
| v-Src | virale Sarkom-Kinase *(viral sarcoma-kinase)* |
1. Einleitung

1.1 Atherosklerose

Die Atherosklerose beschreibt einen über Jahrzehnte ablaufendenstenosierenden Prozess, der lokalisiert an großen und mittelgroßenarteriellen Gefäßen im gesamten Körper auftritt und zu Organischämie oderInfarkt im entsprechenden Versorgungsgebiet des arteriellen Stromgebietesführt.

In Abhängigkeit von der betroffenen Gefäßregion äußert sich dieAtherosklerose klinisch als koronare Herzkrankheit, periphere arterielleVerschlusskrankheit sowie zerebrale oder viszerale Durchblutungsstörung(49).

Kardiovaskuläre Erkrankungen als klinische Manifestation derAtherosklerose zählen weltweit in entwickelten Ländern zu den häufigstenUrsachen für Morbidität und Mortalität (33).

In Deutschland stellen die ischämischen Herzerkrankungen mit 148 641Gestorbenen die häufigsten spezifischen Todesursachen dar, wie dieTodesursachenstatistik des Statistischen Bundesamtes aus dem Jahr 2006belegt (73). Heutigen Vorhersagen zufolge, werden im Jahr 2020
Einleitung

kardiovaskuläre Erkrankungen, vor allem die Atherosklerose, die führende Ursache für die Gesamtkrankheitsbelastung darstellen (57).

Das frühe Stadium: Endotheliale Dysfunktion

Die frühe Phase der Atherogenese ist gekennzeichnet durch die sogenannte endotheliale Dysfunktion, welche als kausaler Faktor die spätere Entstehung von atherosklerotischen Läsionen initiiert und begünstigt (29,64). Erhöhte LDL-Spiegel, freie Radikale, welche beim Zigarettenkonsum entstehen, Hypertension, Diabetes mellitus, genetische Veränderungen, erhöhte Homozysteinspiegel und Infektionen gelten als mögliche Trigger für die endotheliale Dysfunktion (70). Charakteristisch für diese Phase der Atherogenese sind eine veränderte Vasoreaktivität mit einer Einschränkung der endothelabhängigen Relaxation sowie eine erhöhte Permeabilität der Gefäßwand für Plasmabestandteile (68). Hierbei ist das Low-Density-Lipoprotein (LDL) von besonderer Bedeutung, welches nach Einwanderung in die Intima akkumuliert und chemischen Modifikationen, wie der Oxidation und insbesondere bei Diabetikern der nicht-enzymatischen Glykosylierung unterliegt. Derart veränderte Lipoproteinpartikel können eine lokale Entzündungsreaktion
auslösen, die zahlreiche weitere Schritte in der Ausbildung einer atherosklerotischen Läsion verursacht (56). Ferner führt die endotheliale Dysfunktion zu einer Aktivierung der Endothelzellen, welche in der Folge zum einen vermehrt chemotaktisch wirksame Proteine (Chemokine) freisetzen und zum anderen leukozytäre Adhäsionsmoleküle (ICAM, VCAM) auf der Zelloberfläche exprimieren, woraus eine selektive Hyperadhäsivität für T-Lymphozyten und Monozyten resultiert (68). Die auf diese Weise angelockten mononukleären Entzündungszellen penetrieren nach Interaktion mit den Adhäsionsrezeptoren die Endothelschicht und breiten sich in der Intima aus. Hier differenzieren sich die eingewanderten Monozyten zu Makrophagen.

Die frühe atherosklerotische Plaque: „Fatty streak“

Im weiteren Verlauf akkumulieren die Makrophagen mittels sogenannter „scavenger“-Rezeptoren das subintimal abgelagerte oxidierte LDL und entwickeln sich zu Schaumzellen, dem charakteristischen Substrat der frühen atherosklerotischen Plaque (70).

Die fortgeschrittene Läsion und die instabile Plaque

Plaqueruptur und Thrombusformation

1.2 Glatte Gefäßmuskelzellen und Atherosklerose

Glatte Gefäßmuskelzellen spielen in vielerlei Hinsicht eine entscheidende Rolle bei der Entstehung atherosklerotischer Läsionen und nehmen bei der Restenosebildung nach Koronarintervention einen zentralen Stellenwert ein (19,70).

Im Rahmen der Atherogenese tragen sie zur Plaquebildung bei, indem sie zum einen proinflammatorische Mediatoren, wie das Chemokin MCP-1 sowie leukozytäre Adhäsionsmoleküle produzieren und zum anderen Matrix-Moleküle erzeugen, welche die Retention von Lipoproteinen begünstigen. Des Weiteren sind sie von eminenter Bedeutung im Hinblick auf die Formation einer stabilen Plaque durch die Bildung einer widerstandsfähigen fibrösen Kappe (19). In der fibrösen Plaque stellen glatte Gefäßmuskelzellen den vorherrschenden Zelltyp dar und bestimmen mittels Migration, Akkumulation und Proliferation auf entscheidende Weise das Ausmaß, die Charakteristika und die möglichen Spätkomplikationen dieser fortgeschrittenen Läsionen (65).

Die Proliferation der glatten Gefäßmuskelzellen nimmt somit neben der Inflammation einen zentralen Stellenwert in der Atherogenese ein.

Neuere Forschungsarbeiten geben einen Einblick in den Mechanismus, welcher die Proliferation glatter Gefäßmuskelzellen innerhalb einer Intimaläsion triggert. Zytokine und Wachstumsfaktoren, die von modifizierten Lipoproteinen stimuliert werden, sowie andere Faktoren aus der Gefäßzellwand und den infiltrierenden Leukozyten können die Funktion der glatten Muskelzellen modulieren. So kann der plättchenabhängige Wachstumsfaktor (PDGF), der von aktivierten Endothelzellen gebildet wird, die Proliferation der Gefäßmuskelzellen stimulieren. Verschiedene lokal produzierte Wachstumsfaktoren können die Proliferation sowohl der ursprünglichen glatten Muskelzellen als auch jener, die in die Intima eingewandert sind, induzieren (56). Eine derartige proliferative Wirkung auf

Die folgenden intrazellulären Signalmoleküle sind an dem Prozess der Gefäßmuskelzellproliferation auf molekularer Ebene beteiligt (6,12,82).

Sarkom-Kinase (Src-Kinase)

Die Src-Kinase gehört zur Familie der Tyrosin-Kinasen und wurde als erster Vertreter dieser Gruppe identifiziert (52).

C-Src stellt das zelluläre Pendant zu v-Src dar und ist ein Protein, welches an der Signalübertragung bei einer Vielzahl von Vorgängen, wie der Proliferation, der Differenzierung und der Adhäsion in eukaryontischen Zellen beteiligt ist (76). Im Unterschied zu v-Src fehlen bei c-Src die Punktmutationen, welche zu der starken Zelltransformationsfähigkeit des viralen Proteins beitragen.

Phosphatidylinositol 3-Kinase (PI3-Kinase)

sowie Phosphatidylinositol-4,5-bisphosphat. Forschungsergebnisse zeigten, dass die PI3-Kinase Eigenschaften einer Lipid- sowie einer Protein-Kinase in sich vereinigt.

Diverse Wachstumsfaktoren, wie zum Beispiel PDGF, sowie Hormone aktivieren die PI3-Kinase und triggerndadurch die Phosphorylierungsvorgänge (10,34).

Dabei konnte in verschiedenen Studien AKT mit einer molekularen Masse von 60 kDa als direktes downstream-Produkt der PI3-Kinase nach deren Aktivierung durch Wachstumsfaktoren identifiziert werden. AKT ist ein Protoonkogen, welches für eine Serin/Threonin-Kinase kodiert, die ubiquitär vorkommt und den Zellzyklus sowie die Apoptose reguliert (27,28).

Extrazellulär Signal-regulierte Kinase 1 und 2 (ERK1/2)

Die Extrazellulär Signal-regulierten Kinasen 1 und 2 (ERK1 und ERK2) gehören zur Gruppe der Mitogen-aktivierten Protein-Kinasen (MAPK), die in allen Eukaryonten vorkommen. Sie zählen gemäß ihrer modifizierten Gruppen zu den Serin/Threonin-Kinasen. Die beiden Isoformen ERK1 und ERK2 mit einer molekularen Masse von jeweils 44 bzw. 42 kDa sind hochgradig homolog und agieren in derselben Signalkaskade, sodass sie oft zusammenfassend als ERK1/2 oder p44/p42 MAP-Kinase bezeichnet werden.

