Auswirkungen der Dilatation von Nierenarterienstenosen auf Blutdruck und Nierenfunktion – die Erfahrungen in Ulm

Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm

Vorgelegt von

Yvette Djuidjie Kamgne

Douala/ Kamerun

2006
Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin

1. Berichterstatter: Prof. Dr. Frieder Keller
2. Berichterstatter: Prof. Dr. Harmut Hanke

Tag der Promotion: 13.07.2007
Meiner Familie,
Meinem Vater, Joseph Gaspard Kamgne
und dir gewidmet
Inhaltsverzeichnis

Inhaltsverzeichnis .. 1
Abkürzungsverzeichnis .. 3
1 Einleitung ... 4
 1.1 Ischämische Nephropathie .. 5
 1.2 Die renovaskuläre Hypertonie .. 7
 1.3 Pathophysiologie der renovaskulären Hypertonie 9
 1.4 Die Perkutane Transluminale Angioplastie 12
 1.5 Fragestellung ... 13
2 Patienten, Material und Methoden ... 14
 2.1 Patienten .. 14
 2.1.1 Comorbiditäten und Kardiovaskuläre Risikofaktoren 14
 2.1.2 Stenosecharakteristika ... 16
 2.1.3 Blutdruck vor PTA ... 18
 2.1.4 Blutdruckmedikamente .. 19
 2.1.5 Nierenfunktion vor PTA .. 19
 2.2 Material und Methoden .. 20
 2.2.1 Datenerfassung ... 20
 2.2.2 Perkutane Transluminale Angioplastie (PTA) einer Nierenarterienstenose 20
 a) Durchführung der perkutanen transluminalen Angioplastie 21
 b) Bewertungskriterien für den Erfolg der PTA 24
 2.2.3 Statistik .. 25
3 Ergebnisse .. 26
 3.1 Primärergebnisse ... 26
 3.1.1 Technischer Erfolg / angiographischer Erfolg 26
 a) Eigene Komplikationen ... 27
 b) Restenose .. 28
 3.1.2 Unmittelbarer klinischer Effekt der PTA /Phase 2 28
 a) Blutdruck ... 28
 b) Soforteinfluss der PTA auf dem Medikamentenverbrauch. ... 29
 c) Kreatinin .. 29
 3.2 Langzeitergebnisse/ Phase 3 .. 30
 3.2.1 Blutdruck im Langzeitverlauf 30
 3.2.2 Einfluss der PTA auf die Verordnung von Antihypertensiva im Langzeitergebnis. ... 32
 3.2.3 Kreatinin im Langzeitverlauf 32
 3.2.4 Langzeiteffekt der PTA auf eine eingeschränkte Nierenfunktion 33
 3.3 Dialyse .. 34
 3.4 Langzeitüberleben .. 34
4 Diskussion .. 36
 4.1 Limitationen der Studie .. 36
 4.2 Eigene Ergebnisse .. 37
 4.2.1 Erfolge .. 38
 4.2.2 Misserfolg ... 39
 4.2.3 Komplikationen ... 39
 4.2.4 Blutdruck ... 41
 4.2.5 Nierenfunktion ... 45
 4.2.6 Dialyse ... 47
 4.2.7 Mortalität und Letalität .. 48
Inhaltsverzeichnis

4.2.9 Prophylaxe und Screening... 49
4.3 Schlußfolgerung .. 54
5 Zusammenfassung .. 56
6 Literaturverzeichnis .. 58
Anhang ... 69
Abkürzungsverzeichnis

Abb: Abbildung
ACE: Angiotensin-Converting-Enzym
ACT: Actived Clotting Time
AP: Anterior-Posterior
AT1: Angiotensin 1
ANAS: atheriosklerotische Nierenarterienstenose
ANV: Akute Nierenversagen
BMW: Blanced Middle Weight
CVRF: Cardiovaskuläre Risikofaktoren
DRASTIC: Dutch Renal Artery Stenosis Intervention Cooperative
EMMA: Essai Multicentrique Medicaments vs Angioplastie
F: French
FMD: Fibromuskuläre Dysplasie
GFR: Glomeruläre Filtrationsrate
GRAVCT: Guidelines vor the reporting of renal artery revascularization in clinical trials
KHK: Koronare Herzkrankeit
KM: Kontrastmittel
LIMA: Left Internal Mammarian Artery
LAO: Left-Anterior-Oblique
NAS: Nierenarterienstenose
NTX: Nierentransplantattion
pAVK: periphare Arterielle Verschlusskrankeit
PTA: Perkutanen Transluminalen Angioplastie
RAAS: Renin-Angiotensin-Aldosteron-System
RAO: Right-Anterior-Oblique
RDC: Renal Double Curve
RI-index: Resistance-index
RVH: Renovaskuläre Hypertonie
SNRASCG: Scottisch and Newcastle Renal Artery Stenosis Collaborative Group
WHO/ISH: Weltgesundheitsorganisation / International Society of Hypertension
Einleitung

Die Bedeutung der Nierenarterienstenose ist durch zwei Problembereiche umrissen. Erstens besteht bei Progression oder Okklusion der Nierenarterie (besonders der Nierenarterienstenose vom atheriosklerotischen Typ) die Gefahr der Ausbildung einer Niereninsuffizienz bis hin zur Dialysepflichtigkeit. Zweitens können hochgradige Stenosen zu einer renovaskulären Hypertonie mit schweren Endorganschäden, hoher Morbidität und hoher Mortalität führen. Dabei können die Niereninsuffizienz oder die Hypertonie als Folge der Nierenarterienstenose allein auftreten oder, wie es meist der Fall ist, coexistieren [90]

Abb. 1: Beziehung zwischen Nierenarterienstenose, Bluthochdruck und Niereninsuffizienz [90, Seite 432]

Die Prävalenz der renovaskulären Hypertonie und der Nierenarterienstenose in Deutschland ist nicht bekannt. Autopsiestudien zeigen eine altersabhängige Zunahme der Inzidenz mit Häufigkeiten von 18% bei 65-74 Jährigen und 42% bei über 75 Jährigen. Bei der Hälfte aller Patienten bestehen bilaterale Nierenarterienstenosen [41]. Bei Patienten mit hohem atheriosklerotischen Risikoprofil, bei denen routinemäßig koronare oder periphere arterielle Angiographien angefertigt wurden, zeigten sich bei Darstellung der Nierenarterie sehr häufig
Einleitung

Nierenarterienstenosen [33]. So wurden bei 14.152 untersuchten Patienten eines großen Risikokollektivs mit Indikation zur Koronarangiographie (Alter 61+/−12 Jahren, 62% Männer) in 6,3% der Fälle Nierenarterienstenose mit Durchmesserreduktion von ≥ 50% nachgewiesen, signifikante bilaterale Stenosen bestanden bei 1,3% der Patienten [22]

In einer neueren Studie, in der Patienten mit einer schweren arteriellen Hypertonie, unklarer Nierenfunktionseinschränkung, Lungenödem bei arterielle Hypertonie oder schwerer Atherosklerose koronaroangiographiert und aortographiert wurden, fanden sich bei 39% der untersuchten Patienten atherosklerotische Veränderungen der renal Gefäße, 14,3% zeigten Nierenarterienstenose mit einer Reduktion des Gefäßlumens um ≥ 50% und bei 7,3% der Patienten lagen höhergradige Stenose von ≥ 70% vor [12]. Diese Daten belegen übereinstimmend die häufige Koinzidenz von arterielle Hypertonie und Nierenarterienstenose.

1.1 Ischämische Nephropathie

Bei der ischämischen Nephropathie handelt sich um eine Form der chronischen Niereninsuffizienz, die durch renale Minderperfusion, meist aufgrund einer arteriosklerotischen Einengung einer (einzelner) oder beider Nierenarterien hervorgerufen wird. Die Prävalenz der arteriosklerotischen ischämischen Nephropathie bei Patienten mit chronischen Niereninsuffizienz ist nicht bekannt, aber epidemiologische Daten liefern Informationen über die Häufigkeit dieser Erkrankung bei Patienten mit Niereninsuffizienz im Endstadium.

