Dissertation

„Verkapselung verschiedenartiger anorganischer Substanzen mittels Miniemulsions- und Emulsionspolymerisation“

zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Naturwissenschaften
der Universität Ulm

vorgelegt von

Eyk Schreiber

geboren am 02.09.1980 in Holzminden

Ulm im Jahre 2009
Amtierender Dekan
1. Gutachterin
2. Gutachter
Tag der Promotion

Herr Prof. Dr. Peter Bäuerle
Frau Prof. Dr. Katharina Landfe ster
Herr Prof. Dr. Gerhard Taubmann
18.05.2009
Inhaltsverzeichnis

1. EINLEITUNG .. 5
2. THEORIE UND GRUNDLAGEN.. 7
 2.1. RADIKALISCHE POLYMERISATION.. 7
 2.2. POLYADDITION... 9
 2.3. HETEROPHASENSYSTEME.. 11
 2.3.1. Stabilisierung von Emulsions durch Tenside... 11
 2.3.2. (Makro)-Emulsionspolymerisation.. 13
 2.3.3. Miniemulsionspolymerisation.. 16
 2.3.4. Fällungpolymerisation.. 19
 2.3.5. Einfluss von organischen Lösungsmitteln in der Wasserphase auf
 Heterophasensysteme .. 20
 2.4. CLUSTER UND NANOPARTIKEL... 22
 2.4.1. Herstellung von Metallclustern durch mizellare Techniken........................ 22
 2.4.2. Eigenschaften von Quantenpunkten.. 23
 2.4.3. Verwendung von Nanopartikeln in der Lithographie 24
 2.5. SILIKATE ... 26
 2.5.1. Aufbau von Schichtsilikaten ... 26
 2.5.2. Oberflächenmodifikationen von Laponit.. 28
 2.5.3. Verkapselung von (Schicht-)Silikaten in Polymermatrizes......................... 31
 2.5.4. Technische Verwendung von Schichtsilikaten.. 32
 2.6. VERKAPSELUNGEN VON FLÜSSIGEN SUBSTANZEN... 33
 2.6.1. Kapselmorphologien .. 34
 2.6.2. Verkapselung durch Phasenseparation... 35
 2.6.3. Verkapselung durch Polymerfüllung.. 35
 2.6.4. Verkapselung durch Grenzflächenpolymerisation... 37
3. MEßMETHODEN .. 39
 3.1. TRANSMISSIONS-ELEKTRONEN MIKROSKOPIE.. 39
 3.2. ENERGIEDISPER SIVE RÖNTGENANALYSE (EDX)... 41
 3.3. DYNAMISCHE LICHTSTREUUNG (DLS)... 42
 3.4. PLASMAÄTZEN ... 44
 3.5. RÖNTGENDIFFRAKTOMETRIE (XRD).. 45
Inhaltsverzeichnis

3.6. THERMOGRAVIMETRISCHE ANALYSE (TGA) ... 47
3.7. ISONOTHERMES METALLBLOCK-KALORIMETER .. 48
3.8. ULTRAZENTRIFUGATION MIT ZUCKERGRADIENTEN ... 49

4. ERGEBNISSE UND DISKUSSION .. 51

4.1. METALLHALTIGE POLYMERLATIZES ... 51
 4.1.1. (Mini-)Emulsionspolymerisationen von Styrol unter Einfluss von Ethanol zur
 Erzeugung homogener Latizes ... 52
 4.1.1.1. Miniemulsionspolymerisation mit SDS unter Ethanolzusatz 52
 4.1.1.2. Emulsionspolymerisation mit SDS unter Ethanoleinfluss 60
 4.1.1.3. Vergleich von Miniemulsions- und Emulsions-polymerisation mit SDS
 unter Ethanolzugabe ... 66
 4.1.1.4. Emulsionspolymerisation mit Ammoniumlaurat unter Ethanolinfluss .. 67
 4.1.1.5. Emulsionspolymerisation mit Ammoniumlaurat unter Isopropanoleinfluss ... 71
 4.1.2. Miniemulsionspolymerisation in Gegenwart von Metall-komplexen 73
 4.1.3. Verwendung von metallhaltigen Polymerlatizes .. 80
 4.1.4. Saat-Partikel ... 82
 4.1.5. Miniemulsions- und Emulsionspolymerisationen in Gegenwart von Platin- und
 Eisenkomplexen ... 87
 4.1.5.1. Miniemulsionspolymerisation von Fe/Pt-Hybridpartikeln 87
 4.1.5.2. Emulsionspolymerisation mit Platin-Metallkomplexen 89
 4.1.5.3. Emulsionspolymerisation mit Platin- und Eisen-Metallkomplexen 94
 4.1.5.4. Analyse der Metallgehalte von Eisen und Platin enthaltenden (Mini-)
 Emulsionspolymerisationen ... 97
 4.2. VERKAPSELUNG VON LAPONIT RD IN POLYMERLATIZES 99
 4.2.1. Hydrophobisierung von Laponit RD ... 100
 4.2.2. Verkapselung von hydrophoben Laponit RD in Polystyrol 104
 4.2.3. Verkapselung von hydrophoben Laponit RD in Acrylaten 116
 4.3. VERKAPSELUNG VON WÄSSRIGEN LÖSUNGEN MITTELS INVERSER
 MINIEMULSIONSTECHNIK ... 124
 4.3.1. Verkapselung von Borax .. 124
 4.3.1.1. Verkapselung von Borax durch Polymerfällung 124
 4.3.1.2. Verkapselung von Borax in Polyharnstoff ... 125
 4.3.2. Verkapselung kommerzieller Ammoniumzirkoniumcarbonat-Vernetzer 128
4.3.2.1. Verkapselungen von Ammoniumzirkoniumcarbonat-Vernetzern in Polyharnstoff	128
4.3.2.2. Verkapselung von Ammoniumzirkoniumcarbonat-Vernetzern in Polymethacrylat	131
4.3.2.3. Verkapselung von Ammoniumzirkoniumcarbonat-Vernetzern in Polymethylmethacrylat	135

<p>| 5. EXPERIMENTELLER TEIL | 143 |
| 5.1. Herstellung von alkoholhaltigen (Mini-)Emulsionen | 143 |
| 5.1.1. Herstellung von ethanolhaltigen Miniemulsionen mit SDS | 143 |
| 5.1.2. Herstellung von ethanolhaltigen Emulsionen mit SDS | 143 |
| 5.1.3. Herstellung von Ethanol- und Isopropanol-haltigen Emulsionen mit Ammoniumlaurat | 144 |
| 5.2. Herstellung von metallhaltigen Polystyrollatizes | 144 |
| 5.2.1. Herstellung metallhaltiger Latizes über Miniemulsions-polymerisation | 145 |
| 5.2.2. Herstellung metallhaltiger Latizes über Emulsions-polymerisation | 146 |
| 5.2.3. Partikelvergrößerung durch einfache Saatpolymerisation | 146 |
| 5.2.4. Partikelvergrößerung durch Saatpolymerisation | 146 |
| 5.3. Herstellung von Laponit/Polymer Hybridpartikeln | 147 |
| 5.3.1. Hydrophobisierung von Laponit RD | 147 |
| 5.3.2. Hybridpartikel durch Dispergierung von Laponit in Styrol | 148 |
| 5.3.3. Redispergierung von hydrophoben Laponit | 148 |
| 5.3.4. Herstellung einer Styrol- bzw. Acrylat-Präminiemulsion | 149 |
| 5.3.5. Verkapselung von Laponit RD | 149 |
| 5.4. Inverse Verkapselung von wässrigen Lösungen | 151 |
| 5.4.1. Herstellung von PMMA-Kapseln durch Fällen aus einem Lösungsmitelgemisch | 151 |
| 5.4.2. Herstellung von Polyharnstoffkapseln | 152 |
| 5.4.3. Herstellung von Acrylatkapseln | 152 |
| 5.4.4. Herstellung von Polymethylmethacrylatkapseln | 153 |
| 5.4.5. Redispergierung im wässrigen Medium | 154 |
| 5.4.6. Zirkonium-Nachweis | 154 |
| 5.5. Präparation eines Dichtegradien | 154 |
| 5.6. Präparation der TEM-Proben | 154 |
| 5.7. Präparation der DLS-Proben | 155 |</p>
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Probenpräparation für das Kalorimeter</td>
<td>155</td>
</tr>
<tr>
<td>5.9</td>
<td>ICP-OES- und EDX-Messungen</td>
<td>155</td>
</tr>
<tr>
<td>5.10</td>
<td>Bestimmung des Restmonomergerhaltes</td>
<td>156</td>
</tr>
<tr>
<td>5.11</td>
<td>Probenpräparation für Zugdehnungsmessungen</td>
<td>156</td>
</tr>
<tr>
<td>6.</td>
<td>Zusammenfassung</td>
<td>157</td>
</tr>
<tr>
<td>7.</td>
<td>Conclusion</td>
<td>161</td>
</tr>
<tr>
<td>8.</td>
<td>Geräteverzeichnis</td>
<td>165</td>
</tr>
<tr>
<td>9.</td>
<td>Abkürzungsverzeichnis</td>
<td>165</td>
</tr>
<tr>
<td>9.1</td>
<td>Chemikalien</td>
<td>165</td>
</tr>
<tr>
<td>9.2</td>
<td>Messmethoden</td>
<td>165</td>
</tr>
<tr>
<td>10.</td>
<td>Literaturverzeichnis</td>
<td>167</td>
</tr>
<tr>
<td>11.</td>
<td>Danksagung</td>
<td>173</td>
</tr>
<tr>
<td>12.</td>
<td>Lebenslauf</td>
<td>175</td>
</tr>
<tr>
<td>13.</td>
<td>Publikationen</td>
<td>177</td>
</tr>
<tr>
<td>13.1</td>
<td>Poster</td>
<td>177</td>
</tr>
<tr>
<td>13.2</td>
<td>Vorträge</td>
<td>177</td>
</tr>
<tr>
<td>13.3</td>
<td>Veröffentlichungen</td>
<td>177</td>
</tr>
<tr>
<td>14.</td>
<td>Erklärung</td>
<td>179</td>
</tr>
</tbody>
</table>
1. Einleitung

In der aktuellen Forschung sind insbesondere Metallnanopartikel von sehr hohem Interesse, da diese sowohl zu neuartigen Speichermedien auf Eisen/Platin-Basis führen können als auch für lithographische Prozesse einsetzbar sind. Um die hierfür benötigten Strukturen auszubilden, bieten sich insbesondere metallhaltige, kolloidale Polymersysteme an, die durch Selbstorganisation regelmäßige, hexagonale Strukturen auf Substraten ausbilden. Die Möglichkeiten zur Herstellung dieser speziellen Kolloide werden in dieser Arbeit unter Einsatz verschiedener Metallkomplexe und Herstellungstechniken genauer untersucht.

Weitere Einsatzgebiete von Nanomaterialien finden sich bei der Hybridpartikelbildung, z. B. zur Verbesserung der mechanischen Eigenschaften eines Lackes oder Klebstoffes. Hierbei ist insbesondere die Nanotechnologie im Vorteil, da durch diese eine extrem feine Verteilung von Additiven erreicht werden kann, was deren Wirkung maximiert. Auf diesem Gebiet ist insbesondere die Erforschung von Polymerdispersionslacken unter Zugabe von Tonmineralien sehr interessant, da diese sowohl die Feuerfestigkeit, die Kratzfestigkeit sowie
die Gasdiffusionsbarrierewirkung im Vergleich zum reinen Polymer deutlich erhöhen4. Für die Herstellung dieser Hybridnanopartikel sind Heterophasensysteme mit Wasser als kontinuierlicher Phase besonders geeignet, da diese im Gegensatz zu Lösungsmitteln keinerlei Recycling- oder Toxizitätsprobleme aufwerfen. Moderne Heterophasensysteme leisten somit einen großen Beitrag zur „Green Chemistry“. Im Rahmen des EU-Projektes „Napoleon“ werden in dieser Arbeit spezielle, laponitverstärkte Hybridpartikeldispersionen für den Einsatz in Lacken auf Wasserbasis untersucht.

Für die Herstellung dieser verschiedenen Hybridmaterialien nimmt insbesondere die Miniemulsionspolymerisation8, 9, die erst seit den 70er Jahren erforscht wird10, eine Sonderstellung ein. Mit dieser neuartigen Technik lassen sich gezielt und effizient Polymernanopartikel, Hybridpartikel und Kapseln im Nanometerbereich herstellen, die mit einfachen Emulsionstechniken11 nicht zugänglich wären. Aus diesem Grund wird in dieser Arbeit hauptsächlich das Miniemulsionsverfahren eingesetzt. Zum einen wird die Erzeugung homogener, metallhaltiger Polymerlatizes, die ihren Einsatz in modernen Speichermedien und Lithographieprozessen finden könnten, erforscht, sowie die Erzeugung von wasserbasierten Dispersionslacken, welche durch Zugabe von Tonmineralien verstärkt wurden. Den Abschluss bilden Untersuchungen zur Nanoverkapselung von Vernetzern für die Papierindustrie über neuartige Miniemulsionsprozesse.
2. Theorie und Grundlagen

Im Folgenden wird kurz auf die theoretischen Grundlagen, die zum Verständnis dieser Arbeit beitragen, eingegangen. Das Hauptaugenmerk liegt hierbei auf Heterophasensystemen, Miniemulsions- und Emulsionspolymerisationen, Verkapselungen sowie den verwendeten anorganischen Komponenten und Analysenmethoden.

2.1. Radikalische Polymerisation12, 13

Zur radikalischen Polymerisation werden in aller Regel vinylische Verbindungen wie z. B. Vinylchlorid, Styrol und dessen Derivate sowie diverse Acrylate oder Methacrylate verwendet.

Der Start einer radikalischen Polymerisation kann durch verschiedene Arten von Initiatoren erfolgen. Beispiele hierfür sind zum einen Redoxsysteme wie z. B. \(\text{Fe}^{2+}/\text{Fe}^{3+} \), Peroxide wie Dibenzoylperoxid (DBO) oder die sehr häufig verwendeten Azoinitiatoren (siehe Abbildung 1). Hierbei werden durch Abspaltung von Stickstoff zwei freie Radikale erzeugt, welche die eigentliche Polymerisation starten.

![Abbildung 1: Verschiedene Azoinitiatoren mit entsprechender Zerfallstemperatur bei 10-stündiger Halbwertszeit.](image)

Treffen die Initiatorradikale auf ein Monomer, so gehen die beiden Moleküle eine kovalente Bindung unter Ausbildung eines neuen Radikalzentrums ein. In einer Kettenwachstumsreaktion kann sich dieser Prozess durch Bildung langer Polymerketten immer weiter fortsetzen.

Die Zunahme der Molmasse erfolgt hierbei sehr schnell schon zu Beginn der Polymerisation (siehe Abbildung 2).

2.2. Polyaddition

Es gilt:

\[
X_n = \frac{1}{1 - p}
\]

mit \(X_n\) = Polymerisationsgrad und \(p\) = Umsatz.

![Polymerisationsgrad](image)

Wichtige Vertreter der durch Polyaddition hergestellten Polymere sind Epoxidharze, Polyurethane und Polyharnstoffe. In Abbildung 4 ist der Mechanismus der Polyaddition am Beispiel eines Polyharnstoffes aus Toluol-2,4-diisocyanat und Ethylendiamin dargestellt.
Abbildung 4: Mechanismus der Polyaddition von Toluol-2,4-diisocyanat mit Ethylen diamin. Die Aminogruppe greift nukleophil unter Bindungsbildung an der Isocyanatgruppe an. Da es sich um difunktionelle Monomere handelt, können sich auf diese Weise Polymere ausbilden.

Ein Beispiel für den Einsatz von Polyharnstoffen und Polyurethanen, neben dem eher großtechnischen Einsatz für die Herstellung von Schäumen, ist die Kapselbildung durch Grenzflächenpolymerisation (siehe Kapitel 2.6.4).
2.3. **Heterophasensysteme**\(^{12,14}\)

2.3.1. Stabilisierung von Emulsionen durch Tenside\(^{15}\)

Generell lassen sich Emulsionen durch den Einsatz von Tensiden stabilisieren. Ohne zusätzliche Stabilisierung würden die z. B. durch Rühren vorher erzeugten Tröpfchen instantan durch Koaleszenz kollabieren (siehe Abbildung 5).

![Koaleszenz von unstabilisierten Teilchen](image)

Abbildung 5: Koaleszenz von unstabilisierten Teilchen (oben) im Vergleich zu stabilisierten Teilchen (unten), deren Koaleszenz durch die repulsiven Kräfte der Tenside verhindert wird.

Die verwendeten Tenside bestehen sowohl aus einem hydrophilen als auch aus einem hydrophoben Teil, sie sind somit amphiphil. Durch ihre Verwendung wird zum einen die Grenzflächenspannung der Wasser-Öl Grenzfläche herabgesetzt, was zu einer geringeren

Abbildung 6: Schematischer Potentialkurvenverlauf nach der DVLO-Theorie in Abhängigkeit des Abstandes zwischen zwei ionisch stabilisierten Kolloiden: Born-Abstoßung (grün); van der Waals-Anziehung (blau); elektrostatische Abstoßung (rot); Summe aller Kräfte (schwarz). Je nach Tensidgehalt und Ionenstärke des umgebenden Mediums können sowohl Abstoßung als auch Anziehung überwiegen.

2.3.2. (Makro)-Emulsionspolymerisation

Bei der Emulsionspolymerisation liegen in der dispersen Phase Monomertröpfchen und Mizellen nebeneinander vor. Hierbei findet die Initiierung und Oligoradikalbildung hauptsächlich in der Wasserphase statt, weshalb häufiger wasserlösliche und nicht öllösliche Initiatoren verwendet werden. Die Oligoradikale treten anschließend in die Mizellen ein, in denen die Polymerisation hauptsächlich erfolgt und in die während der Polymerisation nach und nach weiteres Monomer aus den Monomertröpfchen hinein diffundiert (siehe Abbildung 8).

Abbildung 8: Schematische Darstellung der Komponenten einer Emulsionspolymerisation. In ihr liegen neben Monomertröpfchen, gefüllten und leeren Mizellen auch in der kontinuierlichen Phase gelöstes Monomer, Tensid und Initiatormoleküle vor.

Somit sind die Polymerisationsgeschwindigkeit sowie die entstehende Partikelgröße hauptsächlich von der Zahl der anfänglichen Mizellen abhängig. Der Reaktionsverlauf der Emulsionspolymerisation lässt sich hierbei in vier Intervalle einteilen (siehe Abbildung 9).

In den meisten Fällen werden für die Emulsionspolymerisation wasserlösliche Initiatoren wie z. B. Kaliumperoxodisulfat verwendet. Ebenso können für die Emulsionspolymerisation öllösliche Initiatoren, wie z. B. 2,2'-Azobis-(isobutyronitril) (AIBN) oder 2,2'-Azobis-(2-methylbutyronitril) (V 59), verwendet werden, wobei davon ausgegangen wird, dass hier nur der Anteil der wasserlöslichen Radikale für die Polymerisation verantwortlich ist. Öllösliche Initiatoren finden insgesamt deutlich seltener Anwendung in der Emulsionspolymerisation als wasserlösliche Initiatoren.

Der Nachteil der Emulsionspolymerisation liegt meist in der Verunreinigung des späteren Produkts durch Tenside, wobei auch tensidfreie Emulsionspolymerisationen in der Literatur und Technik zur Anwendung kommen.

- 15 -
2.3.3. Miniemulsionspolymerisation

Die grundlegenden Forschungen zur Miniemulsion wurden erstmals 1973 an Polystyrol-Emulsionen von Ugelstad et al. durchgeführt10, wobei er schon 1971 an fettalkohol-stabilisierten Polyvinylchloridemulsionssystemen forschte22. Seit Ende der 70er Jahre wurden Miniemulsionen eingehender von Hansen und Ugelstad23, sowie Chou und El-Aasser24, der den Begriff der Miniemulsion prägte, untersucht. Eine Übersicht über Miniemulsionen findet sich bei van Herk14, bzw. ausführlicher bei Landfester9.

Im Gegensatz zur Emulsionspolymerisation entstehen die späteren Polymerkolloide nicht erst durch Diffusion des Monomers durch die kontinuierliche Phase, sondern es werden schon vor der Polymerisation fein verteilte Monomertröpfchen durch eine entsprechende Homogenisierung erzeugt25. Das Besondere dabei ist, dass die Anzahl und Verteilung der Tröpfchen im Idealfall während der gesamten Polymerisation konstant bleibt. Die Polymerpartikel bilden sich somit entsprechend der anfänglichen Tröpfchenverteilung, ohne dass während der Polymerisation Nettodiffusion durch die kontinuierliche Phase stattfindet. Dies kann nur durch eine gute Stabilisierung gegen Koaleszenz durch entsprechende Tensidzusätze26 und durch Zusatz von osmotischen Reagenzien gegen die ansonsten eintretende Ostwaldreifung erreicht werden25, 27. In Abbildung 10 ist die allgemeine Vorgehensweise bei der Erzeugung einer Miniemulsion aufgezeigt.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{miniemulsionspolymerisation.png}
\caption{Schematische Darstellung einer Miniemulsionspolymerisation. Zuerst wird durch Rühren eine Makroemulsion erzeugt, die durch Ultraschalleintrag weiter homogenisiert wird. Während der anschließenden Polymerisation bleibt die Partikelzahl im Idealfall konstant.}
\end{figure}

Zuerst werden die kontinuierliche Phase, welche das Tensid enthält, und die disperse Phase, die sich aus Initiator, osmotischem Reagenz und Monomer zusammensetzt, miteinander verrührt. Durch Homogenisierung, z. B. durch Ultraschallanwendung, werden fein verteilte Tröpfchen erzeugt, die anschließend polymerisiert werden.

\[
P_{Laplace} \approx P_{Osmose}
\]

\[
\frac{2\gamma}{r} \approx RTc_{molar}
\]

mit \(\gamma\) = Oberflächenspannung, \(r\) = Tröpfchenradius, \(R\) = univ. Gaskonstante, \(T\) = Temperatur und \(c_{molar}\) = molare Konzentration des Hydrophobs/Hydrophils.
Durch diese Unterdrückung der Diffusion können Miniemulsionen leicht bis zu mehreren Monaten lang stabil bleiben.

Die Polymerisation einer Miniemulsion erfolgt im Vergleich zur Emulsionspolymerisation unabhängig voneinander in den einzelnen Tröpfchen. Dadurch gleicht die Kinetik eher einer Massepolymerisation und jedes Tröpfchen stellt für sich genommen einen unabhängigen Nanoreaktor dar.

Wie in Abbildung 12 gezeigt, lässt sich die Reaktion abgeleitet von der Emulsionspolymerisation in drei Bereiche unterteilen

Da bei der Miniemulsion die Tröpfchenzahl im Idealfall während der gesamten Reaktionsdauer konstant bleibt und auch von außen kein weiteres Monomer nachgeliefert wird, ergibt sich ein deutlicher Unterschied zur Emulsionspolymerisation. In Phase I (Abbildung 12, I) setzt die Polymerisation ein und die Reaktionsgeschwindigkeit steigt rapide an. Da von außen kein zusätzliches Monomer nachgeliefert wird, entfällt Phase II und die Reaktionsgeschwindigkeit sinkt in Phase III (Abbildung 12, III) durch eine abnehmende Monomerkonzentration immer weiter ab. In Phase IV (Abbildung 12, IV) ist entsprechend der Emulsionspolymerisation ein Gelpeak zu erkennen, der durch die Erhöhung der Radikalkonzentration zustande kommt.
2.3.4. Fällungspolymerisation

Von einer Fällungspolymerisation spricht man, wenn das zugrunde liegende Monomer in der kontinuierlichen Phase löslich, jedoch das dazugehörige Polymer unlöslich ist. Zu Beginn der Polymerisation werden der Initiator und das Monomer gelöst und die Polymerisation, z. B. durch Temperaturerhöhung, gestartet (siehe Abbildung 13). Während der fortschreitenden Polymerisation fällt das gebildete Polymer anschließend aus der Lösung aus. Beispiele für eine Fällungspolymerisation sind die radikalische Acrylnitrilpolymerisation in Wasser oder superkritischem CO\textsubscript{2}32, die Polymerisation von Styrol und Acrylnitril in Alkoholen33 sowie die kationische Polymerisation von Isobuten in Methylchlorid34.

Auf den Einsatz von Stabilisatoren kann in einer Fällungspolymerisation weitestgehend verzichtet werden. Dies hat den entscheidenden Vorteil, dass über Fällungspolymerisationen sehr reine Polymerprodukte erzeugt werden, was besonders bei der Weiterverwendung zu höherwertigen Produkten einen entscheidenden Vorteil darstellen kann.

Der Einsatz von Stabilisatoren in einer Fällungspolymerisation führt zu definierten Polymerpartikeln. Diese Form der stabilisierten Fällungspolymerisation wird als Dispersionspolymerisation bezeichnet.

2.3.5. Einfluss von organischen Lösungsmitteln in der Wasserphase auf Heterophasensysteme

In früheren Arbeiten konnte gezeigt werden, dass Lösungsmittelzusätze die Oberflächenspannung von Wasser stark herabsetzen35. Dies gilt nicht nur für Oberflächenspannungen, sondern teilweise auch für die Grenzflächenspannungen zwischen disperser und kontinuierlicher Phase36 in einem Zweiphasensystem. So sinkt die Grenzflächenspannung zwischen Styrol und Wasser von 37 mN/m beim Zusatz von 10 Gew.-% DMSO, bezogen auf die disperse Phase, auf 28 mN/m, bei 10 Gew.-% Ethanol auf 23 mN/m und bei 10 Gew.-% THF sogar auf unter 20 mN/m36. Des Weiteren führt die Zugabe eines organischen Lösungsmittels zur Wasserphase zu einer erhöhten Löslichkeit der organischen Phase in der Wasserphase und einer daraus resultierenden beschleunigten Ostwaldreifung37.

Neben der veränderten Löslichkeit der Monomere zeigt sich ein besonders starker Einfluss auf die Tensidlöschlichkeit und daraus folgend auf deren kritische Mizellenkonzentration (CMC)38. So zeigen die meisten ionischen Tenside, wie z. B. Natriumdodecylsulfat (SDS) und Dodecyltrimethylammoniumbromid, bei Ethanolzugen bis zu 5 Gew.-% eine leichte Erniedrigung der CMC durch eine geringere Löschlichkeit der polaren Kopfgruppe. Oberhalb von 5 Gew.-% steigt die CMC durch die bessere Löslichkeit des hydrophoben Alkylrests wieder an. Es gilt somit festzuhalten, dass bei 5 Gew.-% Ethanol ein Minimum der CMC vorliegt, die ca. 10 % unter der in reinem Wasser bestimmten liegt. Hieraus ergeben sich natürlich auch starke Einflüsse der Lösungsmittelzusätze auf die Mechanismen einer (Mini-) Emulsionspolymerisation. Für Styrolminiemulsionen konnte gezeigt werden, dass der Zusatz größerer Mengen Ethanol (20 Gew.-%, bezogen auf die disperse Phase) zu einer deutlichen Vergrößerung der Partikelgröße von 115 nm auf 138 nm führt36. Aufgrund der geringeren Grenzflächenspannung wäre durch den verminderten Laplace-Druck eigentlich eine geringere Partikelgröße zu erwarten gewesen. Beim Zusatz von Ethanol scheint somit der Co-Solvent-Effekt einem möglichen Co-Surfactant-Effekt, wie er bei längererkettigen Alkoholen (z. B. in Mikroemulsionen) vorkommt23, 39, zu überwiegen. Ein ähnliches Verhalten konnte für THF und DMSO festgestellt werden36.

