Universitätsklinikum Ulm
Klinik für Neurochirurgie
Ärztlicher Direktor: Prof. Dr. C. R. Wirtz

Das Schädel-Hirn-Trauma im Kindesalter:
Untersuchungen zur Behandlungshäufigkeit und zu
Behandlungsumständen am Universitätsklinikum Ulm

Dissertation
zur Erlangung des Doktorgrades der Zahnmedizin
der Medizinischen Fakultät der Universität Ulm

Vorgelegt von
Maximilian Josef August Sprenger
geboren in Hagen

2018
Amtierender Dekan: Prof. Dr. rer. nat. Thomas Wirth
1. Berichterstatter: Prof. Dr. med. Thomas Kapapa
2. Berichterstatter: PD Dr. med. Carsten Posovszky

Tag der Promotion: 14.02.2019
Meinen lieben Eltern in großer Dankbarkeit
Inhaltsverzeichnis

Abkürzungsverzeichnis

1 Einleitung .. 1
1.1 Definition und Epidemiologie des Schädel-Hirn-Traumas 1
1.2 Pathomechanismen ... 2
1.3 Unfallursachen ... 3
1.4 Langzeitfolgen ... 4
1.5 Risikogruppen/ Risikofaktoren ... 5
1.6 Bildgebende Diagnostik .. 6
1.7 Relevanz der Unterscheidung zwischen Kind und Erwachsenem 7
1.8 Fragestellung ... 8

2 Material und Methoden .. 9
2.1 Einschlusskriterien .. 9
2.2 Datenerfassung .. 10
2.3 Altersgruppen .. 10
2.4 Vorstellung der Indizes zur SHT Diagnostik ... 11
2.5 Statistische Auswertung .. 13

3 Ergebnisse .. 14
3.1 Veränderung der Behandlungszahlen im zeitlichen Verlauf 14
3.2 Geschlecht und Alter der Patienten .. 15
3.3 Einlieferungszeitpunkt ... 18
3.4 Unfallursachen .. 20
3.5 Schweregrad des Schädel-Hirn-Traumas ... 30
3.6 Änderungen der bildgebenden Diagnostik im zeitlichen Verlauf 33
3.7 Änderung des Behandlungsergebnisses im zeitlichen Verlauf 35
3.8 Inzidenz von SHT im Ulmer PLZ-Gebiet ... 35
3.9 Zusammenfassung der Ergebnisse ... 37

4 Diskussion .. 39
4.1 Behandlungszahlen ... 39
Abkürzungsverzeichnis

Abb. Abbildung
CCT Kraniale Computertomographie
CT Computertomographie
EW Einwohner
GCS Glasgow Coma Score
GOS Glasgow Outcome Scale
ICD International Classification of Diseases
mRS modified Rankin Scale
MRT Magnetresonanztomographie
m:w männlich:weiblich (Geschlechterverhältnis)
NAV Nicht-akzidentelle Verletzung (Misshandlung)
PLZ Postleitzahl
SHT Schädel-Hirn-Trauma
Tab. Tabelle
1 Einleitung

1.1 Definition und Epidemiologie des Schädel-Hirn-Traumas

Obwohl die medizinische Versorgung in Deutschland aufgrund ihrer Entwicklung über die letzten Jahrzehnte einen hervorragenden Standard aufweist, verbleibt das Schädel-Hirn-Trauma als große Herausforderung in der Notfall- und Rehabilitationsmedizin. Hauptsächlich Kinder und junge, aktive Menschen werden mit dem SHT konfrontiert, womit sich ihre gesamte Lebensperspektive schlagartig ändern kann [38].

Verschiedenste Symptome werden von den Patienten je nach Schweregrad der Verletzung erfahren. Dabei reichen die Störungen von Kopfschmerzen, Übelkeit und Schwindel bis hin zu Amnesie, Krampfanfällen, Koma und Atemstillstand [22].

Das Schädel-Hirn-Trauma ist ein weltweites gesundheitliches und sozioökonomisches Problem. Es wird als führende Ursache für Todesfälle und Behinderungen pädiatrischer Patienten angesehen. Dennoch gehen die Fallzahlen in der Literatur deutlich auseinander, was in unterschiedlichen Einschlusskriterien und dem Aufbau der jeweiligen Studien begründet ist [35].

Weltweit kommt es jährlich zu mindestens 10 Millionen Schädel-Hirn-Traumen, die gravierend genug sind um im Tod oder Klinikaufenthalt zu resultieren [31]. In einer Metaanalyse zur Inzidenz in Europa beschreibt Peeters et al. ein Vorkommen von 262 pro 100.000 Einwohner aller Altersklassen pro Jahr. Die Sterberate beträgt dabei 10,5 pro 100.000 Einwohner [35].

Betrachtet man ausschließlich die Altersgruppe der pädiatrischen Patienten, zeigen sich verschiedene Ergebnisse. McKinlay et al. weist in einer prospektiven Studie für Neuseeland auf eine Durchschnittsinzidenz von 1750 pro 100.000 Einwohnern zwischen 0 und 25 Jahren pro Jahr hin. Nur 30% dieser Fälle wurden dabei in eine Klinik eingeliefert. Besonders bei Patienten, welche jünger als 14 Jahre sind, häufen sich Schädel-Hirn-Traumen, die nur als ersten Grades deklariert werden. Deshalb
ist es wahrscheinlich, dass rein auf Klinikdaten basierende Inzidenzraten das Problem unterschätzen [30]. Rickels et al beschreibt eine Inzidenz in Deutschland von 581 pro 100.000 Einwohnern pro Jahr bei Patienten unter 16 Jahren, wohingegen die Gesamtbevölkerung mit einer Inzidenz von 332 pro 100.000 Einwohnern steht. Säuglinge unter einem Jahr zeigen eine jährliche Inzidenz von 670 pro 100.000 Einwohnern, was das doppelte Risiko im Vergleich zur Gesamtbevölkerung darstellt [39]. Eine schwedische Studie zeigt eine jährliche Inzidenz von lediglich 12 Fällen pro 100.000 Einwohnern zwischen 0 und 17 Jahren [10]. Alle Autoren sind sich allerdings einig, dass die Sterberate der Kinder, die ein SHT erlitten, in den letzten Jahrzehnten aufgrund von Präventionsmaßnahmen drastisch reduziert werden konnte [3,9,11,19]. Luerssen et al. vergleicht die traumatisch bedingte Sterberate pädiatrischer Patienten mit der von Erwachsenen in den USA. Die Wahrscheinlichkeit zu sterben ist dabei für Kinder (2,5%) deutlich geringer als für Erwachsene (10,4%) [29]. Die epidemiologischen Daten gehen weit auseinander und sind deshalb mit Vorsicht zu betrachten. Jedoch ist die hohe Anzahl von Kindern, die Opfer entsprechender Unfälle werden, alarmierend und erfordert entsprechende Prävention [25].

1.2 Pathomechanismen

1.3 Unfallursachen

Die systematische Untersuchung vorherrschender Unfallursachen ist enorm wichtig um die Entwicklung entsprechender Präventionsprogramme zu ermöglichen. Dabei muss bedacht werden, dass sich verschiedene Unfallursachen altersspezifisch manifestieren [9].

Über die letzten Jahrzehnte hat sich die Hauptursache für das pädiatrische Schädel-Hirn-Trauma eindeutig gewandelt, nämlich vom Verkehrsunfall zum Sturz. Die meisten aktuellen Studien sehen heute den Sturz als absoluten Hauptgrund an, wenn man die veröffentlichten Gesamtfallzahlen betrachtet [4,6,9,26,32,35]. Es ist jedoch zu sehen, dass der Sturz gerade bei Kindern und alten Menschen dominiert, wohingegen bei jungen Erwachsenen der Verkehrsunfall die häufigste Ursache ist [35].
Rickels et al. beschreibt für Kinder unter 16 Jahren zu 62,7% Stürze als Grund für ein SHT [39].

Der Verkehrsunfall als Hauptursache ist immer noch führend, sobald man nur die moderaten und schweren Schädel-Hirn-Traumen betrachtet [24,35]. In einer prospektiven britischen Studie wurden 57% der Kinder mit einem SHT dritten Grades als Fußgänger im Straßenverkehr verletzt [34]. Generell ist jedoch zu sagen, dass die Anzahl schwerer Verletzungen in der Gruppe der unter 15-Jährigen aufgrund von Verkehrsunfällen stetig abnimmt, nicht zuletzt aufgrund schärferer Gesetze zur Sicherheit im Straßenverkehr [9].

Als weiterer erheblicher Faktor für kindliche Traumen, speziell bei Säuglingen, sind die nicht-akzidentellen Verletzungen zu nennen. Parslow et al. zeigt, dass bei über der Hälfte der unter 1-Jährigen, die mit SHT auf die Intensivstation eingeliefert wurden, ein Misshandlungsverdacht bestand [34]. Missbrauchsverletzungen sind meist durch wiederkehrende schwere Traumen gekennzeichnet. Da diese Verletzungen in der Regel im familiären Umfeld stattfinden, kommt es zu späten Diagnosen und später Behandlung, was oft schwerwiegende Folgen hat [44]. In einer prospektiven französischen Studie über Kinder bis zum Alter von 24 Monaten wird dargestellt, dass Kindesmisshandlung als Grund für 90% der schweren Schädel-Hirn-Traumen anzusehen ist. 17,5% der Misshandlungsof per starben oder zeigten ein apallisches Syndrom [48]. Sowohl Misshandlungen, als auch akzidentelle Verletzungen können zu Schädel-Hirn-Traumen bei Kindern führen, allerdings kann eine biomechanische Analyse die Ursache nicht unterscheiden, da die mechanischen Umstände oft identisch sind [17].

1.4 Langzeitfolgen

Es besteht die Annahme, dass gravierende Schädel-Hirn-Traumen im Kindesalter lebenslange Konsequenzen für die Betroffenen haben [20]. Das kindliche Gehirn wächst noch und myelinisiert, sodass die Verletzung einen laufenden Myelinisierungsprozess stören könnte. Ein Trauma zum kritischen Zeitpunkt der Entwicklung kann deshalb neurokognitive Behinderungen auslösen [5,44]. Schätzungsweise leben in Europa 6,2 Millionen Menschen mit SHT bedingten Behinderungen oder Be einträchtigungen, was einer Zahl von 1893 pro 100.000 Einwohnern entspricht [45].
Mögliche Folgeschäden können physische, kognitive oder emotionale Komponenten betreffen [2]. Physische Langzeitfolgen erfahren meist Patienten mit schweren Schädel-Hirn-Traumen (GCS ≤ 8). Hingegen haben schon Kinder mit leichtem SHT häufig mentale und kognitive Probleme, was auch ein Hindernis für die Leistung in der Schule darstellt [25).

Kinder können durch Schädel-Hirn-Traumen ein introvertiertes, aggressives, ungeduldiges und emotional labiles Verhalten zeigen. Die Rehabilitation darf sich deshalb nicht nur auf die physische Komponente richten, sondern sollte auch die Behandlung psychischer Aspekte beinhalten [25].

