Molekulare Grundlagen einer Cannabis-vermittelten Schmerztherapie: Evidenz für die Bedeutung von TH17-Zellen

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät der Universität Ulm

Eva Timmermann
Illertissen
2017
Amtierender Dekan: Prof. Dr. T. Wirth

1. Berichterstatter: Prof. Dr. M. Schneider

2. Berichterstatter: apl. Prof. Dr. J. Högel

Tag der Promotion: 13.12.2018
Widmung

Diese Arbeit widme ich meinen Eltern Klara und Gerhard Kneer, sowie Florian Timmermann als Dank für all ihre Unterstützung.
Inhaltsverzeichnis

Widmung .. iii

Inhaltsverzeichnis .. iv

Abkürzungsverzeichnis ... vi

1 Einleitung .. 1
 1.1 Geschichte von Cannabis .. 1
 1.2 Endocannabinoidsystem ... 8
 1.3 Cannabinoidrezeptoren ... 8
 1.4 Signaltransduktion und Wirkmechanismen ... 11
 1.5 Analgesie durch Cannabinoide ... 13
 1.6 Immunmodulation durch Cannabinoide ... 16
 1.7 Beteiligung der Immunzellen am Schmerzgeschehen .. 19
 1.8 Einzelbasenpaaraustausche (Single Nucleotide Polymorphisms) .. 21
 1.9 Fragestellung .. 23

2 Material und Methoden .. 24
 2.1 Vorangegangene Studie .. 24
 2.2 Schmerztagebuch .. 25
 2.3 Durchflusszytometrie ... 27
 2.4 SNP-Bestimmung ... 40
 2.5 Statistik ... 42

3 Ergebnisse .. 45
 3.1 Patientendaten .. 45
 3.2 Vergleich der Therapiegruppen ... 72
 3.3 SNP-Bestimmung ... 87
 3.4 Vergleich der Therapiegruppen bzgl. des SNPs ... 89
 3.5 Dronabinoldosis .. 105
Inhaltsverzeichnis

4 Diskussion .. 107
 4.1 Methodische Aspekte .. 107
 4.2 Veränderung der Oberflächenmarker ... 109
 4.3 Einflussnahme durch SNP rs2501432 ... 122
 4.4 Schlussfolgerung ... 124

5 Zusammenfassung ... 125

6 Literaturverzeichnis .. 127

7 Tabellenanhang .. 132

Danksagung ... 156

Lebenslauf .. 158
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Adenylatcyclase</td>
</tr>
<tr>
<td>ADCC</td>
<td>antibody-dependent cell-mediated cytotoxicity</td>
</tr>
<tr>
<td>AEA</td>
<td>arachidonylethanolamide, Anandamid</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immune deficiency syndrome</td>
</tr>
<tr>
<td>ALV</td>
<td>Auslassversuch</td>
</tr>
<tr>
<td>b. Bed.</td>
<td>bei Bedarf</td>
</tr>
<tr>
<td>BC</td>
<td>before Christ</td>
</tr>
<tr>
<td>BfArM</td>
<td>Bundesinstitut für Arzneimittel und Medizinprodukte</td>
</tr>
<tr>
<td>Btl.</td>
<td>Beutel</td>
</tr>
<tr>
<td>BTM</td>
<td>Betäubungsmittel</td>
</tr>
<tr>
<td>BWS</td>
<td>Brustwirbelsäule</td>
</tr>
<tr>
<td>cAMP</td>
<td>zyklisches Adenosinmonophosphat</td>
</tr>
<tr>
<td>CBD</td>
<td>Cannabidiol</td>
</tr>
<tr>
<td>CBN</td>
<td>Cannabinol</td>
</tr>
<tr>
<td>CBT</td>
<td>Cannabitriol</td>
</tr>
<tr>
<td>CB1-R</td>
<td>Cannabinoidrezeptor 1</td>
</tr>
<tr>
<td>CB2-R</td>
<td>Cannabinoidrezeptor 2</td>
</tr>
<tr>
<td>CCP</td>
<td>cyclic citrullinated peptide</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>cytotoxic T-lymphocyte-associated protein</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cells, dendritische Zellen</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleinsäure</td>
</tr>
<tr>
<td>DRG</td>
<td>dorsal root ganglion</td>
</tr>
<tr>
<td>EC</td>
<td>Endocannabinoid-/Endocannabinoide</td>
</tr>
<tr>
<td>ECS</td>
<td>Endocannabinoidsystem</td>
</tr>
<tr>
<td>ED</td>
<td>Encephalitis disseminate</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>FAAH</td>
<td>fatty acid amide hydrolase</td>
</tr>
<tr>
<td>FADD</td>
<td>fas-associated protein with dead domain</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikelstimulierendes Hormon</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-Aminobuttersäure</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein-coupled receptor</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HvGD</td>
<td>host versus graft disease</td>
</tr>
<tr>
<td>HWK</td>
<td>Halswirbelkörper</td>
</tr>
<tr>
<td>HWS</td>
<td>Halswirbelsäule</td>
</tr>
<tr>
<td>HWZ</td>
<td>Halbwertszeit</td>
</tr>
<tr>
<td>I.E.</td>
<td>internationale Einheiten</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IL-17</td>
<td>Interleukin 17</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-γ</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinase</td>
</tr>
<tr>
<td>LBP</td>
<td>lipopolysaccharide binding protein</td>
</tr>
<tr>
<td>LH</td>
<td>luteinisierendes Hormon</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LWK</td>
<td>Lendenwirbelkörper</td>
</tr>
<tr>
<td>LWS</td>
<td>Lendenwirbelsäule</td>
</tr>
<tr>
<td>MAGL</td>
<td>Monoacylglycerol Lipase</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogene-activated protein kinase, MAP Kinase</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MIP-1</td>
<td>macrophage inflammatory protein 1</td>
</tr>
<tr>
<td>MOG33–55</td>
<td>myelin oligodendrocyte glycoprotein</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NAPE</td>
<td>N-arachidonoyl-phosphatidylethanolamin</td>
</tr>
<tr>
<td>NCAM</td>
<td>neural cell adhesion molecule</td>
</tr>
<tr>
<td>NF-AT</td>
<td>nuclear factor activated T-cells</td>
</tr>
<tr>
<td>NFκB</td>
<td>nuclear factor "κ-light-chain-enhancer" of activated B-cells</td>
</tr>
<tr>
<td>NGF</td>
<td>nerve growth factor</td>
</tr>
<tr>
<td>NK-Zellen</td>
<td>Natürliche Killerzellen</td>
</tr>
<tr>
<td>NK-T-Zellen</td>
<td>Natürliche Killer-T-Zellen</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>NRS</td>
<td>numerische Ratingskala</td>
</tr>
<tr>
<td>o.B.</td>
<td>ohne Befund</td>
</tr>
<tr>
<td>OSG</td>
<td>oberes Sprunggelenk</td>
</tr>
<tr>
<td>PAMP</td>
<td>pathogen-associated molecular patterns</td>
</tr>
<tr>
<td>PEA</td>
<td>Palmitoylethanolamid</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>p.o.</td>
<td>per os</td>
</tr>
<tr>
<td>P2X7</td>
<td>purinergic receptor P2X7</td>
</tr>
<tr>
<td>RANTES</td>
<td>CCL5, CC-chemokine ligand 5</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleinsäure</td>
</tr>
<tr>
<td>ret.</td>
<td>retardiert</td>
</tr>
<tr>
<td>s.l.</td>
<td>sublingual</td>
</tr>
<tr>
<td>SCI</td>
<td>spinal cord injury</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism, Single Nucleotid Polymorphismus</td>
</tr>
<tr>
<td>Src kinase</td>
<td>Tyrosinkinase Src, Src Kinase</td>
</tr>
<tr>
<td>TH-Zellen</td>
<td>T-Helferzellen</td>
</tr>
<tr>
<td>THC-COOH</td>
<td>Säureform des Δ^9-Tetrahydrocannabinol</td>
</tr>
<tr>
<td>THC-OH</td>
<td>Oxidationsprodukt von Δ^9-Tetrahydrocannabinol</td>
</tr>
<tr>
<td>TNFα</td>
<td>tumor necrosis factor α</td>
</tr>
<tr>
<td>TRP</td>
<td>transient receptor potential action channel</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyreoidea stimulierendes Hormon</td>
</tr>
<tr>
<td>USG</td>
<td>unteres Sprunggelenk</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>unret.</td>
<td>unretardiert</td>
</tr>
<tr>
<td>V.a.</td>
<td>Verdacht auf</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>vascular cell adhesion protein 1</td>
</tr>
<tr>
<td>VRS</td>
<td>verbale Ratingskala</td>
</tr>
<tr>
<td>WDR neuron</td>
<td>wide dynamic range neuron</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WS</td>
<td>Wirbelsäule</td>
</tr>
<tr>
<td>Z.n.</td>
<td>Zustand nach</td>
</tr>
<tr>
<td>ZNS</td>
<td>zentrales Nervensystem</td>
</tr>
<tr>
<td>Δ^9-THC</td>
<td>Δ^9-Tetrahydrocannabinol</td>
</tr>
</tbody>
</table>
2-AG 2-arachidonoylglycerol, 2-Arachidonylglycerol
1 Einleitung

1.1 Geschichte von Cannabis

Im antiken Griechenland soll neben der Faserhanfnutzung zur Schifffahrt, die Pflanze auch zur Zubereitung von Getränken benutzt worden sein. Der Historiker Herodot berichtete 490-425 BC über den inhalativen Gebrauch des bei der Verbrennung der Cannabispflanze entstehenden Rauchs bei Reinigungsritualen oder Totenzeremonien von der Volksgruppe der am kaspischen Meer siedelnden Skythen.

In Europa wurde Cannabis zunächst in Form von Faserhanf verwendet, die berauschende Wirkung der Pflanze wurde schließlich mit den Kreuzzfahrern im Mittelalter bekannt. Später wurde die Pflanze als Heilmittel bei Wahnvorstellungen, Migräne und neuralgischen Beschwerden benutzt. Hanföl half bei der Behandlung von Hauterkrankungen.

Mit der Kolonisierung gelangte die Pflanze im 16. Jahrhundert schließlich nach Mittel- und Südamerika und in die Karibik.

Um die Jahrhundertwende schließlich begann man Cannabis als medizinische Substanz im Sinne von Tinkturen und Extrakten an Stelle von Morphin vermehrt zu nutzen, da dessen Abhängigkeitspotential bereits erkannt worden war. Als um 1900 Heroin auf den Markt kam, wurde Cannabis als Heilmittel immer weniger genutzt, bis es in Europa kaum noch eine Rolle spielte, auch weil eine genauere Untersuchung der Cannabispflanze auf ihre Inhaltsstoffe mit den damaligen Methoden keinen Erfolg verzeichnen ließ.

Großes Interesse an einer möglichen Nutzung der Inhaltsstoffe der Cannabispflanze als medizinische Substanz entflammt schließlich mit der erfolgreichen Isolation von Δ⁹-Tetrahydrocannabinol (Δ⁹-THC) 1964, dem wichtigsten Inhaltsstoff der Cannabispflanze und des Bekanntwerdens des Endocannabinoidsystems mit konsekutiver weiterer Forschung auf diesem Gebiet (Grotenhermen, Müller-Vahl 2012). Diese zeigte, dass im Harz der Drüsenhaare unter anderem über 60 Cannabinoide enthalten sind (Geschwinde 2013), wie:

- Cannabinol (CBN),
- Cannabidiol (CBD),
- Cannabitriol (CBT) und
- Tetrahydrocannabinole (THC).

Alle sind im Wasser unlöslich und weisen photochemische Instabilität auf. Von den Tetrahydrocannabinolen ist vor allem das Δ⁹-Tetrahydrocannabinol hervorzuheben, das im Wesentlichen die pharmakologische Wirkung besitzt. Nach IUPAC heißt die Substanz: 6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol. Meist liegt die Substanz in der trans-Form vor, die cis-Form weist keine psychoaktive Wirkung auf. In der Pflanze selbst liegen die Cannabinoide meist als Säure vor, z.B. THC-COOH, die ebenfalls nicht psychoaktiv wirksam ist. Es existieren zwei weitere Hauptbegleitstoffe:

- Cannabidiol (CBD) und Cannabinol (CBN). CBD hat selbst keine psychoaktive Wirksamkeit, kann aber mittels Interaktion am CB1-Rezeptor den Wirkeintritt von Δ⁹-THC verzögern, damit die Wirkdauer verlängern, aber durch antagonistische Wirkung den psychoaktiven Effekt von Δ⁹-THC abschwächen. CBN ist ein Oxidationsprodukt von Δ⁹-THC, das ungefähr ein Zehntel dessen psychoaktiver Wirkung zeigt (Geschwinde 2013):

![Strukturformel des Δ⁹-Tetrahydrocannabinol](image-url)
Mit zunehmender Erforschung dieser Substanzen und ihrer Eigenschaften wurden diese bald als Arzneimittel eingesetzt. Im Folgenden seien einige Beispiele genannt:

- USA und Schweiz: synthetisches Δ^9-THC zur Behandlung von Epilepsie und multiplier Sklerose (CB1-Rezeptor im Hirn gegen Tremor und spasmolytisch)
- Deutschland: Δ^9-THC-Spray als Fertigarzneimittel zur Behandlung von Oben genanntem, vereinzelt auch zur Behandlung von Spasmen und Störungen der Muskelkoordination nach Rückenmarksverletzungen
- Cannabinoid-haltige Präparate: Einsatz als Anxiolytikum, zur Unterdrückung des Juckreizes, als Schmerzmittel (spastische Schmerzen, diabetische Neuropathie und zur Reduktion der Opiatmenge in Kombination mit diesen)
- Dronabinol (wirksamste stereoisomere Form eines synthetisch hergestellten Δ^9-THCs) in den USA: Unterdrückung von Übelkeit und Erbrechen im Verlauf einer Chemo- oder Strahlentherapie
- Marinol: (in Sesamöl gelöstes Dronabinol) in den USA seit 1986 bei Krebspatienten unter Zytostatikatherapie und seit 1991 bei Anorexie bei AIDS-Patienten angewendet

1.1.1 Aktuelle Rechtslage

Cannabinoide gehören gemäß § 1 Betäubungsmittelgesetz (BtMG) zu den nicht verkehrsfähigen Stoffen, d.h. Anbau, Herstellung, Handel, Einfuhr, Ausfuhr, Abgabe, Veräußerung, sonstiges Inverkehrbringen, Erwerb und Besitz von allen Pflanzenteilen des Cannabis sind ohne Genehmigung des Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) strafbar.

Bereits 2007 kam es erstmals zur Ausnahmegenehmigung. Eine ausatherapierte Schmerzpatientin bekam zunächst für 1 Jahr den Erwerb eines standardisierten Cannabispräparats erlaubt.

Im Oktober 2008 wurde schließlich über den sinnvollen Einsatz von Cannabispräparaten für „Patienten, die unter einer konventionellen Behandlung keine ausreichende Linderung von Symptomen wie Spastik, Schmerzen, Übelkeit, Erbrechen oder Appetitmangel haben“ gesprochen.

Einleitung

1.1.2 Metabolismus

Die Aufnahme erfolgt meist enteral oder durch inhalatives Rauchen. So wird eine raschere Aufnahme erreicht und der aufgenommene Wirkstoffanteil ist höher, es kommt zu einem höheren Blutspiegelwert als auch Rauschwirkung, diese ist zwei- bis dreimal so stark wie bei enteraler Zufuhr. Der Wirkeintritt per os findet 30 bis 60 Minuten nach Einnahme statt, beim Rauchen schon nach 15 Minuten.

Beim Rauchen besteht ein gewisser Verlust an Inhaltsstoff durch Verbrennung von freiem Δ^9-THC, dieser wird durch Decarboxylierung von THC-COOH kompensiert.

Die Ausscheidung erfolgt langsam mit Stuhl und Harn.

1.1.3 Wirkung

In untenstehender Tabelle sind die diversen Effekte des Δ⁹-THC den Veränderungen den diversen Neurotransmittern und Organsystemen zugeordnet (Grotenhermen 2004):

Tab. 1: Effekte von Δ⁹-Tetrahydrocannabinol nach Zuordnung zu einem Neurotransmitter

<table>
<thead>
<tr>
<th>Aminosäuren</th>
<th>Effekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erregende Aminosäuren</td>
<td></td>
</tr>
<tr>
<td>Glutamat</td>
<td>Epilepsie, Nervenzelltod bei Ischämie und Hypoxie</td>
</tr>
<tr>
<td>Hemmende Aminosäuren</td>
<td></td>
</tr>
<tr>
<td>GABA (Gamma-Aminobuttersäure)</td>
<td>Störungen der Funktion des Rückenmarks, Epilepsie, Angst, Schreckhaftigkeitssyndrome</td>
</tr>
<tr>
<td>Glycin</td>
<td></td>
</tr>
<tr>
<td>Monoamine</td>
<td></td>
</tr>
<tr>
<td>Noradrenalin</td>
<td>Autonome Homöostase, Hormone, Depression</td>
</tr>
<tr>
<td>Serotonin</td>
<td>Depression, Angst, Migräne, Erbrechen</td>
</tr>
<tr>
<td>Dopamin</td>
<td>Parkinson-Erkrankung, Schizophrenie, Erbrechen, Epiphysenhormone, Abhängigkeit</td>
</tr>
<tr>
<td>Acetylcholin</td>
<td>Neuromuskuläre Störungen, Autonome Homöostase (Herzfrequenz und Blutdruck), Demenz, Parkinsonismus, Epilepsie, Schlaf-Wach-Rhythmus</td>
</tr>
<tr>
<td>Neuropeptide (Endorphine, Enkephaline)</td>
<td></td>
</tr>
</tbody>
</table>

- 6 -
<table>
<thead>
<tr>
<th>Organ-/funktionelles System</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psyche und Wahrnehmung</td>
<td>Sedierung, Euphorie, gesteigertes Wohlbefinden, Dysphorie, Angstzunahme, Angstverminderung, Depersonalisation, Intensivierung der sensorischen Wahrnehmung, gesteigertes sexuelles Erleben, Veränderung des Zeitgefühls, Halluzinationen</td>
</tr>
<tr>
<td>Kognition und Psychomotorik</td>
<td>Fragmentiertes Denken, Störung des Kurzzeitgedächtnisses und der Aufmerksamkeit, assoziatives Denken, gesteigerte Kreativität, Ataxie, verwaschene Sprache, Verschlechterung der Bewegungskoordination, Verbesserung der Bewegungskoordination, Abschwächung hyperkinetischer Bewegungsstörungen</td>
</tr>
<tr>
<td>Nervensystem</td>
<td>Analgesie, Muskelrelaxierung, Appetitsteigerung, Emesis, Antiemesis, Neuroprotektion bei Ischämie und Hypoxie</td>
</tr>
<tr>
<td>Körpertemperatur</td>
<td>Senkung der Körpertemperatur</td>
</tr>
<tr>
<td>Kardiovaskuläres System</td>
<td>Tachykardie, erhöhte Herzarbeit und gesteigeter Sauerstoffbedarf, Vasodilatation, orthostatische Hypotension, Hypertension (im Liegen), Hemmung der Thrombozytenaggregation</td>
</tr>
<tr>
<td>Auge</td>
<td>Conjunktivale Rötung, vermindelter Tränenfluss, herabgesetzter intraokulärer Druck</td>
</tr>
<tr>
<td>Respiratorisches System</td>
<td>Bronchodilatation, Hyposalivation mit Mundtrockenheit</td>
</tr>
<tr>
<td>Gastrointestinales System</td>
<td>Verminderte gastrointestinale Motilität und gastrale Entleerung</td>
</tr>
<tr>
<td>Endokrinum</td>
<td>Beeinflussung von LH, FSH und Testosteron, Prolaktin, Wachstumshormonen, TSH, Glukostoffwechsel, verminderte Spermiogenese und verminderte Spermienmotilität, Zyklusstörungen und unterdrückte Ovulation</td>
</tr>
</tbody>
</table>

Tab. 2: Wirkung von Δ⁹-Tetrahydrocannabinol nach Zuordnung zu Organsystemen; LH = luteinisierendes Hormon, FSH = Follikelstimulierendes Hormon, TSH = Thyreoidea stimulierendes Hormon
<table>
<thead>
<tr>
<th>Immunsystem</th>
<th>Beeinträchtigung der zellulären und humoralen Immunität, Immunstimulation, Entzündungshemmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryonalentwicklung</td>
<td>Wachstumshemmung, Beeinträchtigung fetaler und frühkindlicher Hirnentwicklung, Beeinträchtigung der kognitiven Leistungsfähigkeit</td>
</tr>
<tr>
<td>Genetisches Material</td>
<td>Antineoplastische Aktivität, Hemmung der Synthese von DNA, RNA und Proteinen</td>
</tr>
</tbody>
</table>

1.2 Endocannabinoidsystem

1.3 Cannabinoidrezeptoren

Es gibt zwei sogenannte Cannabinoidrezeptoren, abgekürzt CB-Rezeptoren. Dabei wirken (Endo-)Cannabinoide zudem auf andere G-Protein–gekoppelte Rezeptoren (G-protein-coupled receptor, GPCR), Ionenkanäle, TRP (transient receptor potential action channel) und nukleare Rezeptoren (peroxisome proliferator-activated receptor, PPAR) (Pertwee, Howlett et al. 2010). Dabei wurde v.a. der Rezeptor GPR55 zunächst als „dritter Cannabinoidrezeptor“ in

Sie haben am N-terminalen Ende eine extrazelluläre Domäne, am C-Terminus einen intrazellulären Bestandteil, der dort mit dem G\textsubscript{i/o}-Protein-Komplex verbunden ist, über den die Signalkaskade abläuft. Diese unterbindet die Adenylatcyclase (AC), der intrazelluläre cAMP-Level sinkt, die mitogen-activated protein kinase (MAP Kinase) wird aktiviert (Pertwee 2006; Cabral, Griffin-Thomas 2009). Weitere Untersuchungen zeigten, dass die AC aber auch aktiviert werden kann. Hier besteht eine Verbindung zu einem G\textsubscript{s}-Protein-Komplex (Klein, Newton et al. 2003; Pertwee 2006). Desweiteren werden über die Cannabinoidrezeptoren Signalkaskaden zur Veränderung des intrazellulären Kalzium- und Kaliumgehalts beeinflusst (Cabral, Griffin-Thomas 2009). Wie oben bereits beschrieben, ist aufgrund diverser Studienergebnisse (Klein, Newton et al. 2003) anzunehmen, dass viele verschiedene Transmitter, sog. second messengers durch die Cannabinoidrezeptoren beeinflusst werden und so viele verschiedene zelluläre und genetische Prozesse durch sie reguliert werden, u.a. auch über die Veränderung der Phospholipase C-Aktivität, die Diacylglycerol und Inositoltriphosphat beeinflusst und die Proteinkinase C-Aktivität (Klein, Newton et al. 2003).