Im Folgenden wird kurz auf die wichtigsten Einflussfaktoren kurzkettiger Alkohole, wie sie in dieser Arbeit verwendet wurden, auf Emulsionspolymerisationen und deren Partikelgrößenverteilung eingegangen. Für stark methanolhaltige Emulsionen (~50 Gew.-% in der kontinuierlichen Phase) konnte ein positiver Einfluss auf die Homogenität der Polymerpartikel gezeigt werden40. Des Weiteren konnte gezeigt werden, dass mit sehr hohen
Ethanolgehalten von 70 Gew.-%, bezogen auf die disperse Phase, extrem homogene Polystyrolpartikel in der Größenordnung von 1 µm erzeugt werden können41. Es wurden ebenso Emulsionspolymerisationen in wässriger Phase mit eher geringen Ethanolzusätzen von 0-20 Gew.-% untersucht. Bei einer tensidfreien Emulsionspolymerisation in NaCl-Lösung führte ein geringer Zusatz von 5 Gew.-% Ethanol zur Wasserphase zur Bildung äußerst homogener Polystyrolpartikel in der Größenordnung von 1 µm20. Auch konnte gezeigt werden, dass Ethanol im Gegensatz zu z. B. Butanol keinerlei erkennbare radikalfangende Wirkung aufweist und somit den grundlegenden Mechanismus einer radikalischen Polymerisation nicht negativ beeinflusst42.

Insgesamt sind jedoch Untersuchungen von ethanolhaltigen Emulsionspolymerisationen von Styrol, insbesondere in Bezug auf deren Homogenität, bisher wenig in der Literatur diskutiert.
2.4. Cluster und Nanopartikel

2.4.1. Herstellung von Metalcluster durch mizellare Techniken

Um Nanopartikel für die Verwendung als Quantenpunkte oder Ätzmasken für die Lithographie über Plasmaprozesse herzustellen, wurden in der Vergangenheit sehr häufig mizellare Techniken angewendet. Die dabei verwendeten Mizellen bestehen meist aus einem Blockcopolymer, das sowohl einen hydrophilen als auch einen hydrophoben Anteil aufweist\(^43\). Ein Beispiel hierfür ist Polystyrol-\textit{block}-poly-2-vinylpyridin, welches in Toluol inverse Mizellen in der Größenordnung von ~25-140 nm ausbildet\(^44\). Die Mizellen können anschließend auf Substraten, wie z.B. Siliziumwafern, abgelegt werden, auf denen sie selbstorganisiert hexagonale Strukturen ausbilden können\(^45\). Anschließend kann durch die Zugabe von Methanol die Morphologie der Mizellen auf dem Substrat weiter beeinflusst werden\(^46\). Werden die Mizellen zusätzlich über Diffusion durch die kontinuierliche Phase mit z. B. Goldsäure beladen, lassen sich auf den Substraten nicht nur die reinen Mizellen abladen, sondern auch goldhaltige Mizellen. Die Herstellung von mizellaren Goldpartikeln ist schematisch in Abbildung 14 gezeigt. Reine Goldnanopartikel können anschließend durch Plasmaätzprozesse erzeugt und z. B. für die Synthese von Siliziumnanowiren verwendet werden\(^47\). Die entstandenen Goldpartikel weisen neben einem Abstand voneinander, der dem Durchmesser der Mizellen entspricht, im Idealfall eine geordnete hexagonale Struktur auf\(^45\).

Abbildung 14: Schematische Mizellbildung mit anschließender Beladung durch Goldsäure.

Alternativ zu mizellaren Techniken können über Thiol-funktionalisierte Polystyrole schon vorhandene Goldnanopartikel beschichtet und ähnlich den goldbeladenen Mizellen für die Bildung von selbstorganisierten hexagonalen Oberflächenbeschichtungen verwendet werden\(^48\).
Nachteilig an der mizellaren Technik ist, dass die Größe der Mizellen von der Kettenlänge bzw. der Molmasse des verwendeten Blockcopolymers abhängig ist\(^4^9\). Dies bedeutet für die Praxis, dass für jeden gewünschten Mizellendurchmesser extra ein eigenes Polymer mit genau definierter Zusammensetzung synthetisiert werden muss, was die Flexibilität der Methode deutlich einschränkt\(^4^4\). In vielen Fällen ist die hexagonale Anordnung aufgrund der flexiblen Polymerketten nicht vollständig symmetrisch ausgebildet\(^4^4, 4^6\). Eine weitere Einschränkung der mizellaren Technik betrifft die Wahl der möglichen Metallbeladungen. Da die Metalle eine Bindung zum Polymer ausbilden müssen, sind nur einige Metalle, wie z. B. Gold, Platin, Silber, Kobalt oder Nickel, für eine Beladung geeignet\(^4^4\). Auch ist die Menge an Metall durch die Anzahl der komplexierenden Gruppen des Polymers limitiert\(^4^4\). Der Einbauvorgang kann sich dabei bis zu einer Woche hinziehen\(^4^9, 5^0\). Alternativ zur mizellaren Technik wird deshalb in dieser Arbeit ein Ansatz zur Herstellung metallhaltiger Polymerpartikel über (Mini-) Emulsionspolymerisation untersucht, der sowohl gute Anordnungen auf einem Substrat als auch hohe Flexibilität bezüglich der Partikeldurchmesser und Metallbeladung ermöglicht. Wie im Folgenden beschrieben wird, weisen die daraus hervorgehenden Nanopartikel oft nicht nur interessante quantenmechanische Eigenschaften auf, sondern finden auch bei vielfältigen Lithographieprozessen Anwendung.

2.4.2. Eigenschaften von Quantenpunkten

Im Folgenden wird näher auf die Eigenschaften von Nanoclustern eingegangen, die aus der Verwendung von metallhaltigen Latiizes in Plasmaätzprozessen hervorgehen können\(^5^1-5^4\).

Bei Quantenpunkten handelt es sich um kleine Nanopartikel, die aufgrund ihrer Größe ein vom makroskopischen Stoff abweichendes Verhalten zeigen. Während in einem makroskopisch ausgedehnten Körper, wie bei z. B. Metallen oder Halbleitern, die Anzahl der möglichen Energieniveaus gegen unendlich geht, kommen in einem Quantenpunkt nur noch diskrete Energieniveaus vor, ihre Zustandsdichte ist vollständig quantisiert (siehe Abbildung 15). Dies kommt durch die starke Einschränkung der Translationsfreiheitsgrade der Elektronen im Körper zustande. Daher werden Quantenpunkte auch als nulldimensionale Systeme bezeichnet. Hierbei ist allerdings zu beachten, dass eine gewisse Mindestgröße der Partikel erforderlich ist, um eine genügend hohe Anzahl an Energieeigenwerten zu erhalten.
Abbildung 15: Schematische Energiedichteverteilung $D(E)$ gegen Energie, A) makroskopischer Körper, B) Quantenpunkt. Während sich für den makroskopischen Körper ein Kontinuum an Energiezuständen ergibt, kann der Quantenpunkt nur diskrete Energiezustände einnehmen.

Je größer die Dimensionen des Halbleiter- oder Metall-Körpers werden, desto mehr mögliche Energiezustände treten auf. Dabei nimmt zusätzlich ihr Abstand zueinander immer mehr ab, bis nahezu ein Kontinuum erreicht wird. Aufgrund ihrer diskreten Energiezustände werden Quantenpunkte häufig als künstliche Atome bezeichnet. Sie sind hervorragend dazu geeignet, quantenmechanische Effekte zu untersuchen, die aufgrund des Kontinuums der Energiezustände im makroskopischen Körper nicht beobachtet werden können\(^\text{55}\). So lässt sich zum Beispiel an Quantenpunkten relativ leicht eine Besetzungs inversion erzeugen\(^\text{56}\). Manche Legierungen, wie z. B. Fe/Pt-Legierungen zeigen zudem noch im Nanometerbereich ein ausgeprägtes ferromagnetisches Verhalten\(^\text{57-60}\).

2.4.3. Verwendung von Nanopartikeln in der Lithographie

Nanopartikel nehmen somit, besonders aufgrund ihrer Fähigkeit zur Selbstorganisation, eine wichtige Stellung bei modernen Lithografieverfahren ein.

Abbildung 16: Schema einer klassischen Lithographie über Photoresistlacke mit anschließender Metallbedampfung².
2.5. Silikate$^{64-66}$

2.5.1. Aufbau von Schichtsilikaten

Schichtsilikate (Phyllosilikate) sind im Gegensatz zu z. B. Gerüstsilikaten aus einzelnen sich wiederholenden Schichten aufgebaut. Dabei wechseln sich tetraedrisch angeordnete Si$_2$O$_5^2$-Gruppen mit Magnesium- oder Aluminiumschichten ab, in denen die Metallionen oktaedrisch von Sauerstoff oder Hydroxylgruppen umgeben sind. Hierbei werden zwei Hauptarten von Schichtsilikaten unterschieden: zum einen die Zweischicht- sowie zum anderen die Dreischichtstrukturen64. Bei der Zweischichtstruktur besteht eine einzelne Schichtgruppe aus einer tetraedrischen Siliziumoxid-Schicht und einer oktaedrischen Mg/Al-Oxid/Hydroxid-Schicht (siehe Abbildung 17).

Abbildung 17: Bei der Zweischichtstruktur wechseln sich eine tetraedrische Siliziumoxid und eine oktaedrische Mg/Al-Oxid/Hydroxid-Schichten ab, während bei einer Dreischichtstruktur erneut eine Siliziumoxidschicht folgt.

Wichtige Vertreter dieser Schichtsilikatgruppe sind der Kaolinit Al$_2$(OH)$_4$[Si$_2$O$_5$] und der Serpentinar Mg$_3$(OH)$_4$[Si$_2$O$_5$]. Während der Kaolinit in Plättchenform vorkommt, bildet der Serpentinar aufgrund des unterschiedlichen Raumbedarfs der Tetraeder- und Oktaedergruppen...
häufig stark gekrümmte Strukturen aus. So liegt z. B. Chrysotil (faseriger Serpentit) in langen und dünnen Fibrillen vor (siehe Abbildung 18).

Bei den Dreischichtstrukturen hingegen befindet sich die oktaedrische Mg/Al-Oxid/Hydroxid-Schicht eingeschlossen zwischen zwei tetraedrischen Siliziumoxid-Schichten, die Geometrie ist somit insgesamt planar. Zusätzlich wird bei den Dreischichtstrukturen noch zwischen elektrostatisch abgesättigten bzw. nichtgesättigten Schichtsilikaten unterschieden. In elektrostatisch abgesättigten Schichtsilikaten werden die einzelnen Schichten nur durch schwache van der Waals-Kräfte zusammengehalten, was ein leichtes Verschieben der Schichten zueinander ermöglicht. Beispiele hierfür sind Talk Mg$_3$(OH)$_2$[Si$_2$O$_5$]$_2$ und Pyrophyllit Al$_2$(OH)$_2$[Si$_2$O$_5$]$_2$. Eine weitere wichtige Gruppe der Dreischichtstrukturen stellen die elektrostatisch ungesättigten Glimmer dar. Hierbei ist ein Teil der Siliziumatome durch Aluminium ersetzt, was zu einer negativen Ladung der Schichten führt. Diese Ladung wird meist durch Kalium-, manchmal auch durch Natrium-Ionen zwischen den Schichten abgesättigt. Ähnlich verhält es sich mit den Schichtsilikaten der Montmorillonitgruppe. Hier sind nicht die Siliziumatome durch Aluminium ausgetauscht, sondern die Aluminiumatome der Oktaederschicht teilweise durch geringerwertige Atome wie z. B. Magnesium. Dadurch entsteht nach außen hin eine negative Ladung der einzelnen Schichten.

In dieser Arbeit wurde ausschließlich das künstliche hergestellte, montmorillonitartige Schichtsilikat Laponite RD, welches zu dem Smektiten (elektrostatisch ungesättigte Tonminerale mit Dreischichtstruktur) gehört, verwendet. Es besitzt die empirische Formel Na$^{+0.7}$[Si$_8$(Mg$_{5.5}$Li$_{0.3}$)O$_{20}$(OH)$_4$]$^{0.7}$. In Abbildung 19 ist der schematische Aufbau der Dreifachschicht gezeigt.
Abbildung 19: A) Laponit Schichtstruktur bestehend aus zwei negativ geladenen Siliziumoxid-Schichten mit Natrium als Gegenionen und einer Zwischenschicht aus Mg/Li-Oxid bzw. -Hydroxid; B) In wässriger Umgebung bilden die negativ geladenen Laponitplättchen Gele nach dem Kartenhausprinzip aus.

Laponit besteht aus negativ geladenen Einzelplättchen, die eine Höhe von 1 nm und im Schnitt einen Durchmesser von 30 nm aufweisen. Laponit lässt sich sehr leicht in Wasser dispergieren, neigt aber aufgrund seiner negativ geladenen Schichten ab einer Konzentration von 2% zur Gelbildung. Hierbei entstehen die Gele durch Bildung einer kartenhausartigen Struktur, welche jedoch eine relativ geringe Stabilität gegenüber Scherkräften aufweist.

2.5.2. Oberflächenmodifikationen von Laponit

Die Oberflächenmodifikationen von Laponit teilen sich in zwei Hauptgruppen, die kovalente Anbindung mittels Silanen oder Titanaten bzw. in die ionische Modifikation über reversiblen Ionenaustausch (siehe Abbildung 20). Hierbei ist beim Laponit zu beachten, dass eine kovalente Anbindung meist nur an den reaktiven OH-Gruppen des äußeren Seitenrands stattfindet, während der Ionenaustausch nur die Natrium-Ionen der Oberfläche der Plättchen betrifft. Dadurch kann es im Einzelfall durchaus Sinn machen, sowohl kovalente als auch ionische Anbindungen zu kombinieren.
Häufiges Ziel der Modifikation von Silikaten ist, neben einigen Spezialanwendungen, die einfache Hydrophobisierung der Silikatoberfläche71. Bei der kovalenten Anbindung erfolgt die Reaktion durch Kondensation der Silane mit den freien Hydroxylgruppen des zu behandelnden Silikats (siehe Abbildung 21). Hierfür werden aufgrund ihrer hohen Reaktivität sehr häufig Chlor- oder Ethoxysilane verwendet72, 73.

So lassen sich neben einfachen Hydrophobisierungsreagenzien74 weitere chemische Funktionalitäten, wie vinyllische Verbindungen (z. B. Methacrylate), für eine spätere Polymerisation anbinden73, 75. Auch können über entsprechende Silane Initiatoren76, wie z. B. Peroxide oder Diazoverbindungen, kovalent angebunden werden77. Die ionische Modifikation an Laponit hingegen erfolgt in der Regel durch Austausch der Natriumionen mit Ammoniumverbindungen. Während mit Cetyltrimethylammoniumbromid (CTAB) oder Didodecyldimethylammoniumbromid (DDAB) lediglich hydrophobe Oberflächen erzeugt werden, können mit entsprechenden Ammoniumverbindungen auch funktionelle Gruppen eingeführt werden. Hierbei sind ebenso polymerisierbare vinyllische Verbindungen sowie
Initiatoren78 denkbar. Hieraus ergeben sich somit sechs unterschiedliche Modifikationsarten für die Herstellung von Polymer-Laponit-Hybridpartikeln (siehe Abbildung 22).

<table>
<thead>
<tr>
<th>Kovalente Anbindung</th>
<th>Ionische Anbindung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrophobisierungsreagentien</td>
<td></td>
</tr>
<tr>
<td>Tetrahexylchlorsilan (THCS)</td>
<td>Didodecyldimethylammoniumbromid (DDAB)</td>
</tr>
<tr>
<td>Monomere</td>
<td></td>
</tr>
<tr>
<td>Methacrylpropyltrimethoxysilan (MPDES)</td>
<td>Methacrylethyltrimethylammonium (MADQUAT)</td>
</tr>
<tr>
<td>Initiatoren</td>
<td></td>
</tr>
<tr>
<td>AIBN-Derivate</td>
<td>AIBN-Derivate</td>
</tr>
</tbody>
</table>

Abbildung 22: Beispiele für die verschiedenen Hydrophobisierungsreagentien, sowohl für kovalente als auch für ionisch gebundene Hydrophobe, Monomere und Initiatoren.
2.5.3. Verkapselung von (Schicht-)Silikaten in Polymermatrizes

Die Herstellung von Hybridpartikeln aus anorganischen Materialien (meist Metalloxiden) und organischen Polymermatrizes stellen aufgrund der physikalischen Unterschiede beider Substanzklassen, wie z. B. unterschiedlicher Hydrophilien, eine große Herausforderung dar. Beispiele für erfolgreiche Hybridpartikelbildungen sind die Verkapselung von Magnetit in Polystyrol79, 80, die Verkapselung von TiO\(_2\) in ethylvinylalkoholbasierten Polymeren zur Erhöhung der Biozidität und Photoabbaubarkeit81 oder die Herstellung von TiO\(_2\) verkapselten Polystyrolpartikeln82. Trotz dieser Erfolge stellt die Verbindung von anorganischen Materialien mit Polymeren weiterhin eine große Herausforderung dar. Hierbei findet besonders die Erforschung von Hybridpartikeln aus Silikaten und organischen Polymeren ein sehr hohes Interesse83, da die Silikate oft zu einer erhöhten Kratzfestigkeit und mechanischen Stabilität der entstehenden Polymerfilme führen. In diesem Zusammenhang ist besonders die Verkapselung von Schichtsilikaten wie Montmorillonit84 oder Laponit interessant, die neben der mechanischen Stabilitätserhöhung auch noch als (Gas-) Diffusionsbarrieren85 dienen können sowie die Feuerfestigkeit erhöhen86. Die einfachste Variante zur Herstellung von Hybridmaterialien stellt die Beimengung von hydrophobierten Schichtsilikaten zu einer Polymerschmelze87 dar. In Heterophase bestehen die einfachen Systeme aus unmodifiziertem Laponit bzw. Montmorillonit, das einem Polymerlatex hinzugefügt wird. Cauvin et al. konnten zeigen, dass sich unmodifiziertes Laponit in Heterophasen nicht nur an die Oberfläche von Polymerpartikeln anlagert, sondern sich auch Styrolminiemulsionen durch Laponit stabilisieren lassen88. Bessere Anbindungen an das Polymer als durch einfache Beimengung können in Heterophasen nur durch oberflächenmodifizierte Schichtsilikate erreicht werden. Wie im vorherigen Kapitel gezeigt wurde, können für die Oberflächenmodifikation entsprechende Initiatoren, Monomere oder Hydrophobisierungsreagenzien verwendet werden. Diese können im Anschluss sowohl über Suspensions-, Emulsions- oder Miniemulsionspolymerisation in Polymerhybridpartikel eingebaut werden73. So bewiesen Negrete-Herrera et al., dass sich mit kationischen Initiatoren modifiziertes Laponit über Emulsionspolymerisationen89 mit einem Polymer verknüpfen lässt. Ähnliche Ergebnisse ließen sich mit monomermodifiziertem Laponit erreichen. Bourgeat-Lami et al. zeigten, dass sich sowohl mit Methacrylsilan modifizierte Silikate als auch Laponit in Emulsionspolymerisation mit Polystyrol bzw. Polybutylacrylat zu Hybridpartikeln verbinden lässt73, 75. Hierbei lagerten sich sowohl das Laponit als auch die Silikatpartikel10 hauptsächlich an der Oberfläche der Polymerpartikel an11. Neben den Emulsionsprozessen

2.5.4. Technische Verwendung von Schichtsilikaten

2.6. Verkapselungen von flüssigen Substanzen

2.6.1. Kapselmorphologien

Abbildung 23: Schematischer Aufbau der drei Haupttypen der Verkapselung.

2.6.2. Verkapselung durch Phasenseparation

2.6.3. Verkapselung durch Polymerfällung

Die Polymerfällung unterteilt sich in drei wichtige Haupttechniken, die sowohl für die Darstellung von Mikrokapseln als auch für Nanokapseln geeignet sind: in die Fällung von Polymeren aus der kontinuierlichen Phase durch Lösungsmittelwechsel, durch in situ-Polymerisation von in der kontinuierlichen Phase unlöschlichen Polymeren und durch elektrostatische „layer-by-layer“-Techniken. Im ersten Fall wird das Polymer durch Wahl eines geeigneten Lösungsmittels oder Lösungsmittelgemisches in der kontinuierlichen Phase gelöst. Durch Änderung der Zusammensetzung der kontinuierlichen Phase, beispielsweise durch partielles Abdampfen einer Lösungsmittelkomponente, wird das Polymer anschließend langsam ausgefällt. Fällt das Polymer auf der Oberfläche des dispergierten Kernmaterials aus, so bilden sich Kapseln aus (siehe Abbildung 24). Diese Technik konnte bereits erfolgreich auf die Herstellung von Nanokapseln über Miniemulsionen angewendet werden.
Abbildung 24: Durch Verdampfen eines Lösungsmittels wird das vorher gelöste Polymer zur Fällung gebracht. Hierbei fällt das Polymer auf in der Lösung befindliche Partikel und verkapselt sie so.

2.6.4. Verkapselung durch Grenzflächenpolymerisation

Abbildung 26: Schematischer Ablauf einer Grenzflächenaddition. Im Inneren der wässrigen Phase befindet sich ein Diamin, das an der Grenzfläche mit einem Diisocyanat der kontinuierlichen Phase reagiert. Dadurch entsteht an der Grenzfläche eine Schale aus Polyharnstoff.

Während das Diamin schon in der Wasserphase gelöst ist, wird das Diisocyanat über die kontinuierliche Phase hinzu gegeben. Treffen die beiden Komponenten an der Grenzfläche aufeinander, so bilden sie einen Polyharnstoff als späteres Kapselmaterial aus. Diese Reaktion
lässt sich analog auf weitere Polykondensationen bzw. Polyadditionen übertragen. Zu beachten ist hierbei, dass zwei Komponenten mit unterschiedlichem Lösungsverhalten in der kontinuierlichen bzw. dispersen Phase verwendet werden, die nicht mit sich selbst reagieren können. So sind z. B. auch die Bildungen von Polyurethanen oder Polyamiden denkbar118.

Eine weitere Möglichkeit für eine Grenzflächenpolymerisation ist durch Start der Polymerisation an der Grenzfläche gegeben. So lassen sich durch Zugabe von Cyanoacrylaten zur dispersen Phase in einer Öl-in-Wasser-Emulsion Polycyanoacrylat Kapseln herstellen. Hierbei wird die anionische Polymerisationsreaktion erst durch den Kontakt mit der kontinuierlichen Phase (Wasser) gestartet und somit die Kapselbildung ausgelöst120-122.
3. Meßmethoden

In diesem Kapitel wird kurz auf die wichtigsten verwendeten Meßmethoden eingegangen.

3.1. Transmissions-Elektronen Mikroskopie

Beim Transmissions-Elektronen-Mikroskop (TEM) handelt es sich um ein Mikroskop, das anstelle von Licht Elektronen als bildgebendes Medium verwendet. Der Aufbau ist im Wesentlichen mit dem eines Lichtmikroskops vergleichbar, jedoch werden anstatt von Glaslinsen wie im Lichtmikroskop im TEM elektromagnetische Linsensysteme verwendet.

Im Allgemeinen liegt die maximale Auflösung \(d \) eines Mikroskops im Bereich der verwendeten Wellenlänge.

Hierfür gilt die Abbesche Sinusbedingung:

\[
d = \frac{\lambda}{2n \sin \left(\frac{\alpha}{2} \right)}
\]

mit \(d \) = maximale Auflösung, \(n \) = Brechzahl zwischen Objektiv und Objekt und \(\alpha \) = halbe Öffnungswinkel des Objektivs.

Elektronen bieten somit aufgrund ihrer geringen Wellenlänge eine deutlich höhere Auflösung als z. B. Lichtmikroskope.
Dabei gilt nach de Broglie für die Wellenlänge λ:

$$\lambda = \frac{h}{p} = \frac{h}{m_e v} \quad (3.2)$$

mit h = Plancksches Wirkungsquantum, m_e = Ruhemasse Elektron und v = Geschwindigkeit.

Üblicherweise wird im TEM mit einer Spannung von 80-200 kV gearbeitet, welches in einer sehr kleinen Wellenlänge der Elektronen von $< 0,01$ nm (sichtbares Licht ca. 400-800 nm) resultiert. Somit lassen sich Strukturen im Nanometerbereich noch sehr gut auflösen. Die Dicke der zu untersuchenden Objekte ist, zumindest für interne Strukturanalysen, meist auf einige Nanometer beschränkt, da ansonsten zu wenige Elektronen transmittiert werden.

Moderne Geräte im Bereich der Transmissionselektronenmikroskopie (z. B. am Lawrence Berkeley National Laboratory, Kalifornien) weisen eine deutlich höhere Auflösung als den Nanometerbereich auf. Bei diesen Geräten wird die auftretende sphärische Aberration (d. h. die Abweichung des Brennpunktes an verschiedenen Stellen der Linse) durch entsprechende Korrekturelemente soweit ausgeglichen, dass sogar einzelne Atome abgebildet werden können124. Der schematische Aufbau eines TEMs ist in Abbildung 27 gezeigt.

Abbildung 27: Schematischer Aufbau eines TEMs. An der Kathode werden Elektronen erzeugt und in Richtung der Anode beschleunigt. Durch diverse Linsensysteme werden die Elektronen durch die Probe gestrahlt und nach anschließender Fokussierung auf einen Bildschirm projiziert.
3.2. **Energiedispersive Röntgenanalyse (EDX)**

![Abbildung 28: Schema der Entstehung von Photonen beim Herausschlagen von Elektronen aus kernnahen Bahnen und Wiederbesetzung aus höheren Schalen unter Emission eines diskreten Photons.](image-url)
3.3. **Dynamische Lichtstreuung (DLS)**

Die dynamische Lichtstreuung macht sich die Veränderung der Streulichtintensität von sich bewegenden Kolloiden zunutze. Dabei wird die Bewegungsgeschwindigkeit der Kolloide maßgeblich durch die Temperatur, die Viskosität des Mediums und die Größe der Kolloide beeinflusst. Da die einzelnen Kolloide Streuzentren darstellen, ergeben sich durch ihren Abstand zueinander bestimmte Interferenzmuster und daraus eine bestimmte gemessene Lichtintensität. Durch die freie Bewegung der Kolloide im Medium kommt es mit der Zeit zu Verlagerungen der Streuzentren zueinander und somit auch zu Fluktuationen in der Lichtintensität. Mit Hilfe der so genannten Autokorrelationsfunktion \(g(t) \), die ein Maß für die Geschwindigkeit der Lichtintensitätsänderung im Zeitintervall \(X(\tau)-X(\tau+t) \) darstellt, lassen sich hieraus bei bekannter Temperatur und Viskosität relativ leicht Rückschlüsse auf die Diffusionsgeschwindigkeit ziehen (siehe Abbildung 29).