Die Signalkaskade, an der ERK1/2 beteiligt ist, spielt eine zentrale Rolle in der Regulation des Zellwachstums sowie der Zelldifferenzierung und -proliferation. Bei 30 Prozent aller Krebsarten ist dieser Signalweg hyperaktiviert (63).

Die Induktion der intrazellulären Signaltransduktion über die ERK1/2-Kaskade erfolgt vornehmlich durch Wachstumsfaktoren und andere Mitogene und umfasst mehrere in Serie geschaltete Kinasen, wie Ras, Raf und MEK, die ERK1/2 mittels Phosphorylierung ihrer Tyrosin- und Threonin-
Einleitung

Reste aktivieren. Die MAP-Kinase phosphoryliert nun ihrerseits eine Reihe regulatorisch wirksamer zytosolischer und nukleärer Proteine an ihren Serin- und Threonin-Resten und beeinflusst auf diese Weise unter anderem die Transkription einer Vielzahl von Zielgenen, welche im Zellzyklus eine Rolle spielen (14,71).

1.3 Diabetes mellitus Typ 2 und Atherosklerose

Der Typ 2 Diabetes stellt mit ca. 90 Prozent die häufigste Form des Diabetes mellitus in Deutschland dar und ist hinsichtlich seines Pathomechanismus durch eine gestörte Insulinsekretion und/oder eine periphere Insulinresistenz der Zielorgane Leber, Skelettmuskulatur und Fettgewebe charakterisiert. Die Insulinresistenz äußert sich dabei in einer eingeschränkten Sensitivität gegenüber endogenem bzw. exogen zugeführtem Insulin und geht der Manifestation des Typ 2 Diabetes bereits um Jahre voraus (16).

Die Faktoren, welche die Entstehung eines Typ 2 Diabetes begünstigen, umfassen neben einer genetischen Disposition das Übergewicht, die falsche Ernährung sowie mangelnde körperliche Aktivität und ein höheres Lebensalter (16).

Die meist lange vor dem Auftreten eines manifesten Typ 2 Diabetes bestehende periphere Insulinresistenz geht mit klassischen kardiovaskulären Risikofaktoren, wie essenzieller Hypertonie, abdomineller Adipositas und Dyslipidämie einher. Dieses Insulinresistenzsyndrom oder
Einleitung

auch “Metabolisches Syndrom” zeichnet sich durch eine deutlich erhöhte
Inzidenz für atherosklerotische Gefäßerkrankungen aus.
Das Insulinresistenzsyndrom und der Typ 2 Diabetes stellen unabhängige
Risikofaktoren für die Entstehung der Atherosklerose dar (40).
So erhöht sich das Risiko für das Auftreten einer koronaren Herzkrankheit
bei Vorliegen eines Diabetes mellitus Typ 2 auf das 3- bis 4-fache
gegenüber demjenigen von Nichtdiabetikern (22). Ferner stellen
Gefäßkomplikationen mit bis zu 80 Prozent die Haupttodesursache der Typ-
2-Diabetiker dar, wobei 75 Prozent der Todesfälle durch Komplikationen der
koronaren Herzkrankheit bedingt sind (72).
Diese Fakten legen nahe, dass Typ-2-Diabetiker bereits lange vor der
klinischen Diagnosestellung unter einer vaskulären Erkrankung im Sinne
der Atherosklerose leiden und das kardiovaskuläre Risiko bereits im
Stadium der gestörten Glucosetoleranz erhöht ist (15,31).

Die Atherosklerose weist beim Diabetiker einige strukturelle Besonderheiten
auf. So zeigten pathologische und angiographische Studien, dass sich der
Diabetes durch eine diffuse und akzelerierte Form der Atherosklerose
auszeichnet und über eine größere Anzahl komplexer Plaques mit einer
höheren Komplikationsrate verfügt. Des Weiteren ergaben Untersuchungen
an Diabetikern mit instabiler Angina pectoris eine höhere Inzidenz von
Plaquerupturen und Thrombenbildung sowie ein gesteigertes Risiko der
Restenose nach koronarer Intervention (20,60).

Charakteristische pathophysiologische Merkmale zeigen sich beim
Diabetiker auch im Hinblick auf die Atherogenese. Das wichtigste Kriterium
in der Pathogenese der akzelerierten Atherosklerose ist dabei der Anstieg
der nicht-enzymatischen Glykosylierung von Proteinen und Lipiden mit der
Bildung und Ablagerung von „advanced glycation endproducts“ (AGE), die
eine atherogene Wirkung auf vaskuläre Zellen aufweisen und deren
Konzentration mit dem Schweregrad der atherosklerotischen Läsionen
korreliert (31). Des Weiteren tragen erhöhte Glucosekonzentrationen zur

Die genaueren Mechanismen, die der Dysfunktion sowie der erhöhten proliferativen Aktivität glatter Gefäßmuskelzellen im Rahmen der Atherogenese beim Typ 2 Diabetes zu Grunde liegen, sind derzeit noch nicht näher bekannt.

1.4 C-Peptid und Atherosklerose

Patienten, die an einer Insulinresistenz und einem beginnenden Diabetes mellitus Typ 2 leiden und somit einem gesteigerten Risiko für die Entstehung einer Atherosklerose ausgesetzt sind, verfügen typischerweise über hohe Spiegel von Insulin und C-Peptid im Blut.

Das C-Peptid („connecting peptide“) ist ein einkettiges Polypeptid aus 31 Aminosäuren und entsteht als Nebenprodukt bei der Insulinproduktion durch enzymatische Abspaltung von Proinsulin. Es wird zeitgleich und äquimolar zum Insulin in die Blutbahn sezerniert und fungiert dadurch als Marker für die Funktion der β-Zellen des Pancreas. Bedingt durch den schnellen
Einleitung

Neben der diagnostischen Bedeutung fand C-Peptid in der Medizin bis vor wenigen Jahren kaum Beachtung und galt als biologisch inerte Substanz. Neuere Untersuchungen zeigten jedoch, dass C-Peptid über die Bindung an einen bisher noch nicht identifizierten Oberflächenrezeptor in renalen Tubuluszellen, Pancreaszellen, Fibroblasten, Erythrozyten und Endothelzellen intrazelluläre Signalprozesse, wie z.B. die Aktivierung der Na-K-ATPase, oder die Steigerung der NO-Sekretion initiieren kann (24,25,50,61,67,78).

Neue Studienergebnisse postulieren, dass C-Peptid seine Wirkung über eine Aktivierung der Mitogen-aktivierte Protein-Kinase (MAPK) in einem Prozess entfaltet, der über die Phospholipase C, die Proteinkinase C sowie die Phosphatidylinositol 3-Kinase (PI3-Kinase) vermittelt wird (44,84).

Im Hinblick auf die vaskulären Effekte bei Diabetes mellitus Typ 1 konnte durch eine Substitution mit C-Peptid tierexperimentell eine Verbesserung der Mikroperfusion im Bereich der Retina und der peripheren Nerven demonstriert werden (13,35). Ferner bewirkte C-Peptid bei Typ 1 Diabetikern eine Steigerung der Skelettmuskelperfusion, des kutanen nutritiven Kapillarblutflosses sowie der Erythrozytenverformbarkeit, woraus eine Reduktion der Blutviskosität resultierte (26,38,51).

Die Wirkung des C-Peptids auf vaskuläre Zellen im Rahmen der Atherogenese bei diabetischen Typ 2 Patienten war bislang noch weitestgehend unklar. Neuere Ergebnisse unserer Arbeitsgruppe zeigen jedoch, dass sich C-Peptid bei diesen Patienten in der Frühphase der Atherogenese verstärkt subendothelial in der Gefäßwand ablagert und dort mit inflammatorischen Zellen kolokalisiert. Darüber hinaus konnte nachgewiesen werden, dass C-Peptid in-vitro einen chemotaktischen Effekt auf humane Monozyten und CD4-positive Lymphozyten besitzt und
konzentrationsabhängig deren Migration in frühe atherosklerotische Läsionen induziert (58,80).