Abb. 2: Pathophysiologische Auswirkungen von Angiotensin II
(Persönliche Mitteilung Prof. Dr. med. Jürgen Holz, Martin-Luther Universität Halle-Wittenberg, 2004)
1.2 Die renovaskuläre Hypertonie

Tab. 1 : Sekundäre Hypertonie und Prävalenz in der Allgemeinbevölkerung mit Bluthochdruck

<table>
<thead>
<tr>
<th>Sekundäre Hypertonien</th>
<th>Häufigkeit (in %) bei Hypertoniker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renale Hypertonie</td>
<td></td>
</tr>
<tr>
<td>Parenchymatos</td>
<td>2-3</td>
</tr>
<tr>
<td>Renovaskulär</td>
<td>0,2-5</td>
</tr>
<tr>
<td>Endokrine Hypertonie</td>
<td></td>
</tr>
<tr>
<td>Primär Hyperaldosteronimus</td>
<td>0,3</td>
</tr>
<tr>
<td>Cushing-Syndrom</td>
<td><0,1</td>
</tr>
<tr>
<td>Phäochromozytom</td>
<td><0,1</td>
</tr>
<tr>
<td>Orale Kontrazeptiva</td>
<td>0,5-1</td>
</tr>
<tr>
<td>Andere</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Eine besondere Bedeutung kommt der renovaskulären Hypertonie zu, denn sie ist die häufigste heilbare und damit die wichtigste sekundäre Hypertonieform. Der Begriff renovaskuläre Hypertonie bezeichnet eine Form des Bluthochdruckes, die durch Minderperfusion einer oder beider Nieren aufgrund eines Strömungshindernisses in den versorgenden Nierenarterien bedingt ist. Die Prävalenz der renovaskulären Hypertonie wird mit 0,2-5 % aller Hypertonieformen angegeben. Bei Patienten mit schwerer bzw. therapierefraktärer Hypertonie oder in spezialisierten Ambulanzen liegt die Prävalenz sogar bei bis zu 45%. Eine Zusammenfassung möglicher Ursachen des renovaskulären Hypotonus sind in der folgenden Tabelle aufgelistet:
Einleitung

Tab. 2: Ursachen des renovaskulären Hypertonus nach Löhr [63]

<table>
<thead>
<tr>
<th>1. Angeborene Gefäßveränderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiome</td>
</tr>
<tr>
<td>Aneurysmen</td>
</tr>
<tr>
<td>Coarctatio aortae abdominalis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Erworbene Gefäßveränderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degenerative Gefäßprozesse, meist arteriosklerotisch bedingt</td>
</tr>
<tr>
<td>Fibrodysplasie (hormonelle, Östrogene)</td>
</tr>
<tr>
<td>Systemerkrankungen</td>
</tr>
<tr>
<td>Autoimmunerkrankungen</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>Zustand nach Nierentransplantation mit sekundärer Gefäßstenose</td>
</tr>
<tr>
<td>Intrarenale Blutung durch toxische Agentien</td>
</tr>
<tr>
<td>Perirenale Blutung, Nierentrauma und Folgezustände</td>
</tr>
<tr>
<td>Essentielle Hypertonie</td>
</tr>
</tbody>
</table>

1.3 Pathophysiologie der renovaskulären Hypertonie

Abb. 4: Interaktion zwischen Kinin-Kalikrein-, RAAS- und Prostaglandin-Sytemen in der Blutdruckeinstellung

RAAS = Renin-Angiotensin-Aldosteron-System
1.4 Die Perkutane Transluminale Angioplastie

Die renovaskuläre Hypertonie ist die wichtigste Hypertonieform, die durch interventionelle radiologische, angiologische oder gefäßchirurgische Maßnahmen erfolgreich therapiert und auch zum Teil heilbar ist. MAXWELL und PROZAN \[69\] sprachen 1962 schon folgende Definition der renovaskulären Hypertonie aus: „Renovascular hypertension is caused by an occlusive disease of the renal arterial vasculature, which is potentially curable by either reconstructive surgery or by nephrectomy.“

Auf der Grundlage der Arbeiten von DOTTER und JUNDKINS \[26\] in den 60er Jahren entwickelte GRÜNTZIG einen speziellen Dilatationskatheter und therapierte damit erstmals 1977 erfolgreich eine renovaskuläre Hypertonie \[35\]. Diese relativ wenig invasive Methode hat durch ihre geringe Letalität, die beliebige Wiederholbarkeit und ihre guten Ergebnisse bei vergleichbar geringen Kosten inzwischen weite Verbreitung gefunden \[117\].

Wir selbst haben den klinischen Eindruck, dass die Nierenarteriendilatation durchaus erfolgreich ist. Unsere Erfahrung hier in Ulm zeigte bislang sehr gute Ergebnisse in Einzelfällen im Bezug auf Verbesserung des Blutdrucks und der Nierenfunktion nach der
Dilatation. Patienten, die bereits dialysepflichtig waren, konnten sogar die Nierenfunktion wiedererlangen.

1.5 Fragestellung

2 Patienten, Material und Methoden

2.1 Patienten

![Alterstruktur des Patientenkollektivs](image)

Abb. 5: Häufigkeitsverteilung des Patientenkollektivs im Bezug auf Alter und Geschlecht n= 49

2.1.1 Comorbiditäten und Kardiovaskuläre Risikofaktoren

Patienten, Material und Methoden

Die kardiovaskulären Risikofaktoren erklären auch das Vorhandensein einer oder mehrerer weiterer Gefäßerkranzung im Sinne von Koronare Herzkrankheiten, periphere Arterielle Verschlusskrankheiten und Zerebrovaskuläre Insuffizienz bei den meisten Patienten zum Zeitpunkt der Intervention (ca. 76%). Tabelle 3 zeigt eine Zusammenfassung der Comorbiditäten und CVRF in der gesamten Patientenkollektiv.

Tab. 3: Comorbidität und Risikofaktoren im Patientenkollektiv (n = 49)

<table>
<thead>
<tr>
<th>Comorbiditäten</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterielle Hypertonie</td>
<td>49</td>
<td>100</td>
</tr>
<tr>
<td>Niereninsuffizienz</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>Hyperlipidämie</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td>Adipositas</td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>Raucheranamnese</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Koronare Herzkrankheit</td>
<td>21</td>
<td>51</td>
</tr>
<tr>
<td>Periphere Arterielle Verschlusskrankheit</td>
<td>15</td>
<td>37</td>
</tr>
<tr>
<td>Zerebrovaskuläre Insuffizienz</td>
<td>9</td>
<td>22</td>
</tr>
</tbody>
</table>

Um die Korrelation zwischen Anzahl der Risikofaktoren und Auftreten der Nierenarterienstenose darzustellen, wurde das Patientenkollektiv nach Anzahl der Risikofaktoren unterteilt. Aus der Abbildung 7 ist ersichtlich, dass die Mehrheit der Patienten 2-3 Risikofaktoren hatten.

Abb. 6: Anzahl Risikofaktoren bei n = 49 Patienten
2.1.2 Stenosecharakteristika
In 4 Fällen (8%) handelte es sich um eine Nierenarterienstenose vom fibromuskulär
dysplastischen Typ. Dies waren Frauen in relativ jungen Alter (20, 41, 43, 55 Jahre) und die
Stenosen waren auch typischerweise im distalen Drittel lokalisiert bis auf eine Patientin, bei
der eine langstreckige Stenose vorlag [90]. Zwei weitere Patienten hatten eine transplantierte
Niere. Bei einem Patienten kam es 7 Jahren nach Nierentransplantation zum
thromboembolischen Verschluss der Transplantarterie auf dem Boden einer
Herzrhythmusstörung, welche durch Lysetherapie erfolgreich behandelt wurde. Der Patient
wurde deshalb von der Auswertung ausgeschlossen. Bei einem anderen Patienten fiel
erstmals nach Nierentransplantation eine Hypertonie auf. Angiographisch wurde eine
hochgradige Stenose im Bereich der Anastomose festgestellt. Bei den restlichen 44 Patienten
(90%) wurde aufgrund der Bildgebung eine atheriosklerotische Genese der
Nierenarterienstenose angenommen. Es handelte sich in 95% um eine Ostiumstenose.
Insgesamt 33 Patienten hatten eine unilaterale Stenose und 16 eine bilaterale Stenose. Bei
einem Patienten war die linke Niere über 3 Gefäße versorgt, wovon die obere und mittlere
Polarterien hochgradig stenosiert waren, während die untere subtotal verschlossen war.
Der Stenosegrad konnte bei 43 Patienten exakt ermittelt werden. 34 Arterien hatten eine
Stenose zwischen 70% und 95%. Bei 6 Arterien bestand eine subtotale Stenose, das heißt eine
Stenose von mehr als 95% und 3 Gefäße waren total verschlossen. Abbildung 8 zeigt eine
Zusammenfassung der Stenosecharakteristika.
Abb. 7: Zusammenfassung der Stenosecharakteristika

FMD= Fibromuskuläre Dysplasie
NTX= Nierentransplantation
ANAS= Atherosklerotische Nierenarterienstenose
bilat= bilateral
unilat= unilateral
2.1.3 Blutdruck vor PTA
Alle Patienten hatten eine arterielle Hypertonie, definiert als ein Blutdruck höher als 140/90 mm Hg entsprechend der Definition der WHO/ISH 1999. Einige hatten sogar mehrmals eine hypertensive Krise in der Vorgeschichte (Blutdruck höher als 230/130 mmHg, mit Lungenödem oder zerebraler Symptomatik). In Tabelle 6 sind die verschiedenen Blutdruckkategorien dargestellt.