Dabei gilt:

\[g(t) \sim \exp(-q^2Dt) \]

mit \(q = \) Streuvektor, \(D = \) Diffusionskoeffizient.

![Abbildung 29: Schematische Darstellung einer Autokorrelationsfunktion, grün: kleine Kolloide, rot: größere Kolloide. Je schneller die Autokorrelationsfunktion abklingt, umso kleiner sind die betrachteten Kolloide.](image)

Mit Hilfe der Stokes-Einstein Gleichung lässt sich daraus anschließend der hydrodynamische Radius wie folgt bestimmen.
Es gilt:

\[R_h = \frac{k_B T}{6\pi\eta D} \tag{3.4} \]

mit \(R_h \) = hydrodynamischer Durchmesser, \(D \) = Diffusionskoeffizient, \(k_B \) = Bolzmann-Konstante, \(T \) = Temperatur in K, \(\eta \) = dynamische Viskosität des umgebenden Mediums.

Als weitere Messgröße kann der Polydispersitätsindex (PDI) aus den Messdaten ermittelt werden. Dieser gibt als dimensionslose Größe an, wie breit die Partikelgrößenverteilung der untersuchten Kolloide ist. Ein PDI von 1 spiegelt dabei die maximale Polydispersität wieder. Mit zunehmender Homogenität sinkt der PDI bis auf 0 ab.

Abbildung 30: Schematischer Aufbau eines dynamischen Lichtstreuungsgerätes. Der Laser wird auf die Probe gerichtet, wobei das Streulicht der Probe detektiert und anschließend analysiert wird.

Eine weitere Möglichkeit, die Beweglichkeit und somit die Kolloidgröße zu bestimmen, ist die Zuhilfenahme der Frequenzverschiebung des an einem bewegten Körper gestreuten Lichts. Dieser Effekt wird als Doppler-Effekt bezeichnet. Trifft (monochromatisches) Licht auf einen sich bewegenden Körper, so erfährt der reflektierte Lichtstrahl eine Veränderung in seiner Frequenz, je nachdem ob sich der Körper auf den Lichtstrahl zu oder von ihm weg bewegt. Bei einer Bewegung des Körpers in Richtung der Lichtquelle erhöht sich die
Frequenz (Blauverschiebung), bewegt sich der Körper von der Lichtquelle weg, kommt es zu einer Frequenzniedrigung (Rotverschiebung).

3.4. **Plasmaätzen**

des physikalischen und des chemischen Ätzens zu vereinen. In Abbildung 31 ist der schematische Aufbau eines Plasmaätzers gezeigt.

Plasmaätzer

![Plasmaätzeraufbau](image)

3.5. Röntgendiffraktometrie (XRD)\(^{127, 128}\)

Bei der XRD wird die Probe in veränderlichem Winkel mit Röntgenstrahlung beschossen und die Reflexe der Probe in Abhängigkeit vom Winkel gemessen. Die verwendeten Wellenlängen liegen in der Regel bei ca. 0,1-0,2 nm und somit in der Größenordnung von
Atomen. Je nach Schichtabstand der zu untersuchenden Probe kommt es bei definiertem Winkel entweder zu positiver oder negativer Interferenz (siehe Abbildung 32).

Verursacher für die Interferenzen ist der Gangunterschied der Röntgenstrahlung zwischen den unterschiedlichen Schichten bzw. Ebenen.

Hierbei gilt das Bragg'sche Gesetz:

\[2d \sin(\Theta) = n\lambda \]

mit \(d = \) Ebenenabstand, \(\lambda = \) Wellenlänge, \(n = \) Ordnung und \(\Theta = \) Winkel.

3.6. Thermogravimetrische Analyse (TGA)

3.7. Isothermes Metallblock-Kalorimeter

Mit einem isothermen Metallblock-Kalorimeter können auf einfache Weise sehr geringe Schwankungen in der Energieabgabe bzw. Energieaufnahme von Proben, auch kleinen Volumens (~1 ml), gemessen werden. Die Messgenauigkeit liegt dabei deutlich höher als 0,1 mW und kann bis 200 mW Leistung erfolgen.*

Bei der Messung befindet sich die Probe in einem temperierten Metallblock, der das Wärmereservoir darstellt. Über eine Referenzkammer, in der sich eine Leerprobe befindet, werden Schwankungen, die durch äußere Störungen hervorgerufen werden, minimiert (siehe Abbildung 33).

Die eigentliche Messung erfolgt über ein Peltierelement, das sich zwischen dem isothermen Metallblock und der Probe befindet. Hierbei macht man sich den so genannten Seebeck-Effekt zu nutze. Weisen die Enden eines elektrischen Leiters unterschiedliche Temperaturen auf, so entsteht aus der daraus resultierenden unterschiedlichen Bewegungsenergie der Elektronen eine Spannung zwischen den Enden.

Es gilt hierbei:

\[U_S = \alpha \cdot \Delta T \] \hspace{1cm} (3.6)

mit \(U_S \) = Spannung, \(\alpha \) = Seebeckkoeffizient und \(\Delta T \) = Temperaturdifferenz.

Im Peltierelement wird dieser Effekt durch die Wahl entsprechender Leitermaterialien noch weiter verstärkt, und es reagiert somit äußerst sensibel auf kleinste Temperaturschwankungen. Über die Spannungsmessung lässt sich entsprechend einer Temperaturmessung eine quantifizierbare Aussage zum Wärmefluss zu oder von der Probe treffen. Aus diesen Daten erhält man Informationen zur Exo- bzw. Endothermie der Reaktion.

\[\text{temperierter Metallblock} \]
\[\text{Probe} \]
\[\text{Referenzkammer} \]
\[\text{Peltierelemente} \]

Abbildung 33: Schematischer Aufbau eines isothermen Metallblock-Kalorimeters.

* Gerätespezifikation für ein µ-Kalorimeter von THT.
3.8. Ultrazentrifugation mit Zuckergradienten130

Bei der Ultrazentrifugation macht man sich die Dichteunterschiede verschieden konzentrierter Zuckerlösungen zunutze. In einem Zentrifugenröhrchen wird eine Schicht konzentrierter Zuckerlösung zuerst vorsichtig mit einer $\frac{1}{2}$ konzentrierten Zuckerlösung, dann mit einer $\frac{1}{4}$ konzentrierten Zuckerlösung und abschließend mit Wasser überschichtet. Der daraus resultierende Dichtegradient kann zur qualitativen Auftrennung von Latizes unterschiedlicher Dichten verwendet werden130. Hierzu werden zwei Tropfen des Probenlatexes auf das Zentrifugenröhrchen gegeben und selbiges in der Regel für ca. 2 h bei 42000 U/min zentrifugiert. Dabei sinken die einzelnen Kolloidpartikel in Richtung Boden, bis sie von einer Zuckerlösungsschicht mit gleicher oder höherer Dichte „aufgefangen“ werden (siehe Abbildung 34).

Diese Technik ist somit hervorragend geeignet, um die Entstehung von Hybridpartikeln aus Polymer und z. B. Anorganika zu untersuchen, da über ihre kombinierte Dichte Rückschlüsse auf die Zusammensetzung der Hybridpartikel gezogen werden können.

Abbildung 34: Schematische Auftrennung von Kolloidgemischen unterschiedlicher Dichten mittels Ultrazentrifugation. Je höher die Dichte der Kolloide ist, umso weiter sinken sie im Zuckergradienten ab.
4. Ergebnisse und Diskussion

4.1. Metallhaltige Polymerlatizes

4.1.1. (Mini-)Emulsionspolymerisationen von Styrol unter Einfluss von Ethanol zur Erzeugung homogener Latizes

Um für die spätere Metallverkapselung möglichst homogene Kolloide über Miniemulsions-bzw. Emulsionspolymerisation zu erzeugen, wurden verschiedene alkoholhaltige (Mini-)Emulsionspolymerisationen von Styrol genauer untersucht. Hierfür wurden jeweils Proben mit 0-20 Gew.-% Ethanol in der kontinuierlichen Phase und 0,5-4 Gew.-% SDS, bezogen auf die disperse Phase, hergestellt. Der Zusatz von Ethanol wurde gewählt, um insgesamt die Diffusion der dispergierten Komponenten zu erleichtern. Des Weiteren führt der Zusatz von Ethanol zu homogeneren Partikeln41.

4.1.1.1. Miniemulsionspolymerisation mit SDS unter Ethanolzusatz

Tabelle 1: Ansatzübersicht für ethanolhaltige Miniemulsionen mit SDS als Tensid. Gezeigt sind die Größen und Größenverteilungen, die Feststoffgehalte sowie Reaktionsdaten des Kalorimeters.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0,5</td>
<td>166</td>
<td>0,024</td>
<td>0,117</td>
<td>19,1</td>
<td>117750</td>
<td>7501</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1,0</td>
<td>148</td>
<td>0,027</td>
<td>0,149</td>
<td>19,5</td>
<td>116723</td>
<td>6076</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2,0</td>
<td>122</td>
<td>0,008</td>
<td>0,169</td>
<td>17,8</td>
<td>108238</td>
<td>5165</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>4,0</td>
<td>106</td>
<td>0,023</td>
<td>0,183</td>
<td>19,7</td>
<td>109271</td>
<td>4336</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0,5</td>
<td>150</td>
<td>0,055</td>
<td>0,147</td>
<td>19,1</td>
<td>121591</td>
<td>7020</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>1,0</td>
<td>131</td>
<td>0,010</td>
<td>0,206</td>
<td>17,1</td>
<td>122633</td>
<td>5857</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>2,0</td>
<td>114</td>
<td>0,044</td>
<td>0,228</td>
<td>18,5</td>
<td>102187</td>
<td>4933</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>4,0</td>
<td>091</td>
<td>0,043</td>
<td>0,169</td>
<td>17,5</td>
<td>90270</td>
<td>3693</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>0,5</td>
<td>148</td>
<td>0,064</td>
<td>0,173</td>
<td>19,4</td>
<td>122331</td>
<td>6989</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>1,0</td>
<td>133</td>
<td>0,028</td>
<td>0,184</td>
<td>19,2</td>
<td>116369</td>
<td>5849</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>2,0</td>
<td>118</td>
<td>0,023</td>
<td>0,331</td>
<td>18,9</td>
<td>116095</td>
<td>5163</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>4,0</td>
<td>105</td>
<td>0,024</td>
<td>0,221</td>
<td>19,8</td>
<td>111186</td>
<td>4414</td>
</tr>
<tr>
<td>26</td>
<td>15</td>
<td>0,5</td>
<td>170</td>
<td>0,044</td>
<td>0,246</td>
<td>18,1</td>
<td>120568</td>
<td>9007</td>
</tr>
<tr>
<td>28</td>
<td>15</td>
<td>1,0</td>
<td>139</td>
<td>0,051</td>
<td>0,270</td>
<td>19,4</td>
<td>126495</td>
<td>8063</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>2,0</td>
<td>133</td>
<td>0,037</td>
<td>0,337</td>
<td>18,5</td>
<td>123527</td>
<td>6831</td>
</tr>
<tr>
<td>32</td>
<td>15</td>
<td>4,0</td>
<td>124</td>
<td>0,033</td>
<td>0,28</td>
<td>20,2</td>
<td>123190</td>
<td>5863</td>
</tr>
</tbody>
</table>

*bezogen auf die kontinuierliche Phase, **bezogen auf die disperse Phase, ***Größenverteilung bestimmt aus TEM-Aufnahmen.
Während der Polymerisation der Miniemulsionen wurden zur genaueren Untersuchung Kalorimetermessungen durchgeführt (siehe Abbildung 35). Nach der Polymerisation wurden sowohl die Ausbeute, die Partikelgröße und Partikelgrößenverteilung durch dynamische Lichtstreuung (DLS) als auch die Partikelgrößenverteilung durch elektronenmikroskopische Aufnahmen (TEM-PD) bestimmt.

Bei den Kalorimetermessungen ist deutlich zu erkennen, dass unabhängig vom gewählten Ethanolgehalt die Ansätze mit höheren SDS-Gehalten wesentlich schneller reagieren und einen schwächer ausgeprägten Gelpeak zeigen als Proben mit geringen SDS-Gehalten. Dies steht im Einklang mit den theoretischen Erwartungen. Je geringer die SDS-Konzentration ist, desto weniger und größere Partikel werden gebildet (siehe Tabelle 1). Da in der Regel pro Tröpfchen nur ein Radikal aktiv ist, verlängert sich somit die Reaktionszeit der größeren Partikel\(^3^0\). Der typische Abfall der Reaktionsgeschwindigkeit in Phase III ist bei allen Messungen zu beobachten (siehe auch 2.3.3 „Miniemulsionspolymerisation“).

Abbildung 35: Kalorimetermessungen der ethanolhaltigen Miniemulsionen bei konstanter Ethanolkonzentration, bezogen auf die kontinuierliche Phase, und veränderlichem SDS-Konzentrationen, bezogen auf die disperse Phase. Je weniger SDS verwendet wird, umso länger dauert die Reaktion und umso ausgeprägter zeigt sich der Gelpeak. Die Leistungsspitze am Anfang jeder Messung ist auf ein Überheizen des Kalorimeters zurückzuführen und somit rein technisch bedingt.
Wenn man die Messungen bei unterschiedlichen Ethanolgehalten untereinander vergleicht (siehe Abbildung 36), so fällt auf, dass die Messungen mit dem höchsten Ethanolgehalt (15 Gew.-%) am langsamsten startet und auch die längste Reaktionszeit benötigt, während die Proben mit 5 Gew.-% Ethanol oft am schnellsten reagieren. Die Proben mit 0 und 10 Gew.-% Ethanol zeigen (zumindest bei höheren SDS-Konzentrationen) einen sehr ähnlichen Reaktionsverlauf. Dies ist, wie im Folgenden genauer diskutiert wird, auf eine ähnliche CMC des SDS bei 0 Gew.-% bzw. 10% Gew.-% Ethanol zurückzuführen.

Abbildung 36: Kalorimetermessungen bei konstantem SDS-Konzentrationen, bezogen auf die disperse Phase, und veränderlicher Ethanolkonzentration, bezogen auf die kontinuierliche Phase. Deutlich ist zu erkennen, dass bei 15 Gew.-% Ethanol die Reaktion am langsamsten verläuft, während sie bei 5 Gew.-% oft am schnellsten verläuft.

Anschließend wurde aus den Kalorimeterdaten exemplarisch für zwei SDS-Konzentrationen die mittlere aktive Radikalkonzentration pro Partikel bei verschiedenen Ethanolgehalten berechnet30,133 und graphisch dargestellt (siehe Abbildung 37).

Wie in Abbildung 37 zu erkennen, steigt die Radikalzahl zu Beginn der Reaktion stark an (das anfängliche Maximum ist auf das Überheizen des Kalorimeters zurückzuführen) und verweilt anschließend unter leichtem Ansteigen bei ca. 0,5 aktiven Radikalen pro Partikel, wobei sie unabhängig von der Partikelgröße ist. Gegen Ende der Reaktion, bei ca. 70% Umsatz, steigt die Radikalkonzentration aufgrund des Trommsdorff-Norris-Effekts, der zu einer geringeren Radikalterminierung durch Gelbildung führt, wieder stark an. Dies Ergebnis steht im Einklang mit den Literaturwerten für die radikalische Polymerisation von Styrol in Miniemulsion30, 133. Insgesamt ist festzustellen, dass sich für die Zahl der aktiven Radikale kein signifikanter Einfluss der Ethanolkonzentration zeigt42 und sie somit als davon unabhängig zu betrachten ist. Zusätzlich zu der Auswertung der mittleren aktiven Radikalkonzentration wurde die Reaktionsdauer mit dem Volumen der Partikel in Bezug gesetzt (siehe Abbildung 38). Hieraus ergibt sich ein Maß für die Reaktionsgeschwindigkeit, die antiproportional zum Volumen ist. Auch hier ist kein deutlicher Trend mit zunehmender Ethanolkonzentration zu erkennen, so dass davon ausgegangen werden kann, dass die Reaktionsgeschwindigkeit ebenso wie die mittlere Zahl der aktiven Radikale pro Partikel von der Ethanolkonzentration unabhängig ist. D. h., dass der Zusatz von Ethanol zu einer Miniemulsion keinen signifikanten Einfluss auf die radikalische Polymerisation als solches hat und sich der Einfluss auf den Latex auf die veränderte Löslichkeit des Tensids und der dispersen Komponenten in ethanolischer Lösung beschränkt.
Abbildung 38: Reaktionsdauer gegen mittleres Partikelvolumen bei unterschiedlichen Ethanolkonzentrationen in Miniemulsionen.

Hierbei gilt für den TEM-PD:

\[TEM - PD = \frac{\sigma}{d} \]
Formel 4.1

mit \(\sigma \) = Standardabweichung, \(d \) = mittlerer Durchmesser.

Ergebnisse und Diskussion

Abbildung 39: Einfluss der SDS- und Ethanolkonzentration auf die Partikelgröße (A), den Feststoffgehalt (B), den PDI (C), sowie den per TEM bestimmten TEM-PD (σMittelwert) der Partikeldurchmesser (D) bei Miniemulsionspolymerisation. Deutlich ist zu erkennen, dass die kleinsten Partikel bei hohen SDS-Konzentrationen sowie 5 Gew.-% Ethanol auftreten (A). Der Feststoffgehalt ist bei allen Proben mit 17-20% sehr hoch (B). Der PDI liegt bei allen Proben unter 0,06 (C). Die TEM-Analyse zeigt die homogensten Partikel bei geringen Ethanol- und SDS-Gehalten (D).

Verteilungsbreite deutlich zunimmt und insbesondere verstärkt kleine Polymerpartikel, die sehr stark nach unten vom Mittel abweichen, auftreten.

Abbildung 40: Vergleich zweier Latizes, hergestellt mit unterschiedlichen Ethanolkonzentrationen. A), 0 Gew.-% Ethanol in der kontinuierlichen Phase (4% SDS), B) 15 Gew.-% Ethanol in der kontinuierlichen Phase (4% SDS). C) 0 Gew.-% Ethanol (1% SDS), D) 15 Gew.-% Ethanol (1% SDS). Deutlich ist zu erkennen, dass der Ethanolzusatz zu einer Verbreiterung der Partikelgrößenverteilung führt.

Zusammenfassend lassen sich die vorliegenden Daten wie folgt interpretieren: Wie schon eingangs erwähnt, benötigen große Partikel längere Reaktionszeiten als kleine Partikel. Diese korreliert mit den gemessenen Partikelgrößen, die bei hohen Ethanolgehalten am größten, bei 0 und 10 Gew.-% im mittleren Bereich liegt und bei 5 Gew.-% Ethanol ein Minimum aufweisen. Die Tatsache, dass sich bei hohen Ethanolgehalten größere Partikel bilden, könnte auf die Veränderung der kritischen Mizellenkonzentration (CMC) zurückzuführen sein. Cipiciani et al.38 zeigten, das die CMC von SDS bei 0% Ethanol 6,35 mmol/l, bei 5% 5,8
4.1.1.2. Emulsionspolymerisation mit SDS unter Ethanol einfluss

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0,5</td>
<td>251</td>
<td>0,044</td>
<td>0,088</td>
<td>1,8</td>
<td>086920</td>
<td>17227</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1,0</td>
<td>233</td>
<td>0,046</td>
<td>0,082</td>
<td>7,7</td>
<td>130497</td>
<td>16241</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2,0</td>
<td>121</td>
<td>0,011</td>
<td>0,102</td>
<td>15,2</td>
<td>113770</td>
<td>05485</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>4,0</td>
<td>087</td>
<td>0,027</td>
<td>0,201</td>
<td>14,4</td>
<td>096759</td>
<td>03993</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>0,5</td>
<td>236</td>
<td>0,049</td>
<td>0,090</td>
<td>4,9</td>
<td>156719</td>
<td>16983</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>1,0</td>
<td>199</td>
<td>0,049</td>
<td>0,110</td>
<td>9,6</td>
<td>133228</td>
<td>13565</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>2,0</td>
<td>116</td>
<td>0,034</td>
<td>0,177</td>
<td>14,4</td>
<td>111632</td>
<td>05930</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>4,0</td>
<td>099</td>
<td>0,003</td>
<td>0,169</td>
<td>17,8</td>
<td>126498</td>
<td>04435</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>0,5</td>
<td>252</td>
<td>0,008</td>
<td>0,078</td>
<td>3,5</td>
<td>106788</td>
<td>17938</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>1,0</td>
<td>175</td>
<td>0,017</td>
<td>0,135</td>
<td>7,9</td>
<td>080176</td>
<td>10509</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
<td>2,0</td>
<td>125</td>
<td>0,008</td>
<td>0,111</td>
<td>14,7</td>
<td>121565</td>
<td>06669</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>4,0</td>
<td>103</td>
<td>0,025</td>
<td>0,195</td>
<td>18,1</td>
<td>128831</td>
<td>04940</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>0,5</td>
<td>210</td>
<td>0,041</td>
<td>0,081</td>
<td>3,8</td>
<td>163581</td>
<td>21617</td>
</tr>
<tr>
<td>27</td>
<td>15</td>
<td>1,0</td>
<td>206</td>
<td>0,014</td>
<td>0,096</td>
<td>11,7</td>
<td>136480</td>
<td>13316</td>
</tr>
<tr>
<td>29</td>
<td>15</td>
<td>2,0</td>
<td>142</td>
<td>0,017</td>
<td>0,127</td>
<td>15,8</td>
<td>130091</td>
<td>07573</td>
</tr>
<tr>
<td>31</td>
<td>15</td>
<td>4,0</td>
<td>111</td>
<td>0,023</td>
<td>0,155</td>
<td>18,3</td>
<td>127737</td>
<td>05197</td>
</tr>
</tbody>
</table>

*bezogen auf die kontinuierliche Phase, **bezogen auf die disperse Phase.

Der Reaktionsverlauf der Polymerisation wurde bei 72 °C im Kalorimeter verfolgt (siehe Abbildung 41).
Ergebnisse und Diskussion

Abbildung 41: Kalorimetermessungen einer Emulsionspolymerisation von Styrol bei konstanten Ethanolkonzentrationen, bezogen auf die kontinuierliche Phase, und variablen SDS-Konzentrationen, bezogen auf die disperse Phase. Deutlich ist bei allen Messungen der schnellere Reaktionsverlauf bei höheren SDS-Konzentrationen zu erkennen.

Es zeigt sich wie bei der Miniemulsion, dass die Versuche mit den geringsten SDS-Mengen deutlich am längsten reagierten. Dieses Resultat gilt für alle getesteten Ethanolkonzentrationen von 0-15 Gew.-%. Des Weiteren ist in den Kalorimetermessungen deutlich die konstante Reaktionsgeschwindigkeit der Phase II einer Emulsionspolymerisation zu erkennen, was auf das Nachdiffundieren von Monomer hindeutet (siehe auch Kapitel 2.3.2). Diese Ergebnisse entsprechen der theoretischen Erwartung, dass mehr Tensid zu mehr Mizellen, bzw. zu kleineren Partikeln (Partikelgröße sinkt von ~250 nm bis auf ~90 nm) und daraus folgend zu einer schnelleren Reaktion führen. Betrachtet man die Messungen bei konstanten SDS-Gehalten und variablen Ethanolgehalten (siehe Abbildung 42), so fällt auf, dass bei Proben geringer SDS-Konzentrationen kein Trend erkennbar ist. Dies ist wahrscheinlich auf die bei niedrigen Tensidgehalten instabil werdenden Emulsionen zurückzuführen. Bei höheren SDS-Gehalten ist jedoch ein eindeutiger Trend erkennbar. Die

Abbildung 42: Kalorimetermessungen bei konstanten SDS-Konzentrationen, bezogen auf die disperse Phase, und variierenden Ethanolkonzentrationen, bezogen auf die kontinuierliche Phase. Während bei geringen SDS-Konzentrationen kein klarer Trend erkennbar ist, steigt bei höheren SDS-Gehalten die Reaktionszeit mit steigenden Ethanolgehalt weiter an. Die Leistungsspitze am Anfang der Reaktionen ist auf ein Überhitzen des Kalorimeters zurückzuführen und somit rein technisch bedingt.

Für die Emulsionspolymerisation wurden exemplarisch bei zwei unterschiedlichen SDS-Konzentrationen die mittlere aktive Radikalkonzentration bestimmt (siehe Abbildung 43).
Abbildung 43: Berechnung der mittleren aktiven Radikalkonzentration bei Emulsionspolymerisationen unterschiedlichen Ethanolgehaltes.

Auch hier zeigt sich, dass die mittlere Radikalkonzentration nicht durch die Ethanolkonzentration beeinflusst wird. Bei der Emulsionspolymerisation kommt es anfänglich zu einer kontinuierlichen Steigerung der Radikalkonzentration pro Partikel bis auf ca. 0,4. Anschließend verlangsamt sich der Anstieg bis auf 0,5 leicht, bevor die Radikalkonzentration aufgrund des Gelpeaks stark ansteigt. Die insgesamt niedriger erscheinende Radikalanzahl als bei der Miniemulsion ist durch die geringere Monomerkonzentration durch die nötige Diffusion des Styrols durch die kontinuierliche Phase zu erklären. Ab einem Umsatz von ca. 70% tritt bei der Emulsion der Trommsdorff-Norrish-Effekt auf und die Anzahl der Radikale steigt wieder stark an. Die Auftragung der Reaktionszeit gegen das spätere Partikelvolumen, welche auch hier die Reaktionsgeschwindigkeit widerspiegelt, zeigt keine Abhängigkeit von der Ethanolkonzentration. Hierbei gilt es zu beachten, dass es sich bei der Partikelgröße während der Polymerisation, im Gegensatz zur Miniemulsion, bei der diese als konstant angenommen werden kann, um eine variable Größe handelt.

Abbildung 44: Reaktionsdauer gegen mittleres Partikelvolumen bei unterschiedlichen Ethanolkonzentrationen in Emulsionen.
Auch für die Emulsionspolymerisation wurden, wie zuvor für die Miniemulsionspolymerisation 3D-Diagramme für den hydrodynamischen Durchmesser, den PDI, den Feststoffgehalt sowie der TEM-PD erstellt (siehe Abbildung 45).

Das Diagramm zeigt, dass die kleinsten Partikel bei hohen SDS-Konzentrationen auftreten. Ethanol vergrößert die Partikel, mit einem leichten Minimum bei 5 Gew.-% (A). Der Feststoffgehalt fällt stark mit sinkendem Tensidgehalt (B). Der PDI liegt bei allen Proben unter 0,05 (C). Der TEM-PD weist ein leichter Trend zu schmaleren Verteilungen bei höheren Ethanol- und geringeren SDS-Gehalten auf (D).