CB1-Rezeptor:

Außer der Beeinflussung der Adenylatcyclase via G\textsubscript{i/o}- und G\textsubscript{s}-Proteinen führt die Aktivierung des Receptors zur Inhibition von N- und P/Q-Typ-Kalziumkanälen und der Aktivierung von A-Typ-Kalziumkanälen (Pertwee, Howlett et al. 2010).

Dieser Rezeptortyp kommt v.a. im Gehirn vor, eine hohe Expressionsrate findet man im Kortex (frontal, motorische und sensorische Zentren), im Hippocampus und in der Amygdala, in den Basalganglien, im Hypothalamus, der Pons und der Medulla und im Kleinhirn (Klein, Lane et al. 2000; Rom, Persidsky 2013). Mit diesen Bereichen werden die Funktionen Wahrnehmung

CB2-Rezeptor:

Weiterhin konnte gezeigt werden, dass der Rezeptor während neuroinflammatorischer Geschehnisse induziert werden kann (Yang, Wang et al. 2012).

2008 berichteten Guindon et al. noch, dass CB2-selektive Agonisten keine Nebenwirkungen auslösten, die mit einer CB1-Rezeptoraktivierung verbunden sind und als zentral-vermittelt gelten und meinten mit diesen Beobachtungen den Standpunkt zu stützen, dass CB2-

Zunächst bestand also die Meinung, dass mit der weiteren Erforschung des CB2-Rezeptors und spezifischer Liganden eine Möglichkeit gefunden werden könnte, die durch diesen Receptor vermittelten Wirkungen zu beeinflussen und therapeutisch zu nutzen, ohne psychoaktiven Wirkungen ausgesetzt zu sein, die zunächst nur der CB1-Aktivierung zugeschrieben worden waren.

1.4 Signaltransduktion und Wirkmechanismen

Die CB-Rezeptoren sind G-Protein-gekoppelte Sieben-Transmembranrezeptoren (siehe 1.3). Wie bereits oben erwähnt, werden über die Cannabinoidrezeptoren viele Signalkaskaden beeinflusst, auszugsweise soll hier aber zunächst auf die am häufigsten Beschriebene eingegangen werden:

Der intrazelluläre Bestandteil des C-Terminus ist mit einem inhibitorischen G-Protein-Komplex verbunden. Wenn die Signalkaskade abläuft, wird die Adenylatcyclase inhibiert, es wird weniger zyklisches Adenosinmonophosphat (cAMP) gebildet. Dieses ist ein wichtiger Botenstoff und wird auch als second messenger bezeichnet. Eine Verminderung bewirkt eine Herabsetzung der Aktivität der Proteinkinase A, welche die wichtige Phosphorylierung in der Zelle übernimmt (Pertwee, Howlett et al. 2010).

Intensive Forschung in den letzten 15 Jahren hat gezeigt, dass Endocannabinoide als Regulatoren der synaptischen Funktion im ZNS dienen. Sie wirken dabei, indem sie durch retrograde Inhibition die Botenstofffreisetzung im synaptischen Spalt kurzfristig oder auch langanhaltend hemmen. Dabei sind die Endocannabinoide aber nicht vorrätig in einem Vesikel verstaut, sondern werden bei Gebrauch erst produziert. Diese binden an präsynaptische CB1-R und unterdrücken weitere Freisetzung an Neurotransmittern und wirken so als Bremse für neuronale Hyperaktivität (Castillo, Younts et al. 2012; Burston, Woodhams 2014).

Außer an den typischen Cannabinoidrezeptoren wie oben beschrieben, wirken manche Cannabinoide auch an folgenden Rezeptoren (Di Marzo, Wang 2015):
Einleitung

Tab. 3: Übersicht über Rezeptoren, an denen Cannabinoide wirken können (Auszug); THC = Tetrahydrocannabinol; CBD = Cannabidiol, k.A. = keine Angabe

<table>
<thead>
<tr>
<th>Cannabinoid-ähnliche G-Protein-gekoppelte Rezeptoren (GPCR):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezeptor</td>
<td>Ligand</td>
</tr>
<tr>
<td>GPR18</td>
<td>(\Delta^9)-THC, Anandamid und dessen Metabolit N-arachidonoylglycin (NaGly)</td>
</tr>
<tr>
<td>GPR55</td>
<td>THC, Cannabidiol als Antagonist</td>
</tr>
<tr>
<td>GPR119</td>
<td>Analoga von Anandamid und 2-AG wie N-oleylethanolamin und 2-oleylglycerol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liganden- und Spannungsgesteuerte Ionenkanäle:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezeptor</td>
<td>Ligand</td>
</tr>
<tr>
<td>TRP-Kanäle</td>
<td></td>
</tr>
<tr>
<td>TRPV1, TRPV2, TRPV3</td>
<td>Anandamid</td>
</tr>
<tr>
<td>TRPA1, TRPM8</td>
<td>CBD</td>
</tr>
<tr>
<td>CBD und THC</td>
<td></td>
</tr>
<tr>
<td>Calciumkanäle</td>
<td>THC, CBD, Anandamid</td>
</tr>
<tr>
<td>Kaliumkanäle</td>
<td></td>
</tr>
<tr>
<td>Natriumkanäle</td>
<td></td>
</tr>
<tr>
<td>Liganden-gesteuerte Kanäle</td>
<td></td>
</tr>
<tr>
<td>5-HT3-Rezeptoren</td>
<td>(\Delta^9)-THC, WIN55,212-2, Anandamid</td>
</tr>
<tr>
<td>Glycinrezeptoren</td>
<td>Ölsäureamid</td>
</tr>
<tr>
<td>Nicotinerge Acetylcholinrezeptoren</td>
<td>Anandamid</td>
</tr>
<tr>
<td>GABA(_A)-Rezeptoren</td>
<td>Ölsäureamid</td>
</tr>
<tr>
<td>NMDA-Glutamat-Rezeptoren</td>
<td>Anandamid</td>
</tr>
<tr>
<td>Peroxisome proliferator-activated receptors (PPAR):</td>
<td></td>
</tr>
<tr>
<td>Rezeptor</td>
<td>Ligand</td>
</tr>
<tr>
<td>PPAR(\alpha), PPAR(\gamma)</td>
<td>Anandamid</td>
</tr>
</tbody>
</table>

Ebenso wird beschrieben, dass CB1-R eine Heteromultimerisation mit anderen Rezeptoren eingehen kann, z.B.: Dopamin D2, Opioidrezeptoren und Orexin-1-Rezeptoren.
1.5 Analgesie durch Cannabinoide

Mit zunehmenden Erkenntnissen um die pflanzlichen Inhaltsstoffe aber auch um das natürliche Endocannabinoidsystem ist in den letzten Jahren neues Interesse an dessen Nutzung erwacht. Hier soll v.a. auf die analgetische Therapiemöglichkeit eingegangen werden.

Sowohl neuronale als auch nicht-neuronale Cannabinoidrezeptoren sind am analgetischen Effekt beteiligt, der durch periphere Endocannabinoid verursacht wird (Burston, Woodhams 2014).

Im Folgenden Zusammenschau nach Wirkort (Burston, Woodhams 2014):
Periphere Mechanismen:

Durch Applikation FAAH und MAGL-Inhibitoren, also Inhibitoren der Abbauenzyme von Endocannabinoiden zeigen sich antinozizeptive Effekte via CB1- und CB2-vermittelte Mechanismen im ***acute-*** und ***inflammatory pain***-Modell.

Eine CB2-Rezeptoraktivierung auf Immunzellen hemmt die pro-inflammatorische und pro-nozizeptive Mediatorproduktion und -freisetzung, von z.B. reactive oxygen species und Zytokinen. Zusätzlich entsteht durch Metabolisierung von 2-AG Arachidonsäure, der Vorläuferstoff für pro-inflammatorische Prostaglandine. Es wurde gezeigt, dass eine Unterbrechung der Hydrolyse von 2-AG die Menge an Arachidonsäure herabsetzt und das Inflammationsgeschehen verringert.

Spinale Mechanismen:

Exogene Applikation von EC wirkt antinozizeptiv auf Rückenmarksebene, die intrathekale Gabe eines CB1-Antagonisten verursacht eine Hyperalgesie mit verstärkter Aktivität von wide dynamic range neurons (WDR-Neuronen) im Hinterhorn des Rückenmarks.

Genauso wurde im **neuropathischen** Schmerzmodell eine Erhöhung spinaler Level an AEA zu einem frühen Zeitpunkt entdeckt. Spinales Einbringen von URB597 (Inhibitor von FAAH, dadurch erhöhte Spiegel an AEA) reduziert die Aktivität von WDR-Neuronen, welche durch die Spinalnervenligatur stimuliert wurden, ein vorheriges Einbringen eines CB1-Antagonists unterbindet diesen Effekt.
Es wurden zudem Veränderungen in den Expressionsraten der Cannabinoidrezeptoren beschrieben, diese sind als Hinweise für die Einbindung des spinalen EC-Systems in der Schmerzverarbeitung zu werten:

Es konnte gezeigt werden, dass eine exogene Verabreichung von 2-AG Microglia-Migration stimuliert, wohingegen ein CB2-Antagonist Microglia-Migration hemmt. Diese Erkenntnisse führen zu der Annahme, dass das Endocannabinoidsystem stark mit glialer Zellkommunikation auf Rückenmarksebene verwoben ist.

Ein therapeutisches Eingreifen durch Veränderungen im Endocannabinoidsystem könnte somit sowohl durch eine Beeinflussung neuronaler Hyperaktivität aber auch glialer Zellaktivierung eine Auswirkung auf diverse Schmerzzustände ermöglichen.

Supraspinale Mechanismen:

Die Bestätigung, dass Cannabinoide durch Wirkung an supraspinalen Zentren Auswirkungen auf das Schmerzgeschehen haben, gelang durch Injektion von CB1-Liganden in Gebiete, die in Verbindung zum Schmerzempfinden stehen (die rostroventrale Medulla, den dorsalen Raphekerne, dem periaquaduktal Grau und der Amygdala) mit folgender Verbesserung der Analgesie.

Daraufhin erfolgte die Erforschung der Beteiligung von endogenen Liganden. Es konnte die Mobilisation von AEA nach elektrischer Stimulation dieser Bereiche oder nach peripherer Formalininstillation nachgewiesen werden. Die Menge an AEA in diesen Regionen lässt sich durch Inhibition von FAAH steigern, was in einem antinozizeptiven Effekt bei *akutem* Schmerzen resultiert. Vermutlich durch Desinhibition von absteigenden inhibitorischen Signalen vom Hirnstamm zum Rückenmark, was zu einer Hemmung der Schmerzweiterleitung auf spinaler Ebene führt.

Supraspinale Endocannabinoidwirkungen werden dafür verantwortlich gemacht, bei Stress-induzierter Analgesie antinozizeptiv zu wirken, hier ist v.a. die Mobilisation von Endocannabinoiden im periaquaduktalen Grau, wie z.B. 2-AG und AEA zu nennen. 2-AG wird dabei eine Schlüsselrolle durch die Aktivität am CB1-Rezeptor zugeschrieben. Trotz der
Anzunehmenden Beteiligung von Endocannabinoiden im Bereich der supraspinalen antinozizeptiven Effekte und den damit verbundenen potentiellen Therapiemöglichkeiten, muss an die unerwünschten psychoaktiven Effekte erinnert werden, die durch den CB1-Rezeptor vermittelt werden.

Desweiteren besteht die Möglichkeit auf supraspinaler Ebene die affektive Komponente von Schmerzempfindungen zu beeinflussen, die v.a. im Frontalhirn und durch das limbische System vermittelt wird und von den sensorischen Aspekten getrennt werden kann.

1.6 Immunmodulation durch Cannabinoide

Durch Endocannabinoiden wird wie oben beschrieben, die Modulation der cAMP-Signalkaskade reguliert:

Durch die Aktivierung sowohl des CB1- als auch des CB2-Rezeptors findet eine negative Beeinflussung der Adenylatcyclase statt, deren Funktion ist, positiv auf die Regulation von Immunzellen zu wirken. Dadurch können frühzeitige Vorgänge bei der Immunzellaktivierung antagonisiert werden und Endocannabinoiden eine Lymphozytenregulation bewirken. Durch CB1- und CB2-Rezeptoren kann die MAPK-Aktivität simuliert werden, desweiteren konnte gezeigt werden, dass Endocannabinoider über den CB2-Rezeptor den MAPK-Signalweg induzieren können. Diese Vorgänge spielen eine Schlüsselrolle bei der Immunhomöostase und
Einleitung

Diese Effekte auf das Immunsystem scheinen instationär zu sein, dass bei benötigter Aktivierung die inhibitorischen Effekte überwunden werden können. Eine Cannabinoidrezeptordownregulation während stattfindender Immunzellaktivierung unterstreicht dies (Pandey, Mousawy et al. 2009).

Als Hinweis auf die Beteiligung des Endocannabinoidsystems seien hier weitere Erkenntnisse aufgeführt:

Einleitung

Im Folgenden Zusammenschau nach Immunzellen (Pandey, Mousawy et al. 2009):

Lymphozyten

- AEA: Inhibition DNA-Synthese bei T- und B-Zellen, Apoptose-Induktion
- Hohe Expressionsraten an CB-Rezeptoren auf B-Zellen
- Verhinderung einer Antikörperproduktion durch (Endo-)Cannabinoide in micromolaren Konzentrationen, aber auch durch Beeinflussung von TH-Zell-abhängiger Zytokinproduktion durch Endocannabinoide
- Stimulierung einer B-Zell-Migration via CB2-Rezeptor, sowie CB2-vermittelte B-Zell-Differenzierung (direkter Effekt oder via T-Zellen) und Makrophagen
- Downregulation von CD4+T-Zellen, Anandamid inhibiert die Adenylatcyclaseaktivität bei Splenozyten und Thymozyten
- Annahme, dass über die Beeinflussung der PPARY-Aktivität auch Einfluss auf T-Zellen ausgeübt wird
- Effekt auf T-Zell-Zytokine: sowohl Inhibition aber Induktion möglich

Makrophagen

- AEA: Inhibition von Makrophagen-induziertem Zelltod und der Expression von proinflammatorischen Mediatoren, vermittelt durch den CB2-Rezeptor
- 2-AG: verringerte IL-6-Produktion, aber verstärkte NO-Produktion, vermehrte Adhäsionsfähigkeit an VCAM-1 und Fibronektin, a.e. via CB2-Rezeptor, G_{i0}-Proteine und den Phosphatidylinositol-3-Kinase-Signalweg
- Verringerte Chemotaxis: starke Wirkung auf Makrophagenmigration via CB2-Rezeptor

Mastzellen

- Expression sowohl von CB1- als auch CB2-Rezeptoren
- PEA: Downregulation der Mastzellaktivierung
- AEA: Antagonisierung der Mastzellaktivierung, Histaminfreisetzung durch andere Endocannabinoide nicht CB-Rezeptor-vermittelt
1 Einleitung

- Anti-IgE-vermittelte Histaminfreisetzung durch synthetische Liganden: kein suppressiver Effekt von AEA oder PEA, aber aufgehobene 2-AG vermittelte Suppression von Histaminfreisetzung durch CB2-Antagonist,
- weitere Hinweise für Receptor-abhängige Mastzellaktivierung durch Cannabinoide

Dendritische Zellen
- Expression von sowohl CB1- als auch CB2-Rezeptoren auf menschlichen dendritischen Zellen
- Regulation von Wachstum und Reifen durch Endocannabinoide
- Erhöhter Gehalt an 2-AG während einer Aktivierung durch LPS, aber keine erhöhte Menge an CB-Rezeptoren oder FAAH
- 2-AG: Chemotaxis für die Rekrutierung von DCs bei der angeborenen Immunantwort und Fähigkeit, eine Immunantwort mit TH1-Shift zu initiieren
- Apoptoseinduktion durch endogene und exogene Cannabinoide, sowohl CB1- als auch CB2-vermittelt

Natürliche Killerzellen
- Suppression von NK-Zell-Zytolyse
- Expression von konstitutiv sezernierten Zytokinen wie IL-8, MIP1-α, MIP1-β, RANTES, TNFα, GM-CSF und IFN-γ

Neutrophile Zellen:
- Freisetzung von nicht-zytotoxisch wirksamen Lysosymen durch Cannabinoide
- AEA: keine Blockade der Superoxidfreisetzung, aber durch synthetische Liganden, Funktion unabhängig von Cannabinoidrezeptoren

1.7 Beteiligung der Immunzellen am Schmerzgeschehen

Um eine Verbindung zwischen dem Immunsystem und dem Schmerzgeschehen aufzuzeigen, soll eine kurze tabellarische Übersicht die Beteiligung der diversen Immunzellen bei chronischen Schmerzzuständen wiedergeben (Marchand, Perretti et al. 2005).
Tab. 4: Übersicht über die Beteiligung der verschiedenen Immunzellen und deren Wirkungen in verschiedenen Schmerzmodellen; TNFα = tumor necrosis factor α, IL-1β = Interleukin 1β, NGF = nerve growth factor, NO = nitric oxide, DRG = dorsal root ganglion, SCI = spinal cord injury, ED = Encephalitis disseminata

<table>
<thead>
<tr>
<th>Schmerzgeschehen</th>
<th>Beteiligter Zelltyp</th>
<th>Effekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Acute pain“</td>
<td>Keiner</td>
<td>Keiner</td>
</tr>
<tr>
<td>Periphere Mechanismen</td>
<td>Mastzellen</td>
<td>Degranulation, Zytokinausschüttung Erythema, Hyperalgesie auf Hitze</td>
</tr>
<tr>
<td>„Inflammatory pain“</td>
<td>Makrophagen</td>
<td>Produktion von inflammatorischen Mediatoren: pro-inflammatorische Zytokine TNFα, IL-1β, NGF, NO, Prostanoide Hyperalgesie, Rekrutierung und Aktivierung anderer Zellen</td>
</tr>
<tr>
<td></td>
<td>Neutrophile</td>
<td>Produktion von inflammatorischen Mediatoren: Lipoxygenase Produkte, NO, Zytokine, Chemokine Hyperalgesie</td>
</tr>
<tr>
<td></td>
<td>Lymphozyten</td>
<td>Produktion von inflammatorischen Zytokinen und Chemokinen</td>
</tr>
<tr>
<td>Periphere Mechanismen</td>
<td>Mastzellen</td>
<td>Degranulation, Zytokinausschüttung Erythema</td>
</tr>
<tr>
<td>„Neuropathic pain“</td>
<td>Neutrophile</td>
<td>Thermische Hyperalgesie</td>
</tr>
<tr>
<td></td>
<td>Schwann-Zellen</td>
<td>NGF und TNF über IL-1β-Produktion durch Makrophagen</td>
</tr>
<tr>
<td></td>
<td>T-Zellen</td>
<td>Thermische und mechanische Alldynie (schwache Beeinflussung)</td>
</tr>
<tr>
<td></td>
<td>Makrophagen und T-Zellen</td>
<td>Rekrutierung zum Hinterhornganglion (DRG)</td>
</tr>
<tr>
<td>Zentrale Mechanismen</td>
<td>Microglia</td>
<td>Taktile Alldynie, thermische Hyperalgesie</td>
</tr>
<tr>
<td>„Neuropathic pain“</td>
<td>Makrophagen und T-Zellen</td>
<td>wenig erforscht</td>
</tr>
<tr>
<td>Zentrale Mechanismen</td>
<td>SCI: Neutrophile,</td>
<td>Produktion von proinflammatorischen Zytokinen, die beim Schmerz</td>
</tr>
</tbody>
</table>
Einleitung

“Pain states because of central injuries”

<table>
<thead>
<tr>
<th>Monozyten/Makrophagen, Lymphozyten, Microglia</th>
<th>aufgrund einer peripheren Nervenverletzung auftreten</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED: T- und B-Lymphozyten Mastzellen, Makrophagen, Microglia und Astrozyten</td>
<td>Produktion von proinflammatorischen Zytokinen, die beim Schmerz aufgrund einer peripheren Nervenverletzung auftreten</td>
</tr>
</tbody>
</table>

1.8 Einzelbasenpaaraustausche (Single Nucleotide Polymorphisms)

1.8.1 Definition

Das Wort Polymorphismus bedeutet, dass eine Mutation auf das Erbgut aller Individuen zusammen, mit einer Häufigkeit von größer oder gleich einem Prozent auftritt. Der am häufigsten auftretende Polymorphismus ist der Single Nucleotide Polymorphism (SNP), der davon circa 80% ausmacht (Carrasquer, Nebane et al. 2010).