1.5 Risikogruppen/ Risikofaktoren

Aus dem Vergleich verschiedener Studien lassen sich Risikofaktoren für das Erleiden eines Schädel-Hirn-Traumas ableiten. Das Geschlechterverhältnis wird immer
wieder sehr unterschiedlich angegeben, jedoch dominiert dabei stets das männliche Geschlecht [35].

Betrachtet man das Alter, so zeigt sich, dass Säuglinge und kleine Kinder das höchste Risiko haben entsprechende Unfälle zu erleben. Zwischen 0 und 4 Jahren gipfelt dabei die Inzidenzrate [9,27,28,32]. Vor allem Kinder in den ersten 3 Lebensjahren sind von Misshandlungen betroffen [22].

Das soziale Umfeld, in dem Kinder aufwachsen, zeigt ebenfalls Einfluss auf das Risiko einer traumatisch bedingten Hirnverletzung. Kinder, die in sozial schwachen Nachbarschaften leben, sind gefährdeter als solche in einer wohlhabenden Umgebung, sowohl für akzidentelle als auch für nicht-akzidentelle Verletzungen [8].

Rickels et al. beschreibt keinen Inzidenzunterschied zwischen einer städtischen und einer ländlichen Umgebung [39]. Dagegen zeigt Chiu et al. in einer Studie in Taiwan, dass das Risiko deutlich an geographische Gegebenheiten gekoppelt ist. Die Inzidenz in der ländlichen Region war ungefähr doppelt so hoch wie die in der Stadt [4].

Am späten Nachmittag und frühem Abend wird die größte Wahrscheinlichkeit gesehen ein Schädel-Hirn-Trauma zu erleiden. Freitage und Samstage sind dabei die Wochentage mit der höchsten Inzidenz [26,32,34].

1.6 Bildgebende Diagnostik

Sollte die Computertomographie keine Aufklärung über spezielle neurologische Störun gen bringen, so empfiehlt sich die Durchführung einer Magnetresonanztomographie (MRT). Dabei werden oft die kleinen, aber dennoch sehr wichtigen Läsionen ersichtlich [38]. Die MRT besitzt eine bessere Auflösung und höhere Sensitivität, gerade in der Erkennung von Hirnstammläsionen. Außerdem ist diese Methode frei von jeglicher Strahlungsbelastung [14]. Da die MRT mit einem sehr hohen zeitlichen und apparativen Aufwand verbunden ist, ist sie jedoch ungeeignet zur primären Bildgebung in der Notfallsituation [49].

Ebenfalls bietet sich als Alternative die Schädelsonographie zur initialen Diagnostik an. Die Sensitivität zur Frakturdiagnostik ist bei dieser Methode vergleichbar zur Computertomographie, allerdings ohne das Risiko einer Strahlenbelastung. Durch die transfontanellare Sonographie zeigen sich ebenso intrakranielle Verletzungen bei Kindern bis circa 18 Monaten [22,33].

1.7 Relevanz der Unterscheidung zwischen Kind und Erwachsenem

Auch sind die Ausmaße der Traumamechanismen altersabhängig verschieden. Parslow et al. zeigt, dass das pädiatrische Schädel-Hirn-Trauma, im Vergleich zu Erwachsenen, öfter eine isolierte Verletzung ist. Wo es zu Polytraumen kommt, ist auch die Sterblichkeit höher [34].
1.8 Fragestellung

Die vorliegende Studie beschäftigt sich mit den epidemiologischen Daten von Kindern und Jugendlichen, die sich im Universitätsklinikum Ulm aufgrund eines Schädel-Hirn-Traumas in stationärer Behandlung befanden. Laut statistischem Bundesamt sind die Behandlungszahlen von Kindern mit SHT in Deutschland seit Jahren steigend [42]. Gründe für diesen Sachverhalt konnten bisher noch nicht belegt werden. In einer Pilotstudie arbeitete Pal’a et al. die Epidemiologie des SHT am Universitätsklinikum Ulm zwar bereits heraus, aufgrund des nur zweijährigen Untersuchungszeitraums ist die Fallzahl jedoch gering und somit nur bedingt aussagekräftig [32].

Durch eine objektive Begutachtung der Epidemiologie des SHT in Ulm kann die Möglichkeit geschaffen werden, an entsprechenden Stellen geeignete Präventionsmaßnahmen zu betreiben sowie Eltern und Aufsichtspersonen für eventuelle Gefahren zu sensibilisieren.
2 Material und Methoden

Im Rahmen dieser Studie werden die demographischen und klinischen Daten von Kindern und Jugendlichen, die mit einem Schädel-Hirn-Trauma im Universitätsklinikum Ulm stationär behandelt wurden, retrospektiv erfasst und ausgewertet. Der gesamte Beobachtungszeitraum beträgt dabei elf Jahre, woraus sich eine Anzahl von 4918 Behandlungsfällen ergibt.

Alle Kinder wurden in einer der folgenden vier verschiedenen Abteilungen des Universitätsklinikums aufgenommen:

- Klinik für Neurochirurgie
- Sektion Kinderchirurgie, Klinik für Allgemein- und Viszeralchirurgie
- Klinik für Kinder- und Jugendmedizin
- Klinik für Unfall-, Hand-, Plastische- und Wiederherstellungschirurgie

Zu Beginn der Studie lag die positive Bewertung der Ethikkommission der Universität Ulm durch das Schreiben vom 15. April 2015 (Aktenzeichen: 380/14 – Zo./bal.) vor.

2.1 Einschlusskriterien

Die Informationen aller Patienten mit der Diagnose Schädel-Hirn-Trauma konnten anhand der jeweiligen ICD-10 Diagnoseschlüssel (International Classification of Diseases) erfasst werden. Dabei wurden die Kinder und Jugendlichen mit einem der folgenden fünf verschiedenen Verschlüsselungscodes in den Studienpool aufgenommen:

- „S00“: Oberflächliche Verletzung des Kopfes
- „S01“: Offene Wunde des Kopfes
- „S02“: Fraktur des Schädels oder des Gesichtsschädelknochens
- „S06“: Intrakranielle Verletzung
- „S09“: Sonstige Verletzungen und nicht näher bezeichnete Verletzungen des Kopfes

2.2 Datenerfassung

Die Patienteninformationen wurden über das medizinische Controlling des Universitätsklinikums Ulm bereitgestellt. Anhand der bereitgestellten Listen konnten die betreffenden Patientenakte im digitalen Archiv des Klinikums (i.s.h.med) aufgerufen werden. Die Daten wurden daraufhin computergestützt in einer Datenbank (Microsoft Excel) zusammengetragen.

Nach Fertigstellung der Datenbank wurden Patientennamen, Geburtsdaten und Patientennummern aus der Tabelle gelöscht um die Anonymität der Patienten zu gewährleisten.

2.3 Altersgruppen

Altersabhängig wurde der Patientenpool in Untergruppen aufgeteilt, um den verschiedenen Entwicklungsstadien der betroffenen Patienten gerecht zu werden und gefährdete Altersgruppen zu erkennen. Die Unterscheidung ergab sich in sechs verschiedenen Gruppen:
- Säuglinge (0 bis <1 Jahr)
- Kleinkinder (1 bis 4 Jahre)
- Vorschulkinder (5 bis 6 Jahre)
- Junge Schulkinder (7 bis 10 Jahre)
- Ältere Schulkinder (11 bis 14 Jahre)
- Jugendliche (15 bis 17 Jahre)

2.4 Vorstellung der Indizes zur SHT Diagnostik

2.4.1 Glasgow Coma Score

Teasdale et al. entwickelte und beschrieb den Glasgow Coma Score. Dies ermöglicht die Einschätzung des Bewusstseinszustandes von Traumapatienten und ist zur Klassifizierung des SHT Schweregrades geeignet [46]. Über die letzten Jahrzehnte hat sich dieses diagnostische Hilfsmittel fest etabliert und spielt eine entscheidende Rolle für die Patienten, sowohl in der Akutsituation als auch zur klinischen Überwachung, (Tab. 1) [47].

Für Kleinkinder und Säuglinge bedarf es einer Modifikation des GCS um sie anwendbar zu machen. Die Frankfurter erweiterte Form des GCS bietet die entsprechenden Anpassungen um auch sehr junge Patienten unter 24 Monaten klinisch einschätzen zu können. Hierbei ist die Kategorie „verbale Antwort“ angepasst und der Score um die zusätzliche Kategorie der „Pupillo- und Okulomotorik“ ergänzt, (Tab. 1) [40].

Die einheitliche klinische Kommunikation, und damit die Einteilung von Schädel-Hirn-Traumen in Schweregrade, ist über den Glasgow Coma Score definiert. Ein leichtes SHT zeigt sich somit bei einem GCS zwischen 15 und 13 bzw. zwischen 19 und 17, wenn die Frankfurter Erweiterung genutzt wird. Das mittelschwere SHT liegt bei einem GCS von 12 bis 9 bzw. 16 bis 12 vor und ein schweres SHT findet sich im Bereich eines GCS ≤8 bzw. ≤11 [22].
Tabelle 1: Erläuterung des Glasgow Coma Score sowie der Frankfurter Erweiterung für Kinder bis 24 Monate. Zur Bildung der Score Summe werden die Parameter der verschiedenen Spalten addiert.

<table>
<thead>
<tr>
<th>Punkte</th>
<th>Augenöffnen</th>
<th>Motorische Antwort</th>
<th>Verbale Antwort</th>
<th>Verbale Antwort (≤24 Monate)</th>
<th>Pupillo- und Okulomotorik (≤24 Monate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-</td>
<td>befolgt motorische Aufforderungen prompt</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>gezielte Abwehr auf Schmerzreiz</td>
<td>spricht verständlich, ist orientiert</td>
<td>fixiert, verfolgt, erkennt, lacht</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>spontan</td>
<td>ungezielte Beugebewegungen auf Schmerzreize</td>
<td>ist verwirrt, spricht unzusammenhängend, ist desorientiert</td>
<td>fixiert, verfolgt inkonstant, erkennt nicht sicher, lacht nicht situationsbedingt</td>
<td>konjugierte Augenbewegungen möglich</td>
</tr>
<tr>
<td>3</td>
<td>auf Aufforderung</td>
<td>Beugesynergismen</td>
<td>antwortet inadäquat, Wortsalat</td>
<td>Nur zeitweise erweckbar, trinkt und isst nicht</td>
<td>Puppenaugenphänomen auslösbar, dabei konjugierte Bulbusbewegungen</td>
</tr>
<tr>
<td>2</td>
<td>auf Schmerzreiz</td>
<td>Strecksynergismen</td>
<td>Unverständliche Laute</td>
<td>Bedrohreflex (ab 4/12) nicht sicher auslösbar, motorisch unruhig, jedoch nicht erweckbar</td>
<td>Bulbi divergens, besonders bei Auslösen des Puppenaugenphänomens oder Kaltspülung des äußeren Gehörgangs</td>
</tr>
<tr>
<td>1</td>
<td>kein Augenöffnen</td>
<td>keine motorische Antwort auf Schmerzreize</td>
<td>keine verbale Reaktion</td>
<td>tief komatös, kein Kontakt zur Umwelt, keine Reizantwortung</td>
<td>keine spontane Augenbewegung, weite lichtstarre Pupillen</td>
</tr>
</tbody>
</table>