Tab. 4: Blutdruckkategorien nach WHO/ISH, 1999

<table>
<thead>
<tr>
<th>Blutdruck (mmHg)</th>
<th>Systolisch</th>
<th>Diastolisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>< 120</td>
<td>< 80</td>
</tr>
<tr>
<td>Normal</td>
<td>< 130</td>
<td>< 85</td>
</tr>
<tr>
<td>Hochnormal</td>
<td>130-139</td>
<td>85-89</td>
</tr>
<tr>
<td>Bluthochdruck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stadium 1</td>
<td>140-159</td>
<td>90-99</td>
</tr>
<tr>
<td>Stadium 2</td>
<td>160-179</td>
<td>100-109</td>
</tr>
<tr>
<td>Stadium 3</td>
<td>≥180</td>
<td>≥110</td>
</tr>
</tbody>
</table>

Bei 46 Patienten konnte der Blutdruckwert vor PTA ermittelt werden. 11 Patienten (24%) befanden sich im Stadium 1, 10 (22%) in Stadium 2 und 22 (48%) im Stadium 3 der Hypertonie. Der durchschnittliche Blutdruck betrug systolisch 178 mmHg (± 31) und diastolisch 96 mmHg (± 17).

Abb. 8: Systolische und diastolische Blutdruckwerte bei n = 46 Patienten vor PTA

PTA = Perkutane Transluminalen Angioplastie
2.1.4 Blutdruckmedikamente
Die am häufigsten verordneten Antihypertensiva waren Diuretika, Beta-Blocker, Kalziumantagonisten, Alpha-Blocker, Angiotensin-Converting-Enzym-Hemmer, Angiotensin-II-Rezeptorantagonisten sowie Kombinationspräparate. Für 36 Patienten war es möglich, die Anzahl der Blutdruckmedikamente vor PTA zu ermitteln. Jeder Patienten erhielt 0 bis 5 verschiedene Antihypertensiva, im Durchschnitt 2,6 (± 1,3).

2.1.5 Nierenfunktion vor PTA

Abschließend ist in folgende Tabelle eine Übersicht über die Patientencharakteristika dargestellt.

Tab. 5: Übersicht über Patientencharakteristika

<table>
<thead>
<tr>
<th>Charakteristika</th>
<th>Anzahl</th>
<th>MW ± SD</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männer</td>
<td>38</td>
<td>(78)</td>
<td>20-78</td>
</tr>
<tr>
<td>Frauen</td>
<td>11</td>
<td>(22)</td>
<td>63-245</td>
</tr>
<tr>
<td>Alter (Jahr)</td>
<td>61 ± 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolische Blutdruck (mm Hg)</td>
<td>178 ± 31</td>
<td></td>
<td>96-150</td>
</tr>
<tr>
<td>Diastolische Blutdruck (mm Hg)</td>
<td>96 ± 17</td>
<td></td>
<td>5-10</td>
</tr>
<tr>
<td>Blutdruckmedikamenten (Anzahl der Substanzklassen)</td>
<td>2,6 ± 1,3</td>
<td></td>
<td>63-761</td>
</tr>
<tr>
<td>Kreatinin (µmol/l)</td>
<td>132</td>
<td></td>
<td>1-5</td>
</tr>
<tr>
<td>Niereninsuffizienz (%)</td>
<td>22(45)</td>
<td></td>
<td>132-761</td>
</tr>
<tr>
<td>Serumkreatinin (µmol/l)</td>
<td>298</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MW = Mittelwert
SD = Standardabweichung
Min = Minimum
Max = Maximum
2.2 Material und Methoden

2.2.1 Datenerfassung

Der Verlauf wurde in 3 Phasen eingeteilt: Phase (1) vor Dilatation, Phase (2) unmittelbar nach Dilatation bis zur Entlassung aus dem Krankenhaus und Phase (3) im Langzeitverlauf. Unterschiede zwischen den zeitlich jeweils 3 Phasen wurden für jeden Patienten in Bezug auf die oben erwähnten Parameter dokumentiert. Für Patienten mit Niereninsuffizienz wurde in Phase (3) zusätzlich der beste erreichte Kreatininwert nach Dilatation erfasst. Bei Patienten, bei denen mehrere Angioplastien durchgeführt wurden, galt der Zeitpunkt der ersten PTA als Beginn des Nachbeobachtungszeitraums.

2.2.2 Perkutane Transluminale Angioplastie (PTA) einer Nierenarterienstenose
Ansteigen der Kreatininkonzentration bzw. das Auftreten einer akuten Niereninsuffizienz nach Beginn einer Therapie mit ACE-Hemmer und dann aber eine Verbesserung nach Absetzen beobachtet, was die hämodynamische Wirksamkeit der Stenose bewies und die Indikationsstellung zur PTA zusätzlich bestätigte. Bei 3 Patienten erfolgte die Therapie eher unter der Zielsetzung, eine progrediente Niereninsuffizienz aufzuhalten. Bei einem Patienten fehlten Angaben.

a) Durchführung der perkutanen transluminalen Angioplastie

Vorbereitung der Patienten

Nach Indikationsstellung und Überprüfung der vorliegenden klinischen Parameter, deren Kenntnis für die Durchführung einer Perkutanen Transluminalen Angioplastie von Bedeutung sind (Blutbild, Retentionsparameter, Gerinnungsstatus), erfolgt die Aufklärung über die Notwendigkeit, Ablauf und mögliche Komplikationen des Eingriffs, das postinterventionelle Procedere sowie alternative Therapiemöglichkeiten mit Dokumentation und schriftlicher Einwilligung des Patienten mindestens einen Tag vor Untersuchung.

Am Untersuchungstag bleibt der Patient nüchtern. Der vor Intervention angelegte venöse Zugang erlaubt durch ausreichende Hydratration nicht nur die Vorbeugung einer möglichen Nierenschädigung durch die Nephrotoxizität des Kontrastmittels, sondern auch eine medikamentöse Kontrolle von möglichen Blutdruckschwankungen während der Intervention.

Technische Durchführung der perkutanen transluminalen Angioplastie

Nach Punktion der rechten oder linken Arteria femoralis in Lokalanästhesie und Einbringen eines Führungsdrähites erfolgt die Platzierung einer Schleuse in Seldinger-Technik (5F oder 6F Schleuse) und 5000 IE Heparin werden intraarteriell appliziert. Dabei ist ein ACT > 200 Sekunden erwünscht.

Optional kann über die Schleuse ein 5F oder 6F Pigtailkatheter in die Aorta abdominalis eingeführt und eine Übersichtsaortographie zur Darstellung der Nierenetage durchgeführt werden. Danach erfolgt eine selektive Sondierung der stenosierten Nierenarterie bis zur Stenose und eine Dokumentation des Befund zur Ermittlung des relevanten Gefäßquerschnittes. Hierzu verwendet man einen 5F oder 6F Diagnostik Katheter, wie zB. Judkins rechts 4 cm oder Sidewinder II oder auch LIMA.

Die selektive Darstellung erfolgt mit Kontrastmittel und jeweils in 2 Ebenen (AP und 30° RA0 und LAO).
Danach wird dieser Katheter über den Führungsdräht gegen einen Dilatationskatheter, in der Regel ein 7F Führungskatheter (z.B. RDC 1) ausgetauscht und das Ostium wird sondiert. Die Auswahl des Dilatationskatheters und gegebenenfalls des Stents ist dabei abhängig vom Durchmesser des Gefäßes und der Länge der Stenose. Anschließend wird die Stenose mittels eines Führungsdrähtes von 0,014 mm passiert und anschließend dilatiert. Verschiedene Drähte stehen zur Verfügung: Floppy, BMW.

Während der gesamten Intervention werden die Vitalfunktionen des Patienten anhand EKG, Blutdruck und Pulsoxymetrie überwacht.

Abb. 9: Bild einer Nierenarterienstenose (in Stent Restenose) vor (linkes Bild.) und nach (rechtes Bild.) der Dilatation

Komplikationen

„Major Complications“: Diese als schwerwiegend zu bezeichnete Komplikationen führen zu zusätzlichen und ungeplanten Prozeduren oder Eingriffe oder zum verlängerte Krankenhausaufenthalt. Im schlimmsten Fall kann es sogar zum Tod kommen, wobei ein Tod innerhalb 30
Tage nach PTA oder während des gleichen stationären Aufenthaltes als Komplikation der Intervention einzustufen ist.