Zum allgemeinen Verständnis werden SNPs folgendermaßen verzeichnet:

Der Wildtyp, also die Aminosäure mit der größten Allelfrequenz wird vorangestellt, dann folgt eine Ziffer, die die Stelle des Aminosäureaustauschs im Gen angibt und der zweite Buchstabe gibt an, welche Aminosäure dort als Polymorphismus vorkommen kann.

1.8.2 CB2-SNP mit Auswirkung auf Immunmodulation

Bisher sind hauptsächlich zwei SNPs des CB2-Rezeptors bekannt, die eine Auswirkung auf die durch Endocannabinoide stattfindende Immunmodulation haben. Diese tragen die Reference SNP Cluster IDs rs2501432 und rs2229579. Der jeweilige Austausch eines Basenpaaars hat hier einen Aminosäurewechsel nach sich gezogen, auf diesen sich aber kein Funktionsverlust des Cannabinoideceptors eingestellt hat (Sipe, Arbour et al. 2005; Carrasquer, Nebane et al. 2010).

Es interessierte uns eine mögliche Korrelation zwischen besonderem Vorteil einer Cannabis-vermittelten Schmerztherapie und der Veränderung der Zahl verschiedener Immunzellen im Sinne einer stattfindenden Immunmodulation in Bezug auf die Mutationsvariante rs2501432 des Cannabinoidrezeptors 2.

1.9 Fragestellung

Aufgrund oben genannter Erkenntnisse soll sich diese Arbeit mit der Fragestellung molekularer Mechanismen einer Cannabis-vermittelten Schmerztherapie befassen.

Wenn während einer längerfristigen Dronabinoltherapie eine Immunmodulation stattfindet, spiegelt sich diese in einer Veränderung der Zelloberflächenmarker wieder? Besteht dabei ein Unterschied hinsichtlich des Vorhandenseins des SNPs rs2501432? Kann man eine Verbindung zwischen der Veränderung der Zelloberflächenmarker und der Wirkung auf chronische Schmerzen durch Einnahme des Dronabinolpräparats herstellen?
2 Material und Methoden

2.1 Vorangegangene Studie

Die Daten, die als Grundlage dieser Arbeit dienen, stellen eine Weiterführung klinischer Untersuchungen dar, die als Grundlage zweier anderer Dissertationen diente. Es sei hiermit auf eine Verbindung durch Untersuchung desselben Patientengutes zu den Dissertationen von El Hindy und Wilhelm-Buchstab 2007 hingewiesen:

Dabei wurde zunächst ein Dosierungsschema des Medikaments im Hinblick auf die Verträglichkeit herausgearbeitet und anschließend eine mögliche analgetische Wirksamkeit untersucht.

Einige der ausgewählten Patienten profitierten besonders von der Dronabinoltherapie, dass sich der damalige Schmerztherapeut, Prof. Dr. med. W. Seeling, zu einer Fortführung der Therapie im Einzelfall entschied. Die aus dieser Fortführung resultierende Dauer der einzelnen Therapien ist deshalb sehr unterschiedlich. Meist erfolgte die Einstellung der weitergeführten Therapie nach Absage der Kostenübernahme durch die Krankenkasse, wegen ungenügender Wirksamkeit nach einem Auslassversuch (ALV) trotz Wirksamkeit während der ersten Einnahmeperiode, oder wurde das Medikament nach einer Reduktion der übrigen
Material und Methoden

Schmerzmedikation, wenn weitere Erfolge dahingehend stagnierten, wieder ausgeschlichen. Die Dosierungen wurden auf den jeweiligen Patienten angepasst. Die Patienten führten den damals erstellten Fragebogen zur Evaluation des Therapieerfolgs weiter, zudem erfolgte zu jeder Visite eine Blutentnahme mit Bestimmung der Zelloberflächenmarker im Labor von Frau Prof. Dr. rer. nat. Schneider.

2.2 Schmerztagebuch

Für die ursprüngliche Studie (im Folgenden „Pilotstudie“ genannt) wurde für jeden Patienten ein Prüfbogen mit den wichtigen Daten angelegt: medikamentöse Therapie, Anamnese, klinischer Befund, Vitalparameter, Labordiagnostik. Der Studienablauf der „Pilotstudie“ wurde in insgesamt 5 Phasen eingeteilt:

- A: Aufnahmetag
- B: Studienbeginn; Datenerhebung unter stabiler Weiterführung der bisherigen Medikation zu Hause
- C: stationäre Phase; stationäre Aufdosierung des Medikaments
- D: zweite, ambulante Phase; Datenerhebung unter Weiterführung der bisherigen Medikation und des Medikaments zu Hause
- E: Ende der Studie

Es wurde die jeweilige Schmerzstärke auf einer numerischen Ratingskala (0 = kein Schmerz bis 10 = stärkster vorstellbarer Schmerz) um 7 Uhr, 11 Uhr, 15 Uhr und 19 Uhr erfragt. Zwischen 21 und 23 Uhr sollten die Patienten die Erträglichkeit des Schmerzes im Tagesverlauf einordnen. Die Patienten konnten Werte zwischen -2 bis +2 angeben.

Tab. 5: Eintragung ins Schmerztagebuch über die Erträglichkeit des Schmerzes; VRS = verbale Ratingskala

<table>
<thead>
<tr>
<th>VRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ich war so gut wie schmerzfrei</td>
</tr>
<tr>
<td>Meine Schmerzen waren gut erträglich</td>
</tr>
</tbody>
</table>
Meine Schmerzen waren gerade noch erträglich 0
Meine Schmerzen waren schlecht zu ertragen 1
Meine Schmerzen waren sehr schlecht zu ertragen 2

Ebenso sollte die Schlafqualität der vorangegangenen Nacht beurteilt werden.

Tab. 6: Eintragung in das Schmerztagebuch über die Schlafqualität; VRS = verbale Ratingskala

<table>
<thead>
<tr>
<th>Ich habe in der vergangenen Nacht</th>
<th>VRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sehr gut geschlafen</td>
<td>-2</td>
</tr>
<tr>
<td>Gut geschlafen</td>
<td>-1</td>
</tr>
<tr>
<td>Mäßig gut geschlafen</td>
<td>0</td>
</tr>
<tr>
<td>Schlecht geschlafen</td>
<td>1</td>
</tr>
<tr>
<td>Sehr schlecht geschlafen</td>
<td>2</td>
</tr>
</tbody>
</table>

Es sollte auch über die Wachphasen in der Nacht berichtet werden.

Tab. 7: Eintragung in das Schmerztagebuch über die Wachphasen in der Nacht

<table>
<thead>
<tr>
<th>Ich bin wegen Schmerzen</th>
<th>Mal aufgewacht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ich bin unabhängig von Schmerzen</td>
<td>Mal aufgewacht</td>
</tr>
<tr>
<td>Ich habe in dieser Nacht</td>
<td>Stunden geschlafen</td>
</tr>
</tbody>
</table>

Eine Aussage zum Zustand nach dem Nachtschlaf am nächsten Morgen sollte angegeben werden.

Tab. 8: Eintragung in das Schmerztagebuch über den Zustand nach dem Nachtschlaf; VRS = verbale Ratingskala

<table>
<thead>
<tr>
<th>Ich bin heute Morgen</th>
<th>VRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Völlig ausgeschlafen und aktiv</td>
<td>-2</td>
</tr>
<tr>
<td>Ausgeschlafen aber nicht sehr aktiv</td>
<td>-1</td>
</tr>
<tr>
<td>Einigermaßen ausgeschlafen, antriebsarm</td>
<td>0</td>
</tr>
<tr>
<td>Nicht ausgeschlafen, antriebslos</td>
<td>1</td>
</tr>
<tr>
<td>Völlig unausgeschlafen, zerschlagen, antriebslos</td>
<td>2</td>
</tr>
</tbody>
</table>

Außerdem sollten zwischen 21 und 23 Uhr Aussagen über Übelkeit, Appetit und Stimmung im Tagesverlauf getätigt werden, sowie ggf. die Anzahl bei Erbrechen und die Häufigkeit des Stuhlgangs angegeben werden.
Material und Methoden

Tab. 9: Eintragung in das Schmerztagebuch über Übelkeit während des Tages

<table>
<thead>
<tr>
<th>Keine</th>
<th>Gering</th>
<th>Mäßig stark</th>
<th>Stark</th>
<th>Sehr stark</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Tab. 10: Eintragung in das Schmerztagebuch über den Appetit während des Tages

<table>
<thead>
<tr>
<th>Sehr gut</th>
<th>Gut</th>
<th>Mäßig</th>
<th>Gering</th>
<th>Kein Appetit</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Tab. 11: Eintragung in das Schmerztagebuch über die Stimmung während des Tages

<table>
<thead>
<tr>
<th>Sehr gut</th>
<th>Gut</th>
<th>Mittelmäßig</th>
<th>Angstlich oder Traurig</th>
<th>Angstlich und Traurig</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Zur Beurteilung der analgetischen Wirkung des Cannabispräparats unter der weitergeführten Therapie wurden die jeweiligen angegebenen Schmerzstärken herangezogen und im Verlauf als Mittelwert der jeweiligen Woche, während der die Daten erfasst wurden, aufgetragen.

2.3 Durchflusszytometrie

2.3.1 Prinzip der Durchflusszytometrie

Die Durchflusszytometrie ist ein Messverfahren, das in der Medizin und Biologie eingesetzt wird, um Zellen anhand ihrer Oberflächenantigene zu differenzieren.

2. Material und Methoden

Man trägt auf der x-Achse das Vorwärtsstreulicht und auf der y-Achse das Seitwärtsstreulicht auf. Zellen, die gemeinsame Eigenschaften in Bezug auf das Streulicht haben, können dadurch in unterschiedliche Populationen unterschieden und in sog. R (für region)-Fenster eingeteilt werden. Die Leukozytensubpopulationen sind so definiert:

- **R1**: Lymphozyten, FSC und SSC gering
- **R2**: Monozyten, FSC hoch und SSC mäßig
- **R3**: Granulozyten, FSC sehr hoch, SSC gering bis mäßig
- **R4**: Monozyten, FSC hoch bis sehr hoch, SSC hoch bis sehr hoch

Um nun die bestimmten Zellpopulationen der R-Fenster einzeln zu untersuchen, kann man sog. „Gates“ im Dot-Plot anlegen, die jeweils die Zellen der diversen R-Fenster umfassen und schließlich die einzelnen Populationen (Lymphozyten, Monozyten, Granulozyten) in einem neuen Dot-Plot anzeigen.

2.3.2 Antikörper und Designblätter

Zur Untersuchung bestimmter Eigenschaften von Zellen kann man sich der Möglichkeit der Fluoreszenzmessung mittels Durchflusszytometers bedienen. Dabei werden die interessierenden Merkmale mit fluoreszierenden Antikörpern gegen eben diese markiert und gemessen.

Um nur die Oberflächenantigene von Leukozyten bestimmen zu können, werden zunächst die anderen Zellbestandteile (Erythrozyten und Thrombozyten) einer EDTA-Blutprobe lysiert, die verbleibenden Leukozyten mit den monoklonalen Antikörpern inkubiert. Um überschüssige

Wie bereits erwähnt, erfolgte die Probenentnahme bei den Patienten im Rahmen der weitergeführten Therapie nicht als Teil einer konzipierten Studie. So ist ein Unterschied von Probe zu Probe in Hinsicht sowohl auf die Verwendung der Antikörper als auch in der Art ihrer Markierung (FITC-Markierung oder PE-Markierung) und aufgrund dessen auch im Hinblick auf die Kombinationen mit anderen Antikörpern gegeben.

Die folgenden vier Tabellen zeigen die diversen Designblätter.

Tab. 12: Designblatt Version 1 und 1b: Anordnung und Kombination der verwendeten monoklonalen Antikörper der verschiedenen Hersteller in den Röhrchen 1–20 (Version 1) oder 1–18 (Version 1b); Antikörper gegen CDx für cluster of differentiation, TLRx für Toll-like Rezeptor, HLA-DR für humanes Leukozyten Antigen, WT 31 für Anti-T-Zellrezeptor (Anti-TCRα/β), Valpha24 für Anti-NK-T-Zellrezeptor, FITC-Markierung entspricht der Grünfluoreszenz entlang der x-Achse; PE-Markierung entspricht der Rotfluoreszenz entlang der y-Achse

<table>
<thead>
<tr>
<th></th>
<th>Isotyp: Mouse</th>
<th>FITC</th>
<th>BD</th>
<th>IgG1</th>
<th></th>
<th>Mouse (Kombi)</th>
<th>PE</th>
<th>BD</th>
<th>IgG2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leucogate: CD45</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>2</td>
<td>CD14 (Kombi)</td>
<td>PE</td>
<td>BD</td>
<td>IgG2a</td>
</tr>
<tr>
<td>2</td>
<td>CD4</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>3</td>
<td>CD8 (Kombi)</td>
<td>PE</td>
<td>Immune</td>
<td>IgG1</td>
</tr>
<tr>
<td>3</td>
<td>WT31</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>4</td>
<td>CD3</td>
<td>PE</td>
<td>DAKO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CD57</td>
<td>FITC</td>
<td>BD</td>
<td>IgM</td>
<td>5</td>
<td>CD69</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CD80</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>6</td>
<td>CD2</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>6</td>
<td>CD86</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>7</td>
<td>CD23</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>7</td>
<td>CD3</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>8</td>
<td>Cytotox</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>8</td>
<td>CD3</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>9</td>
<td>CD56</td>
<td>PE</td>
<td>BD</td>
<td>IgG1</td>
</tr>
<tr>
<td>9</td>
<td>CD16</td>
<td>FITC</td>
<td>BD</td>
<td>IgG2a</td>
<td>10</td>
<td>CD56</td>
<td>PE</td>
<td>BD</td>
<td>IgG1</td>
</tr>
<tr>
<td>10</td>
<td>CD23</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>11</td>
<td>CD19</td>
<td>PE</td>
<td>DAKO</td>
<td>IgG1</td>
</tr>
<tr>
<td>11</td>
<td>CD39</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>12</td>
<td>CD40</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>12</td>
<td>CD64</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>13</td>
<td>CD25</td>
<td>PE</td>
<td>Diacline</td>
<td>IgG1</td>
</tr>
<tr>
<td>13</td>
<td>CD1a</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>14</td>
<td>CD83</td>
<td>PE</td>
<td>Beckman Coulter</td>
<td>IgG2b</td>
</tr>
<tr>
<td>14</td>
<td>CD95</td>
<td>FITC</td>
<td>BD</td>
<td>IgG3</td>
<td>15</td>
<td>CD95</td>
<td>PE</td>
<td>BD</td>
<td>IgG1</td>
</tr>
<tr>
<td>15</td>
<td>CD56</td>
<td>FITC</td>
<td>BD</td>
<td>IgG2a</td>
<td>16</td>
<td>CD161</td>
<td>PE</td>
<td>Pharmingen</td>
<td>IgG1</td>
</tr>
<tr>
<td>16</td>
<td>HLA-DR</td>
<td>FITC</td>
<td>BD</td>
<td>IgG2a</td>
<td>17</td>
<td>CD123 (1:20)</td>
<td>PE</td>
<td>Pharmingen</td>
<td>IgG1</td>
</tr>
<tr>
<td>17</td>
<td>6B11 (1:30)</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>18</td>
<td>V Alpha 24</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>18</td>
<td>WT31</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>19</td>
<td>CD117</td>
<td>PE</td>
<td>Immunotech</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TLR 2</td>
<td>FITC</td>
<td>BD</td>
<td></td>
<td>20</td>
<td>TLR 4</td>
<td>PE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Material und Methoden
2 Material und Methoden

Tab. 13: Designblatt Version 2 und 2b: Anordnung und Kombination der verwendeten monoklonalen Antikörper der verschiedenen Hersteller in den Röhrchen 1–20 (Version 2) oder 1–18 (Version 2b); Antikörper gegen CDx für cluster of differentiation, TLRx für Toll-like Rezeptor, HLA-DR für humanes Leukozyten Antigen, WT31 für Anti-T-Zellrezeptor, Valpha24 für Anti-NK-T-Zellrezeptor, FITC-Markierung entspricht der Grünfluoreszenz entlang der x-Achse; PE-Markierung entspricht der Rotfluoreszenz entlang der y-Achse

<table>
<thead>
<tr>
<th></th>
<th>Isotyp: Mouse</th>
<th>FITC</th>
<th>BD</th>
<th>IgG</th>
<th>1</th>
<th>Mouse (Kombi)</th>
<th>PE</th>
<th>BD</th>
<th>IgG2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leucogate: CD45</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>2</td>
<td>CD14 (Kombi)</td>
<td>PE</td>
<td>BD</td>
<td>IgG2a</td>
</tr>
<tr>
<td>2</td>
<td>CD4</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>3</td>
<td>CD8 (Kombi)</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>3</td>
<td>WT31</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>4</td>
<td>CD3</td>
<td>PE</td>
<td>DAKO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CD57</td>
<td>FITC</td>
<td>BD</td>
<td>IgM</td>
<td>5</td>
<td>CD69</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CD80</td>
<td>FITC</td>
<td>Immunotech</td>
<td>IgG1</td>
<td>6</td>
<td>CD2</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>6</td>
<td>CD86</td>
<td>FITC</td>
<td>PharMingen</td>
<td>IgG1</td>
<td>7</td>
<td>CD2</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>7</td>
<td>Anti HLA-DR</td>
<td>FITC</td>
<td>I1a Coulter</td>
<td>IgG1</td>
<td>8</td>
<td>CD19</td>
<td>PE</td>
<td>Dako</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CD23</td>
<td>FITC</td>
<td>Dako</td>
<td>IgG2a</td>
<td>9</td>
<td>CD40</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>9</td>
<td>CD64</td>
<td>FITC</td>
<td>Immunotech</td>
<td>IgG1</td>
<td>10</td>
<td>CD25</td>
<td>PE</td>
<td>Diacclone</td>
<td>IgG1</td>
</tr>
<tr>
<td>10</td>
<td>CD3</td>
<td>FITC</td>
<td>Immunotech</td>
<td>IgG1</td>
<td>11</td>
<td>CD56</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>HLA-DR</td>
<td>FITC</td>
<td>BD</td>
<td>IgG2a</td>
<td>12</td>
<td>CD83</td>
<td>PE</td>
<td>Beckman Coulter</td>
<td>IgG2b</td>
</tr>
<tr>
<td>12</td>
<td>CD95</td>
<td>FITC</td>
<td>Alexis</td>
<td>IgG3</td>
<td>13</td>
<td>CD95</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CD56</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>14</td>
<td>CD161</td>
<td>PE</td>
<td>Pharmingen</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CD3</td>
<td>FITC</td>
<td>Immunotech</td>
<td>IgG1</td>
<td>15</td>
<td>CD56</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>HLA-DR</td>
<td>FITC</td>
<td>BD</td>
<td>IgG2a</td>
<td>16</td>
<td>CD123 (1:20)</td>
<td>PE</td>
<td>Pharmingen</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CD25</td>
<td>FITC</td>
<td>DAKO</td>
<td>IgG1</td>
<td>17</td>
<td>CD69</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6B11 (1:30)</td>
<td>FITC</td>
<td>Wilson</td>
<td>IgG1</td>
<td>18</td>
<td>V Alpha 24</td>
<td>PE</td>
<td>Immunotech</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>CD16</td>
<td>FITC</td>
<td>PharMingen</td>
<td>IgG1</td>
<td>19</td>
<td>CD56</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>CD3</td>
<td>FITC</td>
<td>Immunotech</td>
<td>IgG1</td>
<td>20</td>
<td>TLR 2 (TLR 4)</td>
<td>PE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 14: Designblatt Version 3: Anordnung und Kombination der verwendeten monoklonalen Antikörper der verschiedenen Hersteller in den Röhrchen 1–20; Antikörper gegen CDx für cluster of differentiation, TLRx für Toll-like Rezeptor, HLA-DR für humanes Leukozyten Antigen, WT31 für Anti-T-Zellrezeptor (Anti-TCR \(\alpha/\beta \)), Valpha24 für Anti-NK-T-Zellrezeptor, FITC-Markierung entspricht der Grünfluoreszenz entlang der x-Achse; PE-Markierung entspricht der Rotfluoreszenz entlang der y-Achse