Bezüglich der Wirkung, die C-Peptid im Frühstadium der Atherogenese auf die bei diesem Prozess entscheidenden glatten Gefäßmuskelzellen entfaltet, konnten *in-vitro* Analysen unserer Arbeitsgruppe bis dato demonstrieren, dass sich C-Peptid bei Diabetikern in der Media ablagert, dort mit glatten aortalen Gefäßmuskelzellen kolokalisiert und konzentrationsabhängig deren Proliferation induziert (81).

Darüber hinaus konnte mit Hilfe von Inhibitions-Experimenten ermittelt werden, dass die Src-Kinase, die PI3-Kinase sowie die MAP-Kinase ERK1/2 in den Prozess der C-Peptid-induzierten Proliferation der SMCs involviert zu sein scheinen, da die Hemmung dieser Signalmoleküle mit deren Inhibitoren PP2, LY294002 sowie PD98059 eine Abschwächung der Proliferation dieser Zellen zur Folge hatte (81).
1.5 Fragestellung und Zielsetzung

Die vorliegende Studie untersucht die molekularen Mechanismen, die der Proliferationsinduktion glatter Gefäßmuskelzellen durch C-Peptid zu Grunde liegen.

Im Einzelnen ergeben sich dabei folgende Fragestellungen:

a. Aktiviert C-Peptid die Src-Kinase in glatten Gefäßmuskelzellen?
b. Aktiviert C-Peptid die PI3-Kinase in glatten Gefäßmuskelzellen?
c. Aktiviert C-Peptid die MAP-Kinase ERK1/2 in glatten Gefäßmuskelzellen?
d. Wie sieht der genaue Ablauf der Signalkaskade aus, die bei der Proliferationsinduktion glatter Gefäßmuskelzellen durch C-Peptid aktiviert wird?
2. Material und Methoden

2.1 Material

2.1.1 Substanzen und Lösungen

Tabelle 1: Verwendete Substanzen und Lösungen

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Hersteller/Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accutase</td>
<td>PAA Laboratories GmbH, Austria</td>
</tr>
<tr>
<td>Acrylamid</td>
<td>Bio-Rad, USA</td>
</tr>
<tr>
<td>Anti-rabbit-IgG-HRP</td>
<td>Santa Cruz Biotechnology, Inc.</td>
</tr>
<tr>
<td>Anti-rat-AKT-IgG</td>
<td>Cell Signaling Technologies</td>
</tr>
<tr>
<td>Anti-rat-ERK-IgG</td>
<td>Promega, Madison, USA</td>
</tr>
<tr>
<td>Anti-rat-Src-IgG</td>
<td>Cell Signaling Technologies</td>
</tr>
<tr>
<td>Anti-rat-phospho-AKT-IgG</td>
<td>Cell Signaling Technologies</td>
</tr>
<tr>
<td>Anti-rat-phospho-ERK-IgG</td>
<td>Cell Signaling Technologies</td>
</tr>
<tr>
<td>Anti-rat-phospho-Src-IgG</td>
<td>Cell Signaling Technologies</td>
</tr>
<tr>
<td>Aortale glatte Muskelzellen, Ratte (RASMCs)</td>
<td>Cell Applications, San Diego, Calif, CA 92121</td>
</tr>
<tr>
<td>APS</td>
<td>1 g Ammonium Persulfate (Sigma Diagnostics, USA) ad 10 ml H₂O</td>
</tr>
<tr>
<td>Aqua Spüllösung</td>
<td>Delta-Pharma, Germany</td>
</tr>
<tr>
<td>BCA</td>
<td>Pierce Biotechnology, USA</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>Bovines Serum Albumin (BSA)</td>
<td>PAA Laboratories GmbH, Austria</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>Chemolumineszenzlösung</td>
<td>Pierce Biotechnology, USA</td>
</tr>
<tr>
<td>C-Peptid, Ratte</td>
<td>Thermo Hybaid, Germany</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>Glycin</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Größenmarker Western Blot („Bench Mark Protein Ladder“)</td>
<td>Invitrogen, life technologies</td>
</tr>
<tr>
<td>Hungermedium RASMCs</td>
<td>Basalmedium ad 2,5 mg Transferrin, 2,5 mg Insulin, Penicillin und Streptomycin</td>
</tr>
<tr>
<td>Loading Buffer Western Blot</td>
<td>5 ml 0,5 M Trizma Base, 4 ml Glycerol, 0,8 g SDS, 0,5 ml β-Mercaptoethanol, 25 mg Bromphenolblau, ad 10 ml H₂O</td>
</tr>
<tr>
<td>LY294002</td>
<td>Calbiochem, Germany</td>
</tr>
<tr>
<td>Lysepuffer</td>
<td>Nonidet P40: 50 mmol/l Tris-HCl pH 8,0, 150 mmol/l NaCl, 1 % NP-40</td>
</tr>
<tr>
<td>Kulturmedium RASMCs ("RatSMC Growth Medium Kit")</td>
<td>Cell Applications, USA: 450 ml Basalmedium, 50 ml Wachstumsfaktoren, 10 % fetales bovines Serum, Penicillin (100 IU/ml), Streptomycin (100 µg/ml)</td>
</tr>
<tr>
<td>Methanol</td>
<td>Merck, Germany</td>
</tr>
<tr>
<td>NP40</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>PBS</td>
<td>PAA Laboratories GmbH, Austria</td>
</tr>
<tr>
<td>PD98059</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>PDGF</td>
<td>Perprotech, USA</td>
</tr>
<tr>
<td>PMA</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>PMSF</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>PP2</td>
<td>Calbiochem, Germany, 529 573</td>
</tr>
<tr>
<td>Protease Inhibitor</td>
<td>Sigma Diagnostics, USA</td>
</tr>
<tr>
<td>Running Buffer 10x Western Blot</td>
<td>30,3 g Trizma Base, 141 g Glycin, 10 g SDS, ad 1000 ml H₂O, pH 8,3</td>
</tr>
<tr>
<td>Samplegel Western Blot</td>
<td>60 ml 30%iges Acrylamid, 45 ml 1,5 M Trizma Base, 1,8 ml 10%iges SDS, 71,04 ml H₂O</td>
</tr>
<tr>
<td>Material und Methoden</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>SDS</td>
<td>Roth, Germany</td>
</tr>
<tr>
<td>Stackgel Western Blot</td>
<td>15 ml 30%iges Acrylamid, 11,25 ml 1,0 M Trizma Base, 0,9 ml 10%iges SDS</td>
</tr>
<tr>
<td>TBS</td>
<td>24,2 g Tris base, 80 g NaCl ad 1 l H₂O, pH 7,6</td>
</tr>
<tr>
<td>TEMED</td>
<td>Sigma-Aldrich, USA</td>
</tr>
<tr>
<td>Transferpuffer Western Blot</td>
<td>Carl Roth GmbH & Co., Germany</td>
</tr>
<tr>
<td>Trizma Base</td>
<td>USB, USA</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma Diagnostics, USA</td>
</tr>
</tbody>
</table>
2.1.2 Geräte und Kits

Tabelle 2: Verwendete Geräte und Kits

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blotgerät Western Blot</td>
<td>Bio-Rad, USA</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>Heraeus, Germany</td>
</tr>
<tr>
<td>Chromatographiepapier</td>
<td>Whatman International, England</td>
</tr>
<tr>
<td>Gelkammer Western Blot</td>
<td>Biometra, Germany</td>
</tr>
<tr>
<td>Heizblock</td>
<td>Thermomixer compact, Eppendorf</td>
</tr>
<tr>
<td>Hybridisierungsofen</td>
<td>Biometra, Germany</td>
</tr>
<tr>
<td>Laminar Air Flow Bench</td>
<td>Heraeus, Germany</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Axioskop 2plus, Zeiss, Germany</td>
</tr>
<tr>
<td>Netzgerät</td>
<td>Biometra, Germany</td>
</tr>
<tr>
<td>Nylonmembran Western Blot</td>
<td>Hybond, amersham pharmacia, UK</td>
</tr>
<tr>
<td>Pipetten</td>
<td>Gilson, France</td>
</tr>
<tr>
<td>Polypropylenröhrchen</td>
<td>FALCON, Becton Dickinson, USA</td>
</tr>
<tr>
<td>Reaktionsgefäße 1,5 ml</td>
<td>Safe Lock, Eppendorf, Germany</td>
</tr>
<tr>
<td>Reaktionsgefäße 15 ml und 50 ml</td>
<td>FALCON, Becton Dickinson, USA</td>
</tr>
<tr>
<td>Reaktionsplatten</td>
<td>96-well, Greiner, Germany</td>
</tr>
<tr>
<td>Röntgenfilme</td>
<td>Hyperfilm, amersham pharmacia, UK</td>
</tr>
<tr>
<td>Röntgenkassetten</td>
<td>rego, Germany</td>
</tr>
<tr>
<td>Thermocycler</td>
<td>Biometra, Germany</td>
</tr>
<tr>
<td>Zellkultur Mikroskop</td>
<td>DMIL, Leica</td>
</tr>
<tr>
<td>Zellkulturplatten</td>
<td>MULTIWELL, Becton Dickinson, USA</td>
</tr>
<tr>
<td>Zellkulturschalen 100 mm</td>
<td>FALCON, Becton Dickinson, USA</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>Varifuge 3.0R, Heraeus, Germany</td>
</tr>
</tbody>
</table>
2.2 Methoden