„Minor Complications“ dagegen führen zwar zur zusätzlichen Morbidität oder zusätzliche Belastung des Patienten erfüllen aber nicht die Kriterien einer „major Complication“.

Die Mortalität der endovaskulären Ballondilatation wird in der Literatur mit 0,5% bis 2% angegeben [16,48,85,118] Eine Zusammenfassung der Komplikationen ist in Tabelle 5 dargestellt.

Tab. 6: Komplikationsmöglichkeiten der PTA nach Ihren schweren Grade (nach GRAVCT)

<table>
<thead>
<tr>
<th>Complications</th>
<th>Mayor</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*Thrombotische oder thromboembolische</td>
<td>*femoral Hämatomen ohne Interventionsbedarf</td>
</tr>
<tr>
<td></td>
<td>Gefäßverschlüsse mit Notwendigkeit einer Lyse</td>
<td>*Ekchymose</td>
</tr>
<tr>
<td></td>
<td>Therapie oder chirurgische Intervention</td>
<td>*Nervenschädigung im Bereich der Haut</td>
</tr>
<tr>
<td></td>
<td>*Dissektion mit der Folge von Gefäßverschluss</td>
<td>*Leichte Hämatokritabfall ohne Notwendigkeit einer</td>
</tr>
<tr>
<td></td>
<td>*Hämorrhagie oder retroperitoneale Blutung mit</td>
<td>Transfusion oder Verlängertem Krankenhausaufenthalt</td>
</tr>
<tr>
<td></td>
<td>Notwendigkeit einer operativen Ausräumung.</td>
<td>*Transiente Kreatininanstieg < 20% des Ausgangswertes</td>
</tr>
<tr>
<td></td>
<td>*Transfusionspflichtige Blutungen</td>
<td>*Transiente Kreatininanstieg < 20% des Ausgangswertes</td>
</tr>
<tr>
<td></td>
<td>*Akuter und persistierender Kreatininanstieg von >20%</td>
<td>*Transiente Kreatininanstieg < 20% des Ausgangswertes</td>
</tr>
<tr>
<td></td>
<td>des Ausgangswertes</td>
<td>*Transiente Kreatininanstieg < 20% des Ausgangswertes</td>
</tr>
<tr>
<td></td>
<td>*Cholesterinembolie</td>
<td>*Transiente Kreatininanstieg < 20% des Ausgangswertes</td>
</tr>
<tr>
<td></td>
<td>*Tod innerhalb 30 Tage oder im Rahmen der gleichen Krankenhausaufenthalt</td>
<td>*Transiente Kreatininanstieg < 20% des Ausgangswertes</td>
</tr>
</tbody>
</table>

GRVACT = Guidlines vor the reporting of renal artery revascularization in clinical trials

PTA = Perkutanen Transluminalen Angioplastie

Nachbetreuung

Mit der Anlage eines Druckverbandes über der Punktionsstelle ist die endovaskuläre Intervention beendet. Dieser Verband wird in der Regel am nächsten Tag entfernt. Ein Kreislaufmonitoring (kontinuierliche Blutdruckmessung) und medikamentöse Nachbehandlung bilden den Rahmen der unmittelbaren postinterventionellen Nachsorge. Bei der medikamentösen Therapie handelt sich um Aspirin 100 mg/d dauerhaft (bei Patienten, die vor Intervention nicht schon unter Aspirintherapie standen wird initial 500 mg Aspirin i.v zur Intervention zusätzlich appliziert). Bei Stentimplantation wird 300 mg Clopidogrel zur Intervention verabreicht und anschließend wird die Therapie mit 75 mg/d für mindestens 6 Wochen fortgesetzt.

Nach durchgeführten PTA wurden die meisten Patienten im Verlauf in Abständen von circa 3-6 Monaten in der nephrologischen oder angiologischen Ambulanz der Uniklinik Ulm
nachbetreut. Andere Patienten wurden durch den Hausarzt nachbetreut. Die Kontrolle erfolgte
anhand klinischer sowie laborchemischer Kriterien. Bei Hinweisen auf eine mögliche
Restenosierung, wie z.B. Verschlechterung des Blutdrucks oder der Nierenfunktion, wurden
die Patienten zur weiteren Abklärung in die Nierenambulanz überwiesen bzw. erneut stationär
aufgenommen.

\textit{b) Bewertungskriterien für den Erfolg der PTA}

Es wurde die technische Durchführbarkeit (Erfolg bzw. Misserfolg) der endovaskulären
Ballondilatation, das Blutdruckverhalten, die Nierenfunktion und die Zahl der verordneten
Antihypertensiva analysiert.

Zur Beurteilung der Therapieergebnisse wurden die Verlaufsparameter (Blutdruck,
Kreatinkonzentration, Anzahl der verordneten Antihypertensiva) als Durchschnittswert in
der Zeit unmittelbar nach PTA bis zur stationären Entlassung (Phase 2) und im
Langzeitverlauf (Phase 3) dargestellt. Hierbei wurden immer die Parameter vor PTA mit den
zugehörigen Werten nach PTA verglichen.

In der Phase 3 erfolgte neben der Analyse der durchschnittlichen Veränderungen der
einzelnen Kontrollparameter im gesamten Patientenkollektiv zusätzlich eine individuelle
Patientenanalyse. Hierzu erfolgte die Klassifikation des Therapieerfolges der endovaskulären
 Intervention hinsichtlich des Blutdruck nach den Kriterien der „GRAVCT“. Hiernach sind
Heilung, Besserung und Versagen wie folgt definiert:

\textbf{Heilung:} diastolischer Blutdruck < 90 mmHg und systolischer Blutdruck < 140 mmHg,
ohne antihypertensive Medikation
\textbf{Besserung:} diastolischer Blutdruck < 90 mmHg und/oder systolischer Blutdruck < 140
mmHg mit gleicher oder reduzierter antihypertensiver Medikation oder Verringerung
des diastolischen Blutdrucks von mindestens 15 mmHg mit gleicher oder reduzierter
antihypertensiver Therapie im Vergleich zum Ausgangsbefund

\textbf{Versagen:} wenn keine Veränderung oder keine der aufgezeigten Therapieziele erreicht
wurden

\textbf{Positiver Effekt:} Heilung oder Besserung

- **verbessert**, wenn das Serumkreatinin um mehr als 15% seines Ausgangswertes sank.
- **unverändert**, wenn der Serumkreatininspiegel +/- 15% des Ausgangsbefunds aufweist. Die Nierenfunktion wurde in diesem Fall als stabil betrachtet.
- In diesen beiden Fällen galt das Therapieergebnis als **erfolgreich**.
- Dagegen galt die Nierenfunktion bei Zunahme des Serumkreatinins um mehr als 15% als verschlechtert und das Therapieergebnis somit als **erfolglos**.

2.2.3 Statistik

3 Ergebnisse

3.1 Primärergebnisse

3.1.1 Technischer Erfolg / angiographischer Erfolg

Als erfolgreich galt die endovaskuläre Ballondilatation, wenn in der postinterventionellen Kontrollangiographie eine Residualstenose von weniger als 50% des Gefäßlumens nachgewiesen worden war. Entsprechend war die Intervention erfolglos bei einer Residualstenose von mehr als 50% oder auch, wenn ein während der Intervention aufgetretenes Dissektat nicht erfolgreich behandelt werden konnte.

Die PTA war technisch erfolglos in 5 Fällen (10%). Ursache für das Misslingen waren:
- Anatomische Gründe (2 mal): In einem Fall handelte es sich um einen extrem spitzwinkligen Abgang der Nierenarterie von der Aorta. Sowohl die transfemorale als auch die transbracchiale Sondierung misslang. In dem anderen Fall war der Gefäßverlauf im Stenosebereich geknickt.
- Dissektat (2 mal): In beiden Fälle kam es trotz Stent-Einlage bei vorbestehender hochgradiger Niereninsuffizienz zum vollständigen Nierenversagen, welches eine
Dialysetherapie nötig machte. Einer dieser Patienten starb nach 3 Wochen, bei dem anderen wurde eine Kontrastmittel-Nephropathie diskutiert.

-Subtotale Stenose (1 mal): Bei einem weiteren Fall misslang die Intervention aufgrund eines vorbestehenden fast kompletten Verschlusses des Gefäßes.

a) Eigene Komplikationen

b) Restenose

Untersuchungen zur Erfassung eines Stenoserezidives wurden erst bei klinischer Verschlechterung nach anfänglichen Besserung veranlasst. Deshalb ist die Ermittlung der tatsächlichen Rezidivraten nicht möglich.