<table>
<thead>
<tr>
<th></th>
<th>Isotyp: Mouse</th>
<th>FITC</th>
<th>BD</th>
<th>IgG</th>
<th>1</th>
<th>Mouse (Kombi)</th>
<th>PE</th>
<th>BD</th>
<th>IgG2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leucogate: CD45</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>2</td>
<td>CD14 (Kombi)</td>
<td>PE</td>
<td>BD</td>
<td>IgG2a</td>
</tr>
<tr>
<td>2</td>
<td>CD4</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>3</td>
<td>CD8 (Kombi)</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>3</td>
<td>WT31</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>4</td>
<td>CD3</td>
<td>PE</td>
<td>DAKO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CD57</td>
<td>FITC</td>
<td>BD</td>
<td>IgM</td>
<td>5</td>
<td>CD69</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CD80</td>
<td>FITC</td>
<td>Immunotech</td>
<td>IgG1</td>
<td>6</td>
<td>CD2</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>6</td>
<td>CD86</td>
<td>FITC</td>
<td>PharMingen</td>
<td>IgG1</td>
<td>7</td>
<td>CD2</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>7</td>
<td>CD3</td>
<td>FITC</td>
<td>Immunotech</td>
<td>IgG1</td>
<td>8</td>
<td>Cytotox</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
<tr>
<td>8</td>
<td>CD3</td>
<td>FITC</td>
<td>Immunotech</td>
<td>IgG1</td>
<td>9</td>
<td>CD56</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CD16</td>
<td>FITC</td>
<td>PharMingen</td>
<td>IgG2a</td>
<td>10</td>
<td>CD56</td>
<td>PE</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CD23</td>
<td>FITC</td>
<td>Dako</td>
<td>IgG2a</td>
<td>11</td>
<td>CD19</td>
<td>PE</td>
<td>Dako</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CD39</td>
<td>FITC</td>
<td>Serotech</td>
<td>IgG1</td>
<td>12</td>
<td>CD40</td>
<td>PE</td>
<td>Immunotech</td>
<td>IgG1</td>
</tr>
</tbody>
</table>
Tab. 15: Designblatt Version 4: Anordnung und Kombination der verwendeten monoklonalen Antikörper der verschiedenen Hersteller in den Röhrchen 1–18; Antikörper gegen CDx für cluster of differentiation, TLRx für Toll-like Rezeptor, HLA–DR für humanes Leukozyten Antigen, 6B11 für Anti–NK–Zellrezeptor, Valpha24 für Anti–NK–Zellrezeptor, FITC-Markierung entspricht der Grünfluoreszenz entlang der x-Achse; PE-Markierung entspricht der Rotfluoreszenz entlang der y-Achse

<table>
<thead>
<tr>
<th>1</th>
<th>13 CD64</th>
<th>FITC</th>
<th>Immunotech</th>
<th>IgG1</th>
<th>13 CD25</th>
<th>PE</th>
<th>Diaclane</th>
<th>IgG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>CD1a</td>
<td>FITC</td>
<td>Dako</td>
<td>IgG2a</td>
<td>14 CD83</td>
<td>PE</td>
<td>Beckman Coulter</td>
<td>IgG2b</td>
</tr>
<tr>
<td>15</td>
<td>15 CD95</td>
<td>FITC</td>
<td>Alexis</td>
<td>IgG3</td>
<td>15 CD95</td>
<td>PE</td>
<td>BD</td>
<td>IgG1</td>
</tr>
<tr>
<td>16</td>
<td>16 CD56</td>
<td>FITC</td>
<td>IgG2a</td>
<td>16 CD161</td>
<td>PE</td>
<td>Pharmingen</td>
<td>IgG1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17 HLA–DR</td>
<td>FITC</td>
<td>BD</td>
<td>IgG2a</td>
<td>17 CD123 (1:20)</td>
<td>PE</td>
<td>Pharmingen</td>
<td>IgG1</td>
</tr>
<tr>
<td>18</td>
<td>18 CD163</td>
<td>FITC</td>
<td>IgG1</td>
<td>18 V Alpha 24</td>
<td>PE</td>
<td>Immunotech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19 WT31</td>
<td>FITC</td>
<td>BD</td>
<td>IgG1</td>
<td>19 CD117</td>
<td>PE</td>
<td>Immunotech</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20 TLR 2</td>
<td>FITC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die verwendeten monoklonalen Antikörper richteten sich gegen folgende Oberflächenmarker, die sog. cluster of differentiation (CD) (Weizmann Institute of Science; Murphy, Janeway et al. 2009):

- **CD1a**
 - Antigen-präsentierendes Protein, das Lipid- und Glykolipidantigene bindet und T-Zellen und NK-T-Zellen präsentiert, liegt außerhalb der MHC-Region
 - MHC-Klasse-I-ähnliches Moleküle, bildet Heterodimere mit β2-Mikroglobulin
Material und Methoden

- Expression v.a. auf: kortikalen und reifen Thymozyten, epidermalen Langerhans-Zellen, dendritischen Zellen, Monozyten (nach Stimulation mit GM-CSF), bestimmten T-Zell-Leukämien, weitere andere Gewebe
- Vorkommen: auf der Plasmamembran, in Endosomen
- Beinhaltet eine Ig-ähnliche Domäne
- 43–49kDa

CD2
- Adhäsionsmolekül, das an CD58 (LFA-3) und CD48/BCM1 bindet und somit Zelladhäsionen zwischen T-Zellen und anderen Zellen vermittelt, „antigenunspezifische Zelladhäsion"
- Expression: von T-Zellen, Thymozyten, NK-Zellen
- Vorkommen: Plasmamembran, extrazellulär, im Zellkern
- 50 kDa
- Andere Bezeichnungen: T11, LFA-2
- Beinhaltet Ig-ähnlich C2-Domäne

CD3
- Die Untergruppen CD3-gamma, -delta, -epsilon und -zeta bilden zusammen mit den Heterodimeren des T-Zell-Receptors (TCR) den T-Zell-Rezeptor-CD3-Komplex; dieser ist beteiligt an der Übertragung von Antigenerkennung auf intrazellulären Signaltransport;
- Wird exprimiert auf Thymozyten und T-Zellen und NK-Zellen
- Vorkommen: Plasmamembran
- Der Rezeptor besteht aus vier Polypeptidketten: eine delta-, eine gamma- und zwei epsilon-Ketten: γ: 25 kDa, δ: 21 kDa, ε: 20kDa,
- Zum TCR/CD3-Komplex gehören weiterhin zwei zeta-Ketten: ζ:16kDa
- Enthält eine Immunglobulin-ähnliche Domäne extrazellulär, die ζ-Gruppe nur eine kurze extrazelluläre Domäne
- Andere Bezeichnungen: T3

CD4
- Corezeptor für MHC-Klasse-II-Antigen/TCR-Interaktionen, Regulation von T-Zell-Aktivität, bindet an das Protein gp120 von HIV-1 und HIV-2
- Expression auf T-Zellen: TH1- und TH2-Zellen (etwa 2/3 der peripheren T-Zellen), Monozyten, Makrophagen und Granulozyten, von einigen Gruppen von Thymozyten
Material und Methoden

- TH1-Zellen: Stimulierung in Makrophagen zur Fusion von Lysosomen mit Vesikeln, in denen Bakterien sind, sowie Costimulation von B-Zellen zur Bildung von Antikörpern
- TH2-Zellen: Aktivierung von naiven B-Zellen zur Antikörperproduktion

- Vorkommen: Endoplasmatisches Retikulum, Plasmamembran, Endosomen
- Ein Glykoprotein: 55kDa
- Verwandtschaftsbeziehungen zu Immunglobulin: 4 Ig-ähnliche Domänen in der extrazellulären Komponente
- Andere Bezeichnungen: T4, L3T4

CD8

- Corezeptor für MHC-Klasse-I-Antigen/TCR-Interaktionen, spielt eine Rolle bei der T-Zell-vermittelten Zytotoxizität
- Expression: zytotoxische T-Zellen (etwa ein Drittel aller peripheren T-Zellen), auf einigen Gruppen von Thymozyten
- Vorkommen: extrazellulär, Plasmamembran
- Der Rezeptor besteht aus einem Heterodimer aus einer alpha- und einer beta-Kette oder einem Homodimer aus zwei alpha-Ketten: α: 32–34kDa, β: 32–34kDa
- Verwandtschaftsbeziehungen zu Immunglobulin
- Andere Bezeichnungen: T8, Lyt2,3

CD14

- Corezeptor mit TLR 4 und LY96 Rezeptor zur Erkennung von bakteriellen Lipopolysacchariden. Bindung mit Hilfe von LPB (lipopolysaccharide binding protein): vermittelt so die angeborene Immunantwort auf bakterielle Polysaccharide
- Expression: Monozyten und Makrophagen
- Vorkommen: extrazellulär, Golgi-Apparat, Plasmamembran, Endosomen
- 53–55kDa

CD16

- auf allen FcR-Typ-III+ Zellen exprimiert (Granulozyten, NK-Zellen)
- Kombination mit CD56
 - zytotoxischer NK-Zell-Anteil: CD56^{dim}/CD16^{bright}
 - CD56^{bright}/CD16^{dim/−} als unreife Vorstufen und Zytokin-Produktoren mit eher immunmodulatorischer Aufgabe (Amand, Iserentant et al. 2017).
Material und Methoden

- Bindung an Antikörper-tragende Zielzellen, Induktion der Antikörper-abhängigen zellulären Zytotoxizität (antibody-dependent cell-mediated cytotoxicity, ADCC)
- Durch CD16 kommt es somit zur Stimulation der T-Zellen und damit zur Phagozytose opsonierter Bakterien. Darüber hinaus hat CD16 auch Bedeutung für die Einleitung des Zelltodes
- 26-29kDa

CD19
- Reduziert zusammen mit dem Antigen-Rezeptor von B-Zellen die Schwelle für eine Antigen-Rezeptor-abhängige Stimulation
- Expression: B-Zellen
- Vorkommen: extrazellulär, Plasmamembran
- 95kDa

CD23
- Niedrig affiner Rezeptor für IgE, reguliert IgE-Synthese, wichtige Rolle für B-Zell Wachstum und Differenzierung
- Expression: Reife B-Zellen, aktivierte Makrophagen, eosinophile Zellen, follikuläre dendritische Zellen, Blutplättchen
- Vorkommen: extrazellulär, Plasmamembran
- 45kDa
- Andere Bezeichnung: FcεRII

CD25
- Polypeptid-alpha-Kette des IL-2-Rezeptors, mit dem eine T- oder NK-Zelle auf Interleukin 2 reagiert, CD25 positive T-Zellen (T-Regulator-Zellen, Treg) unterdrücken die Aktivierung und Vermehrung von autoreaktiven T-Zellen
- Aufbau des vollständigen IL-2-Rezeptors aus alpha, beta und gamma-Ketten
 - Ruhende T-Zellen Rezeptor exprimieren nur beta und gamma-Kette (wenig Affinität, Aktivierung durch hohe Mengen IL-2 möglich)
 - Durch IL-2 Synthese der alpha-Kette (Hohe Affinität zu IL-2)
- Expression: T-Regulator-Zellen (CD4+ und CTLA-4+(CD152)), unreife B-Zellen und Thymozyten
- 55kDa
- Verwandtschaftsbeziehungen: CCP
- Andere Bezeichnung: Tac
CD39
- Plasmamembranprotein, das die Hydrolysierung von ATP zu ADP vornimmt. Kann im Nervensystem dadurch purinerge Neurotransmission beeinflussen, Verhinderung von Plättchenaggregation durch ADP-Hydrolysierung (wichtig für Aktivierung) zu AMP; Inhibition könnte Anti-Tumor-Effekte generieren
- Expression: Aktivierte B-Zellen, aktivierte NK-Zellen, Makrophagen, dendritische Zellen
- 78kDa

CD40
- Rezeptor für Antigen-bindende Immunzellen:
 - T-Zell-vermittelte Immunglobulinklassen-Wechsel
 - Entwicklung von B-Gedächtniszellen
 - Bindet das CD154 (CD40L), Rezeptor für costimulierende Signale für B-Zellen, fördert Wachstum, Differenzierung und Immunglobulinsekretion von B-Zellen sowie
 - Zytokinproduktion bei Makrophagen und dendritischen Zellen
- Expression: B-Zellen, Makrophagen, dendritische Zellen, basale Epithelzellen
- 48kDa
- Verwandtschaftsbeziehungen zu TNF-Rezeptor

CD45
- Tyrosinphosphatase, erhöht die Signalvermittlung über den Antigenrezeptor von B- und T-Zellen, entweder durch direkte Interaktion mit den Rezeptorkomplexen oder durch Aktivierung von Src Kinasen; durch alternatives Spleißen entstehen viele Isoformen
- Expressiert auf allen hämatopoetischen Zellen
- 180–240kDa
- Verwandtschaftsbeziehungen zu Fibronektin-Typ-III
- Andere Bezeichnungen: leukocyte common antigen (LCA), T200, B220, Protein Tyrosine Phosphatase, Receptor Type C

CD56
- Isoform des neuralen Zelladhäsionsmoleküls (NCAM), Adhäsionsmolekül, verantwortlich für Zell-Zell-Bindungen oder Zell-EZM (extrazelluläre Matrix)-
Bindungen, spielt eine Rolle bei Zellproliferation, -differentierung und -beweglichkeit, Apoptose und Gewebsaufbau

- Hat in der extrazellulären Domäne 5 Immunglobulin-ähnliche und 2 Fibronektindomänen
- Expression: NK-Zellen, Untergruppe von T-Zellen (CD4 und CD8 positiv)
- 135-220kDa
- Andere Bezeichnungen: NCAM (neural cell adhesion molecule)

CD57
- Beta-1,3-Glucuronyltransferase 1
- Oligosaccharid auf vielen Zelloberflächenglykoproteinen
- Expression: NK-Zellen, Untergruppen von T-Zellen, B-Zellen und Monozyten
- Andere Bezeichnungen: HNK-1, Leu-7

CD64
- Hoch affiner Rezeptor für IgG, bindet IgG3>IgG1>IgG4>>>IgG2, vermittelt Phagozytose, Festhalten von Antigenen; wichtig bei der angeborenen und erworbenen Immunantwort
- Expression: Monozyten, Makrophagen, Neutrophile
- 72kDa
- Verwandtschaftsbeziehung zu Immunglobulin
- Andere Bezeichnungen: FcγRI

CD69
- Calcium-abhängiger Typ II-Transmembranrezeptor der Lektin Superfamilie, wichtig für Lymphozytenproliferation und –funktion, für frühe Lymphozyten-, Monozyten- und Plättchenaktivierung
- Expression: Aktivierte T- und B-Zellen, aktivierte Makrophagen und NK-Zellen
- 22–23kDa
- Andere Bezeichnungen: activation inducer molecule (AIM), early t-cell activation gene P60

CD80
- Membranrezeptor, durch die Bindung von CD28 und CTLA-4 (CD152) zu aktivieren: Mitwirkung an dem kostimulatoren Signal für T-Zellaktivierung: T-Zell-Proliferation und Zytokinproduktion bei Bindung an CD28, an CTLA-4 Inhibition
- Expression: aktivierte B-, T-Zellen, Makrophagen
Material und Methoden

- 60kDa
- Andere Bezeichnungen: B7 (jetzt B7.1), BB1

CD83
- Wichtig für Antigenpräsentation und zelluläre Interaktionen nach Lymphozytenaktivierung
- Expression: Dendritische Zellen, Langerhans-Zellen, B-Zellen

CD86
- Mitwirkung an dem kostimulatorischen Signal für T-Zellaktivierung: Proliferation und IL-2-Produktion durch Bindung mit CD28 und CD152; entscheidende Rolle bei früher T-Zell-Aktivierung und Kostimulation naiver T-Zellen
- Expression: auf Monozyten, aktivierten B-Zellen und dendritischen Zellen
- Ligand von Cd28 und CTLA-4

CD95
- Vielzahl von Zelllinien, in-vivo unbekannt

CD117
- Protoonkogen c-kit, Typ 3 Transmembranrezeptor für MGF (mastcell growth factor), reguliert Zellleben und –proliferation, Blutbildung, den Erhalt von Stammzellen, Gametogenese, Mastzellentwicklung, -migration und -funktion
- Expression: Hämatopoetische Vorläuferzellen
- Vorkommen: Plasmamembran, extrazellulär, Lysosomen
• 145kDa
• Andere Bezeichnungen: c-Kit

CD161
• Typ 2 Membranprotein: Zuständig für die Regulation von NK-Zellfunktionen (Zytotoxizität von NK-Zellen).
• Expression: NK-Zellen und T-Zellen (NK-T-Zellen)
• Gilt als Marker für alle Untergruppen von IL-17-produzierenden T-Zellen (Maggi, Santarlasci et al. 2010)
• Extrazelluläre Domäne mit diversen Motiven, die für Typ-C-Lektine charakteristisch sind
• 44kDa
• Andere Bezeichnung: NKRP1, killer cell lektin like receptor B1 (KLRB1)

CD163
• Akute Phase-Rezeptor, der bei der Säuberung und Endozytose von Hämoglobin/Haptoglobin Komplexen durch Makrophagen zuständig: keine oxidative Schädigung durch freies Hämoglobin. Weitere Funktion (angeborenes Immunsystem): Erkennen von Bakterien und lokales Inflammationsgeschehen. Durch Glukokortikoide, IL-6 und IL-10 zu induzieren, durch LPS, IFN-γ und TNF zu unterdrücken
• Expression: auf Monozyten und Makrophagen
• Vorkommen: Plasmamembran, extrazellulär
• 130kDa
• Verwandtschaft zu Mucin
• hemoglobin scavenger receptor, Ligand von CD62P

CD123
• α-Kette des IL-3-Receptors, „Interleukin 3 receptor subunit alpha”
• Expression: Knochenmarkstammzellen, Granulozyten, Monozyten, Megakaryozyten
• Vorkommen: Plasmamembran
• 70kDa
• Verwandtschaftsbeziehung zu Zytokinrezeptor und Fibronektin-Typ-III
• andere Bezeichnung: IL-3-Rα

WT31
• Der WT31-Antikörper erkennt eine gemeinsame Determinante des T-Zell-Rezeptors für Antigene (Spits, Borst et al. 1985)
6B11
- Antikörper gegen NK-T-Zellen, erkennt die invariante CDR3-loop human canonical Va24Ja18 TCR-α-chain

Valpha24
- Teil der TCR-α-chain von invariablen NK-T-Zellen

HLA-DR
- Ist das MHC-Klasse-II-Oberflächenmolekül (Glykoprotein)
- Expression: B-Lymphozyten, Monozyten und Makrophagen
- Andere Bezeichnung: human leucocyte antigen gene

TLR2/TLR4
- Rezeptor des angeborenen Immunsystems, Familie der Toll/Interleukin-1-Receptors (TIR)
- Expression: auf Makrophagen und dendritischen Zellen sowie auf eigenen weiteren Zellen, die Krankheitserreger und ihre Produkte wie bakterielle Lipopolysaccharide erkennen. Die Erkennung stimuliert die Zelle, die den Rezeptor trägt, Zytokine zu produzieren und eine Immunantwort einzuleiten
- Bildet Heterodimere mit anderen TLRs und erkennt hochkonservierte und für Pathogene spezifische Moleküle, auch genannt „pathogen-associated molecular patterns“ (PAMPs).
- 10 verschiedene TLR Toll/Interleukin-1-Rezeptoren

Tab. 16: TLR-2/-4 und die entsprechenden Mikroorganismen, die sie erkennen (Kawai, Akira 2006)

<table>
<thead>
<tr>
<th>Toll-like-Rezeptor</th>
<th>Mikroorganismus</th>
<th>Strukturelle Komponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR-2</td>
<td>Gram-positive Bakterien</td>
<td>Lipoteichinsäure, Lipopeptide Glykoprotein</td>
</tr>
<tr>
<td></td>
<td>Zytomegalovirus</td>
<td>gB and gHL</td>
</tr>
<tr>
<td></td>
<td>Leptospirosis interrogs</td>
<td>Atypische Lipopolysaccharide</td>
</tr>
<tr>
<td></td>
<td>Porphyromonas gingivalis</td>
<td>Atypische Lipopolysaccharide unbekannt</td>
</tr>
<tr>
<td></td>
<td>Herpes simplex Virus</td>
<td>unbekannt</td>
</tr>
<tr>
<td></td>
<td>Varicella zoster Virus</td>
<td></td>
</tr>
<tr>
<td>TLR-4</td>
<td>Gram-negative Bakterien</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td></td>
<td>Respiratory syncytial Virus</td>
<td>Fusionsprotein</td>
</tr>
</tbody>
</table>
2.3.3 Auswertung

Zur Auswertung der erstellten Dot-Plots teilt man diese in Quadranten ein. Sie werden nach der Lokalisation benannt: upper left (UL), upper right (UR), lower left (LL) und lower right (LR). Per Computerprogramm können nun die prozentualen Anteile der Zellen in den einzelnen Quadranten ermittelt werden. So kann eine Tabelle erstellt werden, die die Werte für jeden Marker in den o.g. Quadranten angibt.