2.2.1 Zellkultur

Bei den vorliegenden Experimenten wurden aus der Ratte isolierte glatte aortale Muskelzellen von der Firma Cell Applications käuflich erworben. Die Anzüchtung der glatten Muskelzellen erfolgte auf kollagenbeschichteten Zellkulturplatten in einem spezifischen Kulturmedium, welches Wachstumsfaktoren, 10%iges fetales bovines Serum sowie Penicillin und Streptomycin enthielt. Die Kultivierung erfolgte bei 37°C mit 5%igem CO₂. Für die weiteren Analysen wurden Zellen der Passagen zwei bis sieben verwendet.

2.2.2 Western Blot Analysen

Der Western Blot oder auch SDS-PAGE (SDS Polyacrylamid-Gel Elektrophorese) genannt, beschreibt eine Methode, deren Ziel es ist Proteine elektrophoretisch zu trennen und dauerhaft auf einer Membran zu fixieren. Durch spezifische Antikörpernachweisreaktionen können diese Proteine anschließend sichtbar gemacht werden. Mit der Western Blot Analyse können Größe und relative Menge der exprimierten Proteine bestimmt werden. Zudem ermöglicht es diese Methode durch
Material und Methoden

entsprechende Antikörperwahl den Phosphorylierungszustand der Proteine zu ermitteln.

Mit Hilfe der Western Blot Analyse wurde zunächst die durch C-Peptid in VSMCs induzierte Aktivierung der Src-Kinase, der PI3-Kinase sowie der MAP-Kinase ERK1/2 auf Proteinbasis gezeigt. Im nächsten Schritt konnte unter Einsatz von Inhibitoren der oben genannten Signaltransduktionsmoleküle die genauere Lokalisation letzterer in der Signalkaskade ermittelt werden, welche bei der C-Peptid-induzierten Proliferation glatter Muskelzellen aktiviert wird.

Um die Aktivierung der Src-Kinase nachweisen zu können wurden die wie zuvor beschrieben kultivierten RASMCs mit Ratten-C-Peptid stimuliert, das eine Konzentration von 0,5 nmol/l aufwies. Die Stimulation erfolgte dabei über einen Zeitraum von einer, drei, fünf bzw. zehn Minuten. Anschließend wurde die Phosphorylierung von Src ermittelt. PDGF (10 ng/ml) diente als Positivkontrolle.

Die Aktivierung der PI3-Kinase wurde mittels AKT, einem direkten downstream-Produkt dieser, untersucht. Nach Stimulation der RASMCs mit C-Peptid über zehn Minuten wurde die Phosphorylierung von AKT ermittelt. PDGF (10 ng/ml) diente erneut als Ladungskontrolle.

Beim Nachweis der Aktivierung der MAP-Kinase ERK1/2 wurde die durch C-Peptid induzierte Phosphorylierung von ERK1/2 in Abhängigkeit von der Stimulationsdauer (1 – 60 Minuten) bzw. der unterschiedlichen Konzentrationen des C-Peptids (0,05 – 1,0 nmol/l) ermittelt. Hitzeinaktiviertes C-Peptid (0,5 nmol/l) diente hierbei als Negativ-, PDGF (10 ng/ml) als Positivkontrolle.

Zur abschließend durchgeführten Ermittlung der Signalkaskade, welche bei der Proliferationsinduktion glatter Muskelzellen durch C-Peptid aktiviert wird,
wurden die RASMCs 30 Minuten lang bei 37°C mit dem Src-Kinase Inhibitor PP2, dem PI3-Kinase Inhibitor LY294002 sowie dem ERK1/2 Inhibitor PD98059 vorbehandelt. Alle drei Inhibitoren wiesen eine Konzentration von 5 µmol/l auf. Anschließend wurden die Zellen zehn Minuten lang mit Ratten-C-Peptid (0,5 nmol/l) inkubiert und die Phosphorylierung von AKT bzw. ERK1/2 wurde bestimmt.

Die Untersuchung der Phosphorylierung der verschiedenen Signalmoleküle mittels Western Blot verlief anschließend analog wie im Folgenden beschrieben; nach der Stimulation wurden die Zellen auf Eis gelegt, mit 10 ml PBS gewaschen und mit 180 µl Lysepuffer Nonidet P40 behandelt. Anschließend erfolgte die Überführung in vorgekühlte Reaktionsgefäße und eine Zentrifugation von 14000 RPM über zehn Minuten bei 4°C, deren Resultat eine Trennung zwischen den Zellkernen im Pellet und dem Zytosolextrakt im Überstand war.

Gelelektrophorese

Die auf diese Weise vorbereiteten Proben wurden auf ein SDS-Polyacrylamidgel aufgetragen, welches zuvor unter Verwendung eines 12%igen Sample- sowie eines 5%igen Stackgels hergestellt wurde. Schließlich erfolgte die Elektrophorese bei einer Spannung von 100 V über einen Zeitraum von zweieinhalb Stunden.
Blotting

Staining

Material und Methoden

2.2.3 Densitometrische Auswertung

Die durchgeführten Western Blots wurden zunächst gescannt und bei Bedarf mit Hilfe des Bildbearbeitungsprogrammes ImageJ aufgearbeitet. Anschließend erfolgte die densitometrische Auswertung sowie die graphische Darstellung.

2.2.4 Statistische Analyse

3. Ergebnisse

3.1 C-Peptid aktiviert die Src-Kinase in glatten Gefäßmuskulaturzellden

Es wurde mittels Western Blot Analysen untersucht, ob C-Peptid eine aktivierende Wirkung auf die Src-Kinase in glatten Gefäßmuskulaturzellen besitzt.
Hierzu wurden RASMCs über einen Zeitraum von einer, drei, fünf bzw. zehn Minuten mit Ratten-C-Peptid (0,5 nmol/l) stimuliert. Anschließend wurde die Phosphorylierung von Src ermittelt.
C-Peptid induzierte nach einer Stimulationszeit von einer Minute die Phosphorylierung von Src in RASMCs signifikant (p <0,05 im Vergleich zu unstimulierten Zellen; n=4), wie aus Abbildung 1 ersichtlich ist.
Ergebnisse

A

66 kDa- p-Src

66 kDa- Src

Co 1 3 5 10 PDGF

C-Peptid (min)

B

Abbildung 1: Western Blot Analyse zur Aktivierung der Src-Kinase (Sarkom-Kinase: 66 Kilodalton) in glatten Gefäßmuskelzellen durch C-Peptid.