2.4.2 Glasgow Outcome Scale und modified Rankin Scale

Zur einheitlichen Beurteilung des Zustandes der Patienten bei Entlassung aus der Klinik, also des Behandlungsergebnisses, werden in dieser Studie zwei verschiedene Skalen verwendet.
Die Glasgow Outcome Scale (GOS) unterscheidet dabei fünf verschiedene Genesungsgrade nach zerebralem Gewebeschaden, (Tab. 2) [21]. Die modified Rankin Scale (mRS), die von Rankin ursprünglich für Patienten mit Zustand nach Apoplex entwickelt wurde, unterscheidet sieben Grade des Behandlungsergebnisses, (Tab. 2) [36].
Tabelle 2: Erläuterung der Schweregrade von Glasgow Outcome Scale sowie modified Rankin Scale

<table>
<thead>
<tr>
<th>Grad</th>
<th>Glasgow Outcome Scale</th>
<th>Modified Rankin Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Keine Symptome</td>
<td>Keine relevante Beeinträchtigung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trotz gewisser Symptome können Alltagsak-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tivitäten verrichtet werden</td>
</tr>
<tr>
<td>1</td>
<td>Tod</td>
<td>Leichte Beeinträchtigung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kann sich ohne Hilfe versorgen, jedoch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kommt es im Alltag zu Einschränkungen</td>
</tr>
<tr>
<td>2</td>
<td>Persistierender vegetativer Zustand</td>
<td>Mittelschwere Beeinträchtigung</td>
</tr>
<tr>
<td></td>
<td>Zustand von Reaktionslosigkeit</td>
<td>Benötigt Hilfe im Alltag, kann aber ohne Hilfe gehen</td>
</tr>
<tr>
<td>3</td>
<td>Schwere Behinderung</td>
<td>Höhergradige Beeinträchtigung</td>
</tr>
<tr>
<td></td>
<td>Dauerhafte Hilfsbedürftigkeit bei Alltagsaktivitäten</td>
<td>Benötigt Hilfe bei der Körperpflege und beim Gehen</td>
</tr>
<tr>
<td>4</td>
<td>Mäßige Behinderung</td>
<td>Schwere Behinderung</td>
</tr>
<tr>
<td></td>
<td>Weitgehend selbstständiges Alltagsleben; spezielle Arbeitstätigkeit möglich</td>
<td>Bettlägerig, inkontinent, benötigt ständig pflegerische Hilfe</td>
</tr>
<tr>
<td>5</td>
<td>Geringe bis keine Behinderung</td>
<td>Geringe bis keine neurologischen und psychischen Defizite</td>
</tr>
<tr>
<td></td>
<td>Geringe bis keine neurologischen und psychischen Defizite</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tod</td>
<td></td>
</tr>
</tbody>
</table>

2.5 Statistische Auswertung

In der deskriptiven Statistik beschreiben Mittelwert, Standardabweichung, Median und Spannweite die quantitativen Parameter und absolute/relative Häufigkeiten die qualitativen Parameter. Die Darstellung wurde grafisch mittels Diagrammen realisiert. Es wurden Kreuztabellen zur Kombination mehrerer kategorialer Variablen erstellt.

Wurden zwei nicht-normalverteilte Zielgrößen betrachtet, so kam es zur Berechnung mittels Mann-Whitney-U-Test, bei mehr als zwei Zielgrößen mittels Kruskal-Wallis-Test. Als statistisch signifikant erachtet wurden alle Ergebnisse mit $p\leq.05$.
3 Ergebnisse

3.1 Veränderung der Behandlungszahlen im zeitlichen Verlauf

Über den gesamten Untersuchungszeitraum ist eine signifikante Veränderung der Behandlungszahlen zu beobachten; ($X^2(10)=134.02$, $p<.001$).

![Graph: Behandlungszahlen im zeitlichen Verlauf](image)

3.2 Geschlecht und Alter der Patienten

3.2.1 Gesamtbetrachtung von Alter und Geschlecht der Patienten

2788 (56,7%) männliche und 2130 (43,3%) weibliche Patienten wurden im Untersuchungszeitraum stationär behandelt; (Tab. 3). Dies entspricht einem Geschlechterverhältnis von 1,3:1 (männlich:weiblich); ($X^2(1)$= 88.04, p<.001).

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Absolut</th>
<th>Prozentual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weiblich</td>
<td>2130</td>
<td>43,3</td>
</tr>
<tr>
<td>Männlich</td>
<td>2788</td>
<td>56,7</td>
</tr>
<tr>
<td>Gesamt</td>
<td>4918</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Entsprechend der jeweiligen Entwicklungsstufe wurden fünf verschiedene Altersgruppen für Kinder gebildet: Säuglinge im Alter von 0 bis <1 Jahr nahmen einen Anteil von 23,6% (n=1163) ein, Kleinkinder zwischen 1 und 4 Jahren waren zu 36,7% (n=1806) betroffen, Vorschulkinder (5 - 6 Jahre) zu 9,1% (n=448) der Gesamtanzahl. 12,7% (n=623) der Fälle betrafen junge Schulkinder im Alter von 7 bis 10 Jahren; ältere Schulkinder (11 - 14 Jahre) hatten einen Anteil von 10,7% (n=525). Jugendliche (15 - <18 Jahre) wurden mit 7,2% (n=353) erfasst. Es zeigt sich eine signifikant unterschiedliche Verteilung der Altersgruppen; ($X^2(5)$=1918.04, p<.001); (Abb. 2).

![Abbildung 2: Anzahl der stationären Aufnahmen von minderjährigen Patienten mit Schädel-Hirn-Traumen, getrennt nach Altersgruppen (Universitätsklinikum Ulm, 2005-2015).](image-url)
Die 1 bis 4-jährigen Kleinkinder nahmen somit den größten Anteil der stationär zu behandelnden Patienten ein, wogegen Jugendliche (15 - <18 Jahre) die geringsten Behandlungszahlen vorwiesen.

Geschlechter spezifisch lässt sich belegen, dass ausnahmslos in jeder Altersgruppe die Anzahl der männlichen gegenüber den weiblichen Patienten signifikant überwiegt; \(X^2(5)=29.81, p<.001\); (Abb. 3). Junge Schulkinder (7 - 10 Jahre) zeigten ein Geschlechterverhältnis von 1,8:1 (m:w) und ältere Schulkinder (11 - 14 Jahre) hatten eine m:w-Rate von 1,6:1. In diesen beiden Altersgruppen bestand also für Jungen gegenüber Mädchen die höchste Wahrscheinlichkeit ein Schädel-Hirn-Trauma zu erleiden. Bei Säuglingen (m:w-Rate 1,1:1) und Kleinkindern (m:w-Rate 1,2:1) ist die Verteilung zwischen Jungen und Mädchen nur leicht auseinanderklaffend. Vorschulkinder und Jugendliche wiesen ein Geschlechterverhältnis (m:w) von 1,3:1 bzw 1,4:1 auf.

3.2.2 Betrachtung von Patientenalter und -geschlecht im zeitlichen Verlauf

Bei der Betrachtung der verschiedenen Altersgruppen lässt sich über den gesamten Untersuchungszeitraum nur eine geringe Veränderung erkennen. In jedem Jahr hat die Gruppe der Kleinkinder (1 - 4 Jahre) die meisten stationären Aufenthalte zu verzeichnen. Am zweithäufigsten sind in jedem Jahr die Fallzahlen der Säuglinge (0 - <1 Jahr), darauf folgen die jungen Schulkinder (7 - 10 Jahre). Bis auf die Jahre 2005 und 2014 sind Jugendliche (15 - <18 Jahre) stets die Gruppe mit den wenigsten stationären Aufenthalten aufgrund von Schädel-Hirn-Traumen. Im beobachteten Zeitraum kommt es lediglich zur Veränderung der Verteilung der Altersgruppen; ($X^2(50)=76.05$, $p=0.010$); (Abb. 5). Der Anteil älterer Kinder hat gerade in den Jahren 2014 und 2015 zugenommen, wogegen der Anteil der Säuglinge leicht abnahm.

3.3 Einlieferungszeitpunkt

3.3.1 Einlieferungstage und -zeiten

Deskriptiv lässt sich berichten, dass Patienten mit 15,4% (n=759) am häufigsten an einem Samstag stationär aufgenommen wurden. Die wenigsten Aufnahmen erfolgten freitags mit 13,7% (n=672). Außerhalb von Wochenenden gipfelt die Aufnahmehäufigkeit donnerstags (14,6%, n=717); (Tab. 4). Der Unterschied zwischen einzelnen Tagen zeigt jedoch lediglich leichte Tendenzen und ist nicht statistisch signifikant; (X²(6)=7.16, p=.306).

<table>
<thead>
<tr>
<th></th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
<th>Samstag</th>
<th>Sonntag</th>
</tr>
</thead>
<tbody>
<tr>
<td>n(%)</td>
<td>4918</td>
<td>696</td>
<td>684</td>
<td>704</td>
<td>717</td>
<td>672</td>
<td>759</td>
</tr>
<tr>
<td>(%)</td>
<td>(100)</td>
<td>(14,2)</td>
<td>(13,9)</td>
<td>(14,3)</td>
<td>(14,6)</td>
<td>(13,7)</td>
<td>(15,4)</td>
</tr>
</tbody>
</table>

Die Aufnahmezeitpunkte konnten bei 4788 Patienten ermittelt werden. Eine signifikante Häufung wird dabei beobachtet; (X²(7)=1209.12, p<.001).

Relativ selten, nämlich nur in 4,4% (n=216) der Fälle, kamen Kinder und Jugendliche im Zeitraum von 05:00 bis 09:00 Uhr in die Klinik. Zwischen 09:00 und 16:00 Uhr blieb die Häufigkeit der Einlieferungen in etwa konstant. Danach ist für den frühen Abend von 18:00 bis 21:00 Uhr ein starker Anstieg von Fallzahlen (n=1315, 27,0%) zu beobachten; (Abb.6).

3.3.2 Veränderung von Einlieferungstagen und -zeiten über die Jahre

In den elf Jahren ändern sich sowohl die Hauptwochentage als auch die Hauptzeiten der Aufnahmen nicht deutlich. In den Jahren 2006 und 2010 gehört der Freitag zu den meistfrequentierten Wochentagen. Es ist jedoch keine signifikante Änderung in Anstieg oder Abfall bei der Häufigkeit eines spezifischen Wochentages festzustellen; \(\chi^2(60)=71.03, p=.156 \); (Abb. 7).

Auch die Tageszeiten der Einlieferungen von Patienten mit einem Schädel-Hirn-Trauma lassen kein sich signifikant veränderndes Muster erkennen; \(\chi^2(70)=85.34, p=.102 \). Der frühe Abend (18:00 bis 21:00 Uhr) ist in jedem Jahr sehr dominierend. Morgens zwischen 05:00 und 09:00 Uhr, bis auf das Jahr 2013, fanden die wenigs-ten stationären Aufnahmen statt; (Abb. 8).

Abbildung 8: Jahresabhängige Aufnahmehäufigkeit minderjähriger Patienten mit Schädel-Hirn-Traumen zu verschiedenen Tageszeiten; Angabe prozentual bezogen auf das jeweilige Jahr (Universitätsklinikum Ulm, 2005-2015).