2.4 SNP-Bestimmung

Es interessierte uns eine Abhängigkeit zwischen dem Erfolg der Cannabis-vermittelten Schmerztherapie und dem Vorliegen von SNPs des Cannabinoidrezeptors 2 sowie dem Nachweis bestimmter Leukozytensubpopulationen.

2.4.1 Auswahl betrachteter SNP

2.4.2 Prinzip der DNA-Isolierung

Wie bereits weiter oben erwähnt, waren wir bei unserer Arbeit bezüglich der Möglichkeiten der nachträglichen Informationsgewinnung eingeschränkt. Dies lag vor allem an der zeitlichen Differenz zwischen der ursprünglichen Studie als auch der stattgebahnten
Fortsetzungen der Dronabinoltherapien bei denjenigen Patienten, die davon besonders profitierten und unseren Auswertungen.

2.4.3 Prinzip der DNA-Quantifizierung

Mit Hilfe des Nano-Drop Spektralphotometers wird die Menge an gewonnener DNA quantifiziert. Es wird dazu ein Volumen von 1µl benötigt, dieses wird durch die Oberflächenspannung zwischen zwei Oberflächen, Enden einer Fiberoptik, die einen definierten Abstand voneinander haben, gehalten. Der Abstand zwischen diesen zwei Oberflächen wird während eines Messzyklus' zwischen 1 und 0,2 mm variiert, um einen dynamischen Bereich herzustellen, womit die Notwendigkeit für die Herstellung und Messung von Verdünnungen entfällt. Durch direktes Andocken der Probe an die Optik des Spektralphotometers werden Interferenzen durch einfallendes Licht oder durchfallendes Licht vermieden. Nach einer Messung werden beide optischen Oberflächen saubergewischt und sind wieder einsatzbereit. Auf diese Weise kann die Menge an gewonnener DNA in Erfahrung gebracht werden. Zudem kann eine Aussage zur Qualität der DNA gemacht werden.
2.4.4 Prinzip der DNA-Sequenzierung

Für die Sequenzierung der erhaltenen DNA ging eine Probe an Frau Prof. Dr. Meliha Karsak, welche die Sequenzierung des Genabschnitts mit den polymorphen SNP-Bereichen in Kooperation mit dem Cologne Center for Genomics (CCG) in Köln unter Leitung von Prof. Dr. Peter Nürnberg (http://cecad.uni-koeln.de/Prof.Dr-Peter-Nuernberg.81.0.html) durchgeführt hat.

2.5 Statistik

Es soll zunächst auf die statistischen Tests eingegangen werden: dabei ist anzumerken, dass es sich um eine explorative Datenanalyse handelt, d.h. einerseits eine deskriptive Beurteilung der Datendiagramme vorgenommen, dabei aber statistische Testverfahren durchgeführt.
Das Signifikanzniveau wurde bei $\alpha = 5\%$ ($p < 0,05$) gesetzt. Um einer explorativen Datenanalyse jedoch gerecht zu werden, sollten zu signifikanten Unterschieden auch Tendenzen erkannt werden. Hierzu wurden p-Werte zwischen 0,05 und 0,15 als nicht signifikant, aber auf einen Unterschied hindeutend interpretiert, und gingen damit ebenso in die Auswertung ein.

2.5.1 Ausreißertest nach Grubb

Ausreißer sind besonders hohe oder niedrige Werte, die aufgrund von Mess- oder Dokumentationsfehlern, oder aufgrund anderer Besonderheiten entstehen.

Dabei wird eine Prüfgröße Z anhand der Formel $Z = \frac{\text{mean} - \text{value}}{\text{SD}}$ ($\text{mean} = $ Mittelwert, $\text{value} = $ Messwert, $\text{SD} = $ Standardabweichung der Werte) errechnet. Aus standardisierten Tabellen wird ein sog. kritischer Wert als Bezugswert entnommen. Je nachdem ob dieser kritische Wert vom Messwert übertroffen wird oder nicht, gilt der Messwert als signifikant und als wahrscheinlicher Ausreißer.
Werte, die, wie oben beschrieben, als Mess- oder Dokumentationsfehler bzw. durch andere Besonderheiten nicht ausgeschlossen werden konnten und nach dem Grubb’s Ausreißertest signifikant waren, wurden aus dem Datensatz herausgenommen.

2.5.2 Mann-Whitney-U-Test

Der Mann-Whitney-U-Test ist ein nicht-parametrischer Test, mit dem durch die Anwendung des Rangsummenprinzips Unterschiede zwischen zwei kleinen Stichproben statistisch gezeigt werden können. Als Voraussetzung gelten zwei unverbundene Stichproben, die Verteilung der Werte gilt als frei. Dabei werden die Werte der beiden Datensätze in Ränge sortiert, die dann miteinander verglichen werden. Die entsprechenden Rangplätze der Daten ergeben sich durch Ordnung der Datenwerte der Größe nach (von niedrig nach hoch) über die jeweilige Gruppe. Sind zwei Werte gleich groß, erhalten sie die entsprechende Rangzahl + 0,5. Nach der Zuweisung der Rangzahlen in den beiden Datensätzen erfolgt die Aufsummierung zu den Rangsummen R_1 und R_2. Anschließend werden die beiden Größen U_1 und U_2 berechnet:

$$U_1 = n_1 \cdot n_2 + \frac{n_1 \cdot (n_1 + 1)}{2} - R_1, \quad U_2 = n_1 \cdot n_2 + \frac{n_2 \cdot (n_2 + 1)}{2} - R_2$$

n_1 steht für die Anzahl der Werte in Datensatz 1, n_2 für die in Datensatz 2. Der niedrigere U-Wert bildet die Prüfgröße. Dieser wird mit einem sog. kritischen Wert aus einer standardisierten Tabelle nach Festlegung des Signifikanzniveaus verglichen. Überschreitet die Prüfgröße diesen Wert nicht, gilt der Unterschied in den Datensätzen als signifikant.

2.5.3 Wilcoxon-Test

kleiner als der kritische Wert (Quantil der t-Verteilung), so ist der Unterschied der beiden Stichproben signifikant.
3 Ergebnisse

3.1 Patientendaten

Außer den Daten, die mit Hilfe des unter 2.2. beschriebenen Tagebuchs erfasst wurden erfolgte die Feststellung der Patientendaten wie Schmerzdiagnose, -charakter und -beschreibung sowie die Medikation vor Studienbeginn (Ausgangsmedikation). Im Verlauf der weitergeführten Therapie wurden schließlich die Scores auf der numerischen Ratingskala (NRS) erhoben und die Veränderungen in der medikamentösen Therapie dokumentiert. Dabei sind im Folgenden nur die Patienten angegeben, bei denen die Dronabinoltherapie einen Benefit erbracht hatte.

3.1.1 Patientin MGH 03

Tab. 17: klinische Daten der Patientin MGH 03 erhoben vor Studienbeginn; HWS = Halswirbelsäule, HWK = Halswirbelkörper

<table>
<thead>
<tr>
<th>Studienteilnahme von 29.01.02 - 20.02.02</th>
<th>Weiterbehandlung ab 18.11.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Weiblich, 49 Jahre, 58kg, 165cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Regionales Schmerzsyndrom im Bereich der unteren HWS (zervikobrachiales, zervikocephales Syndrom) rechts bei Radikulopathie mit neurologischem Defizit bei mediolateralem Bandscheibenvorfall HWK 4/5 und HWK 5/6</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Migränekopfschmerz, Depression, rezidivierend Hörstürze</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Dumpf, pochend, klopfend</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Arm rechts, Nacken, HWS</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 2000</td>
</tr>
</tbody>
</table>
Medikation vor Studienbeginn („Ausgangsmedikation“):

Tab. 18: Medikation der Patientin MGH 03 erhoben vor Studienbeginn; p.o. = per os, b. Bed. = bei Bedarf

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht-Opioid-Analgetika</td>
<td>Flupirtin 100mg p.o. 1-1-1</td>
</tr>
<tr>
<td>Opioid-Analgetika</td>
<td>Tramadol long 100mg p.o. 1-1-2</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Trancylpromin 10mg p.o. 0-0-1,5</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Keine</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Metoclopramid b. Bed.</td>
</tr>
</tbody>
</table>

Nach Betrachtung des Scores auf der numerischen Ratingskala („Schmerzscore“) war initial zunächst eine Linderung der Symptomatik zu erkennen, was zu einer Weiterführung der Dronabinolmedikation führte. Nach einem Auslassversuch zeigte sich diese Verbesserung nicht erneut.

Abb. 3: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) der Patientin MGH 03 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie
Tab. 19: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patientin MGH 03; ALV = Auslassversuch, p.o. = per os

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.01. bis 04.02.</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>06.02. bis 20.02.</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>21.02. bis 18.11. (Ende des ALV)</td>
<td>Ausgangsmedikation, anderes Antidepressivum: Moclobemid (Aurorix) 300mg p.o. 1-1-0</td>
</tr>
<tr>
<td>18.11. bis 19.12.</td>
<td>Beendigung der Dronabinoltherapie aufgrund von Nebenwirkungen (NW) (zentral und gastrointestinal), außerdem keine Erniedrigung des Schmerzenscores mehr möglich</td>
</tr>
</tbody>
</table>

3.1.2 Patientin KK 05

Tab. 20: klinische Daten der Patientin KK 05 eroben vor Studienbeginn; WS = Wirbelsäule

<table>
<thead>
<tr>
<th>Studienteilnahme von 05.03.02 – 25.03.02</th>
<th>Weiterbehandlung ab 18.11.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Weiblich, 57 Jahre, 65kg, 165cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Dysästhesien und Parästhesien beider Beine bei spinalen Durchblutungsstörungen des Rückenmarks, Spinalis-anterior-Syndrom; ischämische Myelopathie mit inkomplettem Querschnitt</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Blasen- und Mastdarmatonie, Plegie im rechten Bein, beginnendes demyelinisierendes Polyneuropathiesyndrom beider Arme, Hypercholesterinämie, arterielle Hypertonie, degenerative WS-Veränderungen, Gonarthrose beidseits</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Kribbeln, Taubheitsgefühl</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Untere Extremitäten beidseits</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 1995</td>
</tr>
</tbody>
</table>
Tab. 21: Medikation der Patientin KK 05 erhoben vor Studienbeginn; p.o. = per os, ret. = retardiert, Btl. = Beutel, b. Bed. = bei Bedarf

<table>
<thead>
<tr>
<th>Blickpunkte</th>
<th>Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht-Opioid-Analgetika</td>
<td>Flupirtin 100mg p.o. 1-1-1</td>
</tr>
<tr>
<td></td>
<td>Rofecoxib (Vioxx) 25mg p.o. 0-0-1</td>
</tr>
<tr>
<td></td>
<td>Metamizol 500mg p.o. 1-1-1-1</td>
</tr>
<tr>
<td></td>
<td>ASS 100mg p.o. 1-0-0</td>
</tr>
<tr>
<td>Opioid-Analgetika</td>
<td>Tildin ret. 50/4mg p.o. 1-1-1</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Gabapentin 300mg p.o. 1-1-1</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Macrogol 1 Btl./d</td>
</tr>
<tr>
<td></td>
<td>Mikroklyst b. Bed.</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Abb. 4: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) der Patientin KK 05 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie

Abb. 5: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) der Patientin KK 05 im Verlauf der weitergeführten Therapie als Diagramm. Im Vergleich Score für nozieptiven Schmerz (hellgrau) zu Score für Beeinträchtigung durch Parästhesien/Dysästhesien („Taubheitsgefühl“, schwarz)

Tab. 22: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patientin KK 05; p.o. = per os, ret. = retardiert

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.03.02 - 11.03.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>12.03.02 - 25.03.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>26.03.02 - 26.01.03</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>27.01.03 - 02.03.03</td>
<td>Reduktion Gabapentin 300mg p.o. 1-0-1</td>
</tr>
<tr>
<td>03.03.03 - 30.03.03</td>
<td>Beenden von Flupirtin</td>
</tr>
<tr>
<td>31.03.03 - 04.05.03</td>
<td>Erhöhung Gabapentin 300mg p.o. 1-1-1</td>
</tr>
</tbody>
</table>
3 Ergebnisse

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.05.03 - 26.05.03</td>
<td>Keine Veränderung</td>
</tr>
<tr>
<td>27.05.03 - 02.06.03</td>
<td>Keine Veränderung</td>
</tr>
<tr>
<td>03.06.03 - 15.07.03</td>
<td>Keine Veränderung, Ausschleichen von Dronabinol, da keine Verbesserung zu erwarten</td>
</tr>
</tbody>
</table>

3.1.3 Patientin IG 06

Tab. 23: klinische Daten der Patientin IG 06 erhoben vor Studienbeginn

<table>
<thead>
<tr>
<th>Studenten-Teilnahme von 23.02.02 - 01.04.02</th>
<th>Weiterbehandlung ab 07.11.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Weiblich, 52 Jahre, 54kg, 164cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Schmerzen der lumbosakralen Wirbelsäule nach ventraler Spondylodose L4–S1 nach rezidivierenden Bandscheibenvorfällen</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Keine</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Stechend, brennend</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Lumbosakrale Wirbelsäule, Sakralfuge rechts, Trochanter major rechts, Leiste und Hüfte links, BWS links</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 1976</td>
</tr>
</tbody>
</table>

Tab. 24: Medikation der Patientin IG 06 erhoben vor Studienbeginn; p.o. = per os, ret. = retardiert, b. Bed. = bei Bedarf

<table>
<thead>
<tr>
<th>Kurzform</th>
<th>Dosis/Angebote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht-Opioid-Analgetika</td>
<td>Flupirtin 100mg p.o. 1–1–1</td>
</tr>
<tr>
<td></td>
<td>Celecoxib 200mg p.o. 1–0–1</td>
</tr>
<tr>
<td>Opioid-Analgetika</td>
<td>Tilidin ret. 150/12mg p.o. 1–1–1</td>
</tr>
<tr>
<td></td>
<td>Tilidin Tropfen p.o. 20° b. Bed.</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Keine</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Metoclopramid Tropfen 7–10mg/d b. Bed.</td>
</tr>
</tbody>
</table>

Nach Betrachtung des Scores auf der numerischen Ratingskala („Schmerzscore“) war initial zunächst eine Linderung der Symptomatik zu erkennen, was zu einer Weiterführung der Dronabinolmedikation führte. Diese zeigte sich auch nach einem Auslassversuch.
Abb. 6: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) der Patientin IG 06 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie

Tab. 25: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patientin IG 06; ret. = retardiert, p.o. = per os

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.02.02 - 01.03.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>19.03.02 - 01.04.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>02.04.02 - 07.11.02</td>
<td>Medikation erhöht auf Tilidin ret. 200/16mg p.o.1-1-1, kein Celecoxib mehr, aber Rofecoxib 25mg p.o. 0-0-1</td>
</tr>
<tr>
<td>08.11.02 - 08.12.02</td>
<td>Dronabinol und bisherige Medikation</td>
</tr>
<tr>
<td>09.12.02 - 08.01.03</td>
<td>Flupirtin beendet seit ca. 05.12.2002</td>
</tr>
<tr>
<td>09.01.03 - 11.02.03</td>
<td>Reduktion Tilidin ret. 100/8mg p.o. 1-1-1</td>
</tr>
<tr>
<td>ab 12.02.03</td>
<td>Schmerzexazerbation an Knochenspanentnahmestelle, weitere Abklärung, keine Reduktion möglich</td>
</tr>
</tbody>
</table>
3.1.5 Patientin GD 09

Tab. 26: klinische Daten der Patientin GD 09 erhoben vor Studienbeginn; Z.n. = Zustand nach

<table>
<thead>
<tr>
<th>Studienteilnahme von 01.05.02 – 22.05.02</th>
<th>Weiterbehandlung ab 18.09.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Weiblich, 62 Jahre, 80kg, 160cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Kniegelenksschmerz nach osteochondraler Flakefraktur des linken Kniegelenks mit Hämarthrose und freiem Gelenkkörper Posttraumatischer Schmerz im Hüftgelenk rechts bei Z.n. beidseitiger Acetabulumfraktur Neuralgie nach N. ischiadicus-Läsion mit überwiegendem peronealem Anteil durch Trauma</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Keine</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Fluktuierender Dauerschmerz, dumpf, drückend</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Kniegelenk links, Hüftgelenk rechts</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 2000</td>
</tr>
</tbody>
</table>

Tab. 27: Medikation der Patientin DG 09 erhoben vor Studienbeginn; p.o. = per os, ret. = retardiert

<table>
<thead>
<tr>
<th>Medikation</th>
<th>Dosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht-Opioid-Analgetika</td>
<td>Flupirtin 100mg p.o. 1-1-1</td>
</tr>
<tr>
<td>Opioid-Analgetika</td>
<td>Tilidin ret. 50/4mg p.o. 1-1-2</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Fluoxetin 20mg p.o. 1-0-0</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Gabapentin 300mg p.o. 1-1-1</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Keine</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Nach Betrachtung der Scores auf der numerischen Ratingskala war ein objektiver Profit durch die Dronabinoltherapie zu erkennen, was zu einer Fortsetzung der Dronabinolmedikation führte. Schließlich wurde die Behandlung bei neu aufgetretener Unverträglichkeit beendet.
Ergebnisse

Abb. 7: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) der Patientin DG 09 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie

Tab. 28: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patientin DG 09; ALV = Auslassversuch, p.o. = per os, ret. = retardiert

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.05.02 - 07.05.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>08.05.02 - 22.05.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>23.05.02 - 17.09.02</td>
<td>Schmerzmedikation wie zu Beginn der Studie</td>
</tr>
<tr>
<td>(Ende des ALV)</td>
<td></td>
</tr>
<tr>
<td>18.09.02 - 16.10.02</td>
<td>Dronabinoltherapie mit 15mg p.o., darunter Reduktion von Tilidin ret. auf 150/12mg p.o./Tag, dann Versuch Reduktion Flupirtin</td>
</tr>
<tr>
<td>17.10.02 - 21.10.02</td>
<td>Gabapentin ganz beendet, darunter keine Schmerzverstärkung</td>
</tr>
<tr>
<td>22.10.02 - 12.11.02</td>
<td>Plötzliche Unverträglichkeit: „Druck“ im Kopf, drei Tage kein Dronabinol, Reevaluation</td>
</tr>
<tr>
<td>13.11.02 - 14.11.02</td>
<td>Nach Aussetzen von Dronabinol keine Schmerzverstärkung, weiter mit 5mg p.o. 1-1-1, beklagt starke Müdigkeit</td>
</tr>
<tr>
<td>15.11.02 - 20.11.02</td>
<td>Während weiterer Therapie: Müdigkeit, Antriebsarmut, Angst-</td>
</tr>
</tbody>
</table>
und Panikreaktionen, 4-5h nach Einnahme Druck im Kopf und Gangunsicherheit, des Weiteren Übelkeit und Unwohlsein, subjektiv keine Schmerzerleichterung mehr:
Beendigung der Dronabinoltherapie

3.1.6 Patientin CD 11

Tab. 29: klinische Daten der Patientin CD 11 erhoben vor Studienbeginn; HWK = Halswirbelsäule

<table>
<thead>
<tr>
<th>Studienteilnahme von 22.05.02 - 12.06.02</th>
<th>Weiterbehandlung ab 01.11.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Weiblich, 37 Jahre, 60kg, 171cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Schmerzstörung bei Syringomyelie mit Halbseitenschmerz rechts, sensiblem Reizerscheinungen sowie sensiblem und motorischem Defizit. Zervikale Bandscheibenprotrusion HWK 6/7</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Keine</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Starke, akut einsetzende Schmerzen</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Linke Körperseite</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 1994</td>
</tr>
</tbody>
</table>

Tab. 30: Medikation der Patientin CD 11 erhoben vor Studienbeginn; p.o. = per os

<table>
<thead>
<tr>
<th>Nicht-Opioid-Analgetika</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioid-Analgetika</td>
<td>L-Polamidon p.o. 7,5mg 1-0-1</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Keine</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Pantoprazol 40mg p.o. 1-0-0</td>
</tr>
</tbody>
</table>

Die Betrachtung der Scores auf der numerischen Ratingskala zeigte einen Benefit. Das subjektive Empfinden der Patientin stimmte damit überein, eine Weiterführung des
Medikaments wurde verabreicht. Im weiteren Verlauf traten auch unter Dronabinol erhöhte Schmerzscores auf, wie sie initial auch ohne dieses Medikament bestanden hatten.