3.2 C-Peptid aktiviert die PI3-Kinase in glatten Gefäßmuskelzellen

Die Wirkung von C-Peptid auf die Aktivität der PI3-Kinase wurde in Western Blot Analysen mittels der Aktivitätsprüfung von AKT, einem direkten downstream-Produkt der PI3-Kinase untersucht. RASMCs wurden mit C-Peptid stimuliert und die Phosphorylierung von AKT wurde zum einen in Abhängigkeit von der Stimulationsdauer (1 – 60 Minuten) und zum anderen von der Konzentration des C-Peptids (0,05 – 1,0 nmol/l) ermittelt. C-Peptid induzierte zeit- und konzentrationsabhängig (Abb. 2 und 3) die Phosphorylierung von AKT in RASMCs mit einer maximalen Induktion von 2,3 ±1,0 bei einer Stimulationsdauer von zehn Minuten sowie 2,0 ±0,5 bei einer C-Peptid-Konzentration von 0,5 nmol/l (p <0,05 im Vergleich zu unstimulierten Zellen; n=3). Hierdurch konnte die Aktivierung der PI3-Kinase durch das C-Peptid belegt werden.
Abbildung 2: Western Blot Analyse zur Aktivierung der PI3-Kinase (Phosphatidylinositol 3-Kinase) in glatten Gefäßmuskelzellen durch C-Peptid in Abhängigkeit von der Stimulationsdauer.
A, Nach Stimulation der glatten aortalen Rattenmuskelzellen mit Ratten-C-Peptid (0,5 nmol/l) für die Dauer von 1 bis 60 Minuten wurde die Phosphorylierung von AKT (Proteinkinase B: 57 Kilodalton) mit einem spezifischen Antikörper gegen p-AKT (phospho-AKT) ermittelt. PDGF (Plättchenabhängiger Wachstumsfaktor: 10 ng/ml) diente als Positivkontrolle, die unphosphorylierte Form von AKT als Ladungskontrolle. B, Densitometrische Analyse von drei unabhängigen Experimenten. Das Diagramm stellt die relative Induktion von p-AKT zu AKT im Vergleich zur Kontrolle (Co) dar. Die Säulen zeigen Mittelwert ± Standardfehler; *p <0,05 im Vergleich zu unstimulierte Zellen; n=3.
Abbildung 3: Western Blot Analyse zur Aktivierung der PI3-Kinase (Phosphatidylinositol 3-Kinase) in glatten Gefäßmuskelzellen durch C-Peptid in Abhängigkeit von der C-Peptid-Konzentration.
A, Nach Stimulation der glatten aortalen Rattenmuskelzellen mit Ratten-C-Peptid in Konzentrationen von 0,05 bis 1,0 nmol/l über einen Zeitraum von zehn Minuten wurde die Phosphorylierung von AKT (Proteinkinase B: 57 Kilodalton) mit einem spezifischen Antikörper gegen p-AKT (phospho-AKT) ermittelt. Die unphosphorylierte Form von AKT diente als Ladungskontrolle. B, Densitometrische Analyse von drei unabhängigen Experimenten. Das Diagramm stellt die relative Induktion von p-AKT zu AKT im Vergleich zur Kontrolle (Co) dar. Die Säulen zeigen Mittelwert ±Standardfehler; *p <0,05 im Vergleich zu unstimulierten Zellen; n=3.
3.3 C-Peptid aktiviert die MAP-Kinase ERK1/2 in glatten Gefäßmuskelzellen

Mit Hilfe der nachfolgend dargestellten Western Blot Analysen sollte untersucht werden, ob C-Peptid bei der Proliferationsinduktion glatter Gefäßmuskelzellen einen direkten Einfluss auf die Aktivität der MAP-Kinase ERK1/2 nimmt.

Hierzu wurden RASMCs mit C-Peptid stimuliert und die Phosphorylierung von ERK1/2 wurde zum einen in Abhängigkeit von der Stimulationsdauer (1 – 60 Minuten) und zum anderen von der Konzentration des C-Peptids (0,05 – 1,0 nmol/l) ermittelt.

C-Peptid induzierte zeit- und konzentrationsabhängig die Phosphorylierung der MAP-Kinase ERK1/2 in RASMCs mit einer maximalen Induktion von 3,1 ±1,6 bei einer Stimulationsdauer von zehn Minuten sowie 2,0 ±0,4 bei einer C-Peptid-Konzentration von 0,5 nmol/l (p <0,05 im Vergleich zu unstimulierten Zellen; n=5).

Hitzeinaktiviertes C-Peptid zeigte keinen derartigen Aktivierungseffekt. Die Resultate der Zeit- und Konzentrationskinetik sind in Abb. 4 und 5 dargestellt.
Ergebnisse

Abbildung 4: Western Blot Analyse zur Aktivierung von ERK1/2 (Extrazellulär Signal-regulierte Kinase 1/2: 42/44 Kilodalton) in glatten Gefäßmuskelzellen durch C-Peptid in Abhängigkeit von der Stimulationsdauer.

A, Glatte aortale Rattenmuskelzellen wurden über einen Zeitraum von 1 bis 60 Minuten mit Ratten-C-Peptid (0,5 nmol/l) stimuliert und die Phosphorylierung von ERK1/2 wurde mit einem spezifischen Antikörper gegen p-ERK (phospho-ERK) ermittelt. PDGF (Plättchenabhängiger Wachstumsfaktor: 10 ng/ml) diente hierbei als Positivkontrolle, die unphosphorylierte Form von ERK als Ladungskontrolle. B, Densitometrische Analyse von fünf unabhängigen Experimenten. Das Diagramm stellt die relative Induktion von p-ERK zu ERK im Vergleich zur Kontrolle (Co) dar. Die Säulen zeigen Mittelwert ±Standardfehler; *p <0,05 im Vergleich zu unstimulierten Zellen; n=5.
Abbildung 5: Western Blot Analyse zur Aktivierung von ERK1/2 (Extrazellulär Signal-regulierte Kinase 1/2: 42/44 Kilodalton) in glatten Gefäßmuskulzellen durch C-Peptid in Abhängigkeit von der C-Peptid-Konzentration.

A, Glatte aortale Rattenmuskelzellen wurden zehn Minuten lang mit Ratten-C-Peptid in Konzentrationen von 0,05 bis 1,0 nmol/l stimuliert und die Phosphorylierung von ERK1/2 wurde mit einem spezifischen Antikörper gegen p-ERK (phospho-ERK) ermittelt. Hitzeinaktiviertes C-Peptid (HI: 0,5 nmol/l) diente hierbei als Negativ-, PDGF (Plättchenabhängiger Wachstumsfaktor: 10 ng/ml) als Positivkontrolle. Die unphosphorylierte Form von ERK fand als Ladungskontrolle Verwendung. B, Densitometrische Analyse von fünf unabhängigen Experimenten. Das Diagramm stellt die relative Induktion von p-ERK zu ERK im Vergleich zur Kontrolle (Co) dar. Die Säulen zeigen Mittelwert ±Standardfehler; *p <0,05 im Vergleich zu unstimulierten Zellen; n=5.
3.4 C-Peptid aktiviert den MAP-Kinase Signalweg in glatten Gefäßmuskeln über die Src- und die PI3-Kinase

Zur Ermittlung der genauen Lokalisation der Src-, PI3- sowie der MAP-Kinase ERK1/2 in der Signalkaskade, welche bei der Proliferationsinduktion glatter Gefäßmuskeln durch C-Peptid abläuft, wurde zunächst mittels Western Blot Analysen untersucht, ob die Src-Kinase upstream der PI3-Kinase agiert.
Hierzu wurden die RASMCs 30 Minuten lang mit dem Src-Kinase Inhibitor PP2 (5 µmol/l) sowie dem PI3-Kinase Inhibitor LY294002 (5 µmol/l) inkubiert. Nach erfolgter Stimulation der Zellen mit C-Peptid (0,5 nmol/l) über zehn Minuten wurde der Effekt dieser Vorbehandlung auf die Phosphorylierung von AKT, dem Substrat des aktivierten PI3-Kinase-Signalweges, ermittelt. Der Versuch demonstrierte, dass die Hemmung der Src-Kinase eine Reduktion der C-Peptid-vermittelten Phosphorylierung von AKT zur Folge hat (p <0,05, n=5), wie Abb.6 verdeutlicht. Hierdurch konnte belegt werden, dass die Aktivierung der Src-Kinase durch das C-Peptid upstream der PI3-Kinase erfolgt.
Ergebnisse

Abbildung 6: Western Blot Analyse zur Aktivierung des PI3-Kinase-Signalweges (Phosphatidylinositol 3-Kinase) in glatten Gefäßmuskelzellen durch C-Peptid downstream der Src-Kinase (Sarkom-Kinase).