3.4 Unfallursachen

Die mit Abstand am häufigsten vorgekommene Unfallursache war der Sturz (82,7%, n=3973). Stürze kamen vor als „Sturz vom Möbelstück“, „Sturz an ein Möbelstück“, „Sturz aus dem Laufen heraus“, „Sturz vom Fahrrad“ sowie „andere Stürze“ (z.B. Sturz aus Kindersafe/Kinderwagen, synkopales Sturzereignis, Sturz vom Klettergerüst usw.).

Die zweithäufigste Ursache betraf den Straßenverkehr (7,9%, n=379). In dieser Kategorie wurden bei Kindern alle Unfälle als PKW-Insasse, Fußgänger oder Radfahrer im Straßenverkehr erfasst, bei Jugendlichen darüber hinaus auch Unfälle als Führer eines Kraftfahrzeuges.

7,5% (n=360) der Unfälle wurden anderen Ursachen zugeordnet. Hierunter fielen beispielsweise Zusammenstöße von Kindern, Laufen gegen ein Hindernis, Traumen durch Bälle oder Steine, Pferdehuftritte usw. 70 Patienten (1,5%) wurden mit einem Schädel-Hirn-Trauma stationär aufgenommen, das durch fremde Gewalteinwirkung (Körperverletzung) entstanden ist.

0,5% (n=24) der Fälle betraten nicht-akzidentelle Verletzungen, also Fälle die primär als Kindesmisshandlungen eingeliefert wurden. Aus den vorliegenden Daten konnte in diesen Fällen nur ein begründeter Verdacht der Misshandlung geäußert
werden. Zum Zeitpunkt der Klinikaufenthalte waren in der Regel noch keine polizeilichen Ermittlungen abgeschlossen, womit man den Misshandlungsverdacht hätte bestätigen können. Die unterschiedliche Verteilung der Unfallursachen zeigt eine statistische Signifikanz; \(X^2(4)=11905.86, p<.001 \); (Abb. 9).

In 112 Fällen konnte die Unfallursache nicht eindeutig erfasst werden, weshalb diese Fälle in der Statistik fehlen.

![Abbildung 9: Prozentuale Häufigkeit spezifischer Unfallursachen von minderjährigen Patienten mit Schädel-Hirn-Traumen (Universitätsklinikum Ulm, 2005-2015).](image)

3.4.1 Zusammenhang zwischen Patientenalter und Unfallursachen

Über die verschiedenen Altersgruppen der Patienten sind eindeutige Muster zur Unfallursache zu beobachten; \(X^2(20)=779.49, p<.001 \); (Abb. 10).

Je jünger die Kinder sind, desto wahrscheinlicher ist es für sie ein Schädel-Hirn-Trauma durch einen Sturz zu erleiden. Während Säuglinge (0 - <1 Jahr) zu 94,7\% (\(n=1057 \)) durch einen Sturz bedingt behandlungsbedürftig wurden, nahm der Sturz als Unfallursache bei den Jugendlichen (15 - <18 Jahre) nur einen Prozentsatz von 53,5\% (\(n=185 \)) ein.

Dagegen steigt die Wahrscheinlichkeit mit höher werdendem Alter ein Schädel-Hirn-Trauma durch einen Unfall im Straßenverkehr oder durch eine Schlagverletzung zu erleiden. 24,6\% (\(n=85 \)) der 15 - <18-Jährigen, die stationär aufgenommen wurden, hatten sich eine Verletzung im Straßenverkehr zugezogen. Bei den 1 - 4-Jährigen nimmt der Straßenverkehr als Ursache nur einen Anteil von 4,9\% (\(n=87 \)) ein.
Die nicht-akzidentelle Verletzung, also Kindesmisshandlung, fand insgesamt selten, aber größtenteils in den Altersgruppen der Säuglinge (1,3%, n=14) und Kleinkinder (0,5%, n=8) statt.

3.4.2 Unfallorte mit zusammenhängenden Ursachen

Für spezifische Unfallgeschehen lassen sich gehäuft typische Unfallorte ermitteln; \((X^2=(4)692.24, p<.001)\). Stürze fanden in 62% \((n=2299)\) der Fälle zu Hause statt. 93,5% \((n=58)\) der Körperverletzungen sind außerhalb von zu Hause vorgekommen, wogegen Kindesmisshandlungen (Nicht-akzidentelle Verletzungen) wohl immer zu Hause vorgenommen werden; (Abb. 11).

3.4.3 Liegedauer in Zusammenhang mit der Unfallursache

Verschiedene Unfallursachen gehen einher mit einer im Durchschnitt unterschiedlichen Dauer der stationären Behandlung; ($H(4)=241.25$, $p<.001$); (Tab. 5).
Kinder, die durch eine nicht-akzidentelle Verletzung Schaden genommen haben, erhielten die mit Abstand längste stationäre Behandlung. Im Mittelwert betrug ihre Aufenthaltsdauer 17,96 Tage. Der längste Aufenthalt in dieser Unfallgruppe betrug 72 Tage. Auch bei Betrachtung der Perzentile zeigt sich, dass 25% der Kinder in dieser Unfallgruppe einen stationären Aufenthalt von 27,25 Tagen oder länger zu verzeichnen hatten.
Patienten, die ihre Verletzung im Straßenverkehr erlitten, waren im Durchschnitt 4,93 Tage in stationärer Behandlung. Dieser Wert beträgt mehr als das Doppelte von dem der Ursachen „Sturz“, „Körperverletzung“ und „Andere“.

Der Sturz ist bei Kindern die häufigste Ursache für ein SHT. Kinder, die gestürzt waren hatten Klinikaufenthalte von 1,92 Tagen zu verzeichnen. Der Mindestaufenthalt in dieser Kategorie lag bei einigen Stunden, der Maximalaufenthalt lag bei 43 Tagen.

Vergleicht man die nicht-akzidentelle Verletzung in punkto Dauer der stationären Behandlung mit dem Sturz (z=-6.79, p<.001), der Körperverletzung (z=-5.59, p<.001) und anderen Ursachen (z=-6.30, p<.001), so ist der Unterschied hier eindeutig signifikant. Ebenso beim Vergleich von Straßenverkehr mit dem Sturz (z=-14.07, p<.001), der Körperverletzung (z=-5.04, p<.001) und anderen Ursachen (z=-8.92, p=.001) zeigen sich signifikante Unterschiede.

Patienten, die einen Unfall im Straßenverkehr erlitten haben, zeigten signifikant niedrigere Liegezeiten im Vergleich zu Patienten, die durch eine nicht-akzidentelle Verletzung zu Schaden kamen; (z=-4.27, p<.001).

<table>
<thead>
<tr>
<th>Ursache</th>
<th>Fallzahl</th>
<th>Mittelwert</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sturz</td>
<td>3973</td>
<td>1,92</td>
<td>43</td>
</tr>
<tr>
<td>Straßenverkehr</td>
<td>379</td>
<td>4,93</td>
<td>43</td>
</tr>
<tr>
<td>Andere Ursachen</td>
<td>360</td>
<td>2,24</td>
<td>30</td>
</tr>
<tr>
<td>Körperverletzung</td>
<td>70</td>
<td>1,91</td>
<td>9</td>
</tr>
<tr>
<td>Nicht-akzidentelle Verletzung</td>
<td>24</td>
<td>17,96</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>25</th>
<th>50</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ursache</th>
<th>Mittelwert</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sturz</td>
<td>1,92</td>
<td>43</td>
</tr>
<tr>
<td>Straßenverkehr</td>
<td>4,93</td>
<td>43</td>
</tr>
<tr>
<td>Andere Ursachen</td>
<td>2,24</td>
<td>30</td>
</tr>
<tr>
<td>Körperverletzung</td>
<td>1,91</td>
<td>9</td>
</tr>
<tr>
<td>Nicht-akzidentelle Verletzung</td>
<td>17,96</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>25</th>
<th>50</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.4 Behandlungsergebnis in Zusammenhang mit der Unfallursache

Das Behandlungsergebnis der Patienten wurde zum Zeitpunkt der Entlassung anhand von Glasgow Outcome Scale (GOS) und modified Rankin Scale (mRS) eingeordnet und unterscheidet sich je nach vorgefallener Unfallursache; (X^2(16)=139.10, p<.001, Tab. 6); (X^2(24)=280.08, p<.001, Tab. 7).
Im gesamten Untersuchungszeitraum starben zehn Patienten (GOS=1, mRS=6). Die häufigste Ursache für einen Todesfall war der Unfall im Straßenverkehr. Hierdurch verstarben insgesamt sieben Patienten. 2,11% (n=8) der Patienten mit Verkehrsunfällen waren nach Entlassung aus der Klinik schwerbehindert.

Kinder, die gestürzt waren, verließen die Klinik in 99,65% (n=3958) der Fälle ohne jegliche Symptome. Nur ein Patient (0,03%) mit der Unfallursache Sturz verstarb an seinen Verletzungen.

Patienten, die Opfer einer Gewalttat wurden (Körperverletzung), erfuhr im Großteil ebenfalls ein sehr gutes Behandlungsergebnis. 98,57% (n=69) verließen die Klinik symptomlos, wogegen ein Patient (1,43%) nicht überlebte.

<table>
<thead>
<tr>
<th>Unfallursache</th>
<th>GOS 1</th>
<th>GOS 2</th>
<th>GOS 3</th>
<th>GOS 4</th>
<th>GOS 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sturz</td>
<td>1 (0,03%)</td>
<td>1 (0,03%)</td>
<td>3 (0,08%)</td>
<td>4 (0,10%)</td>
<td>3960 (99,77%)</td>
</tr>
<tr>
<td>Straßenverkehr</td>
<td>7 (1,85%)</td>
<td>0</td>
<td>8 (2,11%)</td>
<td>1 (0,26%)</td>
<td>363 (95,78%)</td>
</tr>
<tr>
<td>Andere Ursachen</td>
<td>0</td>
<td>0</td>
<td>1 (0,28%)</td>
<td>1 (0,28%)</td>
<td>357 (99,44%)</td>
</tr>
<tr>
<td>Körperverletzung</td>
<td>1 (1,43%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>69 (98,57%)</td>
</tr>
<tr>
<td>Nicht-akzidentelle Verletzung</td>
<td>1 (4,17%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23 (95,83%)</td>
</tr>
</tbody>
</table>

Tabelle 7: Einordnung der neurologischen Bewertung der Patienten, die durch die angegebenen Unfallursachen ein Schädel-Hirn-Trauma erlitten haben, auf der Modified Rankin Scale. Angegeben sind absolute Werte sowie die prozentuale Häufigkeit in der jeweiligen Ursachengruppe (Universitätsklinikum Ulm, 2005-2015).