DLS-Messungen mit einem PDI von unter 0,05 sehr eng verteilt, jedoch ist hierbei kein eindeutiger Trend zu erkennen (siehe Abbildung 45 C). Die TEM-PD-Analyse deutet hingegen auf schmale Partikelgrößenverteilungen bei hohen Ethanol- und geringen SDS-Gehalten hin, wobei der Tensideinfluss deutlich größer ist (siehe Abbildung 45 D). Da durch den geringen Tensidgehalt nur wenige Reaktionszentren vorliegen, kommt es zu einer verlangsamen Polymerisation und zur Ausbildung weniger großen Partikel134, 135. Dabei wachsen nach der Nukleation kleinere Partikel im Vergleich zu größeren Partikel aufgrund des höheren Oberflächen zu Volumeverhältnisses verstärkt an136, 137. Die Folge ist die Ausbildung von sehr homogenen Latizes (siehe Abbildung 46). Es zeigt sich deutlich, dass mit weniger SDS die Partikel zum einen größer, aber auch in ihrer Partikelgrößenverteilung deutlich enger werden.

4.1.1.3. Vergleich von Miniemulsions- und Emulsionspolymerisation mit SDS unter Ethanolzugabe

4.1.1.4. Emulsionspolymerisation mit Ammoniumlaurat unter Ethanoleinfluss

Tabelle 3: Ansatzübersicht für ethanolhaltige Emulsionen mit Ammoniumlaurat als Tensid.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>0</td>
<td>2</td>
<td>218</td>
<td>0,013</td>
<td>1,55</td>
<td>0,195</td>
</tr>
<tr>
<td>89</td>
<td>0</td>
<td>4</td>
<td>230</td>
<td>0,030</td>
<td>1,44</td>
<td>0,133</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>8</td>
<td>180</td>
<td>0,026</td>
<td>5,57</td>
<td>0,176</td>
</tr>
<tr>
<td>81</td>
<td>5</td>
<td>2</td>
<td>234</td>
<td>0,018</td>
<td>1,07</td>
<td>0,158</td>
</tr>
<tr>
<td>93</td>
<td>5</td>
<td>4</td>
<td>226</td>
<td>0,032</td>
<td>1,83</td>
<td>0,195</td>
</tr>
<tr>
<td>85</td>
<td>5</td>
<td>8</td>
<td>175</td>
<td>0,028</td>
<td>5,61</td>
<td>0,235</td>
</tr>
<tr>
<td>69</td>
<td>10</td>
<td>2</td>
<td>242</td>
<td>0,035</td>
<td>1,55</td>
<td>0,039</td>
</tr>
<tr>
<td>71</td>
<td>10</td>
<td>4</td>
<td>194</td>
<td>0,002</td>
<td>2,64</td>
<td>0,134</td>
</tr>
<tr>
<td>73</td>
<td>10</td>
<td>8</td>
<td>142</td>
<td>0,007</td>
<td>5,19</td>
<td>0,130</td>
</tr>
<tr>
<td>75</td>
<td>20</td>
<td>2</td>
<td>261</td>
<td>0,035</td>
<td>2,27</td>
<td>0,043</td>
</tr>
<tr>
<td>77</td>
<td>20</td>
<td>4</td>
<td>203</td>
<td>0,028</td>
<td>4,39</td>
<td>0,040</td>
</tr>
<tr>
<td>79</td>
<td>20</td>
<td>8</td>
<td>162</td>
<td>0,004</td>
<td>5,97</td>
<td>0,044</td>
</tr>
</tbody>
</table>

*bezogen auf die kontinuierliche Phase, **bezogen auf die disperse Phase.

Ergebnisse und Diskussion

In Abbildung 49 sind zwei Proben, eine ohne Ethanolzusatz sowie eine mit 20 Gew.-% Ethanol, nebeneinander gestellt. Deutlich ist zu erkennen, dass die Probe mit Ethanol die homogeneren Partikel im Gegensatz zur Probe in reinem Wasser aufweist.
Ergebnisse und Diskussion

Abbildung 49: Zwei Polystyrollatizes, hergestellt mit 8 Gew.-% Laurinsäure, bezogen auf die disperse Phase. A) hergestellt ohne Ethanolzusatz (ES_MS_90), B) hergestellt mit 20 Gew.-% Ethanol in der kontinuierlichen Phase (ES_MS_79). Die ethanolhaltige Emulsion zeigt eine deutlich erhöhte Homogenität.

4.1.1.5. Emulsionspolymerisation mit Ammoniumlaurat unter Isopropanoleinfluss

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>0</td>
<td>2</td>
<td>218</td>
<td>0,013</td>
<td>1,55</td>
<td>0,195</td>
</tr>
<tr>
<td>89</td>
<td>0</td>
<td>4</td>
<td>230</td>
<td>0,030</td>
<td>1,44</td>
<td>0,133</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>8</td>
<td>180</td>
<td>0,026</td>
<td>5,57</td>
<td>0,176</td>
</tr>
<tr>
<td>82</td>
<td>5</td>
<td>2</td>
<td>238</td>
<td>0,007</td>
<td>1,12</td>
<td>0,093</td>
</tr>
<tr>
<td>84</td>
<td>5</td>
<td>4</td>
<td>213</td>
<td>0,002</td>
<td>3,11</td>
<td>0,157</td>
</tr>
<tr>
<td>86</td>
<td>5</td>
<td>8</td>
<td>115</td>
<td>0,006</td>
<td>6,62</td>
<td>0,197</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>2</td>
<td>218</td>
<td>0,011</td>
<td>2,93</td>
<td>0,073</td>
</tr>
<tr>
<td>72</td>
<td>10</td>
<td>4</td>
<td>163</td>
<td>0,006</td>
<td>5,26</td>
<td>0,096</td>
</tr>
<tr>
<td>74</td>
<td>10</td>
<td>8</td>
<td>096</td>
<td>0,013</td>
<td>7,30</td>
<td>0,210</td>
</tr>
<tr>
<td>76</td>
<td>20</td>
<td>2</td>
<td>308</td>
<td>0,067</td>
<td>1,21</td>
<td>0,060</td>
</tr>
<tr>
<td>94</td>
<td>20</td>
<td>4</td>
<td>289</td>
<td>0,013</td>
<td>1,74</td>
<td>0,065</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>8</td>
<td>256</td>
<td>0,051</td>
<td>1,99</td>
<td>0,121</td>
</tr>
</tbody>
</table>

*bbezogen auf die kontinuierliche Phase, **bezogen auf die disperse Phase.
Ergebnisse und Diskussion

Abbildung 50: Auftragungen des hydrodynamischen Durchmessers (A), des Feststoffgehalts (B), des PDI (C), sowie der Homogenität der Partikel (D), bestimmt durch TEM-Aufnahmen (σ/Mittelwert) gegen den Tensid- und Isopropanolgehalt. Während die Partikelgröße mit zunehmender Tensidmenge sinkt, zeigt sich bei ca. 10 Gew.-% Isopropanol ein Minimum in der Partikelgröße (A). An dieser Stelle zeigt der Feststoffgehalt wiederum ein Maximum (B). Beim PDI ist keinerlei Trend erkennbar (C), jedoch zeigt der TEM-PD einen klaren Trend zu homogeneren Partikel mit sinkendem Tensid und steigendem Isopropanolgehalt (D).

Auch hier zeigt sich deutlich, dass die Partikelgröße mit steigendem Tensidgehalt tendenziell von ~300 nm auf bis zu ~100 nm abnimmt (siehe Abbildung 50 A). Analog zum Ethanolzusatz zeigt sich ein leichtes Minimum in der Partikelgröße bei 5-10 Gew.-% Isopropanol, welches sich auch auf eine verringerte CMC zurückführen lässt. Bei der Bestimmung der Breite der Partikelgrößenverteilung ergeben sich sehr ähnliche Schlüsse wie bei den ethanolhaltigen Emulsionen. Während der durch dynamische Lichtstreuung gemessene PDI kaum einen Trend erkennen lässt (siehe Abbildung 50 C), zeigen die TEM-PD-Werte deutlich, dass mit sinkendem Tensidgehalt und steigendem Isopropanolgehalt die Homogenität der Partikel stark zunimmt (siehe Abbildung 50 D). Der deutlichste Unterschied zu den ethanolhaltigen Emulsionen spiegelt sich im Feststoffgehalt wieder. Während der
Ergebnisse und Diskussion

In Abbildung 51 sind zwei mit Isopropanol hergestellte Latizes abgebildet. Deutlich ist zu erkennen, dass sich auch unter Isopropanoleinfluss homogene Polystyrollatizes ausbilden lassen.

4.1.2. Miniemulsionspolymerisation in Gegenwart von Metallkomplexen

Da die Menge des einbringbaren Metalls durch die Löschlichkeit des Metallkomplexes im Styrol limitiert ist, sollte der Metallkomplex eine hohe Löschlichkeit in Styrol sowie eine geringe Wasserlöslichkeit aufweisen. Der Einfluss des Metallkomplexes auf die Bildung eines monodispersen Polymerlatexes sollte dabei möglichst gering sein. Aus früheren Arbeiten ist bekannt, dass sich Platin über den Organometallkomplex Platin(II)acetylacetonat leicht in
Ergebnisse und Diskussion

Polystyrolpartikel einbinden lässt118. Dieses Verfahren sollte im Folgenden auf weitere Metalle, insbesondere auf Eisenkomplexe, erweitert werden. Hierbei stand das spätere Ziel, die Erzeugung von Eisen/Platin-Partikeln durch Plasmaprozesse, im Vordergrund des Interesses. Deswegen wurden als erstes verschiedene eisenhaltige Latizes untersucht, um einen für die Verkapselung möglichst geeigneten Eisenkomplex ausfindig zu machen. Besonders Ferrocen zeigte mit > 20 Gew.-% eine sehr hohe Löslichkeit im Styrol, jedoch sublimierte es nach erfolgter Polymerisation wieder aus den Polymerpartikeln, die zudem eine geringe Monodispersität aufwiesen. Eine Lösung dieses Problems stellte die Verwendung von copolymerisierbarem Vinylferrocen dar (siehe Abbildung 52)140. Da allerdings auch diese Partikel eine eher geringe Monodispersität aufwiesen (PDI 0.045) wurden im Folgenden acetylacetonatbasierende Komplexe verwendet.

Abbildung 52: A) Vinylferrocen B) Komplexbildner Acetylaceton, B) Beispielkomplex Fe(III)acetylacetonat.

Weil im Gegensatz zu vielen anderen Metallkomplexen reines Eisen(III)acetylacetonat eine verhältnismäßig hohe Wasserlöslichkeit von 1.7 g/L (Angabe: Merck, 20 °C) aufweist, wurden für den Einschluss von Eisenkomplexen verschiedene hydrophob substituierte Eisenacetylacetonat-Komplexe (Methyl-, Phenyl-) verwendet, die gut in der organischen dispersen, gleichzeitig aber schlecht in der kontinuierlichen Phase löslich sind. Dabei war es besonders wichtig, möglichst stabile und hydrophobe Komplexe zu verwenden, da freie Eisen(III)ionen aufgrund ihrer hohen Ionenstärke eine anionisch stabilisierte Emulsion (z. B. eine mit SDS stabilisierte) leicht zum Kollabieren bringen können.

Für die Ionenstärke gilt dabei:

\[I = \frac{1}{2} \sum_{i=1}^{n} c_i z_i^2 \quad (4.1) \]

mit \(c \) = Konzentration, \(z \) = Ladung.

In Tabelle 5 sind die drei unterschiedlich substituierten, acetylacetonatbasierenden Eisenkomplexe gegenübergestellt.
Ergebnisse und Diskussion

Tabelle 5: Eigenschaften verschiedener acetylacetonathbasierender Eisenkomplexe.

<table>
<thead>
<tr>
<th>Komplex</th>
<th>Löslichkeit in Styrol [mg/g]</th>
<th>Massenanteil Eisen [Gew.-%]</th>
<th>Massenanteil Organik [Gew.-%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(III)benzoylacetonat</td>
<td>23</td>
<td>7,7</td>
<td>92,3</td>
</tr>
<tr>
<td>Fe(III) diphenylpropandionat</td>
<td>7</td>
<td>10,4</td>
<td>89,6</td>
</tr>
<tr>
<td>Fe(III)TMHD$_3$</td>
<td>275</td>
<td>9,2</td>
<td>90,8</td>
</tr>
</tbody>
</table>

Abbildung 53: Polystyrolpartikel hergestellt unter Zugabe von Fe(TMHD)$_3$. Deutlich ist ein relativ monodisperses Latex zu erkennen, jedoch treten zusätzlich deutlich größere Störpartikel auf.
Auch für die weiterführenden Versuche mit anderen Metallen wurden hauptsächlich acetylacetonatbasierende Komplexe aufgrund ihrer hohen Stabilität und Lipophilie gewählt (siehe Tabelle 6). Die Ausnahme bildeten Phthalocyanine, welche zwar eine geringe Hydrophilie, aber auch eine schlechte Löslichkeit in Styrol aufweisen und somit eher dispergiert vorliegen141.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_OM</td>
<td>kein Metall</td>
<td>-</td>
<td>-</td>
<td>1,15</td>
<td>102</td>
<td>0,081</td>
</tr>
<tr>
<td>ES_M_30</td>
<td>Platin</td>
<td>0,50</td>
<td>Pt(AcAc)\textsubscript{2} [48]</td>
<td>1,15</td>
<td>118</td>
<td>0,038</td>
</tr>
<tr>
<td>ES_M_43</td>
<td>Platin</td>
<td>0,99</td>
<td>Pt(AcAc)\textsubscript{2} [48]</td>
<td>1,15</td>
<td>105</td>
<td>0,028</td>
</tr>
<tr>
<td>ES_M_12</td>
<td>Indium</td>
<td>0,45</td>
<td>In(AcAc)\textsubscript{3} [232]</td>
<td>1,15</td>
<td>133</td>
<td>0,002</td>
</tr>
<tr>
<td>ES_M_20</td>
<td>Indium</td>
<td>0,86</td>
<td>In(AcAc)\textsubscript{3} [232]</td>
<td>1,70</td>
<td>123</td>
<td>0,067</td>
</tr>
<tr>
<td>ES_M_39</td>
<td>Zink</td>
<td>0,37</td>
<td>Zn(phthalocyanin) [-]</td>
<td>1,70</td>
<td>156</td>
<td>0,057</td>
</tr>
<tr>
<td>ES_M_56</td>
<td>Zink</td>
<td>0,30</td>
<td>Zn(TMHD)\textsubscript{2} [69]</td>
<td>1,15</td>
<td>115</td>
<td>0,027</td>
</tr>
<tr>
<td>ES_M_22</td>
<td>Chrom</td>
<td>0,24</td>
<td>Cr(III)benzoylacetanat [57]</td>
<td>1,15</td>
<td>110</td>
<td>0,085</td>
</tr>
<tr>
<td>ES_M_26</td>
<td>Chrom</td>
<td>0,80</td>
<td>Cr(III)benzoylacetanat [57]</td>
<td>1,35</td>
<td>145</td>
<td>0,043</td>
</tr>
<tr>
<td>ES_M_36</td>
<td>Eisen</td>
<td>0,26</td>
<td>Fe(III)benzoylacetanat [23]</td>
<td>1,15</td>
<td>160</td>
<td>0,073</td>
</tr>
<tr>
<td>ES_M_48</td>
<td>Eisen</td>
<td>0,10</td>
<td>Fe(III)di phenylpropandionat [7]</td>
<td>1,15</td>
<td>120</td>
<td>0,109</td>
</tr>
<tr>
<td>ES_M_58</td>
<td>Eisen</td>
<td>0,53</td>
<td>Vinylferrocen [>200]</td>
<td>1,15</td>
<td>154</td>
<td>0,045</td>
</tr>
<tr>
<td>ES_M_46</td>
<td>Eisen</td>
<td>0,23</td>
<td>Fe(III)TMHD\textsubscript{3} [275]</td>
<td>1,15</td>
<td>107</td>
<td>0,162</td>
</tr>
<tr>
<td>ES_MS_50</td>
<td>Indium</td>
<td>0,17</td>
<td>Indium(III)TMHD\textsubscript{3} [-]</td>
<td>1 (CTAB)</td>
<td>121</td>
<td>0,046</td>
</tr>
</tbody>
</table>

*bezogen auf die disperse Phase.

Das eingangs erwähnte Platin(II)acetylacetonat zeigt im Gegensatz zu den anderen Komplexen keinen signifikanten Einfluss auf die Partikelgröße und Latexstabilität. Die
Partikelgröße und Verteilung entsprach denen einer Styrolminiemulsion ohne den Zusatz von Metallkomplexen, wobei der maximale Gehalt an Platin, begrenzt durch die Löslichkeit, ca. 2 Gew.-% bezogen auf das Styrol ausmacht. Es scheint somit kein freies Platinkation, welches die Stabilisierung durch SDS beeinflussen könnte, in signifikanten Mengen vorzuliegen.

Verglichen mit Platin(II)acetylacetonat zeigen sowohl Indium(III)acetylacetonat als auch Indium(III)TMHD\textsubscript{3} einen deutlichen Einfluss auf die Partikelbildung. Die entstehenden Polymerlatizes weisen eine auffallend enge Partikelgrößenverteilung auf (siehe Abbildung 57). Es ist auffällig, dass Indium(III)acetylacetonat nur bis zu einer Menge von ~200 Gew.-% bezogen auf die Menge SDS eingesetzt werden kann, da es ansonsten zu einer verstärkten Gelbildung kommt (siehe dazu Proben ES_M_12 bzw. 20, geringere SDS-Mengen endeten in instabilen Emulsionen). Es ist somit wahrscheinlich, dass der Indiumkomplex mit der Sulfatgruppe des SDS wechselwirkt. Auch zeigt sich eine deutliche Senkung der Grenzflächenspannung der Grenzfläche Styrol zu Wasser bei Anwesenheit von Indium(III)acetylacetonat. So beträgt die Grenzflächenspannung von Wasser gegenüber Styrol bei 25 °C 35 mN/m, gegenüber einer 1%igen Indium(III)acetylacetonat Lösung in Styrol nur ~15 mN/m. Dieser Effekt tritt, z.B. bei der Zugabe von Platin(II)acetylacetonat, nicht auf. Dies zeigt, dass sich Indium(III)acetylacetonat bevorzugt an der Grenzfläche aufhält und mit der Wasserphase in Wechselwirkung tritt oder mit Wasser reagiert, was zu einem starken Einfluss auf die Emulgierbarkeit und zu sehr geringen Polydispersitäten führt. Es ist davon auszugehen, dass es sich nicht nur um einfache Coulomb-Wechselwirkungen, wie im Falle von Eisenkomplexen, handelt, sondern dass vielfältige Einflüsse, wie amphiphile Wechselwirkungen, die Morphologie beeinflussen. So konnte beispielsweise für Lanthanidkomplexe gezeigt werden, dass sie in SDS-stabilisierten Acrylatminiemulsionen komplexe Schichtstrukturen ausbilden132.

Die Zugabe von Chrom(III)benzoylacetonat zum Monomer zeigt keinen signifikanten Einfluss auf die Partikelgrößenverteilung. Die Verteilung ist eng (PDI 0,085), und die Emulsion stabil. Die Zugabe von Zn(II)TMHD\textsubscript{2} führte zwar zu engen Größenverteilungen der entstandenen Partikel (PDI 0,027), jedoch traten vergleichbare destabilisierende Effekte wie bei der Verwendung von In(III)acetylacetonat auf. Ähnlich verhielt sich Al(III)TMHD\textsubscript{3}. Sowohl Zn(II)TMHD\textsubscript{2} mit ~36 mN/m sowie Al(III)TMHD\textsubscript{3} mit ~35 mN/m (bei 1 Gew.-% Komplex in Styrol) zeigten keinen signifikanten Einfluss auf die Grenzflächenspannung Styrol/Wasser, wobei insbesondere Emulsionen mit Zn(II)TMHD\textsubscript{2} zu einer verstärkten Gelbildung neigten.
Ergebnisse und Diskussion

Des Weiteren wurde als Alternative zum Zn(II)TMHD$_2$ Zink(II)-phthalocyanin verwendet. Aufgrund der allgemein sehr geringen Löslichkeit von Phthalocyaninkomplexen in Styrol handelt es sich eher um eine Dispersion in den Styroltröpfchen als um eine reine Lösung141. Obwohl es prinzipiell möglich ist, über Miniemulsionspolymerisation Phthalocyaninkomplexe zu verkapseln, ist in der Inhomogenität der Styrol/Phthalocyanin-Dispersion vermutlich die breite Partikelgrößenverteilung begründet (PDI 0,044).

Um die vorhergehenden angenommen starken Wechselwirkungen der Metallzentren mit SDS zu vermeiden bzw. zu überprüfen, wurden Versuche mit Cetyltrimethylammoniumbromid (CTAB) als Tensid durchgeführt. Hierbei zeigte sich im Allgemeinen eine breitere Größenverteilung als bei entsprechenden Proben mit SDS (siehe Abbildung 55, Tabelle 6), jedoch konnte somit der störende Effekt einer anionisch/kationischen SDS/Metallion-Wechselwirkung ausgeschlossen werden. Bei den Versuchen mit CTAB traten entsprechend der Erwartung keinerlei nennenswerte Destabilisierungseffekte auf.

Abb. 55: Allgemeines Beispiel für eine Probe (in diesem Fall mit 1% In(TMHD)$_3$, bezogen auf die disperse Phase, ES_MS_50) hergestellt mit CTAB als Tensid (1 Gew.-%, bezogen auf die disperse Phase).

Auf eine weitere Optimierung bzw. Untersuchung des Einflusses von kationischen Tensiden wurde aufgrund der schlechteren Größenverteilung verzichtet.

In diesem Teil der Arbeit konnte gezeigt werden, dass die Miniemulsionspolymerisation sehr gut zur Darstellung verschiedener metallhaltiger Polymerlatizes geeignet ist. Die entstehende Partikelgröße und Größenverteilung hängt dabei entscheidend vom verwendeten Metallkomplex sowie der Tensidwahl ab. Bei stabilen Komplexen ist der Metallgehalt in der Regel nur von der Löschlichkeit im verwendeten Monomer begrenzt, welche für die getesteten Acetylacetonatkomplexe meist in einem Bereich von 0,5-6 Gew.-% in Styrol liegen.
4.1.3. Verwendung von metallhaltigen Polymerlatizes

Platinhaltige Latizes eignen sich hierbei nach dem Veraschen hervorragend für die Darstellung von Ätzmasken für Lithographische Zwecke (siehe Abbildung 56).

Wie in den REM-Aufnahmen zu erkennen ist (Abbildung 56 A), weisen die platinhaltigen Polystyrollatizes eine sehr hohe Ordnung auf. Durch Veraschen im Sauerstoffplasma ist es möglich, aus diesen Platin-Cluster zu erzeugen (Abbildung 56 B). Das zurückbleibende Metall kann anschließend als Ätzmasken z.B. für die Herstellung von Säulen mit einem
hohen Aspektverhältnis (~10) (Abbildung 56 C), sowie in invertierter Form für die Präparation von Kanälen genutzt werden (Abbildung 56 D). Hierbei wird der Abstand der Cluster durch die Größe der Ausgangskolloide sowie die Größe der Cluster durch die Platinkonzentration bestimmt.

Indiumhaltige Partikel wurden bisher eingesetzt, um Indium-Quantenpunkte zu erzeugen. Die Ergebnisse sind in Abbildung 57 gezeigt.

Abbildung 57: A) Indiumhaltiges Polystyrollatex vor der Plasmabehandlung, B) Die Probe nach der Behandlung im H$_2$-Plasma zeigt eine Popkornstruktur.

Die Ergebnisse zeigen, dass sich durch Plasmaprozesse auch Indium in Clustern anreichern lässt, allerdings müssen diese noch weiter optimiert werden, um einheitliche Indiumpartikel zu erhalten.

Die nun folgenden Analysen und Optimierungen beschränken sich aufgrund der eingangs erwähnten technischen Relevanz auf Platin bzw. Eisen-Platin Hybridpartikel.
4.1.4. Saat-Partikel

Abbildung 58: Schematischer Verlauf des Partikelwachstums; durch Zugabe von weiterem Styrol wachsen die vorhandenen Saatpartikel an, bis kein Monomer mehr zur Verfügung steht.

Die ersten Versuche wurden dabei nach einer Vorschrift von Kong145 in Wasser mit APS als Initiator und Styrol als Monomer durchgeführt. Als Saatpartikel diente hierbei ein platinhaltiger Polystyrollatex. Der Partikeldurchmesser konnte so schrittweise von 105 nm auf 212 nm mehr als verdoppelt werden (siehe Tabelle 7).

<table>
<thead>
<tr>
<th>Probe</th>
<th>Kern Größe [nm]</th>
<th>Verhältnis Masse Kern / Monomer</th>
<th>Hydrodyn. Durchm. DLS [nm]; PDI</th>
<th>TEM (siehe Abbildung 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_M_31</td>
<td>103</td>
<td>-</td>
<td>103; 0,005</td>
<td>a</td>
</tr>
<tr>
<td>ES_M_U4_A</td>
<td>103</td>
<td>8</td>
<td>125; 0,014</td>
<td>c</td>
</tr>
<tr>
<td>ES_M_U4_B</td>
<td>103</td>
<td>16</td>
<td>169; 0,007</td>
<td>d</td>
</tr>
<tr>
<td>ES_M_U4_C</td>
<td>103</td>
<td>24</td>
<td>188; 0,006</td>
<td>b</td>
</tr>
<tr>
<td>ES_M_U4_D</td>
<td>103</td>
<td>32</td>
<td>212; 0,009</td>
<td>b</td>
</tr>
</tbody>
</table>

In den TEM-Aufnahmen sind sowohl der Saatlatex, als auch die vier verschiedenen Wachstumsstufen gezeigt. Deutlich ist die Zunahme der Partikelgröße zu erkennen (siehe Abbildung 59).

Tabelle 8: Zusammenfassung der Ansätze für platinhaltigen Kern-Schale Partikel in ethanolischer Lösung mit V59 als Initiator.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Kern</th>
<th>Verhältnis Masse Kern / Monomer</th>
<th>Ethanolgehalt [Gew.-%]*</th>
<th>Hydrodyn. Durchm. [nm]; PDI</th>
<th>Platinvorkommen</th>
<th>TEM (siehe Abbildung 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_M_43</td>
<td>105</td>
<td>-</td>
<td>0</td>
<td>105; 0,029</td>
<td>Kern</td>
<td>A</td>
</tr>
<tr>
<td>43_UPt_3</td>
<td>105</td>
<td>33</td>
<td>15</td>
<td>194; 0,017</td>
<td>Kern & Schale</td>
<td>B</td>
</tr>
<tr>
<td>43_UPt_7</td>
<td>105</td>
<td>50</td>
<td>15</td>
<td>253; 0,003</td>
<td>Kern & Schale</td>
<td>C</td>
</tr>
<tr>
<td>43_UPt_1</td>
<td>105</td>
<td>50</td>
<td>20</td>
<td>374; 0,023</td>
<td>Kern & Schale</td>
<td>D</td>
</tr>
</tbody>
</table>

* bezogen auf die kontinuierliche Phase.
Ergebnisse und Diskussion

gegenübergestellt. Während der Kernlatex einen Durchmesser von 105 nm aufweist, konnten in diesem Fall (Probe ES_M_43_UPt_7) die angewachsenen Partikel auf ca. 250 nm vergrößert werden. Für die Auswertung wurden sowohl DLS-Daten, als auch TEM-Bilder verwendet.