B, Densitometrische Analyse von fünf unabhängigen Experimenten. Das Diagramm stellt die relative Induktion von p-AKT zu AKT im Vergleich zur Kontrolle (Co) dar. Die Säulen zeigen Mittelwert ± Standardfehler; *p < 0,05 im Vergleich zu C-Peptid-stimulierten Zellen; n=5.
Ergebnisse

Im nächsten Schritt wurde überprüft, ob die Aktivierung der Src- sowie der PI3-Kinase upstream der durch C-Peptid induzierten Phosphorylierung der MAP-Kinase ERK1/2 stattfindet. Die RASMCs wurden dabei 30 Minuten lang mit PP2 (5 µmol/l), LY294002 (5 µmol/l) sowie PD98059, einem Inhibitor von ERK1/2, vorbehandelt. Nach der anschließenden Stimulation der Zellen mit C-Peptid (5 nmol/l) über zehn Minuten wurde eruirt, welche Auswirkung die Hemmung der Src- sowie der PI3-Kinase auf die Phosphorylierung von ERK1/2 hat. Es zeigte sich, dass beide Inhibitoren die durch C-Peptid induzierte Phosphorylierung der MAP-Kinase aufheben (p <0,05, n=7) und demzufolge die Aktivierung der Src- sowie PI3-Kinase durch das C-Peptid upstream der MAP-Kinase ERK1/2 abläuft (Abb.7).
Abbildung 7: Western Blot Analyse zur Aktivierung des ERK1/2-Signalweges (Extrazellulär Signal-regulierte Kinase 1/2: 42/44 Kilodalton) in glatten Gefäßmuskulzellen durch C-Peptid downstream der Src-Kinase (Sarkom-Kinase) sowie der PI3-Kinase (Phosphatidylinositol 3-Kinase).

Anschließend wurden die Zellen zehn Minuten lang mit Ratten-C-Peptid (0,5 nmol/l) inkubiert und die Phosphorylierung von ERK1/2 wurde mit einem spezifischen Antikörper gegen p-ERK (phospho-ERK) ermittelt. Die unphosphorylierte Form von ERK diente als Ladungskontrolle.

B, Densitometrische Analyse von sieben unabhängigen Experimenten. Das Diagramm stellt die relative Induktion von p-ERK zu ERK im Vergleich zu unstimulierten Zellen dar. Die Säulen zeigen Mittelwert ± Standardfehler; *p <0,05 im Vergleich zu C-Peptid-stimulierten Zellen; n=7.
3.5 Zusammenfassung aller Ergebnisse

a. C-Peptid aktiviert die Src-Kinase in glatten Gefäßmuskelzellen.

b. C-Peptid aktiviert die PI3-Kinase in glatten Gefäßmuskelzellen.

c. C-Peptid aktiviert die MAP-Kinase ERK1/2 in glatten Gefäßmuskelzellen.

d. C-Peptid aktiviert den MAP-Kinase Signalweg in glatten Gefäßmuskelzellen über die Src- und die PI3-Kinase.
4. Diskussion

Diese Daten legen nahe, auf welche Weise C-Peptid die Proliferation glatter Gefäßmuskelzellen sowohl bei der Atherogenese als auch im Rahmen der Restenose nach Koronarintervention bei diabetischen Typ 2 Patienten beeinflussen könnte.

4.1 C-Peptid

Neuere Arbeiten der vergangenen zehn Jahre demonstrierten jedoch, dass C-Peptid zur Initiierung intrazellulärer Prozesse in verschiedenen Zelltypen befähigt ist.

So konnte sowohl in proximalen Tubuluszellen der Niere als auch in Pancreaszellen und Erythrozyten eine Aktivierung der Na-K-ATPase durch C-Peptid belegt werden (24,61,78). Außerdem konnte dargestellt werden, dass C-Peptid in Endothelzellen eine Steigerung der NO-Sekretion bewirkt und die Mitogen-aktivierte Protein-Kinase (MAPK) in 3T3 Fibroblasten stimuliert (44,50). Schließlich übt C-Peptid auch einen Einfluss auf inflammatorische Zellen, wie Monozyten und CD4-positive Lymphozyten.
aus, indem es deren Migration in frühe atherosklerotische Läsionen induziert (58,80).

Die Erkenntnisse darüber, welche Wirkung C-Peptid auf Myozyten ausübt, konzentrierten sich bislang auf den Bereich der Skelettmuskulatur (30,38,85,86).

Die in der aktuellen Arbeit vorgestellten Daten erweitern das Wissen um die zellulären Effekte des C-Peptids, indem dessen proliferative Wirkung auf glatte Gefäßmuskelzellen und die damit verbundene Aktivierung intrazellulärer Signalmoleküle aufgezeigt werden konnte.

Die vorliegenden Experimente ergaben einen maximalen Stimulationseffekt bei einer C-Peptid-Konzentration von 0,5 nmol/l. Dieser Wert liegt an der unteren Grenze der physiologischen humanen C-Peptid-Serumkonzentrationen, welche sich im Bereich von 0,5 - 1,5 nmol/l bewegen (79). Ratten weisen jedoch insgesamt geringere C-Peptid-Serumspiegel auf (0,1 - 0,5 nmol/l), wodurch sich oben genannter Maximaleffekt bei solch niedrigen Konzentrationen erklären lässt (81).

Der Aktivierungseffekt, welcher für die jeweiligen Signalmoleküle nach der Stimulation mit C-Peptid erzielt wurde, liegt bei einer 2- bis 3,5-fachen Induktion. Dies entspricht der proliferativen Wirkung von PDGF, einem bekannten Wachstumsfaktor, welcher die Proliferation glatter Gefäßmuskelzellen anregt.

Eine frühere Studie von Kobayashi et al. zeigte einen inhibitorischen Effekt auf die Proliferation der RASMCs nach dreitägiger Stimulation mit humanem C-Peptid (46).

Die Arbeit unterscheidet sich in folgenden Punkten von den vorliegenden Analysen. Zum einen stimulierten Kobayashi und seine Kollegen glatte Ratten-Gefäßmuskelzellen mit humanem C-Peptid, wohingegen unser Vorgehen nicht von einem C-Peptid-Gebrauch zwischen verschiedenen Arten gekennzeichnet war. Dies stellt insofern eine entscheidende
Divergenz dar, als die C-Peptid-Struktur verschiedener Arten Unterschiede aufweist (61) und C-Peptid artspezifisch agiert, wie in Beobachtungen mittels Fluoreszenz-Korrelations-Spektroskopie gezeigt werden konnte. So schlug eine Bindung von Ratten-C-Peptid an humane Zellen unter physiologischen Konzentrationen fehl (79). Zum anderen fanden in der Studie von Kobayashi et al. mit bis zu 100 nmol/l sehr hohe C-Peptid-Konzentrationen Verwendung, sodass die jeweiligen Versuchsbedingungen in wichtigen Aspekten voneinander abweichen.

4.2 Src-Kinase

Die vorgestellten Daten legen dar, dass C-Peptid im Rahmen der VSMC-Stimulation eine Aktivierung der Src-Kinase induziert, wodurch es via PI3-Kinase zu einer Phosphorylierung der MAP-Kinase ERK1/2 kommt. Arbeiten, welche die Proliferationsinduktion glatter Gefäßmuskelzellen analysierten, zeigten, dass die Src-Kinase eine Rolle sowohl in der durch LDL als auch durch Bradykinin und Angiotensin II vermittelten Proliferation der RASMCs spielt (6,12,82). In der Studie von Yang et al. führte die Inkubation der VSMCs mit Bradykinin zu einer Phosphorylierung von Src mit einer maximalen Induktion innerhalb der ersten Minute. Diese Resultate stimmen mit dem von uns erzielten Phosphorylierungseffekt durch C-Peptid überein.

Frühere Ergebnissen unserer Arbeitsgruppe demonstrierten ferner, dass eine Vorbehandlung der RASMCs mit PP2, einem spezifischen Inhibitor der Src-Kinase, die C-Peptid-induzierte Proliferation der glatten Gefäßmuskelzellen hemmt (81).
Die aktuellen Daten belegen somit, dass die Aktivierung der Src-Kinase auch in der C-Peptid-vermittelten Proliferation glatter Gefäßmuskulzellen von Bedeutung ist.

4.3 PI3-Kinase

In unseren Experimenten konnte die Aktivierung der PI3-Kinase durch C-Peptid mittels ihres direkten downstream-Produktes p-AKT als weiterer wichtiger Signalschritt in der C-Peptid-vermittelten Proliferation der RASMCs nachgewiesen werden. Eine Hemmung der PI3-Kinase mit dem spezifischen Inhibitor LY294002 hatte eine Minderung der C-Peptid-induzierten Phosphorylierung von AKT zur Folge, wodurch obige Aussage erhärtet wird.