<table>
<thead>
<tr>
<th>Unfallursache</th>
<th>mRS 0</th>
<th>mRS 1</th>
<th>mRS 2</th>
<th>mRS 3</th>
<th>mRS 4</th>
<th>mRS 5</th>
<th>mRS 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sturz</td>
<td>3958 (99,65%)</td>
<td>7 (0,18%)</td>
<td>2 (0,05%)</td>
<td>0</td>
<td>3 (0,08%)</td>
<td>1 (0,03%)</td>
<td>1 (0,03%)</td>
</tr>
<tr>
<td>Straßenverkehr</td>
<td>353 (93,14%)</td>
<td>11 (2,90%)</td>
<td>0</td>
<td>2 (0,53%)</td>
<td>6 (1,58%)</td>
<td>0</td>
<td>7 (1,85%)</td>
</tr>
<tr>
<td>Andere Ursachen</td>
<td>356 (99,16%)</td>
<td>2 (0,56%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (0,28%)</td>
<td>0</td>
</tr>
<tr>
<td>Körperverletzung</td>
<td>69 (98,57%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (1,43%)</td>
</tr>
<tr>
<td>Nicht-akzidentelle Verletzung</td>
<td>20 (83,33%)</td>
<td>3 (12,5%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (4,17%)</td>
<td></td>
</tr>
</tbody>
</table>
3.4.5 Änderung der Unfallursachen im zeitlichen Verlauf

Da die Behandlungszahlen bei Kindern und Jugendlichen über die Jahre angestiegen sind, stellt sich die Frage, welche Verletzungsursachen den meisten Zuwachs verzeichneten.

Ein Anstieg der Unfälle ist tendenziell in den Bereichen der Ursachen „Andere“ und „Sturz“ zu beobachten. Insbesondere ab dem Jahr 2008 kommt es durch diese Ursachen zu vermehrten Aufnahmen. Körperverletzung sowie Unfälle im Straßenverkehr lassen kein besonderes Muster zum Anstieg der Behandlungszahlen erkennen. Insgesamt ergibt sich keine signifikante Änderung, was auf ein Gleichbleiben der Unfallmechanismen hindeutet; \(\chi^2(40)= 52.41; p=.090 \); (Abb. 13).

Nicht-akzidentelle Verletzungen kommen zwar in einigen Jahren etwas häufiger vor als in anderen, aufgrund der geringen Fallzahlen \((n=24)\) in dieser Gruppe kann man aber keine Aussage darüber machen, ob es einen generellen Trend für ein vermehrtes Vorkommen von Kindesmisshandlungen gibt.

3.4.5.1 Untersuchungen zur Unfallursache Sturz

sich keine signifikant veränderte Häufigkeit der Ursache Sturz von Jahr zu Jahr; $(X^2(10)=8.85, p=.547)$; (Tab. 8).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>257</td>
<td>258</td>
<td>280</td>
<td>391</td>
<td>409</td>
<td>401</td>
<td>361</td>
<td>439</td>
<td>380</td>
<td>392</td>
<td>405</td>
</tr>
<tr>
<td>%</td>
<td>82,3%</td>
<td>82,3%</td>
<td>80,3%</td>
<td>83,2%</td>
<td>82,8%</td>
<td>82,2%</td>
<td>84,9%</td>
<td>84,8%</td>
<td>85,4%</td>
<td>80,3%</td>
<td>83,2%</td>
</tr>
</tbody>
</table>

Betrachtet man die Altersgruppen der Patienten, die einen Sturz erlitten, ergeben sich signifikante Unterschiede; $(X^2(50)=76.53, p<.001)$. Es lassen sich die Anstiege der Fallzahlen tendenziell bei Kleinkindern (1 - 4 Jahre) und jungen Schulkindern (7 - 10 Jahre) erkennen. Bei den Erstgenannten kam es im Jahr 2005 zu n=96 Stürzen. Dies entspricht 6% der Stürze in dieser Altersgruppe. Dagegen steht das Jahr 2015 mit n=167 Stürzen (10,5%). Die stetige Erhöhung von Fallzahlen in dieser Altersgruppe, die bereits am stärksten in den Behandlungszahlen vertreten ist, trägt umfassend zur Steigerung der gesamten Aufnahmen bei.

Die Gruppe der 7 bis 10-Jährigen hat ebenfalls einen erkennbaren Anstieg der Unfälle aufgrund von Stürzen zu verbuchen. 4,9% (n=22) im Jahr 2005 stehen hier 10,6% (n=47) im Jahr 2015 entgegen; (Abb. 14).
Im Bereich der Sturzursachen waren in mehreren Gruppen Anstiege der stationären Aufnahmen über die Jahre zu erkennen; (Abb. 15, Abb.16).

Die deutlichste Steigungsrate im Untersuchungszeitraum wurde bei Stürzen „an ein Möbelstück“ festgestellt ($r_S=.66$, $p=.029$), wobei zu sagen ist, dass der jährliche Durchschnitt dieser Unfallursache mit $n=28$ eher gering ist.

Der zweitgrößte Anstieg betrifft die Stürze „von Möbelstücken“. Kinder fielen hierbei hauptsächlich vom Sofa (28%), Bett (26%), oder Wickeltisch (12%).

Bei Stürzen „aus dem Arm heraus“ geht die Fallzahl während der beobachteten Jahre tendenziell leicht zurück, was jedoch statistisch nicht signifikant ist; ($r_S=-.06$, $p=.872$).

Abbildung 15: Prozentuale Angabe der Sturzursachen, aus denen ein Schädel-Hirn-Trauma bei minderjährigen Patienten resultierte; 100% entsprechen elf Jahren in jeder Ursachengruppe (Universitätsklinikum Ulm, 2005-2015).
Neurochirurgische Maßnahmen wurden bei 1,1% (n=42) der gestürzten Patienten notwendig. Bei den restlichen Patienten (n=3931) dieser Gruppe war eine konservative Behandlung ausreichend.

Verglichen mit anderen Unfallursachen hat der Sturz somit die niedrigste Indikationsrate einer neurochirurgischen Intervention; \(X^2(4)=124.36, \ p<.001 \).

Schädel-Hirn-Traumen, die aufgrund einer nicht-akzidentellen Verletzung zu Stande kamen, zeigten hier mit 20,8% (n=5) die größte Notwendigkeit neurochirurgischer Eingriffe. Darauf folgen Unfälle im Straßenverkehr (6,9%, n=26), Körperverletzungen (2,9%, n=2) und andere Ursachen (1,7%, n=6); (Tab. 9).
3.5 Schweregrad des Schädel-Hirn-Traumas

Zum Zeitpunkt der Aufnahme in die Klinik wird der Schweregrad des Schädel-Hirn-Traumas anhand des GCS bestimmt.

Die meisten der aufgenommenen Patienten (97,6%, n=4719) erlitten ein leichtes Schädel-Hirn-Trauma (SHT Grad 1), 43 (0,9%) Patienten ein mittelschweres Schädel-Hirn-Trauma (SHT Grad 2) und 72 (1,5%) ein schweres Schädel-Hirn-Trauma (SHT Grad 3); \(X^2(2)=8990.57, p<.001\); (Abb. 17). In 84 Fällen fehlten in der Dokumentation die Daten zur Bestimmung des Schweregrades, weshalb diese Statistik nur 4834 Patienten einschließt.

![Abbildung 17: Prozentuale Aufteilung von Schweregraden der Schädel-Hirn-Traumen (SHT) bei minderjährigen Patienten (Universitätsklinikum Ulm, 2005-2015).](image)

3.5.1 SHT Schweregrad in Zusammenhang mit der Unfallursache

Der Zusammenhang zwischen Schweregraden des Schädel-Hirn-Traumas und bestimmten Unfallursachen zeigt sich statistisch signifikant; \(X^2(4)=194.59, p<.001\). Patienten, die einen Sturz erlitten, erreichten in 98,7% (n=3913) der Fälle die Klinik mit einem leichten Schädel-Hirn-Trauma. Nur bei 0,8% (n=31) der gestürzten Kinder wurde ein SHT dritten Grades diagnostiziert. Unfälle im Straßenverkehr waren dagegen deutlicher von Beeinträchtigungen des Bewusstseins der Patienten geprägt. 7,6% (n=29) erlitten ein schweres und 4,5% (n=17) ein mittelschweres Schädel-Hirn-Trauma.

In den Gruppen „andere Ursachen“ sowie „Körperverletzung“ dominierte mit 97% bzw. 98,6% ebenfalls das SHT Grad 1 zum Zeitpunkt der Einlieferung. Am schlimmsten betroffen waren Kinder, die durch eine nicht-akzidentelle-Verletzung zu Schaden kamen. In 12,5% (n=3) dieser Fälle wurde ein schweres
Schädel-Hirn-Trauma diagnostiziert. 4,2% (n=1) der misshandelten Kinder erlitten ein SHT zweiten Grades; (Tab.10).

<table>
<thead>
<tr>
<th></th>
<th>Sturz</th>
<th>Straßenverkehr</th>
<th>Andere Ursachen</th>
<th>Körperverletzung</th>
<th>Misshandlung</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHT Grad1 (%)</td>
<td>3913 (98,7%)</td>
<td>333 (87,9%)</td>
<td>349 (97,0%)</td>
<td>68 (98,6%)</td>
<td>20 (83,3%)</td>
<td>4683 (97,6%)</td>
</tr>
<tr>
<td>SHT Grad2 (%)</td>
<td>22 (0,5%)</td>
<td>17 (4,5%)</td>
<td>3 (0,8%)</td>
<td>0 (0%)</td>
<td>1 (4,2%)</td>
<td>43 (0,9%)</td>
</tr>
<tr>
<td>SHT Grad3 (%)</td>
<td>31 (0,8%)</td>
<td>29 (7,6%)</td>
<td>8 (2,2%)</td>
<td>1 (1,4%)</td>
<td>3 (12,5%)</td>
<td>72 (1,5%)</td>
</tr>
<tr>
<td>Gesamt (%)</td>
<td>3966 (100%)</td>
<td>379 (100%)</td>
<td>360 (100%)</td>
<td>69 (100%)</td>
<td>24 (100%)</td>
<td>4798 (100%)</td>
</tr>
</tbody>
</table>

3.5.2 Schweregrad in Zusammenhang mit Altersgruppen

Von einem leichten Schädel-Hirn-Trauma waren zum Großteil junge Kinder betroffen. 61% (n=2879) der aufgenommenen Patienten mit einem SHT ersten Grades gehörten den ersten beiden Altersgruppen an und waren somit noch keine fünf Jahre alt. Vorschulkinder (5 - 6 Jahre), junge Schulkinder (7 - 10 Jahre) und ältere Schulkinder (11 - 14 Jahre) erlitten alle jedoch noch einen relativ hohen Anteil an leichten Schädel-Hirn-Traumen. Die geringsten Fallzahlen mit SHT ersten Grades wurden bei den 15 bis <18-Jährigen registriert. 6,8% (n=322) der Fälle dieses Schweregrades waren ihnen zuzuordnen.

Das Vorkommen von leichten Schädel-Hirn-Traumen nimmt also nach einem Höhepunkt in der Gruppe der 1 bis 4-Jährigen mit zunehmendem Alter tendenziell ab, wobei sich jedoch keine Signifikanz zeigt; \(r_s= -0.77, p=0.072 \).

Das genaue Gegenteil ist beim schweren Schädel-Hirn-Trauma zu beobachten. Die Anzahl der Fälle steigt hierbei mit zunehmendem Alter; \(r_s= 0.84, p=0.036 \). Säuglinge (0 - <1 Jahr) nehmen nur 6,9% (n=5) der Fälle ein. Jugendliche (15 - <18 Jahre) sind dagegen von 27,8% (n=20) der Fälle schwerer Schädel-Hirn-Traumen betroffen; (Abb. 18).