Ergebnisse und Diskussion

Ethanoleinfluss”), zum teilweisen Ausfallen von Polymeranteilen kommt, zeigen die
gemessenen Partikelgrößen teilweise eine signifikante Abweichung vom theoretischen Wert
(Vergleich: Proben ES_M_43_UPt_1 und ES_M_43_UPt_7, Tabelle 8). Dieser Punkt sollte
in zukünftigen Arbeiten durch den Einsatz anderer organischer, aber im Wässrigen löslicher
Initiatoren, wie z. B. V50, weiter optimiert und genauer untersucht werden. Bei Zugabe von
anderen Metallkomplexen zum zuzugebenden Monomer kann, wie im Falle von
Platin(II)acetylacetonat, prinziell auch ein anderes Metall eingebracht werden. Das
Gelingen einer metallhaltigen Schale ist hierbei hauptsächlich von den
Diffusionseigenschaften des Metallkomplexes abhängig. Auf die unterschiedlichen
Diffusionseigenschaften von Metallkomplexen wird im Kapitel 4.1.5.2 näher eingegangen.

4.1.5. Miniemulsions- und Emulsionspolymerisationen in
gegenwart von Platin- und Eisenkomplexen.

Die Herstellung von Fe/Pt-Nanopartikeln nimmt aufgrund ihrer ferromagnetischen
Eigenschaften auch in kleinen Clustern eine herausragende Stellung in der aktuellen
Forschung ein. Mögliche Anwendungen könnten sich z. B. im Bereich von neuartigen
Speichermedien ergeben. Dieses Kapitel zeigt die Synthese von möglichst homogenen eisen-
und platinhaltigen Polystyrollatizes, die dem Institut für Festkörperphysik der Universität
Ulm für weitere Versuche übergeben wurden. Hierbei lagen die Hauptanwendungen in der
Präparation von ferromagnetischen Fe/Pt-Partikeln sowie in der Verwendung von
Platinclustern als lithographische Ätzmasken.

4.1.5.1. Miniemulsionspolymerisation von Fe/Pt-Hybridpartikeln

Über Miniemulsionsprozesse lassen sich monodisperse, Eisen und Platin enthaltende
Polystyrollatizes mit definierten Metallgehalten herstellen. Für die Darstellung der in
Abbildung 62 gezeigten Probe wurden die Metallkomplexe im stöchiometrischen Verhältnis
von 1:1 (1 Gew.-% Platin(II)acetylacetonat, 1,5 Gew.-% Eisen(III)TMHD₃) eingesetzt. Die
genaue Analyse des tatsächlichen Metallgehaltes folgt in Kapitel 4.1.5.4 „Analyse der
Metallgehalte von Eisen und Platin enthaltenden (Mini-) Emulsionspolymerisationen“. Als
Tensid wurde Lutensol AT50 verwendet, welches aufgrund der rein organischen
Komponenten im Plasma vollständig veraschbar sein sollte und keine störenden
Wechselwirkungen mit freien Metallionen zeigt. Die wichtigsten Charakteristika sind in
Tabelle 9 zusammengefasst.
Tabelle 9: Daten zur näher untersuchten Eisen und Platin enthaltenden Probe ES_Fe/Pt_Mini_2, hergestellt über Miniemulsionspolymerisation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_Fe/Pt_Mini_2</td>
<td>5</td>
<td>1</td>
<td>1,5</td>
<td>211</td>
<td>0,021</td>
</tr>
</tbody>
</table>

* bezogen auf die disperse Phase.

Abbildung 62: Beispiel einer Eisen- und Platinkomplex enthaltende Miniemulsion mit sehr guter Größenverteilung in unterschiedlichen Vergrößerungen (ES_Fe/Pt_Mini_2).

handelt es um Eisen/Platin-Partikel, da sowohl Polystyrol147, 148 als auch das hier verwendete Lutensol AT50 im Sauerstoffplasma vollständig veraschbar sein sollten.

4.1.5.2. Emulsionspolymerisation mit Platin-Metallkomplexen

Ergebnisse und Diskussion

(siehe Kapitel 4.1.1), zum anderen wird die Löslichkeit aller hydrophoben Komponenten in der kontinuierlichen Phase erhöht, was zu entsprechend erhöhter Diffusion führt. Es zeigte sich, dass Platin(II)acetylacetonat in 20%iger ethanolischer Lösung eine ausreichende Diffusion aufweist (siehe 4.1.5.3 „Emulsionspolymerisation mit Platin- und Eisen-Metallkomplexen“). Durch das Anpassen der Tensidmenge zwischen 0,5 und 4 Gew.-% (bezogen auf das Monomer) konnte die Partikelgröße bei platinhaltigen Latizes zwischen 150 und 260 nm angepasst werden (siehe Tabelle 10, Abbildung 64).

<table>
<thead>
<tr>
<th>Probe</th>
<th>SDS-Menge [Gew.-%]*</th>
<th>Hydrodyn. Durchmesser DLS [nm]</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_EM_Pt_1</td>
<td>0,5%</td>
<td>262</td>
<td>0,004</td>
</tr>
<tr>
<td>ES_EM_Pt_2</td>
<td>1,0%</td>
<td>254</td>
<td>0,050</td>
</tr>
<tr>
<td>ES_EM_Pt_3</td>
<td>2,0%</td>
<td>194</td>
<td>0,034</td>
</tr>
<tr>
<td>ES_EM_Pt_4</td>
<td>4,0%</td>
<td>149</td>
<td>0,013</td>
</tr>
</tbody>
</table>

*Tbezogen auf die disperse Phase.
Ergebnisse und Diskussion

Abbildung 64: TEM-Bilder von platinhaltigen Polystyrollatizes hergestellt durch Emulsionspolymerisation mit 20 Gew.-% Ethanol bezogen auf die disperse Phase und verschiedenen SDS-Mengen (in Gew.-% bezogen auf die Monomerphase): A) 0,5%, B) 1%, C) 2%, D) 4%.

Die platinhaltigen Emulsionen zeigten nach dem Versauchen eine deutliche Partikelbildung, die auf das Vorhandensein von Platin hindeutet (siehe auch Kapitel 4.1.5.4).

Wie in den REM-Aufnahmen (siehe Abbildung 65) zu erkennen ist, schrumpfen die Polystyrolpartikel mit steigender Zeit im Sauerstoffplasma immer weiter, bis nur noch ein Platincluster vorliegt. Dies geschieht, ohne dass sie ihre Position verlieren oder miteinander verschmelzen. Die Ordnung der Ausgangskolloide bleibt erhalten, was für die Abstände der entstehenden Cluster maßgeblich ist. Wie in Abbildung 66 deutlich zu erkennen ist, lassen sich über Polystyrollatizes diese Ordnungen mit hoher Präzision auch in größeren Bereichen erhalten.
Ergebnisse und Diskussion

Abbildung 65: Probe ES_EM_Pt_1, platinhaltiges Polystyrollatex hergestellt über Emulsionspolymerisation. A: Vor dem Veraschen, B: Nach 5 min O\textsubscript{2}-Plasma, C: Nach 10 min O\textsubscript{2}-Plasma und D: Nach 60 min O\textsubscript{2}-Plasma. Deutlich ist das Schrumpfen der Partikel zu beobachten, bis nur noch platinhaltige Nanopartikel vorliegen (Bilder: Achim Manzke, Festkörperphysik, Universität Ulm, siehe auch Abbildung 71).

Abbildung 66: Veraschte Probe ES_EM_Pt_1, deutlich sind platinhaltige Nanopartikel in hoher hexagonaler Ordnung zu erkennen (Bilder: Achim Manzke, Festkörperphysik, Universität Ulm).
Ergebnisse und Diskussion

4.1.5.3. *Emulsionspolymerisation mit Platin- und Eisen-Metallkomplexen*

Nachdem durch Emulsionspolymerisation erfolgreich platinhaltige Latizes hergestellt werden konnten, wurden die Versuche auf sowohl Eisen als auch Platin enthaltende Kolloide ausgeweitet. In Tabelle 11 sind die Charakteristika zweier Proben mit unterschiedlichen Tensiden und Eisengehalten aufgeführt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_MS_36</td>
<td>SDS</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0:1</td>
<td>273</td>
<td>0,002</td>
</tr>
<tr>
<td>EM_Fe_Pt_3</td>
<td>Ammonium-laurat</td>
<td>1,0</td>
<td>2,3</td>
<td>1,5:1</td>
<td>285</td>
<td>0,021</td>
</tr>
</tbody>
</table>

* bezogen auf die disperse Phase.

Deutlich ist zu erkennen, dass sich die Partikel nicht nur in den Monolagen (siehe Abbildung 68 B), sondern auch in den Multilagen (siehe Abbildung 68 A) hexagonal anordnen. Um bei einer späteren Veraschung besonders rückstandsfreie Partikel zu erhalten, wurde neben SDS, bei dem als Verunreinigung Natriumsulfat zurückbleiben kann, Ammoniumlaurat eingesetzt. Der Vorteil von Ammoniumlaurat liegt darin, dass eine vollständige Veraschbarkeit des Tensids angenommen werden kann, sowie in der pH-Abhängigkeit der Ladung der Laurinsäure. Dadurch ergibt sich ein leicht einstellbarer Parameter für die interkolloidalen Wechselwirkungen bei einer späteren Monolagenbildung. Als sehr positiv zu werten ist hierbei, dass sich im leicht basischem Milieu durch Ammoniumlaurat ebenso gut homogene Partikel bilden lassen, wie es mit SDS möglich ist (siehe Abbildung 69, Tabelle 11). Da sich bei der Probe ES_MS_36 in den späteren Analysen eine geringere Eisen(III)TMHD₃⁻ als Platin(II)acetylacetonat-Diffusion zeigte (siehe dazu Kapitel 4.1.5.4), wurde bei der Probe ES_EM_Fe_Pt_3 der Eisengehalt auf das 1,5-fache erhöht. Die Analyse des Latexes zeigte keine Erhöhung des Eisengehaltes (siehe 4.1.5.4 „Analyse der Metallgehalte von Eisen und Platin enthaltenden (Mini-) Emulsionspolymerisationen“).

Abbildung 70: Veraschte Probe ES_M_36 (SDS) und ES_EM_FePt_3 (Ammoniumlaurat). Deutlich sind bei beiden Proben hexagonal angeordnete Metallcluster (Durchmesser ~ 50 nm) am Ort der vorherigen Kolloide im Abstand von ca. 250 nm zu erkennen. Die Schatten um die Partikel zeigen die Kontaktfläche der vorherigen Kolloide mit dem Substrat an. (Bilder: Achim Manzke, Festkörperphysik, Universität Ulm).
4.1.5.4. Analyse der Metallgehalte von Eisen und Platin enthaltenden (Mini-) Emulsionspolymerisationen

Die Metallgehalte der oben gezeigten Miniemulsion- und Emulsionsproben wurden sowohl mit ICP-OES als auch mit EDX untersucht (siehe Tabelle 12).

<table>
<thead>
<tr>
<th>Probe</th>
<th>Einwaage</th>
<th>EDX</th>
<th>ICP</th>
<th>Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe [%]*</td>
<td>Pt [%]*</td>
<td>Fe/Pt [molar]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fe [%]*</td>
<td>Pt [%]*</td>
</tr>
<tr>
<td>ES_MiniFePt2</td>
<td>0,13</td>
<td>0,45</td>
<td>1,0</td>
<td>0,14</td>
</tr>
<tr>
<td>MS_36</td>
<td>0,14</td>
<td>0,47</td>
<td>1,0</td>
<td>(0,03)</td>
</tr>
<tr>
<td>EM_FePt3</td>
<td>0,19</td>
<td>0,45</td>
<td>1,5</td>
<td>(0,02)</td>
</tr>
</tbody>
</table>

* Gew.-%, bezogen auf die disperse Phase.

Die Werte zeigen bei der Miniemulsion (Probe ES_Mini_Fe/Pt_2) eine sehr gute Übereinstimmung mit den Einwaagen. Die ICP-OES-Daten (Standardabweichung < 1%) stimmen zusätzlich sehr gut mit den EDX-Daten (Standardabweichung < 5%) überein. Bei den Emulsionspolymerisationen (ES_MS_36 und ES_EM_Fe/Pt_3) zeigt sich, dass nahezu 100% des Platins in die Latizes inkorporiert wurden. Der maximale Eisengehalt scheint hingegen limitiert zu sein; er beträgt nur 20% (ES_MS_36) bzw. 10% (ES_EM_Fe/Pt_3) der Einwaage, wobei die höhere Einwaage bei Probe ES_EM_Fe/Pt_3 nicht zum Tragen kommt. Hier sollten in zukünftigen Versuchen weitere Eisenkomplexe, wie Eisen(III)benzoylacetonat, auf ihre Diffusionseigenschaften hin untersucht werden.

4.2. Verkapselung von Laponit RD in Polymerlatizes

4.2.1. Hydrophobisierung von Laponit RD

In Abbildung 72 ist der Hydrophobisierungsprozess durch Ionenaustausch mit kationischem Tensid schematisch dargestellt. Hierbei werden die Natriumionen durch das kationische Tensid sukzessive ersetzt.

Abbildung 72: Schematische Darstellung der Hydrophobisierung von Laponit RD durch Ionenaustausch mittels kationischen Tensiden (hier DDAB).

Für die Verkapselung wurden verschiedene hydrophobierte Laponite mit unterschiedlichen organischen Anteilen hergestellt. Dies kann entweder durch kovalentes Anbinden an die freien Hydroxylgruppen der Laponitrandes 74, 75, 149 oder durch Austausch der Natrium-ionen mit Hydrophobisierungsreagenzien erfolgen (siehe auch 2.5.2 „Oberflächenmodifikationen von Laponit“). In dieser Arbeit wurde aufgrund des Verhältnisses der großen Oberfläche, an welcher der Ionenaustausch stattfindet, zur kleineren seitlichen Randfläche, an dem die kovalente Anbindung erfolgt, weniger auf kovalentes Anbinden von Organosilanen, sondern verstärkt auf einen unterschiedlich starken Ionenaustausch gesetzt. Hierzu wurden sowohl Cetyltrimethylammoniumbromid (CTAB) als auch Didodecyldimethylammoniumbromid (DDAB) als Ionenaustauschreagenzien verwendet 4. Da DDAB, das im Gegensatz zu CTAB nicht nur eine, sondern zwei längere Alkylketten aufweist, wurde hierdurch ein sehr hoher organischer Anteil pro Ladungsträger erreicht (siehe Tabelle 13).

Tabelle 13: Vergleich der verwendeten kationischen Hydrophobisierungsreagenzien.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Summenformel</th>
<th>Molmasse [g/mol]</th>
<th>Molmasse des Kations [g/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetyltrimethylammoniumbromid (CTAB)</td>
<td>CH₃(CH₂)₁₅N(CH₃)₃Br</td>
<td>364,45</td>
<td>284,55</td>
</tr>
<tr>
<td>Didodecyldimethylammoniumbromid (DDAB)</td>
<td>[CH₃(CH₂)₁₁]₂N(CH₃)₂Br</td>
<td>462,63</td>
<td>382,73</td>
</tr>
</tbody>
</table>
Unter Annahme einer Ionenaustauschkapazität von ~140 mmol/100g für Laponit RD, welche der Menge an Natriumionen entspricht, und vollständigem Ionenaustausch lässt sich, bezogen auf das hydrophobe Laponit, ein maximaler Anteil von 30 Gew.-% für CTAB bzw. 36 Gew.-% für DDAB berechnen.

Abbildung 73: TGA-Messungen in Sauerstoff für reines Laponit, DDAB und die hydrophoben Laponit N2GG und N10. Das reine Laponit zeigt nur einen anfänglichen Wasserverlust, das DDAB zersetzt sich oberhalb von 230 °C nahezu komplett. Deutlich ist die stärkere Hydrophobisierung von N10 (46%) im Vergleich zu N2GG (39%) zu erkennen.

Die Ergebnisse zeigen, dass reines Laponit RD lediglich einen leichten Massenverlust bei ca. 100 °C aufweist, der Wasser zuzuordnen ist. Der Wasserverlust bei 100 °C tritt hingegen bei den durch Ionenaustausch hydrophobisierten Proben nicht mehr auf (siehe hydr. Lap. N2GG und N10 in Abbildung 73). Das hauptsächlich zur Hydrophobisierung verwendete Didodecyldimethylammoniumbromid (DDAB) zeigt seinen größten Massenverlust bei ca. 230 °C. Dieser Massenverlust, der auf eine Zersetzung des DDAB hindeutet, lässt sich besonders bei stark hydrophobisierten Proben wiederfinden (N10). Dies kann, wenn man den Verlauf des Massenverlustes reinen DDABs (siehe Abbildung 73) als Vergleich heranzieht,
als ein Indiz für freies und nicht durch Ionenaustausch an das Laponit gebundenes Tensid
gedeutet werden. Beim Laponit N10 ist der gesamte organische Anteil mit 46 Gew.-% deutlich höher, als aus der Theorie bei einem vollständigen Ionenaustausch zu erwarten
gewesen wäre (36 Gew.-%), was ein deutliches Indiz für zusätzliche Tensideinlagerungen ist.
Bei ca. 300 °C erfolgt anschließend ein zweiter großer Massenverlust. Dies kann als die
vollständige Zersetzung des angebundenen Tensids gedeutet werden. Die zweistufige
Zersetzung des DDAB wurde durch weiteres Aufreinigen der hydrophobisierten Laponite
bestätigt. Hierbei lässt sich die Menge an freiem Tensid weiter reduzieren, was sich in einer
Verringerung des ersten Massenverlustes widerspiegelt (siehe N2/N2g in Tabelle 14). Der
zweite Massenverlust bleibt hingegen nahezu konstant. Die durch kovalente Anbindung von
Alkysilanen hydrophobisierten Laponite führten nur zu sehr geringen organischen Anteilen
von ca. 2 Gew.-%. In Tabelle 14 sind die wichtigsten hydrophobisierten Laponite mit ihren
jeweiligen organischen Anteilen zusammengefasst.

Tabelle 14: Organische Anteile verschiedener hydrophobisierter Laponit.

<table>
<thead>
<tr>
<th>Laponit</th>
<th>Modifikation</th>
<th>Verhältnis Einwaage Tensid/Laponit [g/g]</th>
<th>erste Stufe [Gew.-%]</th>
<th>zweite Stufe [Gew.-%]</th>
<th>Summe Verluste [Gew.-%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>CTAB</td>
<td>0,2</td>
<td>-</td>
<td>-13,9</td>
<td>14</td>
</tr>
<tr>
<td>N2</td>
<td>DDAB</td>
<td>0,6</td>
<td>-24,3</td>
<td>-13,4</td>
<td>40</td>
</tr>
<tr>
<td>N2g *</td>
<td>DDAB</td>
<td>0,6</td>
<td>-15,6</td>
<td>-15,3</td>
<td>33</td>
</tr>
<tr>
<td>N2 GG</td>
<td>DDAB</td>
<td>0,6</td>
<td>-21,4</td>
<td>-14,9</td>
<td>39</td>
</tr>
<tr>
<td>N10</td>
<td>DDAB</td>
<td>0,8</td>
<td>-23,7</td>
<td>-14,3</td>
<td>46</td>
</tr>
</tbody>
</table>

* Probe N2 wurde zusätzlich aufgereinigt.

In Abbildung 74 ist eine TEM-Aufnahme von reinem Laponit RD (Abbildung 74 A) einem
kationisch hydrophobisierten Laponit (Abbildung 74 B) gegenübergestellt. Während sich
beim reinen Laponit aufgrund des geringen Auflösungsvermögens im TEM eher diffuse
Strukturen erkennbar sind, zeigt das hydrophobisierte Laponit durch die Vergrößerung des
Schichtabstandes eine sehr ausgeprägte Schichtstruktur, die im TEM deutlich zu erkennen ist.
Diese ist auf den Ionenaustausch durch das kationische Tensid (in diesem Falle DDAB)
zu rückzuführen, welches eine lipiddoppelschichtartige Struktur ausbildet\(^\text{150}\). Hierdurch
werden die Schichtabstände soweit vergrößert, dass sie leicht im TEM zu erkennen sind\(^4\).
Die im TEM ersichtliche Aufweitung der Schichtstruktur konnte durch Röntgenbeugungsmessungen im Kleinwinkelbereich (siehe Abbildung 75) verifiziert werden, wobei der Schichtabstand beim unbehandelten Laponit ca. 1,2 nm, beim stark hydrophobisierten Laponit 2-4 nm und beim am stärksten hydrophobisierten Laponit ca. 3,2 nm beträgt. Es fand somit ein Ionen austausch statt, der zu einer Vergrößerung der Schichtabstände führt, der umso größer ist, je mehr DDAB verwendet wurde (siehe Tabelle 14). Hierbei ist es möglich, dass sich, nach dem Erreichen des maximalen Ionenaustausches, noch weiteres Tensid in Doppelschichten einlagert, was zu einer weiteren Verbreiterung der Schichtabstände führen kann150. Der theoretische Schichtabstand für einen einfachen Austausch lässt sich in Näherung berechnen. Bei einer Ausdehnung des gestreckten DDAB Moleküls von ca. 1,5 nm und einer Dicke der Laponitplättchen von 0,9 nm ist im einfachsten Fall ein Gesamtschichtabstand zwischen 2,4-3,9 nm zu erwarten, der je nach Überlappung und geometrischer Anordnung der Alkylketten variiert4. Die gemessenen Werte mit ca. 3,2 nm zeigen somit eine gute Übereinstimmung mit der Theorie, wobei es, wie Heinz et al.151 zeigten, extrem schwierig ist, die genaue Anordnung der Tensidmoleküle zu berechnen, da diese sowohl stark von der Ionenaustauschkapazität des Schichtsilikats als auch von der Länge der verwendeten Alkylketten abhängig ist.
Abbildung 75: Für das unmodifizierte Laponit RD ergibt sich aus den Röntgen-Daten ein Schichtabstand von 1,2 nm, für das modifizierte Laponit N2GG (37% Organik) liegt er zwischen 2-4 nm und für N10 (46% Organik) bei ca. 3,2 nm.

4.2.2. Verkapselung von hydrophoben Laponit RD in Polystyrol

Für die ersten Versuche zur Verkapselung von Laponit wurde aufgrund des literaturbekannten Verhaltens und der hohen Stabilität im Elektronenstrahl bzw. der daraus resultierenden leichteren Analysierbarkeit im TEM Polystyrol als Polymermatrix gewählt. Für die Verkapselung von Laponit können grundsätzlich zwei verschiedene Strategien gewählt werden. Zum einen kann das Laponit direkt der Monomerphase hinzugefügt werden, zum anderen kann das Laponit vordispersiert und anschließend mit einer Monomerminiemulsion vereinigt werden (Co-Sonifizierungsprozess). Bei der Methode der direkten Zugabe wird das hydrophobe Laponit zuerst in der dispersen Phase vordispersiert (siehe Abbildung 76).
Anschließend wird die disperse Phase mit der kontinuierlichen Phase vereinigt, homogenisiert und polymerisiert.

Abbildung 76: Schema der direkten Verkapselung von hydrophoben Laponit über die Monomerphase.

Der Co-Sonifizierungsprozess hingegen teilt sich in zwei unterschiedliche Prozesse auf. Zuerst wird das hydrophobisierte Laponit durch den Einsatz weiterer Tenside in der kontinuierlichen Phase vordispergiert (siehe Abbildung 77).

Abbildung 77: Dispergierung von hydrophobem Laponit in Wasser mittels nicht-ionischem Tensid (z. B. Lutensol AT50).

Ergebnisse und Diskussion

Abbildung 78: Durch das gemeinsame Schallen des vordispersierten, hydrophoben Laponits mit einer monomerhaltigen Miniemulsion entsteht der endgültige Hybridpartikel.

Die Technik des Co-Sonifizierungsprozesses hatte sich auch schon bei der Verkapselung von organischen Pigmenten152, 153 mit geringem Monomeranteilen von nur 20 Gew.-\% sowie Ruß154 bewährt und wurde analog für die Verkapselung von hohen Laponitgehalten angepasst.

Die wichtigsten Ansätze zur Laponitverkapselung in Polystyrol sind in Tabelle 15 zusammengefasst.

Tabelle 15: Zusammenfassung der wichtigsten Daten styrolbasierender Laponit-Hybridpartikel.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_12</td>
<td>3,3 N1</td>
<td>2,8</td>
<td>-</td>
<td>nein</td>
<td>164</td>
<td>0,284</td>
</tr>
<tr>
<td>_17</td>
<td>1,2 N2</td>
<td>0,7</td>
<td>-</td>
<td>nein</td>
<td>120</td>
<td>0,099</td>
</tr>
<tr>
<td>_19</td>
<td>32 N1</td>
<td>28</td>
<td>100</td>
<td>ja</td>
<td>176</td>
<td>0,115</td>
</tr>
<tr>
<td>_22</td>
<td>23 N1</td>
<td>20</td>
<td>100</td>
<td>ja</td>
<td>1157</td>
<td>1,000</td>
</tr>
<tr>
<td>_33</td>
<td>20 N2</td>
<td>12</td>
<td>080</td>
<td>ja</td>
<td>155</td>
<td>0,186</td>
</tr>
<tr>
<td>_50</td>
<td>16 N2GG</td>
<td>10</td>
<td>100</td>
<td>ja</td>
<td>103</td>
<td>0,143</td>
</tr>
<tr>
<td>_100</td>
<td>23 N10</td>
<td>12</td>
<td>010</td>
<td>ja</td>
<td>133</td>
<td>0,136</td>
</tr>
</tbody>
</table>

* bezogen auf die disperse Phase. \[**\] bezogen auf die Menge hydrophoben Laponits.

Da die direkte Zugabe hydrophoben Laponits zur Monomerphase auf geringe Laponitmengen beschränkt ist, wurde für die weiteren Probenpräparationen der Co-Sonifizierungsprozess gewählt, welcher höhere Mengen an Laponit ermöglicht (siehe Abbildung 79 B). Hierbei wurde das hydrophobe Laponit zuerst mit nicht-ionischem Tensid (z. B. Lutensol AT50/80) durch Ultraschalleintrag (~10 min lang) in der Wasserphase dispergiert, um fein verteilte Dispersionen zu erhalten, deren Partikel laut DLS einen hydrodynamischen Durchmesser zwischen 100 und 200 nm aufweisen.