3.1.2 Unmittelbarer klinischer Effekt der PTA /Phase 2

Aufgrund der in 5 Fällen misslungenen PTA wurde die Auswertung mit n = 42 Patienten bezüglich der primären Ergebnisse fortgesetzt, wobei 1 Patient eine Woche nach PTA verstarb. In diesem Abschnitt werden die dokumentierten Verlaufsparameter in der Zeit unmittelbar nach PTA bis zur Entlassung aus dem Krankenhaus ausgewertet.

a) Blutdruck

Für 33 Patienten lag Datenmaterial vor, wobei es möglich war für 32 Patienten Blutdruckwerte vor und nach PTA zu vergleichen. Bei diese Patienten sankt der Blutdruck signifikant systolisch von 178 mmHg (±26) auf 151mmHg (± 24) (P< 0,001; Mittelwert der Differenzen 27 mmHg; STABW der Differenzen 32,87 mmHg.) und diastolisch von 99 mmHg (± 16) auf 85 mmHg (± 13) (p < 0,001; Mittelwert der Differenzen 15,97 mmHg; STABW der Differenzen 22 mmHg)
In folgenden Abbildung werden die Veränderungen des systolischen und diastolischen Blutdrucks der einzelnen Patienten nach erfolgreicher PTA dargestellt. Systolischer und diastolischer Blutdruck fielen signifikant ab, aber es kam zu keiner Hypotension.

Abb. 10: Veränderung des systolischen und diastolischen Blutdrucks unmittelbar nach erfolgreicher Ballondilatation (n=32, p<0,001)

b) Soforteinfluss der PTA auf dem Medikamentenverbrauch.
Kurzfristig nach PTA bis zur Entlassung aus dem Krankenhaus lag für 38 Patienten der durchschnittliche medikamentöse Bedarf unverändert bei 2,5 (± 1,2) verschiedenen Antihypertensiva Klassen (vor PTA: 2,6 (± 1,3)).

c) Kreatinin
Für diese Phase lagen die Kreatininwerte von 30 Patienten vor. Der Kreatinin blieb im Median stabil bis leicht erhöht von 118 umol/l (63-535) auf 126 umol/l (63-443). Der Unterschied war nicht signifikant (p = 0,3697).
In der folgenden Abbildung wird die Veränderung des Kreatinins bei den einzelnen Patienten nach erfolgreicher Ballondilatation dargestellt.
3.2 Langzeitergebnisse/ Phase 3

3.2.1 Blutdruck im Langzeitverlauf

Für 35 Patienten lagen Daten vor, wobei für 34 die Blutdruckwerte vor PTA und im Langzeit verglichen werden konnten. Der systolische Blutdruck sank signifikant von 180 mmHg (± 30) auf 144 mmHg (± 22) (P<0,001, Mittelwert der Differenzen 35,72 mmHg; STABW der Differenzen 31,85 mmHg). Ebenso sank der diastolische Blutdruck signifikant von 99mmHg (± 17) auf 83mmHg (± 10) (P<0,001; Mittelwert der Differenzen 15,18 mmHg; STABW der Differenzen 15,29 mmHg)
In folgenden Abbildung werden die Veränderungen des systolischen und diastolischen Blutdrucks bei den einzelnen Patienten dargestellt.

Abb. 12: Veränderungen des systolischen und diastolischen Blutdrucks im Längeverlauf (58 ± 39 Monaten) nach erfolgreiche PTA (n= 34, p < 0,001)
PTA = Perkutanen Transluminalen Angioplastie

Für Auswertung der Blutdruckergebnisse nach dem „GRAVCT“ lag ausreichendes Datenmaterial von 34 Patienten vor. Entsprechend dieser Kriterien ergab sich Folgendes:
Bei 4 Patienten (12%) kam es zur Heilung und bei 19 Patienten (56%) zur Besserung der Hypertonie. Somit wurde der Blutdruck in 68% durch die PTA positiv beeinflusst. Dagegen blieb die Therapie ohne Effekt bei 11 Patienten (32%).
Vor der Intervention befanden sich 11 Patienten (24%) im Stadium 1, 11 (24%) in Stadium 2 und 21 (46%) im Stadium 3 der Hypertonie. Nach der Intervention hatten 3 (9%) einen optimalen Blutdruck, 6 (17%) einen normalen und 7 (20%) einen hochnormalen Blutdruck. Betreffend den Hypertonus befanden sich 14 Patienten (40%) in Stadium 1, 2 Patienten (6%) in Stadium 2 und nur noch 3 Patienten (8%) in Stadium 3. Insgesamt konnte bei 26 von 34
Ergebnisse

Patienten (76,5%) eine Stadienreduktion um mindesten 1 und bei 18 (47%) einen Stadiumsreduktion um mindesten 2 Stufen erreicht werden, welches als Therapieerfolg betrachtet werden kann. Bei 8 (23,5%) Patienten dagegen ergab sich keine Veränderung und ein Patient hatte sogar einen höheren Blutdruck.

3.2.2 Einfluss der PTA auf die Verordnung von Antihypertensiva im Langzeitergebnis.
Für 32 Patienten lag der durchschnittliche medikamentöse Verbrauch bei 2,2 Antihypertensiva (± 1,5), wenn man 5 verschiedene Substanzklassen zu grundelegt. Vor der Intervention waren es 2,6 (± 1,3). Somit konnte eine Tendenz zur Reduzierung des antihypertensiven Medikamentenverbrauches beobachtet werden.

3.2.3 Kreatinin im Langzeitverlauf
Nur 34 Patienten konnten im Langzeitverlauf ausgewertet werden. Bei diesen Patienten blieb das Kreatinin im Median stabil bis leicht reduziert (nicht signifikant p= 0,6799) von 111 umol/l (63-761) auf 105 umol/l (63-946). In der folgenden Abbildung werden die individuellen Veränderungen bei den 34 Patienten dargestellt.

Abb. 13: Kreatinin vor PTA und im Langzeitverlauf nach PTA (n=34, p= 0,6799)
PTA = Perkutanen Transluminalen Angioplastie

Der Effekt der endovaskulären Ballondilatation wurde auch nach den auf individuellen Therapieerfolg abzielenden, von Weibull (1991) modifizierten Kriterien der „Cooperative Study of Renovascular Hypertension“ untersucht. Es ergab sich Folgendes: eine Verbesserung
der Nierenfunktion wurde in 11 Fällen (32%) beobachtet, wobei sich die Nierenfunktion bei 3 Patienten (9 %) mit Niereninsuffizienz (Kreatinin ≥ 132 µmol/l) vor der Intervention normalisierte, bei 16 Patienten (47%) blieb die Nierenfunktion stabil. Somit wurde die Nierenfunktion in 79% positiv beeinflusst. Dagegen verschlechterte sich die Nierenfunktion im Verlauf bei 7 Patienten (21 %).

3.2.4 Langzeiteffekt der PTA auf eine eingeschränkte Nierenfunktion

Eine eingeschränkte Nierenfunktion wird definiert bei einem Kreatinin >130 µmol/l. Nur 16 Patienten mit vorbestehender Nierenfunktionseinschränkung konnten ausgewertet werden. Um die Effekt der PTA bei Patienten mit Niereninsuffizienz noch besser zu analysieren wurde zusätzlich der im Langzeitverlauf erreichte beste Kreatininwert erhoben um zu dokumentieren, was die Niere nach Dilatation im besten Falle zeigen kann. Diese Werte wurden im Median nach 6 Monaten (1/4-30 Monaten) erreicht. Der beste Median Kreatininwert lag bei 182 µmol/l (84-1000) und war im Vorzeichen-Test von Dixon und Mood (p = 0,04) signifikant niedriger als vor PTA 243 µmol/l (132-761).

Im Langzeitverlauf lag der Kreatininwert im Median bei 227 (103-1000) µmol/l. Im Vergleich zum pre-interventionellen Wert kam es zu einer nicht signifikanten Abnahme des Kreatinins im Langzeitverlauf (p= 0,9399)

![Graphik von Abb. 14: Verlauf des Serumkreatinins: vor PTA, bestes Kreatinin nach PTA (p< 0.05) und am Ende der Follow-up-Zeit (p=0,9399)]

PTA = Perkutanen Transluminalen Angioplastie
Die individuelle Analyse nach den von Weibull (1991) modifizierten Kriterien ergab folgendes: Die Nierenfunktion verbesserte sich bei 8 Patienten (50%). Darunter wurde eine Normalisierung der Nierenfunktion bei 3 Patienten (19%) beobachtet. Bei 2 Patienten (12,5%) blieb die Nierenfunktion stabil. Somit wurde ein positiver Einfluss auf die Nierenfunktion in 62,5 % beobachtet. Bei den restlichen 6 Patienten (37,5%) verschlechterte sie sich.