3.5.3 Änderung der SHT Schweregrade im zeitlichen Verlauf

Je nach Schweregrad der Schädel-Hirn-Traumen zeigt sich im Verlauf der Jahre eine unterschiedliche Häufung der Fallzahlen; (Tab. 11). Das leichte Schädel-Hirn-Trauma hat dabei einen Anstieg zu verzeichnen; (r_s=.66, p=.026). Im Jahr 2005 kommt es zu (n=309) Fällen mit SHT Grad 1, was 97,8% der Gesamtzahl dieses Jahres entspricht. Ab dem Jahr 2008 ist ein Anstieg in der Fallzahl (n=473) zu erkennen. Das Maximum an Fallzahlen der Schädel-Hirn-Traumen dieses Schweregrades ereignet sich im Jahr 2012 mit n=507 Patienten. 2013 (98,9%) und 2014 (98,4%) steigt auch der Anteil der leichten SHT an den Gesamtfallzahlen dieser Jahre.

Das moderate und schwere SHT (aufgrund geringer Fallzahl hier zusammengefasst) zeigt im Mittel keinen relevanten Anstieg am Anteil der jährlichen Fallzahlen. Das Maximum der Fälle liegt hier im Jahr 2015 (n=15, 3,1%). Im Jahr 2013 liegt das Minimum mit 1,1% (n=5) der Fälle.
Eine Regelmäßigkeit in Anstieg oder Abfall der Fälle ist in diesen Schweregraden nicht erkennbar. Die Fallzahl des moderaten und schweren SHT ist aber verglichen mit dem leichten SHT relativ klein, weshalb sich an dieser Stelle keine besonders deutlichen Aussagen in Bezug auf den Trend treffen lassen.

<table>
<thead>
<tr>
<th>Aufnahmefahrjahr</th>
<th>Schweregrad des SHT</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>leicht</td>
<td>moderat/schwer</td>
</tr>
<tr>
<td>2005</td>
<td>309 (97,8%)</td>
<td>7 (2,2%)</td>
</tr>
<tr>
<td>2006</td>
<td>310 (97,5%)</td>
<td>8 (2,5%)</td>
</tr>
<tr>
<td>2007</td>
<td>342 (96,9%)</td>
<td>11 (3,1%)</td>
</tr>
<tr>
<td>2008</td>
<td>473 (97,7%)</td>
<td>11 (2,3%)</td>
</tr>
<tr>
<td>2009</td>
<td>484 (97,0%)</td>
<td>15 (3,0%)</td>
</tr>
<tr>
<td>2010</td>
<td>480 (97,6%)</td>
<td>12 (2,4%)</td>
</tr>
<tr>
<td>2011</td>
<td>415 (97,4%)</td>
<td>11 (2,6%)</td>
</tr>
<tr>
<td>2012</td>
<td>507 (97,7%)</td>
<td>12 (2,3%)</td>
</tr>
<tr>
<td>2013</td>
<td>440 (98,9%)</td>
<td>5 (1,1%)</td>
</tr>
<tr>
<td>2014</td>
<td>485 (98,4%)</td>
<td>8 (1,6%)</td>
</tr>
<tr>
<td>2015</td>
<td>474 (96,9%)</td>
<td>15 (3,1%)</td>
</tr>
</tbody>
</table>

3.6 Änderungen der bildgebenden Diagnostik im zeitlichen Verlauf

Erfasst wurde die Anzahl der jährlich durchgeführten diagnostischen Maßnahmen mit Hilfe von CT, MRT und Sonographie über den gesamten Beobachtungszeitraum von elf Jahren; (Abb. 19).

Erkennbar wird hierbei, dass der jährliche Anteil an Computertomographien als diagnostisches Mittel im Zeitverlauf fällt; \(r_s = -.86, p = .001 \). Dagegen steigt die Nutzung der Magnet-Resonanz-Tomographie zwischen 2005 und 2015; \(r_s = .67, p = .023 \). Dennoch ist es in jedem Jahr das diagnostische Mittel, welches am seltensten eingesetzt wird. Der Einsatz der Sonographie verändert sich im Mittel nicht deutlich; \(r_s = .16, p = .640 \).

Insgesamt wird die Computertomographie in 16,2%, die MRT in 5,8% und die Sonographie in 20,3% aller Behandlungsfälle genutzt.
Der Anteil an Patienten bei denen im Zeitverlauf überhaupt eine bildgebende Diagnostik durchgeführt wird, ändert sich signifikant; \(\chi^2(10)=64.89, \ p<.001 \) Während 2005 noch bei 52,2% eine bildgebende Diagnostik durchgeführt wurde, kam es 2015 nur noch bei 33,3% zur Untersuchung mittels Bildgebung; (Abb. 20).

3.7 Änderung des Behandlungsergebnisses im zeitlichen Verlauf

Das Behandlungsergebnis bei Entlassung aus dem stationären Aufenthalt findet eine Maßzahl im Glasgow Outcome Score \((X^2(10)=11.36, p=.330)\) und modified Rankin Scale \((X^2(10)=7.55, p=.673)\). Signifikante Veränderungen im Jahresverlauf sind nicht erkennbar; (Tab. 12).

<table>
<thead>
<tr>
<th>Jahr</th>
<th>GOS</th>
<th>mRS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 (99,1%)</td>
<td>3 (0,9%)</td>
</tr>
<tr>
<td>2005</td>
<td>317 (99,7%)</td>
<td>1 (0,3%)</td>
</tr>
<tr>
<td>2006</td>
<td>352 (99,7%)</td>
<td>1 (0,3%)</td>
</tr>
<tr>
<td>2007</td>
<td>480 (99,4%)</td>
<td>3 (0,6%)</td>
</tr>
<tr>
<td>2008</td>
<td>493 (98,6%)</td>
<td>7 (1,4%)</td>
</tr>
<tr>
<td>2009</td>
<td>488 (99,2%)</td>
<td>4 (0,8%)</td>
</tr>
<tr>
<td>2010</td>
<td>425 (99,5%)</td>
<td>2 (0,5%)</td>
</tr>
<tr>
<td>2011</td>
<td>518 (99,6%)</td>
<td>2 (0,4%)</td>
</tr>
<tr>
<td>2012</td>
<td>447 (100%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>2013</td>
<td>492 (99,6%)</td>
<td>2 (0,4%)</td>
</tr>
<tr>
<td>2014</td>
<td>486 (99,2%)</td>
<td>4 (0,8%)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>4811 (99,4%)</td>
<td>29 (0,6%)</td>
</tr>
</tbody>
</table>

3.8 Inzidenz von SHT im Ulmer PLZ-Gebiet

Der Wohnort von Patienten wurde anhand der Postleitzahlen erfasst und die jährlichen Einwohnerzahlen der Bewohner unter 18 Jahren gemittelt, womit die durchschnittliche jährliche Einwohnerzahl aller Minderjährigen im jeweiligen Gebiet berechnet werden konnte. Die Daten dafür wurden vom Einwohnermeldeamt bereitgestellt. Die durchschnittliche jährliche Fallzahl für jeden Stadtteil wurde aus der jeweiligen Gesamtfallzahl des elfjährigen Untersuchungszeitraums gemittelt. Für die Stadtteile Ulms konnte somit die durchschnittliche Inzidenz bestimmt werden. Die höchste Inzidenz an Schädel-Hirn-Traumen ist im Ulmer Postleitzahl-Gebiet 89081 (Grimmelfingen, Lehr, Jungingen, Mähringen, Ermingen, Söflingen-Gewerbegebiet) zu finden. Hier kam es jährlich zu 534,64 Fällen pro 100.000 Einwohner.
In diesem Gebiet liegt das Universitätsklinikum (Neue Chirurgie) und die nähere Umgebung um das Klinikum herum. Im Gebiet 89077 (Ulm Weststadt, Alt-Söflingen) wurde mit 502,36/100.000 Einwohnern die geringste Inzidenz erfasst. Verglichen mit dem Gebiet 89081 zeigt sich eine größere Entfernung zum Universitätsklinikum. Das Gebiet 89075 (Böfingen, Eselsberg, Michelsberg, Gaisenberg, Wilhelmsburg, Safranberg), das die zweitniedrigste Inzidenz besitzt, liegt jedoch ebenso in unmittelbarer Umgebung zum Universitätsklinikum. Aus diesem Grund lässt die Entfernung des Wohnortes nicht unmittelbar auf die Häufigkeit der Vorstellung im Klinikum schließen (Tab.13, Abb. 21).

Die urbanen Gebiete (89073, 89075, 89077) zeigen eine geringfügig niedrigere Inzidenz im Vergleich zu den ländlichen Gebieten (89079, 89081), (Tab. 13).

<table>
<thead>
<tr>
<th>PLZ</th>
<th>Stadtgebiet</th>
<th>Ø Einwohnerzahl unter 18 Jahren</th>
<th>Ø Fallzahl</th>
<th>Ø Inzidenz pro 100.000 EW</th>
</tr>
</thead>
<tbody>
<tr>
<td>89081</td>
<td>Ulm (Grimmelfingen, Lehr, Jungingen, Mähringen, Ermingen, Söflingen-Gewerbegebiet)</td>
<td>2860</td>
<td>15,3</td>
<td>534,64</td>
</tr>
<tr>
<td>89079</td>
<td>Ulm (Wiblingen, Unterweiler, Donautal, Eggingen, Einsingen, Donautetten, Gögglingen)</td>
<td>4578</td>
<td>24,4</td>
<td>536,91</td>
</tr>
<tr>
<td>89073</td>
<td>Ulm (Mitte, Oststadt)</td>
<td>2124</td>
<td>11,3</td>
<td>531,91</td>
</tr>
<tr>
<td>89075</td>
<td>Ulm (Böfingen, Eselsberg, Michelsberg, Gaisenberg, Wilhelmsburg, Safranberg)</td>
<td>5659</td>
<td>29,3</td>
<td>519,00</td>
</tr>
<tr>
<td>89077</td>
<td>Ulm (Weststadt, Alt-Söflingen)</td>
<td>4257</td>
<td>21,4</td>
<td>502,36</td>
</tr>
</tbody>
</table>
3.9 Zusammenfassung der Ergebnisse

Der Trend zu steigenden Behandlungszahlen von Kindern und Jugendlichen mit Schädel-Hirn-Trauma an der Universitätsklinik Ulm konnte eindeutig gezeigt werden. Dabei überwiegt der Anteil männlicher Patienten in allen Altersgruppen. Die Fallzahlen steigen jedoch sowohl bei Jungen als auch bei Mädchen. Insgesamt ist das Risiko, ein Schädel-Hirn-Trauma zu erleiden, in der Altersgruppe der 1 bis 4-Jährigen am höchsten, was sich über den gesamten Zeitraum der Studie beobachtet lässt.

Der häufigste Aufnahmetag zeigt sich samstags und zeitlich zwischen 18 und 21 Uhr. Hierbei kommt es ebenfalls zu keiner Veränderung über den Untersuchungszeitraum.