Begleitend zu oben genanntem Nachweis der PI3-Kinase-Aktivität wurde in unserer Arbeitsgruppe ein PI3-Kinase-Aktivitäts-Assay durchgeführt, welcher die direkte Aktivierung dieses Signalmoleküls durch C-Peptid bestätigen konnte (81).

In-vitro und *in-vivo* Untersuchungen an glatten Gefäßmuskulzellen ergaben, dass der PI3-Kinase-Signalweg von essenzieller Bedeutung für die Progression des Zellzyklus dieser Zellen ist, indem er die Translation regulatorischer Proteine fördert, welche den Zellzyklus positiv beeinflussen (7).

Die Aktivierung der PI3-Kinase durch C-Peptid konnte bereits in verschiedenen Zelltypen eruiert werden, wie mehrere aktuelle Studien belegen. So erfolgte eine Stimulation der PI3-Kinase durch das Proinsulin-Spaltprodukt sowohl in „swiss 3T3“ Fibroblasten als auch in inflammatorischen Zellen wie Monozyten und CD4-positiven Lymphozyten (44,58,80). Gleichermassen wurde die Aktivierung des PI3-Kinase/AKT-
Signalwege als Konsequenz der C-Peptid-Stimulation in humanen und tierischen Tubuluszellen der Niere beobachtet (1,84).

Observationen anderer Arbeitsgruppen zufolge gilt die PI3-Kinase gemeinsam mit ihrem downstream-Partner AKT als Akteur in der Bradykinin-, Angiotensin II- sowie Resistin-vermittelten Proliferation glatter Gefäßmuskulzellen (6,9,82).

Schließlich führten frühere Untersuchungen unserer Projektgruppe zu dem Ergebnis, dass eine Vorbehandlung der RASMCs mit LY294002, einem spezifischen Inhibitor der PI3-Kinase, die C-Peptid-vermittelte Proliferation der VSMCs hemmt (81), sodass zusammenfassend postuliert werden kann, dass bei der Proliferation glatter Gefäßmuskulzellen im Rahmen der Atherogenese die C-Peptid-induzierte Aktivierung des PI3-Kinase/AKT-Signalweges eine entscheidende Rolle spielt.

4.4 MAP-Kinase ERK1/2

Als drittes entscheidendes Signalmolekül, welches bei der C-Peptid-vermittelten Proliferation der VSMCs aktiviert wird, konnte in unserer Versuchsreihe die Extrazellulär Signal-regulierte Kinase 1/2 identifiziert werden.

Es ist von allgemeiner Akzeptanz, dass die MAP-Kinase ERK1/2 grundlegende Prozesse wie die Proliferation, die Differenzierung sowie die Entwicklung von Zellen vermittelt (71).

Analog der zuvor beschriebenen Erkenntnisse in Bezug auf die PI3-Kinase ist die C-Peptid-induzierte Aktivierung von ERK1/2 ein Hergang, der bereits in „swiss 3T3“ Fibroblasten sowie humanen und tierischen Tubuluszellen der Niere nachgewiesen wurde (30,44,83,84). Darüber hinaus spielt die
Aktivierung der MAP-Kinase durch das „connecting peptide“ auch in Skelettmuskelzellen und Kapillarendothelzellen der Lunge eine Rolle, was tierexperimentell belegt werden konnte (30,45).

In einer Studie von Calabro et al. konnte ERK1/2 als wichtiges Signalmolekül in der Resistin-vermittelten Proliferation glatter Gefäßmuskelzellen identifiziert werden (9).

Außerdem zeigten neuere Arbeiten, welche Bradykinin, LDL bzw. Angiotensin II als Induktoren der RASMC-Proliferation ermittelten, dass neben der Src- und der PI3-Kinase auch der ERK1/2-Signalweg maßgeblich an diesem Proliferationsprozess beteiligt ist (6,12,82).

In Zusammenschau mit dem Faktum, dass die Hemmung des MAP-Kinase-Signalweges mit dem Inhibitor PD98059 einen Rückgang der C-Peptid-induzierten Proliferation glatter Gefäßmuskelzellen zum Ergebnis hatte (81), kann abschließend die Aussage getroffen werden, dass dieser Proliferationsprozess die Aktivierung der MAP-Kinase ERK1/2 involviert.

4.5 Der intrazelluläre Signalweg bei der durch C-Peptid induzierten Proliferation glatter Gefäßmuskelzellen

Die genaue Lokalisation der Src-, PI3- sowie MAP-Kinase ERK1/2 in der Signalkaskade, welche im Rahmen der Proliferationsinduktion der VSMCs durch C-Peptid aktiviert wird, konnte mit Hilfe von Inhibitions-Experimenten ermittelt werden.

Die Inkubation der RASMCs mit PP2, einem Inhibitor der Src-Kinase, resultierte in einer Hemmung der C-Peptid-vermittelten Phosphorylierung von AKT, dem Substrat des aktivierten PI3-Kinase-Signalweges. Dies impliziert, dass die Aktivierung der Src-Kinase bei der C-Peptid-induzierten Proliferation glatter Gefäßmuskelzellen upstream der PI3-Kinase stattfindet.
Diese Beobachtung wurde auch in der Versuchsreihe einer anderen Arbeitsgruppe gemacht, welche sich mit der Bradykinin-induzierten Proliferation der VSMCs beschäftigte. Eine Inhibition der Src-Kinase führte hier zur Aufhebung der Bradykinin-vermittelten Phosphorylierung von AKT (82). Die upstream-Position der Src-Kinase wurde ferner auch im Rahmen der Angiotensin II-induzierten RASMC-Proliferation beschrieben (6).

Die Inhibitions-Experimente der vorliegenden Arbeit ergaben außerdem, dass die Vorbehandlung der RASMCs mit PP2 sowie LY294002, einem Inhibitor der PI3-Kinase, eine Abschwächung der durch C-Peptid induzierten Phosphorylierung von ERK1/2 zur Folge hatte. Dieses Resultat führt zu der Annahme, dass die MAP-Kinase ERK1/2 bei der C-Peptid-vermittelten Proliferation glatter Gefäßmuskelzellen downstream der Src- sowie der PI3-Kinase agiert.

Diese Ergebnisse stimmen mit den Daten überein, die sowohl in Bezug auf die Bradykinin- als auch auf die LDL-induzierte Proliferation der VSMCs erhoben wurden. Die Untersuchungen brachten gleichermaßen zum Ausdruck, dass die Hemmung der Src- bzw. der PI3-Kinase eine Phosphorylierungsminderung von ERK1/2 nach sich zieht (12,82).

Zusammenfassend legen die vorgestellten Daten nahe, dass C-Peptid den MAP-Kinase-Signalweg in glatten Gefäßmuskelzellen über die Src- und die PI3-Kinase aktiviert und mittels dieser Signalkaskade die Proliferation der VSMCs induziert.

Neuere Arbeiten konnten zeigen, dass C-Peptid seine intrazellulären Signalprozesse über die Bindung an einen bis dato nicht identifizierten Oberflächenrezeptor vermittelt (67). Diese Stimulation war in renalen Tubuluszellen, Fibroblasten, Endothelzellen sowie in inflammatorischen Zellen, wie Monozyten und CD4-positiven Lymphozyten durch Pertussistoxin inhibierbar (44,58,67,80,84), welches die Funktion von G-
Protein-gekoppelten Rezeptoren modifiziert. Diese Befunde lassen eine Pertussistoxin-sensitive, G-Protein-abhängige Aktivierung intrazellulärer Signalwege durch C-Peptid vermuten. Die Identifizierung dieses Rezeptors und seiner Rolle in der C-Peptid-induzierten Proliferation glatter Gefäßmuskelzellen stellt die Aufgabe zukünftiger Studien dar.