3.3 Dialyse

Eine Dialysenotwendigkeit ergab sich unmittelbar nach PTA bei 4 Patienten, dass heißt 8,5% bezogen auf die 47 Patienten bei denen die PTA durchgeführt wurde. Die einzelnen Fälle wurden bereits im Abschnitt Komplikationen beschrieben. Zwei verstarben 1 bzw. 3 Wochen nach PTA. Der dritte Patient blieb nur zeitweise unter Dialyse. Beim vierten Patienten, der allerdings wegen erfolglosen PTA in der weitere Analyse nicht berücksichtigt wurde, konnte auch im Langzeitverlauf die Dialysenotwendigkeit nicht behoben werden. Im Langzeitverlauf war die Dialyse bei 4 weiteren Patienten nicht zu umgehen. Somit betrug die Rate der neu aufgetretenen Dialysefälle in der gesamten Nachbeobachtungszeit 9,5% bezogen auf die 42 Patienten mit erfolgreicher PTA. Es handelte sich um Patienten mit bereits fortgeschrittener Nierenfunktionseinschränkung (durchschnittliches Kreatinin vor PTA 426 umol/l). Von 4 Patienten, die vor PTA bereits dialysepflichtig waren, konnte bei einem durch die PTA die Nierenfunktion so gebessert werden, dass er bereits nach 5 Monaten nicht mehr dialysiert werden musste. Auch sein Blutdruck verbesserte sich deutlich. Von einem weiteren weiß man anhand der vorliegenden Daten nur, dass die Dialyse bereits ein Tag nach der Intervention abgesetzt werden konnte, es fehlen weitere Informationen über den Verlauf.

3.4 Langzeitüberleben

Im untersuchten Kollektiv verstarben nach durchschnittlicher Nachbeobachtungszeit von 58 Monaten (+/-39) 8 Patienten. Somit betrug die Todesrate 19% bezogen auf die 42 Patienten mit erfolgreicher PTA. Der Tod trat frühestens nach 1 Woche und längstens nach 3,5 Jahren auf. Es handelte sich dabei meist um ältere multimorbide Patienten (Altersdurchschnitt zum
4 Diskussion

4.1 Limitationen der Studie

wird beim Ausbleiben des angestrebten Therapieziels bezüglich Blutdruck und Nierenfunktion diskutiert oder wenn sich diese beiden Parameter wieder verschlechtern.

Bei unseren Patienten dagegen war die Nachbetreuung zeitlich und inhaltlich unterschiedlich; bei den meisten Patienten fehlte zum Beispiel, was den Blutdruck angeht, die optimale Einschätzung durch eine 24-Stunden-Langzeitblutdruckmessung. In der Tat ist das Blutdruckverhalten durch große Schwankungen gekennzeichnet. In verschiedenen Studien konnte gezeigt werden, dass die Therapiekontrolle durch eine ambulante 24-Stunden-Langzeitblutdruckmessung exakter möglich ist [64,77]. Stattdessen hatten wir einzelne Werte, die im Rahmen der Dispensaireuntersuchungen registriert wurden und potenziell durch äußere Faktoren beeinflussbar waren (z.B. „Weiβkitteleffekt“).

4.2 Eigene Ergebnisse

In unserer Studie handelte es sich um Patienten mit arterieller Hypertonie mit oder ohne Nierenfunktionsstörungen, bei denen angiographisch eine Nierenarterienstenose von mindesten 70% nachgewiesen worden war. Die Stenose war somit hämodynamisch wirksam [31,96]. Die Häufigkeitsverteilung nach Ätiologie entsprach den Angaben in der Literatur [90]. In der Tat handelte es sich um atherosklerotische Nierenarterienstenose bei 45 Patienten (90%) und in 4 Fällen (8%) um Nierenarterienstenose aufgrund einer fibromuskuläre Dysplasie. In einem weiteren Fall (2%) handelte es sich um eine Nierenarterienstenose nach Nierentransplantation.

Die Patienten mit atherosklerotischen Nierenarterienstenosen waren typische ältere Patienten (61 ± 13 Jahren) meist männlichen Geschlecht (76%) und die Stenose lag in 95% abgangsnah [24]. Da die arteriosklerotische Nierenarterienstenose meist Ausdruck einer generalisierte arteriosklerotische Erkrankung ist sind oft andere Gefäßterritorien betroffen [7, 55,62,107].
Somit hatten ca. 70% der Patienten zusätzlich eine oder mehrere der folgende Gefäßerkrankungen: Koronare Herzkrankheit mit Z.n Myokardinfarkt oder Bypass-OP, periphere arterielle Verschlusskrankheit, Cerebrovaskuläre Insuffizienz mit Z.n zerebralen Ereignissen.

Bei den 4 Fällen mit fibromuskulärer Dysplasie handelte es sich um Frauen im Alter zwischen 20 und 55 Jahre. Die Stenose war bei fast allen (bis auf eine langstreckige Stenose) im mittleren bis distalen Drittel lokalisiert. Auch hier entsprach die Häufigkeitsverteilung in unserem Patientenkollektiv den Angaben in der Literatur [4,90].

4.2.1 Erfolge

Die Erfolgsrate konnte somit sekundär auf 90% erhöht werden. Dieses Ergebnis bestätigt die von andere Autoren dargestellte Erfolgsquoten zwischen 90-100% [8,10,13,25,106,109].

4.2.2 Misserfolg

Die Dilatation der Nierearterienstenose mittels perkutaner transluminaler Angioplastie scheiterte bei 5 Patienten (10%) unseres Patientenkollektives. Es handelte sich um typische Ursachen für das Misslingen der PTA. Bei zwei Patienten waren die anatomischen Gegebenheiten nicht besonders erfolgsversprechend (extrem spitzwinklige Abgang der Nierenarterie von der Aorta bei einem, sowie geknickter Verlauf der Arterie im Bereich der Stenose beim anderen). Bei einem weiteren Patienten misslang die Intervention aufgrund einer subtotalen Stenose, die die Sondierung des Gefäßes unmöglich machte. In zwei Fälle konnte ein Dissekat trotz Stenteinlage nicht erfolgreich therapiert werden. Diese Beobachtung bestätigen die Grenzen der PTA. In diesem Fall ist die chirurgische Intervention grundsätzlich erfolgsversprechender, aber sie ist vergleichend zur PTA invasiver und diesen meist multimorbide Patienten wegen hohem Operationsrisiko nicht zuzumuten. In der Tat liegt die Mortalitätsrate und Häufigkeit von schwerwiegenden Komplikationen bei 7-40% der Operationen, Tendenz steigend je nach Schwere der atheriosklerotische Erkrankung und der Nierenfunktionsstörung [14,38,40,106].

4.2.3 Komplikationen

4.2.4 Rezidiv

4.2.5 Blutdruck

Im Langzeitverlauf ergab neben der Analyse des gesamten Kollektivität die individuelle Patientenanalyse nach dem Kriterien der „GRAVCT” folgendes: eine Heilung des Blutdrucks konnte bei 4 Patienten (12%) während eine Verbesserung bei 19 Patienten (56%) erreicht werden. Dagegen blieb der Blutdruck unbeeinflusst bei 11 Patienten (32%). Die Heilungsquote (normotensive Blutdruckwerte ohne Medikation) von 12% in unsere Patientengut lag höher als bei Boisclair [10], Tuttle [106] und ist etwa gleichdeckend mit dem Ergebnis von Jensen [49], Blum [8]. Die Erfolgsrate (Heilung und Verbesserung) lag bei 68% in unserem Kollektiv.

Niedrigere Erfolgsrate wurden in Untersuchungen von Boisclair (61%) sowie Gerd Jensen (64%) beobachtet. Dagegen erreichte Blum mit 78% eine höhere Heilungsrate. Dieses könnte einerseits an den besserer Follow-up der prospektiven Studie, andererseits an der kürzere Nachbeobachtungszeit liegen. Außerdem ist zu erkennen, dass die in den Studien verwendeten unterschiedlichen Definitionen von Verbesserung des Blutdruckes keinen eindeutigen Vergleich der Erfolgsraten ermöglicht.