Betrachtet man die gesamte Studienpopulation, so sind Stürze die häufigste Unfallursache. Bei diesen Kindern war jedoch meist eine konservative Therapie ausreichend, was sich auch in der vergleichbar geringeren Liegedauer widerspiegelt.
ter SHT zu erkennen. Zwischen 2005 und 2015 ist der Anteil an Patienten, bei denen keine bildgebende Diagnostik durchgeführt wird steigend. Änderungen im Behandlungsergebnis sind nicht erkennbar. Die höchste Inzidenz aller Ulmer Stadtteile zeigt das PLZ-Gebiet 89081 mit 534,64 Fällen pro 100.000 Einwohnern jährlich. Für die gesamte Studienpopulation lässt sich ein typischer Patient beschreiben, bei dem das Risiko für einen stationären Aufenthalt aufgrund eines SHT am höchsten ist. Dieser ist ein männliches Kleinkind (1 - 4 Jahre), welches samstags am frühen Abend zu Hause stürzt und im PLZ Gebiet 89081 lebt. Dieser Risikopatient erfährt einen durchschnittlichen stationären Aufenthalt von 1,92 Tagen ohne bildgebende Diagnostik und ohne die Anwendung neurochirurgischer Maßnahmen. Danach ver-
lässt er die Klinik symptomlos. Auf der Gegenseite steht eine weibliche Patientin zwischen 15 und 17 Jahren, die das geringste Risiko für einen stationären Aufenthalt vorweist. In diesem Alter besteht jedoch, falls es zu einem Trauma kommt, eine höhere Gefahr ein SHT mit schwerem Ausmaß zu erleiden.
4 Diskussion

4.1 Behandlungszahlen

Die Aussage, ob es tatsächlich im zeitlichen Verlauf zu einer erhöhten Unfallrate kommt, oder nur die Behandlungsrate steigt, lässt diese Studie nicht zu. Es wurden nur Fälle erfasst, die in der Klinik behandelt wurden. Die Dunkelziffer ist nach wie vor schwer abschätzbar.

Es geht mit der Literatur einher, dass gerade in Deutschland die Behandlungszahlen ansteigen. Im europäischen Vergleich werden regionsabhängige Unterschiede deutlich. Für Deutschland konnten dabei einige der höchsten Fallzahlen verzeichnet werden, wogegen Großbritannien die wenigsten SHT Behandlungsfälle vorweist. Uneinheitliche länderspezifische Standards in Dokumentation machen den Vergleich jedoch schwierig [41].

4.2 Geschlecht und Alter

Mit 56,7% waren insgesamt mehr Jungen als Mädchen von einem SHT betroffen (m:w Rate 1,3:1), (Tab. 3). Dieses Phänomen ist bereits aus diversen Studien bekannt. Peeters et al. zeigte in einer Metaanalyse, dass das Verhältnis der Inzidenz

Die Altersgruppe, die geschlechterunabhängig am häufigsten in Behandlung war, waren die 1 bis 4-Jährigen (36,7%). Jugendliche (15 bis <18 Jahre) wurden am seltensten aufgenommen (7,2%), (Abb. 2). Junge Kinder ab dem ersten Lebensjahr lernen zu laufen und erkunden ihre Umgebung, ohne ein entwickeltes Gefahrenbewusstsein zu besitzen, was die Häufung in dieser Altersgruppe erklärt. In der bestehenden Literatur werden ähnliche Beobachtungen beschrieben. In einer Veröffentlichung über Untersuchungen zwischen 1990 und 2004 wird darauf hingewiesen, dass Säuglinge und kleine Kinder zur gefährdetsten Gruppe für Unfälle gehören [9]. Im Gegensatz dazu fand Emanuelson et al. in einer Studie in Schweden keine altersspezifischen Unterschiede in der Wahrscheinlichkeit ein SHT zu erleiden. Dies kann aber auch mit dem Studiendesign zusammenhängen, da dort nur Patienten mit Bewusstlosigkeit oder eindeutigem Nachweis einer Hirnverletzung berücksichtigt wurden [10].

Im zeitlichen Verlauf ändert sich an der Aufnahmehäufigkeit der verschiedenen Altersgruppen am Universitätsklinikum Ulm nichts, (Abb. 5). Die Gefährdungswahrscheinlichkeit der Altersgruppen verschiebt sich demnach nicht über die Jahre. Es
muss jedoch konstatiert werden, dass die Altersgruppen nicht konsequent die gleiche Größe besaßen und somit die Vergleichbarkeit eingeschränkt ist.

4.3 Wochentag und Uhrzeit

Der Zeitpunkt der Einlieferung in die Klinik ist zwar nicht gleichzusetzen mit dem Unfallzeitpunkt, jedoch sind stärker frequentierte Zeiträume zu beobachten, woraus sich gewisse Schlüsse ziehen lassen. Tendentiell kam es samstags am häufigsten zu stationären Aufnahmen mit 15,4% der Fälle. Freitags war der Wochentag mit den wenigsten Aufnahmen (13,7%), (Tab. 4). Dieser leichte Anstieg am Samstag kann damit zusammenhängen, dass an diesem Tag vermehrt risikoreiche Aktivitäten durchgeführt werden. Kinder besuchen womöglich gehäuft Spielplätze oder gehen sportlichen Aktivitäten nach, wozu unter der Woche oftmals die Zeit fehlt. Auch die Tatsache, dass Hausarzt- und Kinderarztpraxen am Wochenende geschlossen sind, kann zur erhöhten Behandlungshäufigkeit im Klinikum beitragen. Generell sind jedoch zwischen den einzelnen Wochentagen keine besonders deutlichen Unterschiede festzustellen. Dies deckt sich mit den Ergebnissen anderer epidemiologischer Studien [26,34].

Betrachtet man die Uhrzeiten der Aufnahmen, so ist am frühen Abend (18:00 bis 21:00 Uhr) eine deutliche Häufung erkennbar. 27% der Fälle wurden in diesem Zeitraum aufgenommen. Morgens (05:00 bis 09:00 Uhr) werden mit nur 4,4% die wenigsten Patienten aufgenommen, (Abb. 6). Auch hier ist der Anstieg an Behandlungszahlen am frühen Abend erklärbar durch gesteigerte Freizeitaktivitäten nach dem Besuch von Betreuungseinrichtungen wie Schule oder Kindergarten. Ebenfalls sind zu diesem Zeitpunkt keine Haus- und Kinderärzte mehr verfügbar. Ein weiterer Aspekt ist die Tatsache, dass Familien mit mehreren Kindern und nur einer „Aufsichtsperson“ die Notaufnahme bzw. das Klinikum erst aufsuchen, wenn die andere „Aufsichtsperson“ abends von der Arbeit nach Hause kommt um auf die Geschwister aufzupassen. Möglicherweise verleitet auch eine bevorstehende Nachtruhe die Eltern dazu, ein Trauma, das im Tagesverlauf stattgefunden hat, doch noch ärztlich abklären zu lassen. Der späte Nachmittag und frühe Abend wurde ebenfalls in anderen Studien als risikoreicher Zeitraum beschrieben [26,34]. In den frühen Morgenstunden zwischen 05:00 und 09:00 Uhr sind nur sehr wenig Einlieferungen zu
beobachten, da es logischerweise in der Nacht zu deutlich weniger Unfällen als tagsüber kommt.

Limitierend für die Aussagekraft ist zu sehen, dass die Aufnahmezeitpunkte sich zeitlich nicht zwangsläufig den Unfallzeitpunkten anschließen. Patienten, die ein Trauma bereits Tage vor ihrer Vorstellung im Klinikum erlitten haben, können sich aufgrund persistierender Beschwerden erst später für eine ärztliche Behandlung entscheiden. Aufgrund der hohen Fallzahl lassen sich in dieser Studie jedoch die Trends der häufigsten Unfallzeitpunkte und somit risikoreiche Tageszeiten vermuten.

4.4 Ursachen

sicheren häuslichen Umfeld können hierzu beitragen. Dafür spricht ebenso die hohe Anzahl von Säuglingen, die ein SHT erleiden, da diese noch nicht laufen können. Werden die Kinder älter, so fangen sie an, ohne Aufsicht im Freien zu spielen, wodurch die Verwicklung in Verkehrsunfälle wahrscheinlicher wird. Im Jugendalter ab dem 16. Lebensjahr bewegen sie zunehmend eigenverantwortlich Fahrzeuge im Straßenverkehr, was aufgrund mangelnder Erfahrung mit einer erhöhten Unfallgefahr einhergeht. Pädiatrische Unfälle folgen also alterstypischen Mechanismen und verlangen dementsprechende Präventionsmaßnahmen, welche individuell auf Erzieher, Lehrer, Eltern, Trainer usw. zugeschnitten sein müssen.

Jahr. Dagegen sind es in Deutschland jährlich 1.099.068,67, die höchste Zahl in Europa [41].

Betrachtet man das Behandlungsergebnis, so verließen 99,65% der Patienten mit der Unfallursache Sturz die Klinik symptomlos. Nach Verkehrsunfällen wurden 93,14% der Patienten symptomlos entlassen und bei den Kindern, die ein SHT durch eine nicht-akzidentelle Verletzung erlitten hatten waren es nur 83,33%. Der Verkehrsunfall war jedoch die häufigste Todesursache, (Tab. 6, Tab. 7). Kinder sind Teil der verletzlichen Straßenbenutzer wie Fußgänger, Radfahrer usw., welche für die Hälfte der Todesfälle durch Verkehrsunfälle in Betracht kommen [44]. Nichtsdestotrotz ist die Anzahl der durch einen Verkehrsunfall verstorbenen Patienten gering, nämlich n=7 innerhalb der elf untersuchten Jahre. Durch präventive Maßnahmen wie beispielsweise Tempolimits und Anschallpflicht konnte in den letzten Jahrzehnten die Verkehrssicherheit erhöht werden [9]. Das vergleichsweise schlechte Behandlungsergebnis von misshandelten Kindern stützt die Beobachtung von Ewing et al., in der gezeigt wird, dass diese Kinder deutlich flachere Erholungskurven durchlaufen als verunfallte Kinder mit ähnlichem sozioökonomischen Hintergrund [12].

4.4.1 Der Sturz als Ursache für steigende Fallzahlen

Im Sturzmechanismus ist zu sehen, dass speziell Stürze „an ein Möbelstück“ sowie „vom Möbelstück“ vermehrt vorkommen, wogegen Fahrradstürze und Treppenstürze nur wenig zunehmen und Unfälle mit Kindern, die vom Arm eines Erwachsenen stürzen, sogar zurückgehen, (Abb. 15, Abb. 16). Ellsasser beschreibt, dass gerade Säuglinge und Kleinkinder durch die unsachgemäße Nutzung von Wickeltischen einem erheblichen Risiko ausgesetzt sind [9]. Die Tatsache, dass neurochirurgische Maßnahmen nur bei 1,1% der Kinder mit SHT durch einen Sturz vorgenommen werden mussten (Tab. 9) sowie die kurze Liegedauer dieser Patienten (Tab. 5) lässt jedoch die geringe Schwere dieser Verletzungs muster vermuten. Der Hauptteil der Patienten konnte demnach konservativ versorgt werden. Der genaue Grund für die steigende Anzahl an stationären Aufnahmen gestürzter Kleinkinder muss jedoch in einer prospektiven Studie ermittelt werden.