Abb. 8: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) der Patientin CD 11 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie

Tab. 31: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patientin CD 11; ALV = Auslassversuch, p.o. = per os; V.a. = Verdacht auf

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.05.02 - 28.05.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>29.05.02 - 12.06.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>13.06.02 - 31.10.02</td>
<td>Schmerzmedikation wie zu Beginn der Studie, mittlerweile Veränderung: L-Polamidon p.o. 10mg-0-7,5mg</td>
</tr>
<tr>
<td>01.11.02 - 05.12.02</td>
<td>Dronabinoltherapie: 5mg p.o. 1-1-1, darunter starker Hautausschlag, Verstopfung, starke Übelkeit und wenig Schmerzlinderung, vorerst weitere Gabe, dann Reevaluation</td>
</tr>
<tr>
<td>06.12.02 - 30.12.02</td>
<td>Unter Dronabinol leichte Besserung, Juckreiz noch vorhanden, aktuell Krankheit, keine orale Ernährung möglich</td>
</tr>
<tr>
<td>31.12.02 - 23.01.03</td>
<td>Unter Weiterer Dronabinoltherapie Schmerzcores im oberen Bereich, Juckreiz am gesamten Körper, Schluckschwierigkeiten: Wasser, Suppe, Joghurt, Brei; bei V.a. Opiat-bedingten Pruritus</td>
</tr>
</tbody>
</table>
3 Ergebnisse

<table>
<thead>
<tr>
<th>zunächst Abdosierung von diesem</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab 24.01.03 Keine weitere Nachverfolgung möglich</td>
</tr>
</tbody>
</table>

3.1.7 Patient HL 14

Tab. 32: klinische Daten des Patienten HL 14 erhoben vor Studienbeginn; HWS = Halswirbelsäule, BWS = Brustwirbelsäule, LWS = Lendenwirbelsäule

<table>
<thead>
<tr>
<th>Studienteilnahme vom 18.11.02 – 08.12.02</th>
<th>Weiterbehandlung ab 01.02.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Männlich, 47 Jahre, 80kg, 172cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Multilokuläres muskuloskelettales Schmerzsyndrom bei noch negativem Tenderpunktscore</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Keine</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Dumpf, drückend</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Schulter beidseits, HWS, BWS, LWS, Hinterkopf, Augen und Ohren bds. Ellenbogen und Kniegelenke</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 1989</td>
</tr>
</tbody>
</table>

Tab. 33: Medikation des Patienten HL 14 erhoben vor Studienbeginn; p.o. = per os

<table>
<thead>
<tr>
<th>Nicht-Opioid-Analgetika</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioid-Analgetika</td>
<td>Buprenorphin sublingual 0,216mg p.o. 2–1–1</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Amitriptylin 12,5mg p.o. 0–0–1</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Keine</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Metoclopramid p.o. 30mg/d L-Thyroxin 200µg p.o. 1–0–0 Risedronsäure p.o. 30mg/d</td>
</tr>
</tbody>
</table>

Nachdem der Patient HL 14 die Studie beendet hatte, erfolgte ein Auslassversuch (09.12.02 – 31.01.03) mit Anstieg der Schmerzscores auf der numerischen Ratingskala. So fiel die Entscheidung zur Weiterführung der Dronabinoltherapie. Darunter war ein erneuter Rückgang der Scores auf der NRS zu verzeichnen.
Abb. 9: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) des Patienten HL 14 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie.

Tab. 34: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patient HL 14; ALV = Auslassversuch, s.l. = sublingual, p.o. = per os; AL V = Auslassversuch

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.11.02 – 24.11.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>25.11.02 – 08.12.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>09.12.02 – 13.01.03 (Ende des ALV)</td>
<td>Ausgangsmedikation s.o., Veränderung um Buprenorphin Pflaster (35µg/h transdermal, Wechsel alle 4d) und Buprenorphin s.l. bei Bedarf; Alendronsäure statt Risedronsäure</td>
</tr>
<tr>
<td>01.02.03 – 03.03.03</td>
<td>Dronabinol p.o. 5mg 1–1–1 eindosiert, Schmerzen wieder geringer, aktuell Buprenorphin 52µg/h transdermal, Zungenbrennen und Taubheit der Hände/Finger als fragliche Nebenwirkung von Dronabinol</td>
</tr>
<tr>
<td>04.03.03 – 31.03.03</td>
<td>Operationswürdiges CTS diagnostiziert; Buprenorphin 52µg/h transdermal weiter, Dronabinol 15mg/d weiter</td>
</tr>
<tr>
<td>01.04.03 – 19.05.03</td>
<td>Zwischenzeitlich in der Inneren Medizin: Polyposis intestinii, unklare Konsequenz; Schmerzkontrolle befriedigend, Schmerzscores niedrig, alle 3 bis 4 Wochen wenige Tage</td>
</tr>
</tbody>
</table>
3 Ergebnisse

dauernde Attacken

<table>
<thead>
<tr>
<th>Datum</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.05.03 - 30.06.03</td>
<td>Sehr zufrieden, niedrige Schmerzscores, ALV in einem Monat</td>
</tr>
<tr>
<td>01.07.03 - 04.08.03</td>
<td>Weiterhin gute Schmerzkontrolle, ALV Dronabinol in Planung</td>
</tr>
<tr>
<td>05.08.03 - 03.09.03</td>
<td>Nach dem ALV deutlicher Anstieg der Schmerzscores, deshalb Entschluss zum off-label-Gebrauch, weiter mit 5mg p.o. 1-1-0</td>
</tr>
<tr>
<td>04.09.03 - 10.10.03</td>
<td>Gute Schmerzkontrolle mit Dronabinol 5mg p.o. 1-1-0</td>
</tr>
<tr>
<td>11.10.03 - 01.12.03</td>
<td>Weiterhin besser, klagt über Mundtrockenheit und Zungenbrennen, beides auch während des ALV</td>
</tr>
<tr>
<td>ab 02.12.03</td>
<td>Keine weitere Nachverfolgung möglich</td>
</tr>
</tbody>
</table>

3.1.8 Patient DS 15

Tab. 35: klinische Daten des Patienten DS 15 erhoben vor Studienbeginn; LWK = Lendenwirbelkörper, HWS = Halswirbelsäule, LWS = Lendenwirbelsäule

<table>
<thead>
<tr>
<th>Studienteilnahme vom 28.10.02 - 17.11.02</th>
<th>Weiterbehandlung ab 13.01.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Männlich, 38 Jahre, 110kg, 176cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Chronischer, nichtradikulärer Schmerz der LWS bei Bandscheibenprotrusion in Höhe L3/4 bis L5/S1</td>
</tr>
<tr>
<td></td>
<td>Intermittierende Wurzelreizung bei LWK 4 mit radikulärem Schmerz</td>
</tr>
<tr>
<td></td>
<td>Spondylolisthesis vera Grad I</td>
</tr>
<tr>
<td></td>
<td>Chondrose L3/4 und L5/S1</td>
</tr>
<tr>
<td></td>
<td>Chronisches HWS-Syndrom nach Trauma</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Adipositas, arterielle Hypertonie</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Ziehend, brennend, pochend</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>HWS, LWS, Bein rechts</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 1996</td>
</tr>
</tbody>
</table>

Tab. 36: Medikation des Patienten DS 15 erhoben vor Studienbeginn; p.o. = per os

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Medikation</th>
<th>Dosierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht-Opioid-Analgetika</td>
<td>Celecoxib</td>
<td>p.o. 200mg 1-0-1</td>
</tr>
<tr>
<td>Opioid-Analgetika</td>
<td>Hydromorphon</td>
<td>p.o. 24mg 1-1-1</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Amitriptylin</td>
<td>p.o. 75mg 0-0-1</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Gabapentin</td>
<td>p.o. 600mg 1-1-1</td>
</tr>
</tbody>
</table>
Nachdem der Patient DS 15 die Studie beendet hatte, erfolgte ein Auslassversuch (18.11.02 - 13.01.03). Die Schmerzscores auf der NRS stiegen wieder an, die Weiterführung der Dronabinoltherapie wurde beschlossen. Die Schmerzscores waren im Verlauf weiterhin niedrig, es gelang während der weitergeführten Therapie eine deutliche Reduktion der Schmerzmedikation, s.u.

<table>
<thead>
<tr>
<th>Laxantia</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonstiges</td>
<td>Zentramin (K⁺, Ca++, Mg++)</td>
</tr>
<tr>
<td></td>
<td>Esomeprazol p.o. 40mg 1-0-0</td>
</tr>
<tr>
<td></td>
<td>HCT/Triamteren p.o. 1 Tbl./d</td>
</tr>
<tr>
<td></td>
<td>Magnesium Verla p.o. 2 Tbl. 2-2-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.10.02 - 03.11.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>04.11.02 - 17.11.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>18.11.02 - 13.01.03</td>
<td>Ausgangsmedikation s.o.</td>
</tr>
</tbody>
</table>

Abb. 10: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) des Patienten DS 15 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie

Tab. 37: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patient DS 15; ALV = Auslassversuch, p.o. = per os
(Ende des ALV)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Veränderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01.03 - 23.02.03</td>
<td>Dronabinol p.o. 5mg 1-1-1, Wirkung gut, aber nicht so wie während initialer Studie: Haushaltsführung selbst, aktuell Erkältung, aber Reduktion der Schmerzscores</td>
</tr>
<tr>
<td>24.02.03 - 24.03.03</td>
<td>Erhöhung Dronabinol p.o. 5mg 1-1-2, Reduktion Hydromorphon eine Woche lang 24-16-24mg, zwei Wochen lang 16-16-24mg, eine Woche lang 16-16-16mg, Zentramin abgesetzt Gabapentin versehentlich auf 400-400-400mg reduziert Schmerzverstärkung: Schmerzscore gleich, aber Schmerzerträglichkeit deutlich schlechter: aktuell Frühjahrsputz</td>
</tr>
<tr>
<td>25.03.03 - 29.04.03</td>
<td>Keine Änderungen, Hydromorphon weiter 16mg 1-1-1 Gabapentin 400mg 1-1-1 Status idem, keine Verbesserung der Schmerzscores Dronabinol ausschleichen</td>
</tr>
</tbody>
</table>

3.1.9 Patientin IC 17

Tab. 38: klinische Daten der Patientin IC 17 erhoben vor Studienbeginn; HWS = Halswirbelsäule, BWS = Brustwirbelsäule, LWS = Lendenwirbelsäule, OSG = oberes Sprunggelenk, USG = unteres Sprunggelenk

<table>
<thead>
<tr>
<th>Studienteilnahme vom 04.11.02 - 25.11.02</th>
<th>Weiterbehandlung ab 23.01.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Weiblich, 53 Jahre, 68kg, 165cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Multilokuläres, muskuloskelettales Schmerzsyndrom</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Toxische Leberschädigung durch Medikamenteneinnahme, paroxysmale Tachykardien mit Extrasystolie</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Fluktuierender Dauerschmerz, dumpf, drückend bis stechend, spitz</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>HWS, BWS, LWS, Schulter links, Knie beidseits, kleine Gelenke, Ellenbogen, Handgelenke, OSG, USG</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit November 2002</td>
</tr>
</tbody>
</table>
Tab. 39: Medikation der Patientin IC 17 erhoben vor Studienbeginn; p.o. = per os, b. Bed. = bei Bedarf, Btl. = Beutel

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Medikamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht-Opioid-Analgetika</td>
<td>Rofecoxib p.o. 25mg 1-0-0</td>
</tr>
<tr>
<td>Opioid-Analgetika</td>
<td>Buprenorphin s.l. 0,216mg 1-0-1</td>
</tr>
<tr>
<td></td>
<td>Buprenorphin s.l. 0,216mg b. Bed.</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Macrogol 1 Btl. 1-1-1</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Pantoprazol p.o. 20mg 1-0-0</td>
</tr>
<tr>
<td></td>
<td>Methotrexat 7,5mg/Woche</td>
</tr>
<tr>
<td></td>
<td>Hydroxychloroquin p.o. 200 1-0-1</td>
</tr>
<tr>
<td></td>
<td>Prednisolon p.o. 5mg 1-0-0</td>
</tr>
<tr>
<td></td>
<td>Cycloöstrogenol p.o. 1 Tbl. 1-0-0</td>
</tr>
</tbody>
</table>

Nachdem die Patientin IC die Studie beendet hatte, erfolgte ein Auslassversuch. Die Scores auf der NRS erreichten das Vorniveau, so wurde Weiterführung der Dronabinoltherapie entschieden. Die Schmerzscores waren im weiteren Verlauf im Bereich der, die während der initialen Studie erhoben worden waren. Zu zwei Zeitpunkten kann man auch unter der Therapie eine Erhöhung der Schmerzscores sehen. Diese korrelieren nach Angaben der Patientin mit sog. „Krankheitsschüben“.
Ergebnisse

Abb. 11: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) der Patientin IC 17 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie

Tab. 40: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patientin IC 17; ALV = Auslassversuch, p.o. = per os, o.B. = ohne Befund

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.11.02 - 10.11.02</td>
<td>Ausgangsmedikation ohne Hydroxychloroquin, Amitriptylin p.o. 25mg 0-0-1</td>
</tr>
<tr>
<td>19.11.02 - 25.11.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>15.01.03 - 21.01.03</td>
<td>(Ende des ALV) Ausgangsmedikation</td>
</tr>
<tr>
<td>20.02.03 - 26.02.03</td>
<td>Dronabinol p.o. 5mg 1-1-1: Schwindel Umstellung auf Buprenorphin transdermal da Übelkeit Neu aufgetretener Hypertonus: Bisoprolol p.o. 5mg 1-0-0</td>
</tr>
<tr>
<td>24.03.03 - 30.03.03</td>
<td>Mit Buprenorphin transdermal keine Übelkeit mehr Blutdruck-Einstellung mit Bisoprolol 2,5mg o.B. Sonstige Medikation idem</td>
</tr>
<tr>
<td>28.04.03 - 04.05.03</td>
<td>Keine Änderungen</td>
</tr>
<tr>
<td>29.05.03 - 05.06.03</td>
<td>Zwischenzeitlich „Schub“, aktuell wieder gut erträgliche</td>
</tr>
</tbody>
</table>
Ergebnisse

<table>
<thead>
<tr>
<th>Datum</th>
<th>Ereignis</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.07.03 - 07.07.03</td>
<td>Betablocker mittlerweile abgesetzt</td>
</tr>
<tr>
<td></td>
<td>Schmerzmedikation idem</td>
</tr>
<tr>
<td>11.08.03 - 17.08.03</td>
<td>Zwischenzeitlich wieder „Schub“ gehabt: Prednisolon erhöht</td>
</tr>
<tr>
<td></td>
<td>Dronabinol vorerst weiter</td>
</tr>
<tr>
<td>22.09.03 - 28.09.03</td>
<td>Schmerzen in den letzten Wochen gut erträglich, „Schübe“ über den Sommer, aber auch ohne Dronabinol mit Buprenorphin gut beherrschbar</td>
</tr>
</tbody>
</table>

3.1.10 Patient SO 20

Tab. 41: klinische Daten des Patienten SO 20 erhoben vor Studienbeginn; HWS = Halswirbelsäule

<table>
<thead>
<tr>
<th>Studienteilnahme vom 21.11.02 - 11.12.02</th>
<th>Weiterbehandlung ab 23.01.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Männlich, 51 Jahre, 66kg, 172cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Schmerzsyndrom des rechten oberen Quadranten nach Arbeitsunfall; HWS-, Schulterarmsyndrom, Spannungskopfschmerz</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Arterielle Hypertonie</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Anfallsartig, ziehend, drückend</td>
</tr>
<tr>
<td>Schmerzlokalislation</td>
<td>Schädel, Hals, Thorax, Schulter und Arm der rechten Seite</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit November 2002</td>
</tr>
</tbody>
</table>

Tab. 42: Medikation des Patienten SO 20 erhoben vor Studienbeginn; p.o. = per os, b. Bed. = bei Bedarf, Btl. = Beutel

<table>
<thead>
<tr>
<th>Nicht-Opioid-Analgetika</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioid-Analgetika</td>
<td>Hydromorphon p.o. 20mg 1–0–1</td>
</tr>
<tr>
<td></td>
<td>Morphin unret. p.o. 40mg b. Bed.</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Amitriptylin p.o. 75mg 0–0–1</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Gabapentin p.o. 300mg 1–1–2</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Macrogol 6 Btl./d</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Pantoprazol p.o. 40mg 0–0–1</td>
</tr>
<tr>
<td></td>
<td>Clonidin p.o. 150 µg 1–0–0</td>
</tr>
<tr>
<td></td>
<td>Quinapril/HCT p.o. 20mg 0–0–1</td>
</tr>
</tbody>
</table>

Abb. 12: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) des Patienten SO 20 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie.
Tab. 43: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patient SO 20; ALV = Auslassversuch, p.o. = per os, unret. = unretardiert

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.11.02 – 27.11.02</td>
<td>Initiale Schmerzmedikation</td>
</tr>
<tr>
<td>28.12.02 – 11.12.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>12.12.02 – 22.01.03 (Ende des ALV)</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>23.01.03 – 28.02.03</td>
<td>Bessere Blutdruckeinstellung möglich, Quinapril/HCT und Clonidin beendet</td>
</tr>
<tr>
<td></td>
<td>Nachtschlafl weiterhin schlecht</td>
</tr>
<tr>
<td></td>
<td>Hydromorphon p.o. 16mg 1–0–1</td>
</tr>
<tr>
<td></td>
<td>Dronabinol p.o. 5mg 2–1–2</td>
</tr>
<tr>
<td>01.03.03 – 31.03.03</td>
<td>Nachtschlafl weiterhin schlecht, Schmerzscores abfallend, aber weniger Medikation: Hydromorphon p.o. 8mg 1–0–2, Dronabinol 5–5–10mg</td>
</tr>
<tr>
<td>01.04.03 – 05.05.03</td>
<td>Hydromorphonreduktion nicht gelungen, weiterhin 8mg p.o. 2–0–2, damit aber gut, während Prüfbogen nur einmal Morphin unret. gebraucht</td>
</tr>
<tr>
<td>06.05.03 – 03.06.03</td>
<td>Status idem, Schmerzscore im unteren Bereich, nach kleinen Betätigungen stärkste Schmerzen, keine weitere Reduktion der Opiate, Dronabinol auf 5mg p.o. 1–0–2</td>
</tr>
<tr>
<td>04.06.03 – 08.07.03</td>
<td>Weiterhin gute Schmerzkontrolle, Schmerzattacken sistieren, verstärkte Lichtempfindlichkeit, Ein- und Durchschlafstörungen, Versuch mit Tranxilium (Clorazepat) zur Schlafverbesserung Ausschleichen von Dronabinol</td>
</tr>
<tr>
<td>09.07.03 – 05.08.03</td>
<td>Dronabinol ausgeschlichen, Schmerzscores wie mit Medikation, aber deutlich mehr Morphin unret. und mehr Durchbruchschmerzen, noch schlechter Schlaf, Appetitmangel und Gewichtsverlust</td>
</tr>
<tr>
<td></td>
<td>Weiterführung der Dronabinolmedikation</td>
</tr>
</tbody>
</table>
3.1.11 Patient MK 23