Die Ergebnisse des Co-Sonifizierungsprozesses mit gering hydrophobisiertem Laponit (N1, Probe ES_HCSP_22) zeigten hauptsächlich eine Anlagerung der Laponitplättchen an die Oberfläche der Polystyrolpartikel (siehe Abbildung 79 B). Dies kann als ein Indiz für eine nicht ausreichende Hydrophobisierung gedeutet werden, welche zur Folge hat, dass die Position an der Grenzfläche für das Laponit energetisch günstiger ist als innerhalb der Polymermatrix. Bei dieser Probe wurde ein Gehalt von ca. 23 Gew.-% hydrophoben Laponits (entspricht 20 Gew.-% reinen Laponits), bezogen auf die disperse Phase, bei einer Lutensol AT50 Menge von 80 Gew.-%, bezogen auf das hydrophobe Laponit, verwendet.
Insgesamt konnten mit dem gering hydrophobisierten Laponit N1 sowohl Teilverkapselungen als auch Anlagerung des Laponits an der Oberfläche der Polystyrolpartikel erreicht werden (siehe Abbildung 79). Um die Verkapselungsraten noch weiter zu erhöhen, wurden für die weiteren Verkapselungsversuche stärker hydrophobisierte Laponite verwendet.

Es zeigte sich, dass die direkte Dispergierung des stärker hydrophobisierten Laponits (N2) in der Monomerphase aufgrund von Thixotropieeffekten weniger gut möglich (max. 2 Gew.-%) als bei dem geringer hydrophobisierten Laponit (max. 5 Gew.-%) ist. In den TEM-Aufnahmen ist entsprechend nur sehr wenig Laponit auszumachen (siehe Abbildung 82 A). Für sämtliche weiteren Versuche wurde daher auch bei stärker hydrophobisierten Laponiten der Co-Sonifizierungsprozess gewählt. In Abbildung 81 ist eine typische Aufnahme eines in Wasser redispergierten hydrophoben Laponits gezeigt.

![Abbildung 81: Mit nicht ionischem Tensid redispergiertes, hydrophobes Laponit. Deutlich sind einzelne Laponitpartikel in der Größe von 100-200 nm zu erkennen.](image)

Deutlich sind einzelne Laponitpartikel in der Größe von 100-200 nm zu erkennen, wie sie anschließend auch für die weiteren Verkapselungen über den Co-Sonifizierungsprozess verwendet wurden.

die disperse Phase. Deutlich sind in den TEM-Aufnahmen ca. 150 nm große Partikel zu erkennen, die nicht nur Laponit auf der Oberfläche, sondern auch inkorporierte Laponitplättchen zu enthalten scheinen.

Um zu zeigen, dass die Laponitplättchen nicht nur durch die Präparation der TEM-Proben an die Partikel angelagert erscheinen, sondern wirklich mit den Polymerpartikeln eine Einheit gebildet haben, wurden zusätzlich zu den TEM-Aufnahmen Dichtegradienten zur Analyse benutzt. Hierbei werden verschieden stark konzentrierte Zuckerlösungen (von 1-1,3 g/ml) übereinander geschichtet und der zu untersuchende Latex über den entstehenden Gradienten zentrifugiert. Dabei trennen sich die verschiedenen Latexbestandteile entsprechend ihrer Dichte auf (siehe Abbildung 83).
Ergebnisse und Diskussion

Abbildung 83: Zuckerdichtegradienten im Vergleich, A) reines Polystyrollatex, B) dispergiertes Laponit, C)-F) verkapseltes Laponit in Styrol bzw. PMMA.

Hierbei ist deutlich zu erkennen, dass reines Polystyrollatex mit einer Dichte von <1,058 g/cm³ sich nur im oberen Abschnitt zeigt. Reines dispergiertes Laponit ist im Gegensatz dazu im Gradienten nicht zu erkennen und befindet sich aufgrund seiner Dichte von >2 g/ml am Boden des Zentrifugenröhrchens. Sämtliche weiteren Hybridlatizes zeigen deutlich Banden in Zuckerlösungen von 1,0-1,3 g/ml; dies deutet zum einen auf die Anwesenheit von nahezu reinen Polystyrolpartikeln sowie zum anderen auf Latexpartikel mit einer Dichte >1,1 g/ml hin. Hierbei kann es sich nicht nur um Gemische aus Polystyrol und Laponit handeln, sondern es liegen nachweislich Hybridpartikel aus Polystyrol und Laponit vor. Nach den ersten erfolgreichen Verkapselungen, die zeigten, dass sich sowohl stark hydrophobisiertes Laponit (mit > 36 Gew.-% Organik) als auch die Vordispergierung des Laponits zum Einbringen von größeren Laponitmengen in Polystyrolkolloide bewährt hatte, wurde aufbauend auf diesen Versuche das System weiter optimiert. Die Hauptziele lagen dabei in einer besseren Verkapselung durch noch stärker hydrophobisierte Laponite sowie die Reduzierung des für die Vordispergierung nötigen nicht-ionischen Tensids.

Ergebnisse und Diskussion

In Abbildung 84 ist eine Probe hergestellt mit Laponit N2GG (39 Gew.-% Organik) gezeigt, welche noch mit einer gleichen Menge Lutensol AT50, bezogen auf das hydrophobe Laponit N2GG, vordispergiert wurde (ES_HCSP_50). Deutlich sind Polystyrolpartikel von ca. 50-100 nm zu erkennen. Das Laponit scheint hierbei hauptsächlich in den größeren Partikeln vorzuliegen. Es handelt sich somit um ein eher heterogenes System, in dem laponithaltige und laponitfreie Partikel nebeneinander vorliegen. Dies könnte entweder auf eine zu geringe Vordispergierung des Laponits oder, hervorgerufen durch den hohen Tensideinsatz, auf zu kleine Monomertröpfchen im Verhältnis zu den teilweise bis zu 80 nm großen Laponitplättchen zurückzuführen sein.

Im Vergleich dazu ist in Abbildung 85 ein laponithaltiges Polystyrollatex gezeigt, bei dem das am stärksten hydrophobisierte Laponit N10 (46 Gew.-% Organik) vorher mit nur 10 Gew.-% Lutensol AT50, bezogen auf das Laponit, vordispergiert wurde (ES_HCSP_100). Insgesamt sind die Partikel etwas größer (~200 nm) als bei der oben genannten Probe, jedoch ist hier das Laponit, wenn auch etwas stärker agglomeriert, in einzelnen Partikeln verteilt. Dies ist darauf zurückzuführen, dass neben dem Lutensol AT50 auch das überschüssige DDAB mit Laponit wechseldringt und somit zu einer besseren Dispergierbarkeit der einzelnen Laponitplättchen führt. Es sind in den TEM-Aufnahmen (siehe Abbildung 85) dieser Probe insgesamt nur wenige komplett laponitfreie Partikel zu erkennen. Die Zusammenfassung der DLS-Daten

Abbildung 84: Laponit-Polystyrol-Hybridpartikel (ES_HCSP_50), hergestellt mit stark hydrophobisierten Laponit N2GG, das mit gleicher Menge Lutensol AT50 redispergiert wurde. Deutlich sind laponithaltige Partikel in der Größe von ca. 100 nm sowie Partikel von ca. 50 nm mit wenig Laponit zu erkennen, (rote Pfeile: Laponitplättchen).
findet sich in Tabelle 15. Auch bei diesen zeigen sich größere Partikel in der Probe, die mit weniger Lutensol AT50 hergestellt wurde.

Tabelle 16: Röntgenbeugungs- und TGA-Daten styrolbasierender Hybridpartikel.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_HCSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-33</td>
<td>2,5-3,0</td>
<td>3,2</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>-50</td>
<td>2,5-3,0</td>
<td>3,0</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>-100</td>
<td>2,5-3,0</td>
<td>3,3</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

* bezogen auf die disperse Phase.

Anschließend wurden die Hybridpartikel mit Röntgenstreuung untersucht, um zusätzliche Informationen zur Verteilung des Laponits innerhalb der Latexpartikel zu erhalten. Prinzipiell ergeben sich drei Möglichkeiten, wie das Laponit im Polymer vorliegen kann (siehe Abbildung 86)⁴.

Werden (hydrophobisierte) Laponitschichten, die ansonsten in Stapeln vorliegen (siehe Abbildung 74 B), mit einer Polymermatrix gemischt, so kann es bei einer vollständigen Phasenseparation bleiben. In diesem Falle liegt das Laponit weiterhin getrennt von dem Polymer vor und zeigt in Röntgenbeugungsversuchen weiterhin deutliche Reflexe. Im zweiten Fall lagert sich das Polymer zwischen die Schichten des Laponitstapels, wodurch es zu einer Aufweitung der Schichtstruktur kommt. Den letzten theoretischen Fall bildet die vollständige Aufspaltung des Laponitstapels, so dass dieser fein verteilt in der Polymermatrix vorliegt und in Röntgenbeugungsversuchen keine Reflexe durch aufeinander folgende Laponitschichten mehr zeigt.

Ergebnisse und Diskussion

Abbildung 87: Röntgenstreuungsdaten von drei laponithaltige Polystyrollatizes. Deutlich sind zwischen Position 2-4° 2Θ Reflexe zu erkennen, die auf zusammenhängende Lapontischichten im Abstand von ~3 nm hindeuten. Das Lapontit der Probe ES_HCSP_100, welches als einziges mit sehr wenig Lutensol vordispergiert wurde, zeigte die deutlichsten Reflexe.

4.2.3. Verkapselung von hydrophoben Laponit RD in Acrylaten

Die durch das Verkapseln von Laponit in Polystyrolpartikeln gewonnen Erkenntnis, dass sich besonders stark hydrophobisiertes Laponit mit > 36 Gew.-% Organika sowie ein Co-Sonifizierungsprozess für die Verkapselung eignet, wurde im Weiteren verwendet, um Laponit in Polyacrylate zu verkapseln (siehe Tabelle 17).

Tabelle 17: Zusammenfassung der wichtigsten Daten acrylatbasierender Laponit-Hybridpartikel.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_76</td>
<td>MMA</td>
<td>23 N10</td>
<td>12</td>
<td>11</td>
<td>143</td>
<td>0.178</td>
</tr>
<tr>
<td>_91</td>
<td>MMA/BA 50/50</td>
<td>20 N10</td>
<td>10</td>
<td>10</td>
<td>125</td>
<td>0.155</td>
</tr>
<tr>
<td>_BIG_5</td>
<td>MMA/BA 50/50</td>
<td>12 N2GG</td>
<td>7</td>
<td>10</td>
<td>140</td>
<td>0.051</td>
</tr>
<tr>
<td>_BIG_5_Ref</td>
<td>MMA/BA 50/50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>228</td>
<td>0.050</td>
</tr>
</tbody>
</table>

* bezogen auf die disperse Phase.
** bezogen auf die Menge hydrophoben Laponits.

Abbildung 88: PMMA-Partikel mit einem Anteil an hydrophoben Laponit von ca. 23 Gew.-% bzw. 12 Gew.-% reinen Laponits (ES_HCSP_76), deutlich sind die einzelnen laponithaltigen Partikel zu erkennen; A) unbehandelte Probe, B) eingebettete Probe geschnitten; (rote Pfeile: Laponitplättchen).

Aufgrund der geringen Stabilität von PMMA im Elektronenstrahl des TEMs sind die Umrisse der einzelnen PMMA-Partikel nur schwer zu erkennen (siehe Abbildung 88 A). Deutlich sind aber in der eingebetteten und geschnittenen Probe sehr dunkle Stellen auszumachen (siehe Abbildung 88 B). Aufgrund des starken Kontrasts von Laponit zu Polymer ist zu erwarten, dass es sich hierbei um einzelne laponithaltige Partikel handelt. Der Dichtegradient zeigt deutliche Banden bei einer Dichte von 1,2-1,3 g/ml (siehe Abbildung 89). Dies lässt sich bei einer Dichte von reinem PMMA von ~1,1 g/ml nur durch das Vorhandensein von Hybridpartikeln erklären. Die Partikel weisen laut DLS einen hydrodynamischen Durchmesser von 143 nm auf.

Abbildung 90: A) TEM-Aufnahme eines 50/50 BA/MMA-Latexes (Probe ES_HCSP_91) mit einem Anteil von 20 Gew.-% eines sehr hydrophoben Laponits (N10), B) Aufnahme eines frisch präparierten Films dieser Probe (Dicke ca. 0,16 mm), (rote Pfeile: Laponitplättchen).
Ergebnisse und Diskussion

In der TEM-Aufnahme sind deutlich einzelne laponithaltige Partikel in der Größe von 120 bis 200 nm auszumachen. Das Laponit liegt somit im Latex weitgehend fein verteilt vor. Der aus dieser Probe präparierte Film zeigt eine sehr hohe Transparenz, was ebenso auf eine feine Verteilung des Laponits innerhalb der Polymermatrix schließen lässt. Betrachtet man die Röntgenbeugungsdaten (siehe Abbildung 91, Tabelle 18), so sind weiterhin von 2-3° bei 2Θ (entspricht ca. 3 nm Abstand) Reflexe zu erkennen.

Abbildung 91: Röntgenbeugungsdaten zweier ausgewählter Proben (ES_HCSP_76, _91). Bei Position 2-3° 2Θ (ca. 3 nm) sind weiterhin Reflexe zu erkennen.

Tabelle 18: Röntgenbeugungs- und TGA-Daten acrylatbasierender Hybridpartikel.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_76</td>
<td>2,7</td>
<td>3,1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>_91</td>
<td>2,2-2,6</td>
<td>3,4-4,0</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>_BIG_5</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

* bezogen auf die disperse Phase.

Die Röntgenbeugungsmessung deutet darauf hin, dass bei dieser Probe zusätzlich Laponitschichten als Agglomerate vorliegen.

Die TGA-Messungen der Polymerproben ES_HCSP_76 (MMA) und ES_HCSP_91 (MMA/BA) zeigen, dass beide Proben mindestens 10 Gew.-% reinen Laponits enthalten, was nahezu 100% des zuvor eingesetzten hydrophoben Laponits entspricht.
Abbildung 92: TGA-Messungen der Polymerproben ES_HCSP_76 (MMA) und ES_HCSP_91 (MMA/BA). Deutlich ist zu erkennen, dass beide Proben mindestens 10 Gew.-% reinen Laponits enthalten, was nahezu 100% des zuvor eingesetzten hydrophoben Laponits entspricht.

Abschließend wurde eine 7 Gew.-% reinen Laponits (entspricht ca. 12 Gew.-% N2GG) enthaltende Probe mit einer 50/50 BA/MMA-Mischung hergestellt, um die Vergleichbarkeit mit den durch andere Techniken hergestellten Proben der weiteren teilnehmenden Institute zu gewährleisten. Hierfür wurde das stark hydrophobisierte Laponit (N2GG, 39 Gew.-% Organika) mit 10 Gew.-% Lutensol AT50 vordispergiert und anschließend mit der Monomerminiemulsion vereinigt. Während der Polymerisation dieser Probe, die bei 72 °C erfolgte, wurde eine Kalorimetermessung durchgeführt (siehe Abbildung 93).

Abbildung 93: Kalorimeterdaten (über 200 Punkte geglättet) der Probe ES_HCSP_BIG_5 mit 7 Gew.-% reinem Laponit. Deutlich ist zu erkennen, dass nach ca. 2500 s der Großteil der Polymerisation erfolgt ist, nach 6000 s ist nur noch eine geringe Wärmeabgabe auszumachen. Nach spätestens 10000 s ist keine Wärmeabgabe mehr zu messen.
Ergebnisse und Diskussion

Dabei zeigte sich, dass zwar nach ca. 1 h der Großteil der Polymerisation erfolgt ist, jedoch dass nach 2 h noch eine geringe Wärmeabgabe auszumachen ist. Die Polymerisation der Probe war nach einer Reaktionsdauer von 4 h vollständig beendet. Der Monomerumsatz wurde anschließend durch die durchgeführte Restmonomerbestimmung mittels HPLC untersucht. Aus den Elugrammen geht durch Vergleich mit einer Referenzprobe hervor, dass sich nur noch ca. 0,12% Restmonomer in der Probe befinden und die Polymerisation nahezu vollständig verlaufen ist. Das Laponit zeigt somit keinen störenden Einfluss auf die Polymerisierbarkeit der Acrylate. Auffällig ist die geringe Partikelgröße, welche laut DLS 140 nm beträgt. Da reine Polymerpartikel, hergestellt nur mit entsprechenden Mengen Lutensol AT50 eine Größe von > 200 nm aufweisen, legte dies die Vermutung nahe, dass zusätzlich zum Lutensol AT50 auch freies kationisches Tensid aus der Laponitdispersion an der Bildung des Polymerlatexes beteiligt war. Eine ζ-Potentialmessung ergab ein positives Potential von +36 mV. Dies ist ein weiteres Indiz dafür, dass zusätzlich freies kationisches Tensid an der Stabilisierung der Miniemulsion partizipiert. Die TEM-Aufnahmen (siehe Abbildung 94) dieser Probe zeigen bis auf wenige Agglomerate sehr fein verteiltes Laponit innerhalb der Polymermatrix.

Deutlich sind die Umrisse der Einzelpartikel auszumachen. In diesen liegt das Laponit als Einzelschichten oder in wenigen Doppelschichten verteilt vor. Es sind keine geordneten Schichtstrukturen mehr zu erkennen, wie in den Aufnahmen des reinen hydrophoben Laponits (vergleiche Abbildung 74). Auch die Röntgenbeugungsdaten zeigen keine eindeutigen
Ergebnisse und Diskussion

Abbildung 95: Röntgenstreuungsaufnahme von Probe ES_HCSP_BIG_5. Es sind keine eindeutigen Reflexe zu erkennen, die auf größere Agglomerate von Laponitschichten hindeuten.

Wie die TGA-Messungen zeigen, wurde der angestrebte Laponitgehalt von 7 Gew.-% reinen Laponits genau erreicht. Die Probe (ES_HCSP_BIG_5) zeigte in einer Zug-Dehnungsmessung an einem daraus präparierten Film verbesserte mechanische Eigenschaften gegenüber einer laponitfreien Referenzprobe. Sowohl die maximale Dehnung als auch die maximale Spannung liegen ca. 15% über der der Referenzprobe (siehe Abbildung 96). Studien mit 7 Gew.-% Montmorillonit in Polyimid weisen vergleichbare Ergebnisse auf. Weitere mechanische Tests an anderen Instituten sollten im Rahmen des EU-Projekts in zukünftigen Versuchen folgen.
4.3. Verkapselung von wässrigen Lösungen mittels inverser Miniemulsionstechnik

4.3.1. Verkapselung von Borax

4.3.1.1. Verkapselung von Borax durch Polymerfällung

Tabelle 19: Ansatzmengen und Ergebnisse zur Verkapselung in PMMA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B_17</td>
<td>0,5 (2,1%ig)</td>
<td>20</td>
<td>15,4</td>
<td>7,1</td>
<td>300 in 1,3</td>
<td>208</td>
<td>0,189</td>
</tr>
</tbody>
</table>

In Abbildung 97 A sind stabilisierte, ca. 100-300 nm große Partikel aus Borax zu sehen, die im Anschluss über eine Polymerfällung verkapselt wurden.
Ergebnisse und Diskussion

Aus oben genannten Gründen wurde zur einfacher durchführbaren Grenzflächenpolymerisation gewechselt.

4.3.1.2. Verkapselung von Borax in Polyharnstoff

Als Alternative zu PMMA-Kapseln wurde zu Polyharnstoffkapseln gewechselt\(^\text{118}\). Für deren Herstellung wurde zusätzlich Diethylentriamin (DET) als Monomer zur dispersen Phase gegeben. Nach der Ultraschallanwendung wurde über die kontinuierliche Phase anschließend eine äquivalente Menge 2,4-Toluoldiisocyanat (TDI) als zweites Monomer hinzugetropft, und es bildeten sich durch Grenzflächenpolymerisation Kapseln aus. Insgesamt wurden für die Bildung der Kapseln in diesem Fall 23 Gew.-% Monomere, bezogen auf die disperse Phase, eingesetzt. Für die ersten erfolgreichen Versuche wurde ein Gemisch aus 20 Gew.-%
Ergebnisse und Diskussion

Dichlormethan und 80 Gew.-% Cyclohexan, sowie Poly(ethylen-co-butyl-en-b-ethylenoxid) als Tensid verwendet (siehe Abbildung 99, Tabelle 20, Probe B20). In weiteren Versuchen wurde das System dahingehend optimiert, dass für die kontinuierliche Phase, bei vollständigem Verzicht auf Dichlormethan, nur noch Cyclohexan sowie das kommerziell erhältliche Tensid Lubrizol verwendet wurden (siehe Abbildung 98).

Abbildung 98: Strukturformel des für die inverse Verkapselung von Ammoniumzirkoniumcarbonat verwendeten Tensids Lubrizol.

Lubrizol ist aus einer Polyisobutylenkette, an die über ein Succinimid ein Polyethylenamin angebunden ist, aufgebaut. Ein weiterer Vorteil, der sich aus der Verwendung von Lubrizol ergibt, ist die Tatsache, dass auch die Aminogruppen des Lubrizol mit TDI reagieren können. Dadurch dient Lubrizol nicht nur einfach als Tensid, sondern kann aktiv mit in die entstehende Polymerhülle eingebaut werden (siehe Tabelle 20, Probe B52).

Der Verzicht auf Dichlormethan bzw. die Verwendung eines kommerziellen Tensids stellen insbesondere bei einer industriellen Anwendung einen großen Vorteil bei der Prozessierbarkeit sowie Verfügbarkeit dar.

Tabelle 20: Ansätze und Ergebnisse für die Boraxverkapselung in Polyharnstoff.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B20</td>
<td>1</td>
<td>0,1</td>
<td>100</td>
<td>-</td>
<td>8,7</td>
<td>1,3</td>
<td>0,2</td>
<td>224</td>
<td>0,158</td>
</tr>
<tr>
<td>B52</td>
<td>5</td>
<td>0,5</td>
<td>-</td>
<td>500</td>
<td>100</td>
<td>-</td>
<td>1</td>
<td>233</td>
<td>0,156</td>
</tr>
</tbody>
</table>

Sowohl die Kapseln der Probe B20 bzw. B52 weisen im TEM eine relativ breite Größenverteilung mit Durchmesser von 50-500 nm auf, was häufig bei inversen Miniemulsionssystemen zu beobachten ist\(^\text{159}\). In den TEM-Aufnahmen sind in beiden Fällen deutliche Kapselstrukturen zu erkennen, wobei die Wanddicke der Kapseln zwischen 10 und 20 nm beträgt (siehe Abbildung 99 und Abbildung 100 A). Es zeigte sich, dass mit den angepassten Systemen (reines Cyclohexan als kontinuierliche Phase, Einsatz des kommerziellen Tensids Lubrizol) ähnlich gute Ergebnisse bezüglich der Kapselbildung und Partikelgrößenverteilung erzielt werden konnten.
Ergebnisse und Diskussion

Abbildung 99: 1,5 Gew.-% Borax enthaltende Kapseln in unterschiedlichen Vergrößerungen, hergestellt durch Grenzflächenpolymerisation zu Polyharnstoff (B_20), direkt aus der organischen Phase präpariert.

Anschließend wurden die Redispergierungseigenschaften der Probe B52 in Wasser untersucht. Für die Redispergierung wurden die Kapseln zuerst durch Gefriertrocknung vom Cyclohexan befreit, um anschließend in einer Wasser/SDS-Lösung erneut dispergiert zu werden. Wie in TEM-Aufnahmen zu erkennen ist, zeigen die in Cyclohexan weitgehend intakt erscheinenden Kapseln (Abbildung 100 A) bei der Anwesenheit von Wasser Defektstrukturen (Abbildung 100 B), entweder hervorgerufen durch einen, für Polykondensationen nicht unüblichen, geringen Polymerisationsgrad oder eine Depolymerisation (Probe B_52).

Die Redispergierung zeigte, dass die Polyharnstoffkapseln im wässrigen Medium anscheinend geöffnet vorliegen und somit sehr schnell ihren Wirkstoff freisetzen können.

Abbildung 100: A) Boraxkapseln (4 Gew.-%ige Boraxlösung) aus Polyharnstoff aus der Cyclohexanphase (B_52), B) In Wasser redispergierte Kapseln derselben Probe.

4.3.2. Verkapselung kommerzieller Ammoniumzirkoniumcarbonat-Vernetzer

4.3.2.1. Verkapselungen von Ammoniumzirkoniumcarbonat-Vernetzern in Polyharnstoff

Zur Verkapselung von Ammoniumzirkoniumcarbonat-Vernetzern (AZC) in Polyharnstoffkapseln, wurden ähnliche Prozeduren wie für die Boraxkapseln angewendet. Der AZC-Lösung wurde DET hinzugefügt, die kontinuierliche Phase bestand aus Cyclohexan und als Tensid wurde Lubrizol verwendet. Nach der Ultraschallbehandlung wurde zur Miniemulsion TDI hinzugepumpt, um Polyharnstoffkapsel zu erzeugen. Es wurden zwei Proben mit unterschiedlichen Monomermengen präpariert, um das unterschiedliche Verhalten analoger
Ergebnisse und Diskussion

Proben bei der Verwendung unterschiedlich dicker Schalen genauer zu untersuchen. Die wichtigsten Daten sind in Tabelle 21 zusammengefasst.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ICI_1</td>
<td>150</td>
<td>15</td>
<td>11,2</td>
<td>600</td>
<td>30</td>
<td>15</td>
<td>210</td>
<td>0,323</td>
</tr>
<tr>
<td>ICI_2</td>
<td>150</td>
<td>30</td>
<td>11,2</td>
<td>600</td>
<td>60</td>
<td>26</td>
<td>257</td>
<td>0,235</td>
</tr>
</tbody>
</table>

Im Folgenden wurden als weitere Technik die in situ Fällungspolymerisationen verschiedener Acrylate und Acrylatmischungen zur Bildung von Kapselstrukturen mit variablen Eigenschaften näher untersucht.
Abbildung 101: Veränderung der Kapselstabilität bei zwei Kapseln unterschiedlicher Dicke, mit 15 nm (A-C, ICI_1) und 26 nm (I-III, ICI_2) nach der Redispergierung in Wasser; die unterschiedliche Erscheinung der Proben kommen durch Kontrastunterschiede zustande: A), I) vor der Redispergierung, B), II) direkt nach Redispergierung, C), III) nach 7 Tagen.
4.3.2.2. Verkapselung von Ammoniumzirkoniumcarbonat-Vernetzern in Polymethacrylat

Abbildung 102: Schema der Fällungspolymerisation. Aus löselichem Monomer (rot) wird im ersten Schritt unlöseliches Polymer gebildet, welches im zweiten Schritt auf den Kolloiden ausfällt und eine Hülle bildet.

Für diese wird ein in der kontinuierlichen Phase lösliches Monomer verwendet, wobei das entstehende Polymer nicht in der kontinuierlichen Phase löslich ist, und im Idealfall auf den dispergierten Partikeln ausfällt.

Da erste Versuche aufgrund von Instabilitäten bei der Verwendung von Methylmethacrylat fehlgeschlagen, wurden für die Polymerisation Gemische aus Methylacrylat, welches sowohl hydrophiler (und somit grenzflächenaktiver) ist als auch ca. 10x schneller als Methylmethacrylat polymerisiert\(^\text{160}\), und Methacrylsäure für eine noch höhere Grenzflächenaktivität gewählt. Die diskutierten Ansätze und Ergebnisse sind in Tabelle 22 zusammengefasst.