Bei den 4 Fällen (13,5%) mit Heilung der Hypertonie handelt es sich meist um relativ junge Patienten mit einem Altersdurchschnitt von 51 Jahren zum Zeitpunkt der PTA. Diese Patienten hatten auch eine relativ kürzere Blutdruckanamnese im Durchschnitt nur 22 Monate (zwischen 6 Monaten und 3 Jahren). Sie hatten alle bis auf eine Patientin 2 CVRF und besaßen aber neben der Nierenarterienstenose keine weitere arteriosklerotische Gefäßveränderung.

Dagegen handelte sich bei den 10 Patienten, bei den kein positiver Effekt erzielt wurde um etwas ältere Patienten mit einem Altersdurchschnitt (außer der 20 Jährigen Patientin mit fibromuskuläre Dysplasie) von 62 Jahren +/-9 (47-72). Sie hatten zum größten Teil eine langjährige Hypertonianamnese (aufgrund mangelhafte Daten war es nicht möglich diese Dauer zahlenmäßig anzugeben), hatten im Durchschnitt 2,6 CVRF und besaßen alle neben der

Nach der aktuellen Datenlage bleibt aber der Stellenwert der PTA als Therapie der Hypertonie bei atherosklerotischen Nierenarterienstenosen umstritten. Unsere Studie zeigt diesbezüglich sehr ermutigende Ergebnisse. Diese spiegelt sich beispielweise im Langzeitergebnis nach
erfolgreiche PTA in der Umkehr der Patientenverteilung anhand der Stadium ihren Hypertonus vor der Intervention. In der Tat befanden sich vor der Intervention 22 (48%) im Stadium 3 der Hypertonie und 11 (24%) Patienten im Stadium 1, nach der Intervention waren es nur noch 3 (8%) im Stadium 3 und 14 dagegen (40%) im Stadium 1. Weiterhin erreichten sogar 3 (9%) einen optimalen Blutdruck, 6 (17%) einen Normalen und 7 (20%) einen hochnormalen Blutdruck.

Es ist nicht zu bestreiten, dass mittels antihypertensiver Therapie eine gute Einstellung des systemischen Blutdruckes erreicht werden kann. Aber der Preis von diesen Vorteilen bei Patienten mit renovaskulären Erkrankung ist die bleibende Perfusionsminderung der poststenotischen Niere. Diese Effekt ist besonders ausgeprägt unter Medikamenten die auf das

4.2.6 Nierenfunktion

Nierenarterienstenosen, vor allem atherosklerotisch bedingte Nierenarterienstenosen sind progrediente Gefäßläsionen, die unbehandelt letztlich zum Verschluss der betroffenen Gefäß führen können [87,92]. Bei einer mittleren Beobachtungsdauer von 2,6 ± 1,6 Jahren zeigten 11,1% aller Patienten (n=1189), die wiederholt koronarangiographiert wurden, eine signifikante Progression vorbekannter Nierenarterienstenosen [22]. Die Okklusionsrate der Nierenarterienstenose ist allerdings relativ niedrig mit < 3% pro Jahr [17]. Außerdem kann eine Nierenfunktionstörung aus der Nierenarterienstenose resultieren [87]. Aus diesen Grund ist die Indikation zur Therapie einer Nierenarterienstenose nicht nur unter dem Aspekt der Blutdrucknormalisierung zu stellen, sondern auch um der nachgewiesene Progredienz dieses Stenosierungsprozesses mit einem zwangsläufig drohendem Nierenfunktionsverlust entgegenzuwirken.

Diese Konstanz als Erfolg der Therapiemethode zu interpretieren. Diese Meinung korreliert mit den Angaben weitere Autoren wie Rimmer [87], Pattynama [81] und Harden [42].

4.2.7 Dialyse

Auch Patienten mit höchsten Kreatininwerten und damit auch weit fortgeschrittener Nierenfunktionseinschränkung, die allgemein als diejenigen betrachten werden, die am wenigsten von der Revaskularisation profitieren, haben eigentlich das meiste zu gewinnen. Im Einzelfall kann sich jedoch die Nierenfunktion nach Revaskularisation so gut erholen, dass eine Dialyse abgesetzt wird [16,70,106,114] oder die Dialysenotwendigkeit kann sich zeitlich

4.2.8 Mortalität und Letalität

oben genannten Beobachtungen. Dies appelliert an eine möglichst frühe Diagnose und Intervention bevor es zur fortgeschrittenen Nierenfunktionsstörung kommt, die die schlechte Prognose bei den betroffenen Patienten ausmacht.

4.2.9 Prophylaxe und Screening
In diesem Zusammenhang stellt sich die Frage, welche Patienten überhaupt auf eine hämodynamisch relevante Nierenarterienstenose untersucht werden müssen. Es besteht eine hohe Prävalenz der Nierenarterienstenose bei Patienten mit schwerer arterieller Hypertonie und mit hohem atheriosklerotischen Risikoprofil \[33,43,78,100,112\], aber eine bestehende Nierenarterienstenose führt nicht zwingend zu einer Hypertonie oder umgekehrt ist die Hypertonie nicht unbedingt auf die Nierenarterienstenose zurückzuführen. Hierfür spricht die niedrige Prävalenz der Nierenarterienstenose bei hypertensiven Patienten \[111\]. Deshalb ist ein allgemeines Screening aller Hypertoniker auf einer Nierenarterie allein schon aufgrund der Kosten-Nutzen-Frage nicht notwendig. Vielmehr soll eine möglichst genaue Anamnese und körperliche Untersuchen aller Hypertoniker erfolgen um möglichst früh klinische Zeichen, die auf eine renovaskuläre Erkrankung hindeuten, aufzudecken. In der Tabelle 7 sind die klinische Hinweise auf Nierenarterienstenose aufgelistet, die Anlass zu einem Screening geben sollten.
Tab. 7: klinische Prädiktoren einer Renovaskuläre Hypertonie

1. Therapie refraktäre Hypertonie (Blutdruck ≥ 160 mmHg systolisch u./o. 120 mmHg diastolisch trotz ≥ 3 Antihypertensiva)
2. Plötzliches Auftreten einer Hypertonie vor dem 50. Lebensjahr (Hinweis auf FMD) oder nach dem 50. Lebensjahr (Hinweis auf ANAS)
3. Plötzliche Verschlechterung einer bisher gut eingestellten arteriellen Hypertonie oder Auftreten einer malignen Hypertonie
4. akutes Lungenödem oder rezidivierende kardiale Dekompensation ohne kardiale Ursachen („flush pulmonary edema“)
5. Plötzliche Anstieg des Serumkreatininwerte bei normalem Urinbefund
6. Überproportionaler (z.B. > 20% des Ausgangskreatinins) oder progredienter Anstieg der Retentionswerte unter ACE-Hemmer bzw. AT1-Blockern
7. Unerklärte Hypokaliämie
8. Lumbale bzw. periumbilikales Strömungsgeräusche
9. Größendifferenz beider Nieren oder einseitige Nierenschrumpfung
10. Ausgeprägte Sklerose der Aorta
11. Karotis-, Koronare-, oder periphere arterielle –Verschlusskrankheit Schwere Retinopathie

FMD = Fibromuskulären Dysplasie
ANAS = atherosklerotische Nierenarterienstenose

Aus diesen Beobachtungen geht hervor, dass Patienten mit neu aufgetretener Nierenfunktionsstörung in der akuten Phasen von der interventionellen Revaskularisierung besser davon profitieren als alle anderen. In der Tat sind die aufgrund Perfusionsminderung entstandenen Veränderungen am Glomerulus und Tubulusapparat in der akute Phasen zum
größten Teil noch reversibel [73]. Denn mit der Zeit kommt es zu irreversiblen Veränderungen wie z. B die interstitieller Fibrosierung.

In diesem Kontext liegt die Vermutung nahe, dass eine akute Verschlechterung der Nierenfunktion hauptsächlich hämodynamische Mechanismen reflektiert, die noch reversibel sind während anhaltende Nierenfunktionsstörung eher für ein chronisches Geschehen und damit Irreversibilität sprechen [94]. Es unterscheiden sich die renovaskuläre Erkrankung von den Renoparenchymatösen (Glomerulosklerose, Nephroangiosklerose, interstitielle Fibrose) dadurch, dass die erste mit einer abrupteren und schnelleren während die zweite mit einer langsameren Entwicklung der Nierenfunktionsstörung einhergeht. Bei der renoparenchymatösen Erkrankung spielen Faktoren wie Alter, Hypertonie und Diabetes allein oder in Kombination eine wichtige Rolle [72].