Tab. 44: klinische Daten des Patienten MK 23 erhoben vor Studienbeginn

<table>
<thead>
<tr>
<th>Studienteilnahme vom 26.02.03 - 18.03.03</th>
<th>Weiterbehandlung ab 29.04.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>Männlich, 27 Jahre, 80kg, 181cm</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Schmerz bei spinaler Störung, Wurzelausriss C5 bis Th1, Ruptur des Plexus brachialis</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Keine</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Fluktuerender Dauerschmerz</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Rechte Schulter, Arm und Hand</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit Unfall 2001</td>
</tr>
</tbody>
</table>

Tab. 45: Medikation des Patienten MK 23 erhoben vor Studienbeginn; p.o. = per os, b.Bed. = bei Bedarf, Btl. = Beutel

<table>
<thead>
<tr>
<th>Nicht-Opioid-Analgetika</th>
<th>Ketamin S 25mg p.o. 1-1-1-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioid-Analgetika</td>
<td>Morphin ret. 100mg p.o. 2-2-2</td>
</tr>
<tr>
<td></td>
<td>Morphin unret. 40mg p.o. b. Bed.</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Amitriptylin 50mg p.o. 1-0-2-0</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Gabapentin 600mg p.o. 1-1-1-1</td>
</tr>
<tr>
<td></td>
<td>Oxcarbazepin 600mg p.o. 1-1-1-1</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Macrogol 1 Btl. 1-1-1</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Pantoprazol p.o.</td>
</tr>
<tr>
<td></td>
<td>Clonidin 150mg p.o.</td>
</tr>
</tbody>
</table>

Nachdem der Patient MK 23 die Studie beendet hatte, erfolgte ein Auslassversuch (19.03.03 - 29.04.03). Obwohl die Schmerzscores auf der NRS aussahen, wie am Ende der Dronabinoltherapie, entschied sich der Therapeut zur Weiterführung solcher, um längerfristig den Umfang der Schmerzmedikation zu reduzieren. Ein Hinweis auf ein Gelingen dieses Vorhabens war die deutliche Verminderung des Gebrauchs der Bedarfsmedikation an unretardiertem Morphin während der Studie.
Abb. 13: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) des Patienten MK 23 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie

Tab. 46: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patient MK 23; ALV = Auslassversuch, unret. = unretardiert, ret. = retardiert, LWS = Lendenwirbelsäule

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.02.02 – 04.03.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>12.03.02 – 18.03.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>21.04.02 – 27.04.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>(Ende des ALV)</td>
<td></td>
</tr>
<tr>
<td>29.05.02 – 04.06.02</td>
<td>Reduktion Amitriptylin 50–0–75mg Ketamin S beendet</td>
</tr>
<tr>
<td>01.07.02 – 07.07.02</td>
<td>Clonidin beendet</td>
</tr>
<tr>
<td></td>
<td>Pantoprazol beendet</td>
</tr>
<tr>
<td></td>
<td>Reduktion Amitriptylin 0–0–75mg</td>
</tr>
<tr>
<td>01.08.02 – 08.08.02</td>
<td>Reduktion Dronabinol auf 5–5–5mg</td>
</tr>
<tr>
<td></td>
<td>Reduktion Gabapentin 600–600–600mg</td>
</tr>
<tr>
<td>28.08.02 – 03.09.02</td>
<td>Versuch Reduktion Gabapentin 300–300–300mg</td>
</tr>
<tr>
<td>17.10.02 – 23.10.02</td>
<td>Amitriptylin 0–0–50mg</td>
</tr>
<tr>
<td></td>
<td>Reduktion Gabapentin 300–300–300mg erst jetzt möglich</td>
</tr>
</tbody>
</table>
Ergebnisse

Reduktion Oxcarbazepin 600–600–600mg
Braucht mittlerweile kein unret. Morphin mehr

21.11.02 – 27.11.02
Gabapentin 300–300–300mg
Oxcarbazepin 600–600–600mg
Amitriptylin beendet

12.12.02 – 18.12.02
Reduktion Versuch Oxcarbazepin 600–0–600mg
nicht geklappt, Schmerzverstärkung, weiter 600–600–600mg

31.01.03 – 05.02.03
So belassen, da Prüfungssituation

19.03.03 – 25.03.03
Reduktion Morphin ret. 100–100–100–100mg
Versuch Reduktion Gabapentin 0–0–300mg: nicht geklappt
(LWS-Blockierung)

3.1.12 Patient MG 31

Tab. 47: klinische Daten des Patienten MG 31 erhoben vor Studienbeginn

<table>
<thead>
<tr>
<th>Studienteilnahme von 13.08.03 – 02.09.03</th>
<th>Weiterbehandlung ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>45 Jahre, 173cm, 57kg, männlich</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Viszeraler Oberbauchschmerz bei chronischer Pankreatitis</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td>Migräne ohne Aura</td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Wechselnder Dauerschmerz</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Oberbauch</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 1997</td>
</tr>
</tbody>
</table>

Tab. 48: Medikation des Patienten MG 31 erhoben vor Studienbeginn; p.o. = per os, b. Bed. = bei Bedarf; IE = internationale Einheiten

<table>
<thead>
<tr>
<th>Nicht-Opioid-Analgetika</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioid-Analgetika</td>
<td>Tramadol long 100mg p.o. 1–1–1 Tramadol 25 Tropfen b. Bed.</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Keine</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Pangrol (40.000 IE) 1–2–2 Milgama mono (Benfotiamin) 1–0–0</td>
</tr>
</tbody>
</table>
Nach Betrachtung der Schmerzscores war eine Linderung der Symptomatik zu erkennen, ebenso berichtete der Patient über eine Appetitsteigerung, die eine Gewichtszunahme nach sich zog. Nach dem Auslassversuch erreichten die Schmerzen wieder das Vorniveau, dass der Patient MG 31 weitertherapiert wurde.

Abb. 14: Scores der numerischen Ratingskala (NRS: 0 = kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) des Patienten MG 31 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie
Tab. 49: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patient MG 31; ALV = Auslassversuch, p.o. = per os; NRS = numerische Ratingskala,

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.08.03 - 19.08.03</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>19.08.03 - 02.09.03</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>03.09.03 - 09.10.03 (Ende des ALV)</td>
<td>Schmerzmedikation wie zu Beginn der Studie, Auslassversuch</td>
</tr>
<tr>
<td>10.10.03 - 07.11.03</td>
<td>Weiterführung der Dronabinoltherapie mit 5-5-5 mg p.o. Leichte Schmerzzunahme nachts bei beruflicher Belastung, zusätzlich Omeprazol</td>
</tr>
<tr>
<td>08.11.03 - 18.12.03</td>
<td>Sehr gute Schmerzkontrolle, NRS unter 2, deutlich weniger Tramadol Tropfen notwendig</td>
</tr>
</tbody>
</table>

3.1.13 Patient KR 38

Tab. 50: klinische Daten des Patienten KR 38 erhoben vor Studienbeginn

<table>
<thead>
<tr>
<th>Studienteilnahme von 12.08.02 - 02.09.02</th>
<th>Weiterbehandlung ab 09.10.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientendaten</td>
<td>75 Jahre, 171cm, 70kg, männlich</td>
</tr>
<tr>
<td>Schmerzdiagnose</td>
<td>Läsion des Plexus lumbosacralis links durch Quetschungstrauma</td>
</tr>
<tr>
<td>Schmerzrelevante Nebendiagnosen</td>
<td></td>
</tr>
<tr>
<td>Schmerzcharakter</td>
<td>Drückend und ziehend, Dysästhesien in der Fußsohle</td>
</tr>
<tr>
<td>Schmerzlokalisation</td>
<td>Linkes Bein, am Fuß stärkerer Schmerz</td>
</tr>
<tr>
<td>Dauer der Symptomatik</td>
<td>Seit 1998</td>
</tr>
</tbody>
</table>

Tab. 51: Medikation des Patienten KR 38 erhoben vor Studienbeginn; p.o. = per os

<table>
<thead>
<tr>
<th>Nicht-Opioid-Analgetika</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioid-Analgetika</td>
<td>Tilidin ret. 50/4mg p.o. 1-1-1</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>Keine</td>
</tr>
<tr>
<td>Antikonvulsiva</td>
<td>Gabapentin (Neurontin) 300mg p.o. 1-1-1-1</td>
</tr>
<tr>
<td>Laxantia</td>
<td>Keine</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Nach Betrachtung der Schmerzscores war eine Linderung der Symptomatik zu erkennen. Eine Auftdosierung der Dronabinolmedikation auf 25mg gelang nicht, es erfolgte eine Reduktion auf 15mg, damit waren die Nebenwirkungen erträglich.

Abb. 15: Scores der numerischen Ratingskala (NRS: 0= kein Schmerz bis 10 = maximal stärkster vorstellbarer Schmerz) des Patienten KR 38 im Verlauf der weitergeführten Therapie als Diagramm; hellgrau = Score zu Zeitpunkten ohne Dronabinoltherapie, schwarz = Score zu Zeitpunkten mit Dronabinoltherapie

Tab. 52: Verlauf der weitergeführten Dronabinoltherapie und Änderung der eingenommenen Medikamente von Patient KR 38; ALV = Auslassversuch, p.o. = per os

<table>
<thead>
<tr>
<th>Erhebungszeitpunkt</th>
<th>Eingenommene Medikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.08.02 - 18.08.02</td>
<td>Ausgangsmedikation</td>
</tr>
<tr>
<td>19.08.02 - 02.09.02</td>
<td>Dronabinolstudie und Ausgangsmedikation</td>
</tr>
<tr>
<td>02.09.02 - 08.10.02 (Ende des ALV)</td>
<td>Schmerzmedikation wie zu Beginn der Studie, Auslassversuch</td>
</tr>
<tr>
<td>09.10.02 - 07.11.02</td>
<td>Reduktion von Gabapentin um 300mg, darunter „klarer“ und in Kombination mit Dronabinol nur leichte Schmerzverstärkung</td>
</tr>
<tr>
<td>08.11.02 - 09.12.02</td>
<td>Mit Restschmerzen gut zureckkommend, störend wirkt ein Kältegefühl im linken Bein, passagere Appetitstörung mit Infusionen durch den Internisten behandelt</td>
</tr>
<tr>
<td>10.12.02 - 09.01.03</td>
<td>Weiterhin erniedrigte Gabapentinmedikation, soweit</td>
</tr>
</tbody>
</table>
3 Ergebnisse

<table>
<thead>
<tr>
<th>Datum</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.01.03 - 12.02.03</td>
<td>Gabapentin beendet, Schmerzcores zeigen kaum eine Veränderung, zunächst keine weitere Reduktion</td>
</tr>
<tr>
<td>13.02.03 - 17.03.03</td>
<td>Schmerzcores wieder im mittleren Bereich, keine Reduktion von Tilidin wie beabsichtigt, stattdessen Gabapentin wieder eindosieren: 300mg p.o.1-1-1, stattdessen Tilidinreduktion</td>
</tr>
<tr>
<td>18.03.03 - 28.04.03</td>
<td>Tilidin abgesetzt, keine Schmerzverstärkung, aber Zunahme der Vigilan: Gabapentin 300mg p.o. 1-1-1 und Dronabinol 5mg 1-1-1 p.o., ab jetzt Versuch Dronabinol auszuschleichen: 5-0-5mg für eine Woche, dann 0-0-5mg</td>
</tr>
<tr>
<td>28.04.03 - 13.05.03</td>
<td>Nach Absetzen von Dronabinol wieder Schmerzverstärkung, daher weiterhin 5mg p.o. abends</td>
</tr>
<tr>
<td>14.05.03 - 05.08.03</td>
<td>Mit Dronabinol 5-5-5mg p.o. deutlich bessere Schmerzkontrolle, allerdings Dosis selbstständig auf 5-0-5 reduziert, da sonst Antriebslosigkeit, sehr zufrieden, nicht schmerzfrei, aber besserer und längerer Nachtschlaf, ab 06.08.03</td>
</tr>
</tbody>
</table>

3.2 Vergleich der Therapiegruppen

3.2.1 Grubb's Ausreißer-Test

3.2.2 Mann-Whitney-U-Test-Analyse

Anschließend wurde mit der Mann-Whitney-U-Test-Analyse überprüft, ob zwischen den Gruppen mit und ohne Dronabinoltherapie ein statistischer Unterschied in Bezug auf die gemessenen Werte der Zellzahlen nachgewiesen werden kann.

3.2.2.1 Ergebnisse für Monozyten

CD1a+PE:

Abb. 16: CD1a: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegateten = CD1a-exprimierenden Zellen (statistische Kenngrößen siehe Tab. 97)

Tab. 53: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD1a+PE positive Zellen inkl. Eruierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
</tr>
</tbody>
</table>

Es findet sich kein signifikanter Unterschied in der Expression des CD1a-Oberflächenmoleküls bei einem p-Wert von 0,78.
3.2.2.2 Ergebnisse für T-Lymphozyten

CD4+FITC:

![Vergleich des CD4+ Lymphozytenanteils](image)

Übersicht: CD4: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der von einem FITC-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 98)

Tab. 54: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD4+FITC positive Zellen inkl. Eruierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,2554</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Im Vergleich der Werte mit Dronabinoltherapie gegenüber den Werten ohne eine solche Medikation, ist die Zahl an CD4+ Zellen bei Betrachtung der Minimal- und Maximalwerte erhöht. Ein signifikanter statistischer Unterschied zeigt sich nicht.
CD4+PE:

Abb. 18: CD4: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegeteten = CD4-exprimierenden Zellen, die mit einem PE-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 99)

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
</tr>
</tbody>
</table>

Die ohne die Dronabinoltherapie gemessenen Werte an CD4-PE-markierten Zellen liegen in einem Bereich von 39,73% – 64,44% mit einem Median von 52,50%. Die gemessenen Werte der Dronabinoltherapiegruppe zeigen im Vergleich alle (25%-Median, 75%-Percentile, Minimum und Maximum) niedrigere Werte auf. Nach statistischer Testung findet sich jedoch kein signifikanter Unterschied (p-Wert = 0,31).
Ergebnisse

CD8+FITC:

![Boxplot Diagramm](image)

Abb. 19: CD8: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gequantelten = CD8+ exprimierenden Zellen, die mit einem FITC-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 100)

Tab. 56: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD8+FITC positive Zellen inkl. Eruiierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
</tr>
</tbody>
</table>

Die ohne die Dronabinoltherapie gemessenen Werte an CD8-FITC markierten Zellen liegen in einem Bereich von 15,02% – 38,35% mit einem Median von 21,93%. Die gemessenen Werte der Dronabinoltherapiegruppe zeigen im Vergleich alle (25%- , Median, 75%-Percentile, Minimum und Maximum) höhere Werte auf. Nach statistischer Testung findet sich jedoch kein signifikanter Unterschied (p-Wert = 0,20).
CD8+PE:

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,9312</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Die ohne die Dronabinoltherapie gemessenen Werte an CD8-PE markierten Zellen liegen in einem Bereich von 15,60% – 44,44% mit einem Median von 31,93%. Während die Gruppe mit Dronabinol hinsichtlich Median und 75% Percentile insgesamt niedrigere Werte im Vergleich aufzeigt, ist der Maximumwert deutlich erhöht (53,17%). Der Unterschied ist nicht signifikant (p = 0,93).
CD25+FITC:

![Boxplot Diagramm](image)

Abb. 21: CD25: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben; x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegeateten = CD25-exprimierenden Zellen, die mit einem FITC-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 102)

Tab. 58: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD25+FITC positive Zellen inkl. Ermittlung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
</tr>
</tbody>
</table>

Die ohne die Dronabinoltherapie gemessenen Werte an CD25-FITC markierten positiven Zellen liegen in einem Bereich von 2,84% – 35,87%. Die Zahl CD25+ Lymphozyten unter Dronabinolmedikation weist eine insgesamt geringere Streubreite auf: es finden sich Werte von 6,94% bis 33,92%. Die Mediane sind in etwa gleich (19,46% vs. 19,87%). Es findet sich kein signifikanter Unterschied in der Zellzahl (p = 0,89).
Ergebnisse

CD25+PE:

Abb. 22: CD25: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gepegelten = CD25-exprimierenden Zellen, die mit einem PE-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 103)

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,6862</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Die Zahl CD25-PE markierter Zellen unterscheidet sich nicht signifikant.
Die ohne die Dronabinoltherapie gemessenen Werte an CD25-PE markierten Zellen liegen in einem Bereich von 9,01% – 58,77%. Die Zellzahl mit Dronabinolmedikation weist eine insgesamt etwas geringere Streubreite auf: es finden sich Werte von 10,21% bis 56,35%. Die Mediane sind in etwa gleich (38,99% vs. 39,31%). Es findet sich kein signifikanter Unterschied in der Zellzahl (p = 0,68).
3.2.2.3 Ergebnisse für NK-Zellen

CD3+PE:

![Vergleich des CD3+ Lymphozytenanteils](image)

Abb. 23: CD3: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der getesteten = CD3-exprimierenden Zellen, die mit einem PE-markierten Antikörper bestimmt worden sind und in Kombination mit einem FITC-markierten Antikörper gegen CD56 gemessen worden sind (statistische Kenngrößen siehe Tab. 104)

Tab. 60: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD3+PE positive Zellen inkl. Erüierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
</tr>
</tbody>
</table>

Im Vergleich der Gruppen mit und ohne Dronabinoltherapie unterscheidet sich die Streubreite der Werte: 0,41% bis 89,10% vs. 15,69 bis 77,16%. Die Medianwerte liegen etwa gleich. Nach statistischer Auswertung ergibt sich kein signifikanter Unterschied in der Zahl des Oberflächenmoleküls CD3+ Zellen.
CD3/CD56+:

Vergleich des CD3/CD56+ Lymphozytenanteils

![Boxplot Diagramm](image)

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,7899</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Die ohne die Dronabinoltherapie gemessenen Werte CD3/CD56 doppelt positiver Zellen liegen in einem Bereich von 0,02% – 18,71% mit einem Median von 6,790%. Die Gruppe mit Dronabinolmedikation liegt dabei hinsichtlich 25% Percentile und 75% Percentile in etwa gleich, der Medianwert etwas niedriger. Der Maximumwert im Vergleich erhöht (22,45%). Der Unterschied ist nicht signifikant (p = 0,79).
CD16/CD56+:

![Boxplot Diagramm](image)

Abb. 25: CD16/CD56 doppelt positive Zellen: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegateten = CD16 und CD56-exprimierenden Zellen, die mit einem PE-markierten Antikörper gegen CD16 und einem FITC-markierten Antikörper gegen CD56 bestimmt worden sind (statistische Kenngrößen siehe Tab. 106)

Tab. 62: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD16/CD56 doppelt positive Zellen inkl. Ermittlung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,8843</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Die ohne die Dronabinoltherapie gemessenen Werte liegen in einem Bereich von 0,01% – 11,58% mit einem Median von 4,46%. Während die Gruppe mit Dronabinol hinsichtlich 25% Percentile, Median und 75% Percentile insgesamt niedrigere Werte im Vergleich aufzeigt, ist der Maximumwert deutlich erhöht (21,70%). Der Unterschied ist nicht signifikant (p = 0,88).
CD161+FITC:

Vergleich des CD161+ Lymphozytenanteils

Abb. 26: CD161: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben; x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der geplanten = CD161-exprimierenden Zellen, die mit einem FITC-markierten Antikörper bestimmt worden sind und in Kombination mit einem PE-markierten Antikörper gegen CD56 gemessen worden sind (statistische Kenngrößen siehe Tab. 107)

Tab. 63: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD161+FITC positive Zellen inkl. Ermittlung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,9014</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Die ohne die Dronabinoltherapie gemessenen Werte an CD161+ Zellen liegen in einem Bereich von 0,06% – 46,44%. Der Minimumwert unter Dronabinolmedikation liegt im Vergleich bei 7,55% deutlich höher. Als Maximumwert werden Zellzahlen von 52,41% gemessen. Der Medianwert ohne Dronabinoltherapie ist leicht erhöht (22,67% vs. 21,63%). Insgesamt findet sich kein signikanter Unterschied in der Expressionsrate (p = 0,90).
CD56/CD161+:

Abb. 27: CD56/CD161 doppelt positive Zellen: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegateten = CD56 und CD161-exprimierenden Zellen, die mit einem PE-markierten Antikörper gegen CD56 und einem FITC-markierten Antikörper gegen CD161 bestimmt worden sind (statistische Kenngrößen siehe Tab. 108)

Tab. 64: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD56/CD161 doppelt positive Zellen inkl. Eruierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
</tr>
</tbody>
</table>