Tabelle 22: Ansätze und Ergebnisse für die Fällungspolymerisation mit Polymethacrylat.

<table>
<thead>
<tr>
<th>Probe</th>
<th>AZC-Lösung [%]*</th>
<th>Lubrizol [%]**</th>
<th>Initiator V65 [%]**</th>
<th>Methylacrylat [%]**</th>
<th>Methacrylsäure [%]**</th>
<th>Durchm. DLS [nm]</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>15</td>
<td>1</td>
<td>30</td>
<td>3,0</td>
<td>121</td>
<td>0,457</td>
</tr>
<tr>
<td>3G</td>
<td>20</td>
<td>30</td>
<td>1</td>
<td>30</td>
<td>3,0</td>
<td>203</td>
<td>0,233</td>
</tr>
<tr>
<td>4G</td>
<td>17</td>
<td>15</td>
<td>1</td>
<td>30</td>
<td>0,3</td>
<td>281</td>
<td>0,125</td>
</tr>
<tr>
<td>5G</td>
<td>20</td>
<td>15</td>
<td>1</td>
<td>60</td>
<td>-</td>
<td>735</td>
<td>0,178</td>
</tr>
</tbody>
</table>

* Vol.-% bezogen auf die kontinuierliche Phase, ** Gew.-%, bezogen auf AZC-Lösung in ml.
Sämtliche folgenden Gew.-Prozentangaben beziehen sich, falls nicht anders vermerkt, auf die AZC-Lösung in ml bzw. auf eine definierte Dichte von 1 g/ml (real: ~1,4 g/ml), da für die Tensidwirkung bzw. Verkapselung das Volumen und nicht die Masse entscheidend sind. So ist die Vergleichbarkeit mit anderen wässrigen Systemen leichter möglich. Die in Abbildung 103 gezeigte Probe (Zr_MA_1) wurde bei einem Lubrizolgehalt von 15% mit 33% einer 10%-igen Methacrylsäure/Methylacrylat Mischung bei 50 °C mit V65 24 h lang polymerisiert.

Abbildung 103: TEM-Aufnahmen in unterschiedlichen Vergrößerungen von AZC Partikel (Probe Zr_MA_1) hergestellt mit einer 10%-igen Methacrylsäure/Methylacrylat-Mischung. Bei einem Partikeldurchmesser von ca. 100 nm ist eine Schale von ca. 10 nm Dicke auszumachen.

In den TEM-Aufnahmen ist deutlich zu erkennen, dass sich stabile Partikel mit, laut DLS, einem mittleren Durchmesser von 121 nm und einem PDI von 0,457 gebildet haben. In den TEM-Aufnahmen sind deutlich Partikel zwischen 50 und 150 nm zu sehen, die von einer Polyacrylatschale umgeben zu sein scheinen (siehe Abbildung 103 B). Eine genaue Aussage zur Schalendicke ist aufgrund der Elektronensensitivität von Acrylaten, welche ein Schrumpfen der Partikel im Elektronenstrahl des TEMs bewirkt, nicht machbar.

Die Bestimmung des optimalen Lubrizolgehalts zeigte, dass ein Lubrizolgehalt unter 7% keine ausreichende Stabilisierung der Dispersion mehr gewährleistet. Ein Lubrizolgehalt von 30%, wie am Beispiel von Probe Zr_MA_3G (siehe Abbildung 104) ist ausreichend, um sehr kleine Partikel, die im TEM eine Größe von deutlich unter 100 nm erreichen, zu erzeugen. Teilweise treten sogar Partikel in der Größenordnung von nur 10 nm auf, die aufgrund des Verhältnisses von benötigtem Schalenmaterial zum verkapselten Wirkstoff für eine effektive Verkapselung kaum mehr geeignet erscheinen.

Wie in den TEM-Aufnahmen dieser Probe sehr gut zu erkennen ist, haben sich AZC-Partikel in der Größe von 100-200 nm gebildet. Des Weiteren ist zu erkennen, dass die Partikel eine überdurchschnittlich hohe Homogenität aufweisen, die ebenso durch den hohen Gehalt an Lubrizol erklärbar ist. Eine klare Kapselmorphologie ist aufgrund der geringen T_gs des verwendeten Methylacrylates ($T_g = 13 \, ^{\circ}C$) nicht zu erkennen, da die Partikel untereinander verschmelzen. Dadurch scheinen die Partikel in einer einzigen Polymermatrix vorzuliegen. Die erkennbare hemisphärische Morphologie könnte auf Trocknungsartefakte des AZC-Vernetzers oder eine Januspartikelbildung zurückzuführen sein. Zusätzlich wurde bei dieser Probe der Methacrylsäuregehalt auf 1% bezogen auf die Monomermischung gesenkt. Nach 24 h im wässrigen Medium scheinen die redispergierten Proben aufgebrochen zu sein, was auf eine nicht perfekte Verkapselung bzw. einen zu hohen osmotischen Druck in den Kapseln zurückzuführen sein kann. Möglicherweise reicht der niedrige T_g von Methylacrylat mit 13 °C nicht aus, um eine höhere Kapselstabilität zu gewährleisten. Im TEM ist die vormaligen Kapselstrukturen allerdings weiterhin zu erahnen (siehe Abbildung 106). Sie weisen deutliche Löcher in der Hüllenstruktur auf. Des Weiteren bildete sich aus der redispergierten Probe nach wenigen Tagen ein Gel, was zusätzlich ein Zeichen für permeable Kapseln, aus denen Vernetzer austritt und aktiv wird, ist.

In Abbildung 107 ist die mit reinem Methylacrylat hergestellte Probe zu sehen. Auch bei dieser bildeten sich in Cyclohexan Partikel aus, die in den TEM-Aufnahmen kapselartig erscheinen. Auch aus diesen wurde der Wirkstoff im wässrigen Medium nach kurzer Zeit freigesetzt, was an einer deutlichen Gelbildung zu erkennen war. Insgesamt zeigte sich, dass

Mit dieser neuen Methodik der in situ-Polymerfällung über Miniemulsionsprozesse lassen sich prinzipiell permeable Kapseln bilden. Im Weiteren wurde aufbauend auf diesen Versuchen erneut die Verkapselung in PMMA durch Fällungspolymerisation aufgegriffen, jedoch mit vorheriger Stabilisierung durch Bildung einer Polyharnstoffkapsel. Ziel war die Herstellung einer möglichst stabilen Kapsel, die auch in wässriger Umgebung lang anhaltend stabil bleibt.

4.3.2.3. Verkapselung von Ammoniumzirkoniumcarbonat-Vernetzern in Polymethylmethacrylat

Erste Versuche zeigten, dass es aufgrund zu geringer Emulsionsstabilität nicht möglich ist, mit Methylmethacrylat direkt zu verkapseln. Deswegen wurde dazu übergegangen, erst stabile Polyharnstoffkapseln zu erzeugen und diese anschließend durch in situ Fällungspolymerisation von PMMA zu verstärken. PMMA weist hierbei im Vergleich zum PMA einen deutlich höheren T_g von ca. 105 °C auf, so dass es sich für die Präparation sehr harter

<table>
<thead>
<tr>
<th>Probe</th>
<th>AZC-Lösung [%]*</th>
<th>Lubrizol [%]**</th>
<th>Monomerzugabe [%]**</th>
<th>Durchmesser DLS [nm]</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr_MMA_BIG_1A</td>
<td>10</td>
<td>5</td>
<td>23</td>
<td>231</td>
<td>0,342</td>
</tr>
<tr>
<td>Zr_MMA_6_A</td>
<td>5</td>
<td>15</td>
<td>30</td>
<td>138</td>
<td>0,209</td>
</tr>
</tbody>
</table>

* Vol.-% bezogen auf die kontinuierliche Phase, ** Gew.-% bezogen auf AZC-Lösung in ml.

Tabelle 24: Ansatzmengen und Ergebnisse zweier AZC-Dispersion mit Polyharnstoff und PMMA-Schale.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Kern-Latex</th>
<th>MMA-Zugabe [%]*</th>
<th>Durchmesser DLS [nm]</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr_MMA_BIG_1C</td>
<td>Zr_MMA_Big_1A</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zr_MMA_6_B</td>
<td>Zr_MMA_6A</td>
<td>50</td>
<td>3965</td>
<td>0,171</td>
</tr>
</tbody>
</table>

* Gew.-% bezogen auf AZC-Lösung in ml.

Sowohl die Herstellung von Polyharnstoffkapseln als auch die anschließende Verstärkung durch zusätzliche PMMA-Schalen konnte in beiden Fällen durchgeführt werden. Bei der Probe Zr_MMA_BIG_1, die mit nur 5 Gew.-% Lubrizol hergestellt wurde, ist anzumerken, dass insbesondere die Homogenität sowie auch die Größe einiger Partikel unvorteilhaft sind. Die Partikelgröße variierte von unter 100 nm bis ca. 800 nm (siehe Abbildung 108 A). Die Bildung der zusätzlichen PMMA-Schale führte in diesem System nur zu teilweise stabilen Partikeln, wobei vermutlich die starke Inhomogenität bzw. die teilweise sehr großen Partikel sich negativ auf die Stabilisierung des Gesamtsystems auswirkten (siehe
Ergebnisse und Diskussion

Abbildung 108: Proben Zr_MMA_Big_1 A/C, als Großansatz hergestellt in Cyclohexan mit 5% Lubrizol. A) reine Polyharnstoffkapseln, B) zusätzlich PMMA verstärkte Kapseln.

Abbildung 109: Proben Zr_MMA_6_A und Zr_MMA_6_B, hergestellt in Cyclohexan. A) reine Polyharnstoffkapsel, B) mit zusätzlicher PMMA-Schicht.

Zur Überprüfung der Langzeitkapselstabilität wurden diese Proben 2 Monate lang im wässrigen Medium belassen und anschließend wieder im TEM betrachtet (siehe Abbildung 111).

Deutlich sind die Kontrastunterschiede zwischen der umgebenden Schicht, bei der es sich wahrscheinlich um PMMA handelt, sowie dem dunklen Kernmaterial aus AZC zu erkennen.
Ergebnisse und Diskussion

Abbildung 113: Aufnahmen eines Tests zur Bestimmung des Zirkoniumgehaltes mit Xylenolorange. Deutlich ist zu erkennen, dass im wässrigen Dispergiermedium der homogenen Proben ES\textsubscript{Zr, MMA 6} A/B im Gegensatz zu den instabilen und inhomogenen Proben ES\textsubscript{Zr, MMA Big 1} A/C keine Rotfärbung zu erkennen ist.

Jedoch ist deutlich zu erkennen, dass die Proben Zr\textsubscript{MMA 6} A/B, welche auch in der TEM-Analyse nach der Dispergierung stabile Kapseln zeigten, keine bzw. nur eine sehr schwache Rotfärbung aufweisen. Dies deutet auf einen sehr geringen Gehalt an freiem Zirkonium in der Wasserphase hin und bestätigt somit die durch TEM-Aufnahmen getroffene Einschätzung von stabilen Kapseln. Auch die Freisetzung direkt aus den getrockneten Kapseln wurde untersucht. Hierbei zeigte sich, dass die als stabil erachteten Kapseln (Zr\textsubscript{MMA 6} A/B) eine deutlich langsamere Freisetzung im stark sauren Medium zeigten, als die instabilen Kapseln (Zr\textsubscript{MMA Big 1} A/C). Erst nach ca. 10 min waren die stabilen Kapseln so weit geöffnet, dass sich auch hier die Lösung rot färbte. Die Kapseln scheinen somit im Sauren stabil zu werden, jedoch konnte gezeigt werden, dass die als stabil betrachteten Kapseln eine deutlich langsamere Freisetzung als die Referenzproben zeigten.
5. Experimenteller Teil

Im Folgenden werden die allgemeinen Vorgehensweisen zur Darstellung der in dieser Arbeit aufgeführten Proben beschrieben.

5.1. **Herstellung von alkoholhaltigen (Mini-)Emulsionen**

Styrol (Merck) wird vor der Verwendung über eine Aluminiumoxidsäule gereinigt. Natriumdodecylsulfat (Merck), Laurinsäure (Merck), Lutensol AT50 (BASF), Hexadekan (Merck, 99%), V59 (Wacko) und Ethanol sowie Isopropanol (Merck, LabGrade) werden ohne weitere Aufreinigung verwendet.

5.1.1. **Herstellung von ethanolhaltigen Miniemulsionen mit SDS**

Für die Darstellung von ethanolhaltigen Miniemulsionen werden als disperse Phase 600 mg Styrol, 25 mg Hexadekan und 10 mg V59 als Initiator miteinander vermischt. Als kontinuierliche Phase werden 2,4 g einer 0-15 Gew.-% Ethanol/Wasser Mischung mit 3-24 mg SDS verwendet. Die beiden Phasen werden miteinander vermischt und 1 h lang bei RT gerührt. Anschließend wird die Probe 3 min lang bei 70% Amplitude unter Eiskühlung geschallt (1/4 Zoll Spitze, Branson Sonifier W450D). Danach wird die Probe bei 72 °C unter leichtem Rühren (300 U/min) 9 h im Kalorimeter polymerisiert.

Tabelle 25: Ansätze zur Untersuchung des Einflusses des Ethanolgehaltes auf den Miniemulsionsprozess.

<table>
<thead>
<tr>
<th>Ethanolanteil \ SDS</th>
<th>3 mg</th>
<th>6 mg</th>
<th>12 mg</th>
<th>24 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Gew.-%</td>
<td>M02</td>
<td>M04</td>
<td>M06</td>
<td>M08</td>
</tr>
<tr>
<td>5 Gew.-%</td>
<td>M10</td>
<td>M12</td>
<td>M14</td>
<td>M16</td>
</tr>
<tr>
<td>10 Gew.-%</td>
<td>M18</td>
<td>M20</td>
<td>M22</td>
<td>M24</td>
</tr>
<tr>
<td>15 Gew.-%</td>
<td>M26</td>
<td>M28</td>
<td>M30</td>
<td>M32</td>
</tr>
</tbody>
</table>

5.1.2. **Herstellung von ethanolhaltigen Emulsionen mit SDS**

Für die Darstellung von ethanolhaltigen Miniemulsionen werden als disperse Phase 600 mg Styrol und 10 mg V59 als Initiator miteinander vermischt. Als kontinuierliche Phase werden 2,4 g einer 0-15 Gew.-% Ethanol/Wasser Mischung mit 3-24 mg SDS verwendet. Die beiden Phasen werden miteinander vermischt und 1 h lang bei RT gerührt. Danach wird die Probe bei 72 °C unter leichtem Rühren (300 U/min) 9 h im Kalorimeter polymerisiert.
Tabelle 26: Ansätze zur Untersuchung des Einflusses des Ethanolgehaltes auf den Emulsionsprozess.

<table>
<thead>
<tr>
<th>Ethanolanteil \ SDS</th>
<th>3 mg</th>
<th>6 mg</th>
<th>12 mg</th>
<th>24 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Gew.-%</td>
<td>E01</td>
<td>E03</td>
<td>E05</td>
<td>E07</td>
</tr>
<tr>
<td>5 Gew.-%</td>
<td>E09</td>
<td>E11</td>
<td>E13</td>
<td>E15</td>
</tr>
<tr>
<td>10 Gew.-%</td>
<td>E17</td>
<td>E19</td>
<td>E21</td>
<td>E23</td>
</tr>
<tr>
<td>15 Gew.-%</td>
<td>E25</td>
<td>E27</td>
<td>E29</td>
<td>E31</td>
</tr>
</tbody>
</table>

5.1.3. Herstellung von Ethanol- und Isopropanol-haltigen Emulsionen mit Ammoniumlaurat

<table>
<thead>
<tr>
<th>Ethanolanteil \ Laurinsäure</th>
<th>0 mg</th>
<th>40 mg</th>
<th>80 mg</th>
<th>160 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Gew.-%</td>
<td>ES_MS_87</td>
<td>ES_MS_88</td>
<td>ES_MS_89</td>
<td>ES_MS_90</td>
</tr>
<tr>
<td>5 Gew.-%</td>
<td>ES_MS_91</td>
<td>ES_MS_81</td>
<td>ES_MS_93</td>
<td>ES_MS_85</td>
</tr>
<tr>
<td>10 Gew.-%</td>
<td>-</td>
<td>ES_MS_69</td>
<td>ES_MS_71</td>
<td>ES_MS_73</td>
</tr>
<tr>
<td>20 Gew.-%</td>
<td>-</td>
<td>ES_MS_75</td>
<td>ES_MS_77</td>
<td>ES_MS_79</td>
</tr>
</tbody>
</table>

Tabelle 28: Ansätze mit variierendem Isopropanol- und Laurinsäuregehalten.

<table>
<thead>
<tr>
<th>Isopropanolanteil \ Laurinsäure</th>
<th>0 mg</th>
<th>40 mg</th>
<th>80 mg</th>
<th>160 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Gew.-%</td>
<td>ES_MS_87</td>
<td>ES_MS_88</td>
<td>ES_MS_89</td>
<td>ES_MS_90</td>
</tr>
<tr>
<td>5 Gew.-%</td>
<td>ES_MS_92</td>
<td>ES_MS_82</td>
<td>ES_MS_84</td>
<td>ES_MS_86</td>
</tr>
<tr>
<td>10 Gew.-%</td>
<td>-</td>
<td>ES_MS_70</td>
<td>ES_MS_72</td>
<td>ES_MS_74</td>
</tr>
<tr>
<td>20 Gew.-%</td>
<td>-</td>
<td>ES_MS_76</td>
<td>ES_MS_94</td>
<td>ES_MS_80</td>
</tr>
</tbody>
</table>

5.2. Herstellung von metallhaltigen Polystyrrollatizes

Styrol (Merck) wird vor der Verwendung über eine Aluminiumoxidsäule gereinigt. Natriumdodecylsulfat (Merck), Lutensol AT-50 (BASF), Laurinsäure (Merck, 99%), Hexadecan (Merck, 99%), V59 (Wacko), APS (Merck, 98%), Ethanol (Merck, LabGrade) und THF (Merck, LabGrade) werden ohne weitere Aufreinigung verwendet.
Sämtliche verwendeten Metallkomplexe: Indium(III)acetylacetonat (Acros, 98%), Platin(II)acetylacetonat (Strem, 98%), Zink(II)tetramethylheptadionat (Strem, 99%), Zink(II)phthalocyanin (Strem, 95%), Aluminium(III)tetramethylheptadionat (Strem, 99%), Chrom(III)benzoylacetonat (Acros), Eisen(III)benzoylacetonat (ABCR), Eisen(III)di phenylpropandionat (ABCR), Eisen(III)tetramethylheptadionat (Strem, 99%) werden ohne weitere Aufreinigung verwendet. In allen Experimenten wird demineralisiertes Wasser benutzt.

5.2.1. Herstellung metallhaltiger Latizes über Miniemulsionspolymerisation

Für die Darstellung von ethanolhaltigen Miniemulsionen werden, soweit nicht anders vermerkt, als disperse Phase 2 g Styrol, 80 mg Hexadecan, 40 mg V 59 als Initiator sowie unterschiedliche Mengen an Metallkomplexen miteinander vermischt (siehe Tabelle 29). Als kontinuierliche Phase werden 8 g Wasser und 23 mg SDS verwendet. Die beiden Phasen werden vereinigt und 1 h lang bei RT gerührt. Anschließend wird die Probe 3 min lang bei 70% Amplitude unter Eiskühlung geschallt (1/4 Zoll Spitze, Branson Sonifier W450D). Danach wird die Probe bei 72 °C unter leichtem Rühren über Nacht polymerisiert.

Tabelle 29: Ansatzgrößen der unterschiedlichen metallhaltigen Miniemulsionen.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Metallkomplex</th>
<th>Menge [mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_M_12</td>
<td>In(AcAc)₃</td>
<td>52</td>
</tr>
<tr>
<td>ES_M_20</td>
<td>In(AcAc)₃</td>
<td>100</td>
</tr>
<tr>
<td>ES_M_22</td>
<td>Cr(III)benzoylacetonat</td>
<td>50</td>
</tr>
<tr>
<td>ES_M_26</td>
<td>Cr(III)benzoylacetonat</td>
<td>140</td>
</tr>
<tr>
<td>ES_M_30</td>
<td>Pt(AcAc)₂</td>
<td>20</td>
</tr>
<tr>
<td>ES_M_31</td>
<td>Pt(AcAc)₂</td>
<td>20</td>
</tr>
<tr>
<td>ES_M_36</td>
<td>Fe(III)benzoylacetonat</td>
<td>50</td>
</tr>
<tr>
<td>ES_M_39</td>
<td>Zn(phthalocyanin)</td>
<td>66</td>
</tr>
<tr>
<td>ES_M_43</td>
<td>Pt(AcAc)₂</td>
<td>40</td>
</tr>
<tr>
<td>ES_M_46</td>
<td>Fe(III)TMHD₃</td>
<td>50</td>
</tr>
<tr>
<td>ES_M_48</td>
<td>Fe(III)di phenylpropandionat</td>
<td>26</td>
</tr>
<tr>
<td>ES_MS_50</td>
<td>Tensid: 20 mg CTAB</td>
<td>Indium(III)TMHD₃</td>
</tr>
<tr>
<td>ES_M_56</td>
<td>Zn(TMHD)₂</td>
<td>40</td>
</tr>
<tr>
<td>ES_M_58</td>
<td>Vinylferrocen</td>
<td>40</td>
</tr>
</tbody>
</table>

* die Angaben beziehen sich jeweils auf 2 g Styrol.
5.2.2. Herstellung metallhaltiger Latizes über Emulsionspolymerisation

Für die Darstellung von ethanolhaltigen Emulsionen werden, soweit nicht anders vermerkt, als disperse Phase 2 g Styrol, 40 mg V 59 als Initiator sowie unterschiedliche Mengen an Metallkomplex (~20 mg) miteinander vermischt. Als kontinuierliche Phase werden 25 g 20%ige Ethanol/Wasser-Mischung und 20 mg SDS verwendet. Die beiden Phasen werden vereinigt und 1 h lang bei RT gerührt. Die Probe wird anschließend bei 72 °C unter starkem Rühren über Nacht polymerisiert.

5.2.3. Partikelvergrößerung durch einfache Saatpolymerisation

Zu 3 g des platinhaltigen Latexes ES_M_31 (20 Gew.-% Feststoffgehalt) werden 180 g Wasser sowie 360 mg Ammoniumpersulfat gegeben. Anschließend werden unter Rühren 20 ml Styrol mit 5 ml/h bei 85°C hinzugetroppft. Während der Zugabe wird nach je 5 ml Styrolzugabe 1 ml Probenaliquot entnommen und getrennt weiter polymerisiert (siehe Tabelle 30).

Tabelle 30: Entnahme des Probenaliquots nach entsprechender Styrolzugabe.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Styrolzugabe bei Probenentnahme [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES_M_U4_A</td>
<td>5</td>
</tr>
<tr>
<td>ES_M_U4_B</td>
<td>10</td>
</tr>
<tr>
<td>ES_M_U4_C</td>
<td>15</td>
</tr>
<tr>
<td>ES_M_U4_D</td>
<td>20</td>
</tr>
</tbody>
</table>

5.2.4. Partikelvergrößerung durch Saatpolymerisation

Zu 0,2-0,5 g eines 20 Gew.-% Saatlatexes (Herstellung siehe oben) werden 100 ml einer Ethanol-Wasser Mischung (0-20 Gew.-%) gegeben. Die Mischung wird unter Rühren auf 85°C erhitzt. Anschließend wird die gewünschte Menge an Styrol, Metallkomplex und Initiator (i. Allg. 2-4 g Styrol mit 7 Gew.-% V59) langsam (1 ml/h) mit einer Spritzenpumpe hinzu gegeben und über Nacht polymerisiert. Zusätzlich kann parallel zur weiteren Stabilisierung eine SDS-Lösung zugetropft werden. Die genauen Mengenangaben sind Tabelle 31 in zusammengefasst.
Tabelle 31: Mengenangaben für die Ansätze über Saatpolymerisation.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Saatlatex ES_M_43 [g]</th>
<th>Wasser [g]</th>
<th>Ethanol [g]</th>
<th>SDS [mg]</th>
<th>Styrol [mg]</th>
<th>V59 [mg]</th>
<th>Platin(II)-acetylacetonat [mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>_UPt_1</td>
<td>0,1</td>
<td>80</td>
<td>20</td>
<td>-</td>
<td>5</td>
<td>350</td>
<td>100g</td>
</tr>
<tr>
<td>_UPt_3</td>
<td>0,3</td>
<td>85</td>
<td>15</td>
<td>25</td>
<td>2</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>_UPt_7</td>
<td>0,1</td>
<td>21</td>
<td>3,7</td>
<td>2,5</td>
<td>1</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

5.3. Herstellung von Laponit/Polymer Hybridpartikeln

Styrol (Merck), Methylmethacrylat (Merck), Butylmethacrylat (Aldrich) und Acrylsäure (Merck) werden vor der Verwendung über eine Aluminiumoxidsäule gereinigt. Laponit RD (BASF), Cetyltrimethylammoniumbromid (Aldrich), Didodecyldimethylammoniumbromid (Aldrich, 99%), V59 (Wacko) und Lutensol AT-50/80 (BASF) werden ohne weitere Aufreinigung verwendet. In allen Experimenten wird demineralisiertes Wasser benutzt.

5.3.1. Hydrophobisierung von Laponit RD

Die genauen Ansatzmengen und Methoden der verschiedenen Laponite sind in Tabelle 32 zusammengefasst.