Es ist deshalb wichtig die renovaskuläre Erkrankung, die gut auf die PTA (mit oder ohne Stent) anspricht von anderen Ursachen der Nierenfunktionsstörung zu unterscheiden. Ein weiterer Faktor für das Ausmaß des Parenchymsschadens und damit ein Prognosezeichen scheint der sogenannte „Resistance Index“ zu sein. Radermacher und Kollegen [84] zeigten in Ihrer Studie, dass hohe Strömungswiederstände (RI-index > 0,8) in Segmentarterien schlechte Prognosezeichen sind.

Andere Indikatoren eines fortgeschrittenen Parenchymsschadens und damit auch für eine schlechte Prognose nach PTA sind: eine Nierengröße von weniger als 7,5 cm [104], eine Proteinurie von mehr als 1g/d, eine Hyperurikämie, und eine Kreatinin clearance unter 40 ml/min [37]. Nach Jensen und Kollegen [49] ist die Bestimmung der Renin Konzentration in der Nierenvenen vor der Intervention mit einer Sensitivität von 95% sowie einer Spezifität von 75% eine gute prediktive Methode bezüglich des klinischen Outcome nach Angioplastie. Es wurden unterschiedliche Marker genannt (in Tabelle 8 zusammengefasst) die das „Outcome“ nach Angioplastie vorhersagen sollen, allerdings wurden für viele dieser Parameter widersprüchliche Daten publiziert.
Tab. 8: Prädiktoren einer erfolgreichen PTA

<table>
<thead>
<tr>
<th>Prädiktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nierenarterienstenose ≥ 70%</td>
</tr>
<tr>
<td>Resistance-index < 0,8 bzw. hohem intrarenalen enddiastolischen Flussgeschwindigkeit (als Zeichen der hämodynamischen Relevanz der Stenose und noch nicht fortgeschrittener Sklerosierung) und/oder</td>
</tr>
<tr>
<td>Systolische Blutdruckwerte >160 mmHg unter Therapie bei erhöhtem Progressionsrisiko und/oder</td>
</tr>
<tr>
<td>Nierenarterienstenose > 60% bei Diabetiker mit erhöhten Progressionsrisikos</td>
</tr>
<tr>
<td>Nierenarterienstenose mit rascher Nierenfunktionsverschlechterung ohne Hinweis auf renoparenchymatóse Erkrankung</td>
</tr>
<tr>
<td>Rezidivierende Lungenödeme</td>
</tr>
<tr>
<td>Überproportionaler (z.B > 20% des Ausgangskreatinins) oder progredienter Anstieg der Retentionswerte unter ACE-Hemmer bzw. AT1-Blockern</td>
</tr>
</tbody>
</table>

PTA = Perkutane transluminale Angioplastie
ACE-Hemmer = Angiotensin-Converting-Enzym-Hemmer
AT1-Blocker = Angiotensin 1-Blocker
4.2.10 Vorgehen bei Nierenarterienstenose

Bisher gibt es keine einheitliche Konzepte zum Vorgehen bei Nierenarterienstenose. In folgendem soll schematisch ein Überblick über ein uns überzeugendes Vorgehen dargestellt werden.

Nach einem technisch sowie klinisch erfolgreichen Dilatationsergebnis ist noch lange nicht alles gewonnen. Problem ist natürlich der Langzeitverlauf bei diesen Patienten. Denn die Grundkrankheit, die zu einer ischämisch renovaskulären Nephropathie führt, ist die Atheriosklerose, eine progrediente Erkrankung. Deshalb ist eine begleitende ärztliche Nachbehandlung wünschenswert um das Risikoprofil, das diese Patienten aufweisen durch aktive Bekämpfung von Risikofaktoren günstig zu beeinflussen. Dazu gehören die Nikotinabstinenz, die Einstellung des LDL-Cholesterins < 100 mg/dl, die Regulierung des Blutdruckes <140/85 mmHg beziehungsweise ≤ 120/80 mmHg bei Diabetikern, ACE-Hemmer-Therapie (wenn keine Unverträglichkeit), Thrombozytenaggregationshemmung und die Folate [54]. Auch Statine scheinen neben einer Reduktion der kardiovaskulären...
Risikofaktoren die Progressionstendenz der atheriosklerotischen Nierenarterienstenose positiv zu beeinflussen [52].
Ferner sichern regelmäßige Kontrolluntersuchungen das frühere Aufdecken möglicher Rezidivstenose [115], wobei nicht jedes klinisches Rezidiv mit einem angiomorphologischen Korrelat des betreffenden Gefäßbezirkes einhergehen muss. Spätestens nach einem ½ Jahr sollte erneut evaluiert werden. Dieses kann durch Dopplersonographie bei entsprechenden Vorbeunden aber auch durch Magnetresonanztomographie mit Gadoliniumkontrastmittel ambulant durchgeführt werden. Im Zweifelsfall ist die direkte Arteriographie möglicherweise in der Dilatationsbereitschaft indiziert. Deshalb müssen diese Patienten lebenslang und eng angebunden an eine Universitätsklinik betreut werden.

4.3 Schlußfolgerung

Die Renovaskuläre Hypertonie ist eine potenziell kausal behandelbare Erkrankung. In dieser Hinsicht hat die Perkutane Transluminale Angioplastie einer Nierenarterienstenose ihren Stellenwert als kausale Behandlung der renovaskulären Hypertonie. Sie ist gegenüber der Chirurgie kostengünstig, weniger invasiv, beliebig wiederholbar und damit viel geeigneter für die oft multimorbiden Patienten mit Nierenarterienstenose. Im Gegensatz zur reinen medikamentösen Behandlung, die nur eine symptomatische Behandlung darstellt ist die PTA eine kausale Behandlung und kann neben der Beseitigung der Nierenarterienstenose auch ihren natürlichen Progressionstendenz positive beeinflussen.

Die Ulmer Erfahrungen zeigen, dass die Dilatation von Nierenarterienstenosen in ¾ der Fälle erfolgreich ist. Dieses gilt sowohl für die Nierenfunktion, die sich verbessert oder zumindest nicht weiter oder langsam sich verschlechtert bei bereits eingetreterener Niereninsuffizienz. Dies gilt auch für den Bluthochdruck der sich zwar selten normalisiert, aber in der Regel mit weniger Hochdruckmedikamenten dann auskommt. Hierdurch kann die Komplikationsrate der Hypertonie wie Schlaganfälle und andere kardiovaskuläre Ereignisse reduziert werden.
Was wir aus den Ulmer Erfahrungen klar an Konsequenzen ableiten, ist:

1- die Dilatation von Nierenarterienstenosen ist medizinisch zum Funktionserhalt der Nieren und zur besseren Blutdruckeinstellung indiziert.

2- die Komplikationsrate von Nierenarterienstenosendilatation ist vertretbar und eigentlich als gering einzuschätzen.

3- Auch bei bereits dialysepflichtigem Nierenversagen kann die Dilatation von Nierenarterienstenosen die Nierenfunktion wieder restituieren und ist somit indiziert.

4- Patienten mit atheriosklerotischen Nierenarterienstenosen müssen langfristig und eng angebunden an eine Universitätsklinik betreut werden.
5 Zusammenfassung

beobachtet werden. Bei 3 Patienten normalisierte sich sogar die Nierenfunktion im Verlauf. 2 von 4 dialysepflichtigen Patienten mussten nicht mehr dialysiert werden. Patienten mit Niereninsuffizienz erreichten bereits im Median 6 Monate nach PTA ihren besten Kreatininwert und dieser war signifikant niedriger als vor der Intervention. Im gesamten Patientenkollektiv konnte aber zu keiner Zeit eine statistisch signifikante Senkung des Kreatininwertes nachgewiesen werden. Da der natürliche Verlauf der atherosklerotische Nierenaretrienstenose die Progression bis zum totalen Verschluss mit konsekutivem Nierenfunktionsverlust ist, sind die Verzögerung oder die Aufrechterhaltung der verbleibenden Nierenfunktion lohnende Ziele der PTA.
6 Literaturverzeichnis

DANKSAGUNG

Herzlich danke ich Herrn Prof. Dr. Keller für die Möglichkeit diese Arbeit durchzuführen. Insbesondere danke ich für sein mir stets entgegengebrachtes Interesse, seine tatkräftige Unterstützung sowie für die vielen fruchtbaren Diskussionen.

Ebenso gilt mein Dank Herrn Prof. Dr. Harmut Hanke für die Bereitstellung der Daten sowie für seine Unterstützung und fachliche Beratung bei der Gestaltung dieser Dissertation.

Auch möchte ich Herrn Dr. Joachim Kamenz für seine Hilfe, Anregungen und Unterstützung danken.

Nicht zuletzt gilt mein Dank meiner Familie und meinen Freunden insbesondere meinem Bruder Jules Towa Kamgne für die Motivation und Unterstützung gerade in den schwierigen Phasen dieser Studie.