Abbildung 8: Der intrzazelluläre Signalweg bei der durch C-Peptid vermittelten Proliferation glatter Gefäßmuskelzellen (VSMCs). C-Peptid bindet an einen Oberflächenrezeptor und aktiviert den ERK1/2-Signalweg (Extrazellulär Signal-regulierte Kinase 1/2) downstream der Src-Kinase (Sarkom-Kinase) sowie der PI3-Kinase (Phosphatidylinositol 3-Kinase). Mittels dieser Signalkaskade induziert C-Peptid in-vitro die Proliferation glatter Gefäßmuskelzellen.
4.6 Pathophysiologische Relevanz

Patienten mit einer Insulinresistenz und frühem Diabetes mellitus Typ 2 unterliegen einem deutlich erhöhten Risiko für das Auftreten einer diffusen und akzelerierten Atherosklerose und weisen gleichzeitig erhöhte Spiegel von C-Peptid im Blut auf. Hinsichtlich der Atherogenese zeichnet sich diese Patientengruppe durch charakteristische pathophysiologische Merkmale aus, wobei die erhöhte proliferative Aktivität glatter Gefäßmuskelzellen eine entscheidende Rolle spielt (22,31,40).

Die proliferative Wirkung des C-Peptids auf glatte Gefäßmuskelzellen, die in der vorliegenden Arbeit nachgewiesen wurde, könnte einen neuen Mechanismus darstellen um das ausgedehnte und komplexe Atherosklerose-Befallsmuster bei dieser Hochrisikopopulation zu erklären.

Daten anderer Studien, welche dem C-Peptid einen protektiven Einfluss auf die Atherogenese zuschreiben und in diesem Zusammenhang z.B. die Verbesserung der Mikroperfusion im Bereich der Retina und der peripheren Nerven durch das Insulin-Spaltprodukt sowie die C-Peptid-vermittelte Steigerung der endothelialen NO-Sekretion aufzeigen, wurden an Patienten mit Diabetes mellitus Typ 1 erhoben (13,38,79). Derartige anti-atherogene Effekte des C-Peptids konnten an gesunden Individuen nicht beobachtet werden und stehen deshalb nicht in Widerspruch zu unseren hier erhobenen Ergebnissen (38,79).

Die Proliferation glatter Gefäßmuskelzellen spielt nicht nur bei der Entstehung atherosklerotischer Läsionen eine wichtige Rolle; sie stellt darüber hinaus auch einen elementaren pathophysiologischen Mechanismus bei der Restenosebildung nach Koronarintervention dar (19). Die Entstehung der Restenose ist im Sinne einer Reaktion auf die vaskuläre Verletzung im Rahmen der Koronarintervention, insbesondere nach Stent-Einlage, durch eine übermäßige Intimahyperplasie der Koronararterie
Dabei werden die VSMCs der Media durch die vermehrt freigesetzten Wachstumsfaktoren und Entzündungszellen zur Proliferation und Emigration in die Intima angeregt. Anschließend kommt es durch Hyperplasie und Hypertrophie der glatten Gefäβmuskulzellen sowie der Produktion extrazellulärer Matrix zur Bildung einer Neo-Intima, was in einer Restenoseformation resultieren kann (3,53).

Patienten mit Insulinresistenz und Typ 2 Diabetiker weisen neben erhöhten C-Peptid-Spiegeln im Blut auch ein erhöhtes Risiko der Restenose nach koronarer Intervention auf, wie zahlreiche Studien belegen. So zeigte beispielsweise eine große Meta-Analyse bei 4800 Patienten, dass die Restenoserate rund 55 Prozent aller Diabetiker betrifft im Gegensatz zu nur 20 Prozent der Nicht-Diabetiker. Anderen Studien zufolge tritt die Restenosebildung bei diabetischen Patienten sogar in bis zu 75 Prozent der Fälle auf (11,20,74).
Eine intravaskuläre sonographische Studie von Kornowski et al. beschrieb die gesteigte Intimahyperplasie als Hauptursache der erhöhten Restenoserate bei Diabetes mellitus (48).

Die vorgestellten Daten legen nahe, dass neben den bekannten inflammatorischen Mediatoren und Wachstumsfaktoren wie PDGF und IGF-1 (65) C-Peptid durch die Proliferationsinduktion glatter Gefäβmuskulzellen eine entscheidende Rolle bei der Entstehung der Intimahyperplasie im Rahmen der Restenoseformation spielen könnte.
Vor dem Hintergrund früherer Studiendaten, welche aufzeigten, dass sich das „connecting peptide“ bei Patienten mit einer Insulinresistenz und frühem Typ 2 Diabetes vermehrt subendothelial ablagert und chemotaktisch auf inflammatorische Zellen wirkt, bringen die vorliegenden Erkenntnisse über seine proliferativen Effekte zum Ausdruck, welchen entscheidenden Einfluss C-Peptid sowohl auf die Atherogenese als auch die Restenosebildung nach Koronarintervention bei dieser Hochrisikopopulation haben könnte.

Die Bewertung der pathophysiologischen Relevanz der C-Peptid-induzierten Proliferation glatter Gefäßmuskelzellen im Hinblick auf die Atherogenese und Restenoseentstehung in-vivo stellt eine wichtige Aufgabe zukünftiger tierexperimenteller Studien dar.
5. Zusammenfassung

Die vorliegenden Ergebnisse zeigen, dass C-Peptid bei der Proliferationsinduktion glatter Gefäßmuskelzellen in-vitro die Src-Kinase (Sarkom-Kinase), die PI3-Kinase (Phosphatidylinositol 3-Kinase) sowie die MAP-Kinase (Mitogen-aktivierte Protein-Kinase) ERK1/2 (Extrazellulär Signal-regulierte Kinase 1/2) in glatten Rattenmuskelzellen aktiviert. Die nachfolgend ermittelte Signalkaskade demonstriert dabei, dass die Aktivierung der Src-Kinase den ersten Schritt in der C-Peptid-vermittelten Signaltransduktion darstellt, dem eine Stimulation der PI3-Kinase und abschließend der MAP-Kinase ERK1/2 folgt.

Die vorgestellten Daten bringen zum Ausdruck, auf welche Weise C-Peptid einen entscheidenden Einfluss sowohl auf die Atherogenese als auch die Restenoseformation nach koronarer Intervention bei Patienten mit frühem Typ 2 Diabetes haben könnte. Die durch das Insulin-Spaltprodukt induzierte akzelerierte Proliferation glatter Gefäßmuskelzellen könnte einen neuen Mechanismus darstellen, um das ausgedehnte Atherosklerosebefallsmuster sowie die erhöhte Restenoserate bei dieser Hochrisikogruppe zu erklären. Weiterführende tierexperimentelle Studien müssen zeigen, inwieweit sich diese Hypothese in-vivo bestätigt.
6. Literaturverzeichnis

5. Bjorge JD, Jakymiw A, Fujita DJ. Selected glimpses into the activation and function of Src kinase. Oncogene 2000; 19: 5620-5635

endothelial cell adhesiveness to PBMC. Kidney Int 2001; 59: 1842-1849

44. Kitamura T, Kimura K, Jung BD, Makondo K, Okamoto S, Canas X, Sakane N, Yoshida T, Saito M. Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts:

7. Danksagung

Mein Dank gilt Herrn Prof. Dr. Vinzenz Hombach für die Ermöglichung dieser Arbeit.

In besonderem Maße danke ich Herrn Prof. Dr. Nikolaus Marx für die Bereitstellung dieses interessanten Themas und die herausragende Betreuung während der Arbeit im Labor und der Anfertigung der Dissertation. Dank seiner wertvollen Ratschläge, seiner Hilfsbereitschaft sowie der motivierenden Worte habe ich sowohl im Hinblick auf das wissenschaftliche Arbeiten als auch in der klinischen Medizin und im zwischenmenschlichen Bereich sehr viel gelernt.

Herrn Dr. Daniel Walcher möchte ich sehr für seine zahlreichen guten Ideen und Tipps bei der Erstellung der Dissertation, für die Tatsache, dass er jederzeit zu sprechen war, für das Korrekturlesen und damit für eine rundum gute Betreuung danken.

Ganz herzlicher Dank gilt Frau Renate Durst, Frau Helga Bach, Frau Miriam Reuß sowie Frau Susanne Betz für die gute Einarbeitung in die Methodik meiner Arbeit sowie ihre außerordentliche Unterstützung während der Realisierung meiner Experimente.

Bei der gesamten Arbeitsgruppe bedanke ich mich für die stets freundliche und kollegiale Arbeitsatmosphäre.

Herrn Dr. Jochen Bauer möchte ich für seine unermüdliche Unterstützung, seine Geduld sowie seine aufmunternden Worte danken.