4.5 SHT Schweregrade und deren klinische Bedeutung

In dieser Studie wurden die Schweregrade der Schädel-Hirn-Traumen anhand des jeweiligen Glasgow Coma Score zum Zeitpunkt der Einlieferung in die Klinik erfasst. Der Großteil der Patienten erreichte die Klinik mit einem leichten Schädel-Hirn-Trauma (97,6%). Nur 0,9% erlitten ein moderates und 1,5% ein schweres SHT, (Abb. 17). Dieses Ergebnis lässt sich vergleichen mit der prospektiven Studie von Rickels et al., in der ebenfalls im deutschen Raum mit ähnlichen Einschlusskriterien, jedoch bei Patienten jeden Alters, die Epidemiologie von Schädel-Hirn-Traumen untersucht wurde. Rickels et al. zeigt ein Vorkommen des leichten SHT in nur 90,2% der Fälle. Der Probandeneinschluss anhand der ICD-10 Diagnoseschlüssel wurde auch hier vorgenommen [39]. Der Grund für die erhöhte Aufnahmerate an leichten Schädel-Hirn-Traumen am Universitätsklinikum Ulm hängt also wahrscheinlich mit der Beschränkung der Studie auf pädiatrische Patienten zusammen. Obwohl die Einschlusskriterien bei Aufnahme anhand der Diagnosestellung mittels ICD-10 zwar klar gegeben waren, könnte es möglich sein, dass Aufnahmekriterien weiter gefasst wurden, was retrospektiv jedoch nicht eindeutig nachweisbar ist. In einem Teil der Behandlungsfälle wurde demnach möglicherweise eine klinische SHT Überwachung durchgeführt, ohne dass die Patienten eine eindeutige Symptomatik aufwiesen und eventuell nur eine Schädelprallung zeigten. Dieser Umstand kann mit der

Stürze verursachten nur zu 0,8% ein schweres SHT, wohingegen im Straßenverkehr verunfallte Kinder zu 7,6% und misshandelte Kinder zu 12,5% ein schweres SHT zeigten (Tab. 10). Auch hiermit bestätigt sich die bereits beschriebene Annahme, dass Stürze in der Regel einen Unfallmechanismus darstellen, der vergleichsweise milde Folgen verursacht. Verkehrsunfälle werden hingegen in der Literatur als häufigste Ursache gravierender Schädel-Hirn-Traumen angesehen [24,30,35].

Die klinische Einschätzung des SHT-Schweregrades mittels GCS ist jedoch dahingehend limitiert, dass Patienten womöglich nur zum Transport schutzintubiert wurden und somit bei Ankunft in der Klinik ein Bild zeigen, welches nicht die tatsächliche Schwere der Verletzung widerspiegelt. Auch kann es personenabhängig zu interindividuellen Unterschieden in der Erfassung kommen [43,50].

4.6 Bildgebende Diagnostik

In dieser Studie wurde bei 16,9% der Patienten eine CT des Neurokraniums durchgeführt. 5,8% erhielten eine MRT und 20,3% eine Sonographie. Aus der Studie von Rickels et al. ergibt sich, dass in 19,3% der Fälle eine CT-Untersuchung stattfand, bei schweren SHT steigt der Prozentsatz jedoch auf 97,3% [39]. CT Untersuchungen werden demnach wichtiger, je schwerer das Verletzungsmuster des Patienten erscheint. Da in dieser Studie der Großteil an Patienten mit einem leichten SHT behandelt wurde, fällt auch die Anzahl der durchgeführten Computertomographien relativ gering aus. Um unnötiger Strahlenbelastung, insbesondere bei Kindern, vorzubeugen, ist die enge Stellung der CT-Indikation angemessen. In den USA wird beispielsweise schon bei jedem leichten SHT eine Computertomographie mit anschließender Entlassung bei Ausbleiben pathologischer Befunde durchgeführt. Dagegen setzt man in Deutschland in leichten Fällen eher auf die kostenintensivere stationäre Überwachung [24]. Der geringe Anteil der durchgeführten MRT lässt sich womöglich durch den zeitlichen Aufwand als Nachteil dieser Methode erklären [49]. Außerdem müssen unkooperative Kinder dafür unter Umständen intubiert werden, was ein zusätzliches Risiko birgt. Die Sonographie zeigt den größten Anteil an durchgeführten Maßnahmen. Aufgrund der schnellen und strahlungsfreien Durchführung ist dieses Mittel zur initialen Diagnostik gerade bei sehr jungen Kindern die erste Wahl [22,33].

Über die Spanne des untersuchten Zeitraums fiel die jährliche prozentuale Häufigkeit an CT-Untersuchungen, wogegen MRT-Untersuchungen anstiegen. Sonographien zeigten keine signifikante Veränderung im Zeitverlauf, (Abb. 19).

Die Häufigkeit der Fälle, bei denen überhaupt bildgebende diagnostischen Mittel eingesetzt wurden, sank deutlich. Auch hier ist speziell ab dem Jahr 2008 ein Abfall erkennbar (Abb. 20). Dieses Ergebnis deckt sich mit der Annahme, dass im Laufe der Jahre vermehrt Patienten mit Bagatellverletzungen stationär aufgenommen

4.7 Outcome

Die vorliegenden Daten beziehen sich auf den Zeitpunkt der Entlassung aus der stationären Behandlung. Einschätzungen über mögliche Langzeitfolgen durch die stattgefun denen SHT lassen sich somit in dieser Arbeit nicht treffen und müssten in einer weiteren Studie prospektiv ermittelt werden.

4.8 Inzidenz im Einzugsgebiet des Universitätsklinikums

Die eher ländlich geprägten Gebiete von Ulm mit den Postleitzahlen 89079 sowie 89081 liegen in ihrer SHT-Inzidenz leicht über den urbanen Stadtteilen mit den Postleitzahlen 89073, 89075 und 89077. Den höchsten Wert in dieser Studie weist der
Bereich mit der PLZ 89081 (Grimmelfingen, Lehr, Jungingen, Mähringen, Ermingen, Söflingen-Gewerbegebiet) mit 534 Behandlungsfällen pro 100.000 Einwohnern auf. Dagegen verzeichnet die Weststadt von Ulm sowie Alt-Söflingen (PLZ 89077) die geringste Inzidenz aller Ulmer Stadtgebiete (502/100.000 EW/Jahr), (Tab. 13). Die Ursache für die Unterschiede könnte demnach der urbanen bzw. ländlichen Umgebung zuzuordnen sein. Dies entspricht in der Grundtendenz der Studie von Chiu et al. in Taiwan, die zeigt, dass in ländlicher Umgebung eine doppelt so hohe Inzidenz an SHT vorliegt wie in städtischem Umfeld [4]. Rickels et al. sieht hingegen keinen Unterschied im Zusammenhang mit der Umgebung des Vorkommens pädiatrischer Schädel-Hirn-Traumen [39]. Es muss ebenso erwähnt werden, dass sich die Unterschiede in der Inzidenz in dieser Studie nur sehr leicht zeigen und auch Gründe der Infrastruktur der verschiedenen Gebiete dafür verantwortlich sein könnten. Da in dieser Arbeit lediglich die aufgenommenen Patienten am Universitätsklinikum Ulm erfasst wurden, hat sich vermutlich ein gewisser Anteil verunfallter Patienten in anderweitiger Behandlung befunden. Stehen somit in gewissen Regionen andere Kliniken oder Praxen besser zur Verfügung, so würden sich dort die Patienten besser aufteilen und seltener das Universitätsklinikum aufsuchen.

4.9 Limitationen dieser Studie

Die Ergebnisse dieser Studie zeigen gewisse Limitationen in ihrer Aussagekraft, welche teilweise schon in den entsprechenden Kapiteln erwähnt wurden. Zur Vollständigkeit sollen sie hier noch einmal aufgelistet werden:

- Nicht alle Kinder und Jugendlichen, die im Einzugsgebiet des Ulmer Universitätsklinikums ein behandlungsbedürftiges Schädel-Hirn-Trauma erleiden, werden auch stationär aufgenommen. Sowohl die Verfügbarkeit anderer Kliniken und niedergelassener Ärzte als auch die aktive Entscheidung der Erziehungsberechtigten gegen eine stationäre Aufnahme senkt die Erfassungsrate der tatsächlich vorgekommenen Unfälle.

- Patienten, welche schwere Traumen erlitten haben und diesen womöglich noch vor der Ankunft in der Klinik tödlich erliegen, werden nicht erfasst.

- Eine teilweise zu weite Auslegung der Symptomatik zum Zeitpunkt der Aufnahme schreibt einem Teil der Patienten die Diagnose „Schädel-Hirn-Trauma“ zu, die sich eigentlich nicht innerhalb der Einschlusskriterien befanden. Dies kommt vor, da die Leitlinie bei kindlicher Verhaltensänderung aus elterlicher Sichtweise eine stationäre Aufnahme vorsichtshalber empfiehlt [22].

- Nebenverletzungen können die Liegedauer der Patienten verlängern.

- Der Aufnahmezeitpunkt in der Klinik ist nicht gleichzusetzen mit dem Unfallzeitpunkt. Es kann zu einem verspäteten Aufsuchen ärztlicher Betreuung gekommen sein.

4.10 Schlussfolgerung und Ausblick

Es hat den Anschein, dass die Begründung für ein Ansteigen der Fallzahlen pädiatrischer Schädel-Hirn-Traumen am Universitätsklinikum Ulm in dem bestehenden Aufnahmeverfahren begründet ist. Möglicherweise sind Erziehungsberechtigte auch vorsichtiger geworden und suchen mit ihren verunfallten Kindern eher die Klinik auf als das in früheren Jahren der Fall war. Am gesamten System, an der generellen Unfallhäufigkeit, sowie an der Schwere der stattgefundenen Unfälle scheint sich im Zeitverlauf keine Änderung ergeben zu haben. Die epidemiologischen Erkenntnisse
5 Zusammenfassung

4918 Kinder und Jugendliche wurden im untersuchten Zeitraum stationär behandelt. Der Trend zu steigenden Behandlungszahlen im zeitlichen Verlauf wurde dabei bestätigt. Der überwiegende Anteil an Patienten war männlich (56,7%). In den Altersgruppen zeigten sich die 1 bis 4-jährigen Kinder als am meisten gefährdet. Stürze nahmen dabei die häufigste Unfallursache ein. 97,6% der vorgekommenen Traumen waren ersten Grades; speziell der Anstieg erstgradiger Schädel-Hirn-Traumen war beachtlich. Die Inzidenz in den einzelnen Ulmer Stadtteilen schwankt zwischen 502 und 534 pro 100.000 Einwohnern jährlich.

6 Literaturverzeichnis

36. RANKIN J: Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scottish medical journal, 2: 200-215 (1957)

42. Statistisches Bundesamt (Destatis). Diagnosedaten der Krankenhäuser ab 2000 Berechnungs- und Belegungstage durchschnittliche Verweildauer:

Danksagung

Die Danksagung wurde aus Gründen des Datenschutzes entfernt.
Lebenslauf

Der Lebenslauf wurde aus Gründen des Datenschutzes entfernt.