Tabelle 32 Ansätze für zur Hydrophobisierung von Laponit RD.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Laponit RD [g]</th>
<th>CTAB [g]</th>
<th>DDAB [g]</th>
<th>Wasser [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>10</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Laponit in Wasser dispergieren, CTAB hinzufügen, 4 Tage rühren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Produkt abnutschen und gefriertrocknen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>5</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Laponit in Wasser dispergieren, DDAB hinzufügen, 5 Tage rühren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Produkt abnutschen und gefriertrocknen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 GG</td>
<td>50</td>
<td></td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Laponit in Wasser dispergieren, DDAB hinzufügen, 4 Tage rühren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abnutschen, in 1l Wasser + 1l Ethanol über 4 Tage reinigen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Produkt abnutschen und gefriertrocknen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>50</td>
<td></td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Laponit in Wasser dispergieren, DDAB hinzufügen, 3 Wochen rühren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abnutschen, Laponit ausfrieren und 3 mal mit Wasser nachwaschen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In Cyclohexan dispergieren und anschließend gefriertrocknen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3.2. *Hybridpartikel durch Dispergierung von Laponit in Styrol*

Für die Darstellung der Hybridpartikel werden 24 mg Hexadecan, 12 mg V59, Laponit und 500 mg Styrol miteinander vermengt, bis der Initiator gelöst und das Laponit dispergiert ist. Für die kontinuierliche Phase werden 50 mg Lutensol AT50 in 5 g Wasser gelöst und die beiden Phasen anschließend 1 h lang verrührt. Danach folgen 3 min Ultraschallbehandlung bei 70% Amplitude (1/4 Zoll Spitze) unter Eiskühlung. Die Polymerisation erfolgt bei 72 °C über Nacht. Die genauen Ansätze sind in Tabelle 33 zusammengefasst.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Styrol [g]</th>
<th>Hexadecan [mg]</th>
<th>V59 [mg]</th>
<th>Laponit [mg]</th>
<th>Lutensol AT50 [mg]</th>
<th>Wasser [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>_12</td>
<td>0,5</td>
<td>29</td>
<td>12</td>
<td>20 N1</td>
<td>50</td>
<td>5,4</td>
</tr>
<tr>
<td></td>
<td>Komponenten vereinigen, bis gelöst bzw. dispergiert</td>
<td>Tensid auflösen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phasen vereinigen, 1 h rühren, 3 min 70% Ultraschall, über Nacht 72 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_17</td>
<td>0,5</td>
<td>24</td>
<td>12</td>
<td>7 N2</td>
<td>52</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>Komponenten vereinigen, bis gelöst bzw. dispergiert</td>
<td>Tensid auflösen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phasen vereinigen, 1 h rühren, 3 min 70% Ultraschall, über Nacht 72 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3.3. *Redispergierung von hydrophoben Laponit*

Für die Redispergierung des hydrophoben Laponits werden 500 mg Laponit mit 50-500 mg Lutensol AT50 in einem 15 ml Zentrifugenröhrchen vermischt. Anschließend werden 5 ml Wasser hinzu gegeben und die Mischung für mindestens 5-15 min bei einer Amplitude von 70% an einer ¼ Zoll-Spitze mindestens 10 min lang geschallt. Dabei wird zusätzlich ein 10 s Schallen/10 s Pause-Puls sowie Eiskühlung verwendet.

Nach dem Schallen dürfen keine deutlichen Feststoffablagerungen mehr erkennbar sein, anderweitig muss die Lutensol AT50-Menge oder die Schallzeit erhöht werden.

Für die geringer hydrophobisierten Laponit N1, N2, N2GG werden, falls nicht anders erwähnt, 400-500 mg Lutensol AT50, für stark hydrophobisiertes Laponit, N10, 50-60 mg Lutensol AT50 verwendet. Hierbei wird die Redispergierung durch den hohen Gehalt an kationischem Tensid erleichtert. Die genauen Ansatzmengen und Verfahrensweisen sind zusammenfassend in Tabelle 34 aufgeführt.
5.3.4. Herstellung einer Styrol- bzw. Acrylat-Präminiemulsion

Bei der Präminiemulsion werden in der Regel für die disperse Phase 70 mg Hexadekan, 30 mg V59 und 1,5 g Styrol (bzw. Acrylate) verwendet. Für die kontinuierliche Phase werden 50 mg Lutensol AT50 in 10 g Wasser gelöst und anschließend die beiden Phasen vereinigt. Die Emulsion wird für 1 h gerührt und anschließend für 3 min bei einer Amplitude von 70% mit 10 s Pause, 10 s Puls unter Eiskühlung an einer ¼ Zoll-Spitze geschallt. Die genauen Ansatzmengen und Verfahrensweisen sind zusammenfassend in Tabelle 34 aufgeführt.

5.3.5. Verkapselung von Laponit RD

Für die Verkapselung des Laponits wird eine Präminiemulsion mit einer entsprechenden Menge dispergierter Laponits 5 min lang vermischt. Anschließend wird das Gemisch mindestens 2 min bei 70% Amplitude mit 10 s Pause, 10 s Puls unter Eiskühlung an einer ¼ Zoll-Spitze geschallt und anschließend über Nacht bei 72 °C polymerisiert. Die genauen Ansatzmengen und Verfahrensweisen sind zusammenfassend in Tabelle 34 aufgeführt.
Tabelle 34: Ansätze für Laponit/Polymer Hybridpartikel präpariert über den Co-Sonifizierungsprozess.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Monomer</th>
<th>Hexa-dekan</th>
<th>V59</th>
<th>Lutensol AT50</th>
<th>Wasser</th>
<th>Laponit</th>
<th>Lutensol AT50</th>
<th>Wasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>_19</td>
<td>0,5 Styrol</td>
<td>24</td>
<td>10</td>
<td>30</td>
<td>5</td>
<td>0,5 N1</td>
<td>500</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,5 h rühren, 3 min 70% Ultraschall</td>
<td>10 min Ultraschall 50% 10 s,5 s-Puls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 min gerührt, 2 min 70% Ultraschall, 2 min 50% Ultraschall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_22</td>
<td>1,0 Styrol</td>
<td>48</td>
<td>20</td>
<td>61</td>
<td>5</td>
<td>0,5 N1</td>
<td>500</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 h rühren, 3 min 70% Ultraschall</td>
<td>10 min Ultraschall 50% 10 s,5 s-Puls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 min gerührt, 2 min 70% Ultraschall, 40 min gerührt, 2 min 70% Ultraschall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_33</td>
<td>1,5 Styrol</td>
<td>72</td>
<td>31</td>
<td>46</td>
<td>5</td>
<td>0,5 N2</td>
<td>400</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,5 h gerührt, 3 min 70% Ultraschall</td>
<td>10 min Ultraschall 50% 10 s,5 s-Puls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 min gerührt, 2 min 50% Ultraschall, 50 min gerührt, 2 min 70% Ultraschall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_50</td>
<td>2,0 Styrol</td>
<td>80</td>
<td>40</td>
<td>50</td>
<td>8</td>
<td>0,5 N2GG</td>
<td>500</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 min 70% Ultraschall 10 s, 5 s-Puls</td>
<td>20 min 70% Ultraschall 10 s, 5 s-Puls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 h gerührt, 3 min 70% Ultraschall 10 s, 5 s-Puls, 30 min gerührt, 3 min 70% Ultrasch. 10 s,5 s-Puls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_76</td>
<td>1,5 MMA</td>
<td>73</td>
<td>32</td>
<td>40</td>
<td>5</td>
<td>0,5 N10</td>
<td>57 (AT 80)</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 min 70% Ultraschall 10 s,10 s-Puls</td>
<td>15 min 70% Ultraschall 10 s,10 s-Puls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 min 50% Ultraschall 10 s,10 s-Puls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_91</td>
<td>0,99 MMA</td>
<td>80</td>
<td>40</td>
<td>50</td>
<td>8</td>
<td>0,5 N10</td>
<td>50</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>0,99 BA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 min 70% Ultraschall 10 s,10 s-Puls</td>
<td>15 min 70% Ultraschall 10 s,10 s-Puls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 min 50% Ultraschall 10 s, 10 s-Puls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_100</td>
<td>1,5 Styrol</td>
<td>70</td>
<td>30</td>
<td>40</td>
<td>7,5</td>
<td>0,5 N10</td>
<td>50</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 min 70% Ultraschall 10 s,10 s-Puls</td>
<td>15 min 70% Ultraschall 10 s,10 s-Puls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 min 50% Ultraschall 10 s, 10 s-Puls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_BIG_5</td>
<td>32 MMA</td>
<td>2900</td>
<td>1200</td>
<td>1800</td>
<td>210</td>
<td>15 N2GG</td>
<td>1500</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>32 BA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 min 90% Ultraschall 10 s,10 s-Puls</td>
<td>4 h Ultraschall 90% 10 s,5 s-Puls (davon 140 ml weiterverwendet)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 h 90% Ultraschall 10 s, 20 s-Puls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Ref_BIG5</td>
<td>32 MMA</td>
<td>2900</td>
<td>1200</td>
<td>1800</td>
<td>260</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>32 BA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 min 90% Ultraschall 10 s,10 s-Puls, Polymerisation 12h bei 72°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.4. **Inverse Verkapselung von wässrigen Lösungen**

Cyclohexan (VWR), Toluylen-2,4-diisocyant (VWR, purum), Diethylentriamin (Merck, 99%), Natriumtetraborat Dekahydrat (Aldrich), Ammoniumzirkoniumcarbonat-Vernetzer, Lubrizol U (Lubrizol) und Natriumdodecylsulfat (Merck) werden ohne vorherige Aufarbeitung verwendet. Methylacrylat (Aldrich, 99%), Methacrylsäure (Aldrich, 99%) und Methylmethacrylat (Merck, 99%) werden vor der Verwendung über Alox gereinigt. In allen Experimenten wird demineralisiertes Wasser benutzt.

5.4.1. **Herstellung von PMMA-Kapseln durch Fällen aus einem Lösungsmittelgemisch**

In einem Becherglas werden unter Eiskühlung 20 mg Poly(ethylen-co-butylen-b-ethylenoxid) in 9,5 g Dichlormethan gelöst. Anschließend werden 12 g Cyclohexan hinzutropft und bis zu einer klaren Lösung gerührt. Danach wird die Borax-Lösung (2,1%ig), gefolgt von 300 mg PMMA, gelöst in 1,3 g Dichlormethan, unter Rühren hinzugeben. Die Emulsion wird 2 min bei 90% Amplitude geschallt und im Anschluss unter Rühren bei 50 °C das Dichlormethan bis zur Kapselbildung verdampft. Der Verlust an Lösungsmittel wird sukzessive durch Cyclohexan ersetzt. In Tabelle 35 sind die Ansatzmengen zusammengefasst.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Borax Lösung (2,1%ig) [ml]</th>
<th>Poly(ethylen-co-butylen-b-ethylenoxid) [mg]</th>
<th>Cyclohexan [ml]</th>
<th>Dichlormethan [ml]</th>
<th>PMMA in Dichlormethan [mg in g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17</td>
<td>0,5</td>
<td>20</td>
<td>15,4</td>
<td>7,1</td>
<td>300 in 1,3</td>
</tr>
</tbody>
</table>
5.4.2. Herstellung von Polyharnstoffkapseln

Tabelle 36: Zusammenfassung der wichtigsten Versuche zur Verkapselung von Borax bzw. AZC-Lösung in Polyharnstoffkapseln.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B20</td>
<td>1,0 (1,5%)</td>
<td>0,1</td>
<td>100</td>
<td></td>
<td>8,7</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 min 90% Ultraschall, unter Rühren Zugabe TDI in 5 ml Dichlormethan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>B52</td>
<td>5,0 (4%) + 150 mg NaCl</td>
<td>0,5</td>
<td>-</td>
<td>0,5</td>
<td>100</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 min 90% mit (10 s,10 s)-Puls Ultraschall, unter Rühren Zugabe TDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>ICI_1</td>
<td>150</td>
<td>15</td>
<td>-</td>
<td>11,2</td>
<td>600</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 min 90% mit (10 s,10 s)-Puls Ultraschall, unter Rühren Zugabe TDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>ICI_2</td>
<td>150</td>
<td>30</td>
<td>-</td>
<td>11,2</td>
<td>600</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 min 90% mit (10 s,10 s)-Puls Ultraschall, unter Rühren Zugabe TDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

5.4.3. Herstellung von Acrylatkapseln

Tabelle 37: Ansatzmengen und Herstellungsbedingungen für die Darstellung von Acrylatkapseln.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr_MA_1</td>
<td>1</td>
<td>0,15</td>
<td>10</td>
<td>10</td>
<td>0,3</td>
<td>30</td>
<td>5 min 70% (10 s, 10 s)</td>
<td>bei 50 °C über Nacht polymerisiert</td>
<td></td>
</tr>
<tr>
<td>Zr_MA_3G</td>
<td>20</td>
<td>6,0</td>
<td>100</td>
<td>200</td>
<td>6</td>
<td>600</td>
<td>30 min 90% (10 s, 10 s)</td>
<td>bei 60 °C über Nacht polymerisiert</td>
<td></td>
</tr>
<tr>
<td>Zr_MA_4G</td>
<td>20</td>
<td>3,0</td>
<td>120</td>
<td>200</td>
<td>6</td>
<td>60</td>
<td>30 min 90% (10 s, 10 s)</td>
<td>bei 60 °C über Nacht polymerisiert</td>
<td></td>
</tr>
<tr>
<td>Zr_MA_5G</td>
<td>20</td>
<td>3,0</td>
<td>100</td>
<td>200</td>
<td>12</td>
<td>-</td>
<td>30 min 90% (10 s, 10 s)</td>
<td>bei 60 °C über Nacht polymerisiert</td>
<td></td>
</tr>
</tbody>
</table>

5.4.4. Herstellung von Polymethylmethacrylatkapseln

Die Vorgehensweise zur Vorfixierung der AZC-Lösungen mittels Polyharnstoffkapseln entspricht der in Kapitel 5.4.2, Herstellung von Polyharnstoffkapseln, die genauen Mengenangaben und Schallzeiten sind in Tabelle 38 zusammengefasst.

Tabelle 38: Ansätze für die Vorfixierung von AZC-Lösung in Polyharnstoff.

<table>
<thead>
<tr>
<th>Probe</th>
<th>AZC-Lösung [ml]</th>
<th>Lubrizol [g]</th>
<th>Cyclohexan [ml]</th>
<th>DET [ml]</th>
<th>TDI [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr_MMA_6_A</td>
<td>2</td>
<td>0,3</td>
<td>40</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>15 min 90% mit (10 s, 10 s)-Puls Ultraschall, unter Rühren Zugabe TDI in 0,6 ml Cyclohexan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr_MMA_BIG_1A</td>
<td>100</td>
<td>5,0</td>
<td>1000</td>
<td>7,5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>30 min 90% mit (10s,10s)-Puls Ultraschall, unter Rühren Zugabe TDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 39: Ansätze für die Verstärkung von AZC-Lösung enthaltende Polyharnstoffkapseln mit PMMA.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Kern-Latex [ml]</th>
<th>V70 [mg]</th>
<th>MMA [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr_MMA_6_B</td>
<td>30 Zr_MMA_6A</td>
<td>15</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>Bei 40 °C unter Argon über Nacht polymerisieren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr_MMA_BIG_1C</td>
<td>100 Zr_MMA_Big_1A</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Bei 40 °C unter Argon über Nacht polymerisieren.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.4.5. Redispergierung im wässrigen Medium

Für die Redispergierung im wässrigen Medium wird der Latex gefriergetrocknet, mit 1 Gew.-% SDS sowie einem 10-fachen Überschuss an Wasser versetzt. Die Mischung wird anschließend geschüttelt, bis eine homogene Dispersion erhalten wird.

5.4.6. Zirkonium-Nachweis161, 162

Aus 5 mg Xylenol und 100 ml 0.1 N Schwefelsäure wird zuerst eine Xylenolorange-Lösung hergestellt. Anschließend werden 0,5 ml des Probenlatexes (aus der Cyclohexanphase) getrocknet und mit 20 mg SDS sowie 4 ml Wasser versetzt. Die Dispersion wird über Nacht geschüttelt und anschließend 1 ml filtriert (0,4 µm Teflon Spritzenfilter). Zum Filtrat wird abschließend 1 ml Xylenolorange-Lösung gegeben und die Farbänderung beobachtet. Rotfärbung deutet dabei auf die Anwesenheit von Zirkonium hin.

5.5. Präparation eines Dichtegradienten

5.6. Präparation der TEM-Proben

Für die TEM-Proben wird ein entsprechender Latex auf ca. 0,1 Gew.-% Feststoffgehalt verdünnt. Anschließend wird mit einer Pasteurpipette ein Tropfen der Dispersion auf ein TEM-Netzchen (400 mesh, kohlebedampft) gegeben und bei Raumtemperatur getrocknet. Polyacrylate und insbesondere Polyacrylatkapseln werden bei Bedarf zusätzlich noch mit Kohle bedampft. Die Aufnahmen wurden am Philips EM400 mit 80 kV aufgenommen und anschließend mit dem Programm TEM2, in der Version 1.82, ausgewertet163.

- 154 -
5.7. **Präparation der DLS-Proben**

Für die Vermessung von direkten Emulsionen sowie für inverse Systeme wird der unverdünnte Latex in einer Quarzküvette vermessen.

Polymerisierte wässrige Systeme werden vor der Messung auf ~1% Feststoffanteil mit Wasser verdünnt und in einer Einwegküvette vermessen. Die Auswertung erfolgt anschließend über den „Z-average“-Wert und den Polydispersitätsindex (PDI) bzw. die Standardabweichung.

5.8. **Probenpräparation für das Kalorimeter**

Das Kalorimeter wird vor jeder Messung neu kalibriert. Hierzu wird 1 mL Wasser sowohl in die Probenkammer, als auch in die Messkammer gestellt. Nach Erhalt der Temperaturkonstanz werden 5 Heizpulse von je 50 mJ mit einer Vorlaufzeit von 20 s und einer Messzeit von 300 s aufgezeichnet. Aus den Integralen berechnet sich anschließend die Kalibrierkonstante.

Für die Messungen selber wird je 1 ml Probensubstanz verwendet. Die Messung erfolgt in der Regel über 32000 s mit einem Messpunktabstand von 1 s.

5.9. **ICP-OES- und EDX-Messungen**

Die ICP-OES-Messungen wurden von der Abteilung für anorganische Analytik, TU München, an einem VARIAN-VISTA Simultan-Spektrometer mit jeweils 300 µl des zu untersuchenden Latexes in einem Argonplasma (5000-10000) durchgeführt164.

Die EDX-Messungen wurden von der Abteilung Festkörperphysik, Universität Ulm, an einem hochauflösenden Rasterelektronenmikroskop (Hitachi S5200, 20 kV, 1 µA) 1800 s lang durchgeführt.
5.10. **Bestimmung des Restmonomergehaltes**

1 g Latex werden mit 9 g Methanol 5 min ausgeschüttelt, filtriert und anschließend der Restmonomergehalt per HPLC über eine Referenzprobe bekannter Zusammensetzung bestimmt.

5.11. **Probenpräparation für Zugdehnungsmessungen**

Für die Zug-Dehnungsmessungen wird zuerst ein Film des zu untersuchenden Latexes durch Aufbringen der Probensubstanz auf einen Glasträger und anschließendes langsames Trocknen (abgedeckt bei Raumtemperatur) hergestellt. Die Filme werden anschließend 24 h bei 65 °C getempert. Nach Erkalten werden aus den Filmen Probenknochen mit einer Breite von 4 mm und einer Dicke von 0,34-0,35 mm gestanzt. Diese werden anschließend an einer Zug-Dehnungsmaschine (Zwick 1425) bei Raumtemperatur mit 0,02 mm/s bis zum Zerreißverstreckt.
6. Zusammenfassung

Partikelgrößenvariation (zwischen 100-300 nm) und -verteilung zur bekannten Mizellentechnik dar.

7. Conclusion

In this work three different methods for the preparation of hybrid nanoparticles composed of inorganic substances and polymer were shown. The first system is based on metal complex containing polystyrene latex particles for plasma etching applications. Especially an alternative synthesis to the well known micellar techniques in terms of higher flexibility to different metal complexes and particle sizes had to be developed. In contrast to the micelles the particles are characterized by a disperse distribution of the inorganic component throughout the polymeric matrix. These special metal containing nanoparticles are used for the preparation of metal clusters via plasma etching processes. During the etching process the particles shrink uniformly, while the metal is concentrated in the center. The obtained clusters could be subsequently used as quantum dots or etching masks. To achieve well defined metal contents, miniemulsion techniques were the best option. It could be shown that many different metal complexes like iron-, platinum-, indium-, zinc- and chromium containing complexes can be incorporated into polystyrene latices. The most suitable metal complexes are based on (substituted) acetylacetonate ligands. An additional goal next to the encapsulation of many different metal complexes was to achieve nanoparticles of different sizes with a very narrow particle size distribution for the preparation of periodic and hexagonally ordered etching masks. To achieve these extremely homogeneous particles basic studies on styrene miniemulsions and emulsions were done under addition of ethanol. It was shown that the most homogeneous particle size can be achieved in a 20 wt % ethanol/water mixture by emulsion polymerisation techniques. The results were subsequently transferred to the preparation of platinum and iron containing polystyrene lattices with an extremely narrow particle size distribution. In this case iron and simultaneously platinum containing particles were chosen, because of the ferromagnetic behaviour of Fe/Pt-clusters even in the nanometer scale. This makes the particles especially interesting for hard disk memory devices. Through miniemulsion polymerisation a molar Fe/Pt-ratio of 1/1 could be adjusted without any problem and also with emulsion polymerisation iron- and platinum- containing latices had been developed. In this case only a few further optimisations have to be done to achieve a perfect molar Fe/Pt-ratio of 1/1. Furthermore it was shown in this work, that the size of the colloids, which determines the distance of the later metal clusters to each other, could also be adjusted by seed polymerisation afterwards. The studied colloids demonstrate an explicit improvement and
flexibilisation regarding the particle size (between 100-300 nm) and particle size distribution compared to the well known micellar techniques.

As a second system encapsulation of solid materials, in this case layered silicate (Laponit RD), in polystyrene and polyacrylates by miniemulsion techniques was studied. Within the EU-Project “NAPOLEON”, the aim was to create a laponite containing dispersion finish with high mechanical stress resistance. For this purpose the hydrophilic laponite had to be hydrophobised by ion exchange of the sodium ions with cationic surfactants first. For the later encapsulation especially very hydrophobic laponite with high contents of DDAB seemed to be helpful. The hydrophobic laponite was dispersed either direct in the monomer phase or first in the water phase with subsequent cosonification with a monomer miniemulsion in order to encapsulate it into a polymer matrix. The special advantage of the cosonification technique is the possibility of setting up every ratio of laponite to monomer that is requested for the application without limitation by thixotropic effects of the laponite. After the successful preparation of laponite/polystyrene- hybrid particles with more than 10 wt. % laponite and improved surfactant input the obtained results were transferred to laponite/Polyacrylate-hybrid particles. Thereby it was possible to produce laponite containing dispersion finish which showed an about 10% higher stability in tensile tests than a laponite free reference finish.

An important third object was the encapsulation of linker for paper industry. Especially the practicability to industry applications with commercial educts and simple synthesis with low recycling effort was key. Therefore aqueous solutions of borax- and ammoniumzirconiumcarbonate-linkers were successfully incorporated into polyurea and polyacrylate capsules by inverse miniemulsion techniques. With these systems permeable capsules as well as stable capsules, after redispersion in water, were prepared. For the permeable ones especially polyurea capsules and polymethylacrylat/methacrylic acid capsules were appropriate. In the process the capsules were prepared through in situ polymerisation. The redispersion stable capsules had also polyurea shells but they were prepared with at least 15 wt. % Lubrizol (related to the AZC-solution). These capsules with high Lubrizol contents were, caused by the high homogeneity and their hydrophobic exterior, redisperseable in water without loss of integrity. It has proven beneficial that Lubrizol is incorporated into the polymeric matrix. These already stable capsules were also reinforced by an additional polyacrylate shell. The capsules remain stable for months in cyclohexane as well as in aqueous environment. In principle, these techniques can be transferred to other aqueous systems serving as capsule core as well.
Taken together three different inorganic/organic hybrid particle systems were presented in this thesis. These systems lead, next to the practical use for industry applications, to promising basis for further research in the field of Fe/Pt-clusters in very high ordered systems.
8. Geräteverzeichnis

Dynamische Lichtstreuung (DLS) Malvern Zetasizer (NanoSerie)
Energiedispersive Röntgenspektroskopie (EDX) Hitachi S5200
Hochleistungsflüssigkeitschromatographie (HPLC) Dionex UVD 170U, Macherey Nagel
Transmissionselektronenmikroskop (TEM) Phillips EM400
Ultraschallstab Branson Sonifier W450D
Zugdehnungsmaschine Zwick 1425
Induktiv gekoppeltes Plasma (ICP-OES) VARIAN-VISTA Simultan-Spektrometer

9. Abkürzungsverzeichnis

9.1. Chemikalien

AcAc Acetylacetonat
APS Ammoniumpersulfat
AZC Ammoniumzirkoniumcarbonat
CTAB Cetyltrimethylammoniumbromid
DDAB Didodecyldimethylammoniumbromid
DET Diethylenetriamin
MMA Methylmethacrylat
PMMA Polymethylmethacrylat
SDS Natriumdodecylsulfat
TDI Toluol-2,4-diisocyanat
TMHD Tetramethylheptadionat

9.2. Messmethoden

CMC Kritische Mizellenkonzentration
DLS Dynamische Lichtstreuung
EDX Energiedispersive Röntgenanalyse
ICP-OES induktiv gekoppeltes Plasma- Optische Emissionsspektrometrie
REM Rasterelektronenmikroskop
TEM Transmissionselektronenmikroskop
TGA Thermogravimetrische Analyse
XRD Röntgendiffraktometrie
10. Literaturverzeichnis

57. Hyeon, T. Chemical Communications 2003, (8), 927-934.
Macromolecular Rapid Communications 2007, 28, (15), 1567-1573.
135. Smith, W. V. *Journal of the American Chemical Society* 1948, 70, (11), 3695-3702.
11. Danksagung

Bedanken möchte ich mich besonders bei Frau Prof. Landfester für die Bereitstellung der interessanten Themen und die freundliche Betreuung während der Promotion.

Bedanken möchte ich mich auch bei Herrn Prof. Taubmann für die Übernahme des Zweitgutachtens.

Des Weiteren möchte ich sämtlichen Mitarbeitern der Abteilung Organische Chemie 3, im besonderen Dr. Ulrich Ziener und Dr. Clemens Weiß, für die Unterstützung und diversen Fachgespräche während meiner Promotionszeit danken.

Zu guter letzt gilt mein Dank auch meiner Familie, die mein Studium und somit auch diese Promotion überhaupt erst ermöglicht haben.
12. Lebenslauf

Eyk Schreiber
Am Hochsträß 2
89081 Ulm
Geb. 02.09.1980

Campe-Gymnasium Holzminden
Abschluss: Abitur (Note 1,9)

- 10/2000 – 09/2005
Studium „Chemie Diplom“, Universität Ulm
Diplomarbeit: „Der Einfluss der Hydrophobwahl und der Oberflächenspannung der kontinuierlichen Phase auf den Miniemulsionsprozess“
Abschluss: Diplom-Chemiker (Note 1,3)

- seit 01/2006
Promotion, Organische Chemie III, Universität Ulm:
„Verkapselung verschiedenartiger anorganischer Substanzen mittels Miniemulsions- und Emulsionspolymerisation“
13. Publikationen

13.1. Poster

13.2. Vorträge

- SFB-Doktorandenseminar, Universität Ulm, „nanoparticles on the basis of (mini)-emulsion techniques“, 18.11.2008.

13.3. Veröffentlichungen

14. Erklärung

Diese Dissertation wurde in der Zeit vom 01.01.2006-31.01.2009
in der Abteilung Organische Chemie III erstellt.

Hiermit erkläre ich, dass ich diese Arbeit selbstständig und nur mit den angegebenen
Hilfsmitteln angefertigt habe. Alle Stellen, die dem Wortlaut oder dem Sinn gemäß anderen
Arbeiten entnommen wurden, sind durch Angabe der Quellen kenntlich gemacht.

Ulm, den ________________________________

Eyk Schreiber