Die ohne die Dronabinoltherapie gemessenen Werte an CD56/CD161 doppelt-positiven Zellen liegen in einem Bereich von 0,93% – 23,79%. Die gemessene Zellzahl unter Dronabinolmedikation weist eine insgesamt geringere Streubreite auf: es finden sich Werte von 1,40% bis 20,89%. Die Mediane sind in etwa gleich (8,3% vs. 8,4%). Es findet sich kein signifikanter Unterschied in der Expressionsrate (p = 0,89).
CD56+PE:

Abb. 28: CD56: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegateten = CD56-exprimierenden Zellen, die mit einem PE-markierten Antikörper bestimmt worden sind und in Kombination mit einem FITC-markierten Antikörper gegen CD161 gemessen worden sind (statistische Kenngrößen siehe Tab. 109)

Tab. 65: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD56+PE positive Zellen inkl. Eruierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,0928</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Im Vergleich der Gruppen mit und ohne Dronabinoltherapie unterscheiden sich sowohl die 25%- und die 75%-Quantil-Werte, als auch die Mediane der CD56-PE markierten Zellen, wobei Zahl CD56+ Zellen unter einer bestehenden Dronabinoltherapie höher ist. Nach statistischer Auswertung ergibt sich kein signifikanter Unterschied, jedoch spiegelt der niedrige p-Wert von 0,0928 die Tendenz zu einem Unterschied wider.
CD57+PE:

Abb. 29: CD57: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der geagateten = CD57-exprimierenden Zellen, die mit einem PE-markierten Antikörper bestimmt worden sind und in Kombination mit einem FITC-markierten Antikörper gegen CD56 gemessen worden sind (statistische Kenngrößen siehe Tab. 110)

Tab. 66: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD57+PE positive Zellen inkl. Eruierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,1512</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Im Vergleich der Gruppen mit und ohne Dronabinoltherapie liegt die Zahl an CD57+ Zellen insgesamt höher. Nach statistischer Auswertung ergibt sich jedoch kein signifikanter Unterschied, ein p-Wert von 0,15 zeigt jedoch eine Tendenz zu einem Unterschied.
CD69+ FITC:

![CD69+ Lymphozytenanteil](image)

Abb. 30: CD69: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol); horizontale Balken der Box: obere Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der getesteten CD69+ exprimierenden Zellen, die mit einem FITC-markierten Antikörper bestimmt worden sind und in Kombination mit einem PE-markierten Antikörper gegen CD25 gemessen worden sind (statistische Kenngrößen siehe Tab. 111)

Tab. 67: Darstellung des p-Werts nach Durchführung des Mann-Whitney-U-Tests für CD69+ FITC positive Zellen inkl. Eruierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Mann-Whitney-U-Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,6841</td>
</tr>
<tr>
<td>p-Wert < 0,05</td>
<td>nein</td>
</tr>
</tbody>
</table>

Die verschiedenen Therapiegruppen (mit und ohne Dronabinolmedikation) unterscheiden sich in Bezug auf die Zahl an CD69+ Zellen hinsichtlich der Mediane und der 75% Percentile kaum. Lediglich die Streubreite ist in der Gruppe mit Dronabinoltherapie etwas größer (1,48% - 25,02%) als in der ohne Medikation (3,94% - 23,60%). Es ergibt sich kein signifikanter Unterschied.

3.3 SNP-Bestimmung

Die Bestimmung der Aminosäuresequenz des CB2-Receptors gelang uns nicht bei allen an der ursprünglichen Studie teilnehmenden Patienten. Dies lag hauptsächlich an nicht durchgängig konservierten Blutentnahmen. Es nahmen nicht alle Patienten zur gleichen Zeit an dem
Dronabinolversuch teil und so wurden nicht von allen Patienten Blutproben gewonnen. Denn erst nachdem sich herausgestellt hatte, dass einige Patienten einen wesentlichen Benefit zeigten, fiel die Entscheidung, diese weiter zu behandeln und dabei auch die Blutentnahmen zu tätigen.

Tabellarische Übersicht der Genotypen der einzelnen Patienten an der Aminosäurestelle 63 nach Aminosäuresequenzierung:

Tab. 68: Bestimmung des Genotypen für die Aminosäurestelle (AS) 63 des Cannabinoidrezeptor 2; Q steht für die AS Glutamin, R steht für die AS Arginin; k.A. = keine Angabe

<table>
<thead>
<tr>
<th>Patientenrn.</th>
<th>Genotyp an AS 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB 01</td>
<td>k.A.</td>
</tr>
<tr>
<td>NF 02</td>
<td>k.A.</td>
</tr>
<tr>
<td>MGH 03</td>
<td>QQ</td>
</tr>
<tr>
<td>PW 04</td>
<td>k.A.</td>
</tr>
<tr>
<td>KK 05</td>
<td>QQ</td>
</tr>
<tr>
<td>IG 06</td>
<td>QR</td>
</tr>
<tr>
<td>KR 07</td>
<td>k.A.</td>
</tr>
<tr>
<td>S 08</td>
<td>k.A.</td>
</tr>
<tr>
<td>GD 09</td>
<td>RR</td>
</tr>
<tr>
<td>HL 10</td>
<td>k.A.</td>
</tr>
<tr>
<td>CP 11</td>
<td>QR</td>
</tr>
<tr>
<td>BG 12</td>
<td>RR</td>
</tr>
<tr>
<td>DE 13</td>
<td>QR</td>
</tr>
<tr>
<td>HL 14</td>
<td>QR</td>
</tr>
<tr>
<td>DS 15</td>
<td>QQ</td>
</tr>
<tr>
<td>SK 16</td>
<td>QR</td>
</tr>
<tr>
<td>IC 17</td>
<td>QQ</td>
</tr>
<tr>
<td>BL 18</td>
<td>QR</td>
</tr>
<tr>
<td>BD 19</td>
<td>RQ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patientenrn.</th>
<th>Genotyp an AS 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO 20</td>
<td>RR</td>
</tr>
<tr>
<td>HA 21</td>
<td>k.A.</td>
</tr>
<tr>
<td>GN 22</td>
<td>QR</td>
</tr>
<tr>
<td>MK 23</td>
<td>QQ</td>
</tr>
<tr>
<td>RH 24</td>
<td>RR</td>
</tr>
<tr>
<td>IB 25</td>
<td>RR</td>
</tr>
<tr>
<td>MB 26</td>
<td>QQ</td>
</tr>
<tr>
<td>IS 27</td>
<td>QR</td>
</tr>
<tr>
<td>HD 28</td>
<td>QQ</td>
</tr>
<tr>
<td>UP 29</td>
<td>k.A.</td>
</tr>
<tr>
<td>DG 30</td>
<td>RR</td>
</tr>
<tr>
<td>MG 31</td>
<td>RR</td>
</tr>
<tr>
<td>AK 32</td>
<td>QR</td>
</tr>
<tr>
<td>HK 33</td>
<td>RR</td>
</tr>
<tr>
<td>MB 34</td>
<td>QR</td>
</tr>
<tr>
<td>MW 35</td>
<td>RR</td>
</tr>
<tr>
<td>WO 36</td>
<td>QR</td>
</tr>
<tr>
<td>LF 37</td>
<td>QQ</td>
</tr>
<tr>
<td>KR 38</td>
<td>QR</td>
</tr>
</tbody>
</table>

Q63R-Polymorphismus

Bei 30 Testungen sind bezüglich des Q63R-Polymorphismus 8 homozygote Individuen, die das Wildtyp-Allel tragen, zu erkennen. Außerdem sind 13 als heterozygote (Allelfolge: QR)

3.4 Vergleich der Therapiegruppen bzgl. des SNPs

Danach folgte die Aufteilung der 12 Patienten in die Genotypengruppen QQ, QR und RR. So entstanden nur noch sehr kleine Patientengruppen mit fünf, vier und drei Patienten. Die Messwerte wurden diesen Genotypengruppen zugerechnet. Dabei existierten erneut Daten mit und ohne Dronabinoltherapie von den gleichen Patienten. Zur genaueren Betrachtung eines möglichen Einflusses des Rezeptorphosphismus' verwendeten wir als ein nicht-parametrisches Testverfahren für verbundene Stichproben, den Wilcoxon-Test für verbundene Stichproben. Im Folgenden sind die Ergebnisse aufgeteilt nach den unterschiedlichen Oberflächenmarkern zu sehen:
CD1a+PE:

Abb. 31: CD1a: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegateten = CD1a-exprimierenden Zellen (statistische Kenngrößen siehe Tab. 112)

Tab. 69: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD1a+PE positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin inkl. Erstellung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,1034</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,9453</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,3125</td>
<td>nein</td>
</tr>
</tbody>
</table>

Es findet sich kein signifikanter Unterschied in der Zahl der CD1a-exprimierenden Zellen hinsichtlich der Existenz des SNPs Q63R.
CD4+FITC:

Vergleich des CD4+ Lymphozytenanteils mit Angabe der Allelfolge

Abb. 32: CD4: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegenateten CD4-exprimierenden Zellen die mit einem FITC-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 113)

Tab. 70: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD4+FITC positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin inkl. Erwahrung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,4648</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,1250</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,1875</td>
<td>nein</td>
</tr>
</tbody>
</table>

Unter Einbeziehung der Allelfolge hinsichtlich des SNPs Q63R findet sich kein Unterschied in der Zahl CD4+ Zellen, die mit Hilfe eines FITC-markierten Antikörpers gemessen wurden.
CD4+PE:

Vergleich des CD4+ Lymphozytenanteils mit Angabe der Allelfolge

![Boxplot Diagramm](image)

Abb. 33: CD4: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegeten CD4-exprimierenden Zellen die mit einem PE-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 114)

Tab. 71: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD4+PE positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin inkl. Erüierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,6250</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,1250</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Hinsichtlich des Vorhandenseins SNPs Q63R findet sich kein Unterschied in der Zahl CD4+ Zellen, die mit Hilfe eines PE-markierten Antikörpers gemessen wurden bei den Allelfolgen QQ und QR. Für einen sinnvollen statistischen Vergleich in der Gruppe RR waren nicht genügend Daten vorhanden.
CD8+FITC:

![Diagramm](image)

**Abb. 34: CD8: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der getateten = CD8-exprimierenden Zellen die mit einem FITC-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 115)

**Tab. 72: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD8+FITC positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin inkl. Erufierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,8125</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,8750</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Nach Auswertung der p-Werte der unterschiedlichen Allelgruppen bezüglich des SNPs Q63R findet sich kein Unterschied in der Zahl CD8+ Zellen, die mit Hilfe eines FITC-markierten Antikörpers gemessen wurden. Um eine statistische Auswertung der Gruppe RR vorzunehmen, waren nicht genügend Daten vorhanden.
CD8+PE:

Vergleich des CD8+ Lymphozytenanteils mit Angabe der Allelfolge

Abb. 35: CD8: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der getagten CD8-exprimierenden Zellen, die mit einem PE-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 116)

Tab. 73: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD8+PE positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin inkl. Ermittlung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,4961</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>1,0000</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,1250</td>
<td>nein</td>
</tr>
</tbody>
</table>

Es ergibt sich kein signifikanter Unterschied für die Zahl CD8+ Zellen, gemessen mit PE-markiertem Antikörper in Abhängigkeit einer Dronabinoltherapie unter Betrachtung der Allelfolge für den SNP Q63R.
Ergebnisse

CD25+FITC:

![Boxplot Diagramm](image)

Vergleich des CD25+ Lymphozytenanteils mit Angabe der Allelfolge

Abb. 36: CD25: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der getesteten CD25-exprimierenden Zellen die mit einem FITC-markierten Antikörper bestimmt worden sind (statistische Kenngrößen siehe Tab. 117)

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,2958</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,8438</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,3750</td>
<td>nein</td>
</tr>
</tbody>
</table>

CD25+PE:

![Boxplot Diagramm](image)

Tab. 75: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD25+PE positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin inkl. Eruierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,4210</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,3125</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,1094</td>
<td>nein</td>
</tr>
</tbody>
</table>

CD3+PE:

Vergleich des CD3+ Lymphozytenanteils mit Angabe der Allelfolge

Abb. 38: CD3: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gezähnten = CD3-exprimierenden Zellen die mit einem PE-markierten Antikörper bestimmt worden sind und in Kombination mit einem FITC-markierten Antikörper gegen CD56 gemessen worden sind (statistische Kenngrößen siehe Tab. 119)

Tab. 76: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD3+PE positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin inkl. Erniedrigung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,5421</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,3750</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>1,0000</td>
<td>nein</td>
</tr>
</tbody>
</table>

Nach statistischer Auswertung ergibt sich unter Dronabinoltherapie für die einzelnen Allelfolgen des SNPs Q63R kein signifikanter Unterschied in der Häufigkeit von Zellen, die das Oberflächenmolekül CD3 exprimieren.
CD3/CD56+:

Vergleich des CD3/CD56+ Lymphozytenanteils mit Angabe der Allelfolge

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,8040</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,5625</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,2969</td>
<td>nein</td>
</tr>
</tbody>
</table>

Ergebnisse

CD16/CD56+:

Vergleich des CD16/CD56+ Lymphozytenanteils mit Angabe der Allelfolge

<table>
<thead>
<tr>
<th>Allelfolge</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,6875</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bei Betrachtung der p-Werte hinsichtlich eines Unterschieds der Zahl an CD16/CD56 doppelt positiven Zellen unter Dronabinoltherapie bezüglich des SNPs Q63R findet sich kein statistisch signifikanter Unterschied bei der Existenz der Allelfolge QQ. Für eine Auswertung der Allelkombinationen QR und RR war die Datenmenge nicht ausreichend.

Tab. 78: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD16/CD56 doppelt positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin inkl. Eruiierung des Signifikanzniveaus

Abb. 40: CD16/CD56: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegateten = CD16/CD56-exprimierenden Zellen, die mit einem PE-markierten Antikörper gegen CD16 und einem FITC-markierten Antikörper gegen CD56 bestimmt worden sind (statistische Kenngrößen siehe Tab. 121)
CD161+FITC:

Vergleich des CD161+ Lymphozytenanteils mit Angabe der Allelfolge

Abb. 41: CD161: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben; x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der geüberten CD161-exprimierenden Zellen, die mit einem FITC-markierten Antikörper bestimmt worden sind und in Kombination mit einem PE-markierten Antikörper gegen CD56 gemessen worden sind (statistische Kenngrößen siehe Tab. 122)

Tab. 79: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD161+FITC positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin inkl. Eruierung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,4851</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,0156</td>
<td>ja</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,2969</td>
<td>nein</td>
</tr>
</tbody>
</table>

Bei Betrachtung der Allelkombinationen hinsichtlich des SNPs Q63R findet sich in der heterozygoten Gruppe (QR) ein statistisch signifikanter Unterschied der Zahl an CD161+ Zellen unter Dronabinolmedikation.
CD56/CD161+:

Vergleich des CD56/CD161+ Lymphozytenanteils mit Angabe der Allelfolge

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,6603</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,0156</td>
<td>ja</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,2188</td>
<td>nein</td>
</tr>
</tbody>
</table>

Bei Betrachtung der Allelkombinationen hinsichtlich des SNPs Q63R findet sich in der heterozygoten Gruppe (QR) ein statistisch signifikanter Unterschied der Zahl an CD56/CD161 doppelt positiven Zellen unter Dronabinolapplikation.
CD56+PE:

Abb. 43: CD56: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der gegateten = CD56-exprimierenden Zellen, die mit einem PE-markierten Antikörper bestimmt worden sind und in Kombination mit einem FITC-markierten Antikörper gegen CD161 gemessen worden sind (statistische Kenngrößen siehe Tab. 124)

Tab. 81: Darstellung des p-Werts nach Durchführung des Wilcoxon-Tests für CD56+PE positive Zellen unter Angabe der Genotypen bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin inkl. Erwaltung des Signifikanzniveaus

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,9794</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,0469</td>
<td>ja</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,5625</td>
<td>nein</td>
</tr>
</tbody>
</table>

Bei Betrachtung der Allelkombinationen hinsichtlich des SNPs Q63R findet sich in der heterozygoten Gruppe (QR) ein statistisch signifikanter Unterschied der Zahl an CD56+ Zellen bei Verabreichung von Dronabinol.
CD57+PE:

![Boxplot Diagramm](image)

Abb. 44: CD57: Boxplot-Diagramm aus Einzelmesswerten aus EDTA-Blutproben: x-Achse: Patienten-Gruppeneinteilung nach Therapie (mit und ohne Dronabinol) und Allelfolge bezüglich des SNPs Q63R (QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin, RR = Arginin/Arginin); horizontale Balken der Box: oberer Balken = 75% Percentile, mittlerer Balken = Median, unterer Balken = 25% Percentile; Whiskers: Minimum zu Maximum; y-Achse: Prozentwert der exprimierenden Zellen, die mit einem PE-markierten Antikörper bestimmt worden sind und in Kombination mit einem FITC-markierten Antikörper gegen CD56 gemessen worden sind (statistische Kenngrößen siehe Tab. 125)

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,2958</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,8125</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,3750</td>
<td>nein</td>
</tr>
</tbody>
</table>

Die Zahl der CD57+ Zellen ändert sich nicht statistisch signifikant unter Berücksichtigung des SNPs Q63R unter Dronabinolapplikation.
CD69+FITC:

Vergleich des CD69+ Lymphozytenanteils mit Angabe der Allelfolge

<table>
<thead>
<tr>
<th>Wilcoxon-Test</th>
<th>p-Wert</th>
<th>p-Wert < 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ ohne vs. mit Dronabinol</td>
<td>0,2334</td>
<td>nein</td>
</tr>
<tr>
<td>QR ohne vs. mit Dronabinol</td>
<td>0,3750</td>
<td>nein</td>
</tr>
<tr>
<td>RR ohne vs. mit Dronabinol</td>
<td>0,3750</td>
<td>nein</td>
</tr>
</tbody>
</table>

Es lässt sich kein statistisch signifikanter Unterschied einer Veränderung der Zahl CD69+ Zellen unter Dronabinoltherapie hinsichtlich des Vorhandenseins des SNPs Q63R erkennen.
3.5 Dronabinoldosis

Die Dosierung des verwendeten Dronabinolpräparats zur Therapie der einzelnen Patienten war durchaus unterschiedlich: Nahmen während der Aufdosierung im ersten Studienteil die Patienten zwischen 15 bis 25mg/Tag ein, erfolgte die Einstellung zur weiterführenden Therapie zunächst bei durchgehend 15mg/Tag. Danach wurde je nach aufgetretenen Nebenwirkungen und Wirkung des Präparats die Dosis individuell angepasst und lag individuell unterschiedlich zwischen 10-25mg/Tag, wie aus Tabelle 84 zu entnehmen ist.

Tab. 84: Übersicht über die Dosierung der Dronabinolmedikation in Milligramm und deren Veränderung bei den unterschiedlichen Patienten am Morgen, mittags und abends

<table>
<thead>
<tr>
<th>Patient</th>
<th>Aufdosierung erster Studienteil</th>
<th>Dosis weiterführende Therapie</th>
<th>Veränderung während weiterführender Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGH 03</td>
<td>5-5-5 (C+D)</td>
<td>5-5-5</td>
<td>Keine Veränderung</td>
</tr>
<tr>
<td>KK 05</td>
<td>5-5-5 (C+D)</td>
<td>5-5-5</td>
<td>Keine Veränderung</td>
</tr>
<tr>
<td>IG 06</td>
<td>5-5-5 (C+D)</td>
<td>5-5-5</td>
<td>Keine Veränderung</td>
</tr>
<tr>
<td>DG09</td>
<td>10-5-10: NW 5-5-10 (C) 5-5-10 (D)</td>
<td>5-5-5</td>
<td>Nichteinnahme 11.11.-13.11.2002 (Nebenwirkungen) 5-5-5 14.11.-16.11. 5-0-5 ab 17.11.2002</td>
</tr>
<tr>
<td>CP11</td>
<td>10-5-10 (C) 5-5-10 (D im Verlauf)</td>
<td>5-5-5</td>
<td>10-5-5 ab 30.12.2002</td>
</tr>
<tr>
<td>LH14</td>
<td>10-5-10 (C+D)</td>
<td>5-5-5</td>
<td>5-5-0 ab 03.09.2003 (nach Auslassversuch)</td>
</tr>
<tr>
<td>DS 15</td>
<td>10-5-10 (C+D)</td>
<td>5-5-5</td>
<td>5-5-0 ab 24.02.2003 (keine so gute Wirkung)</td>
</tr>
</tbody>
</table>
Ergebnisse

<table>
<thead>
<tr>
<th></th>
<th>10-5-10 (keine so gute Wirkung)</th>
<th>5-0-5 ab 20.02.2003 (Schwindel)</th>
<th>10-5-10 ab 20.02.2003 - 31.03.2003 5-5-10 28.02. - 03.06.2003 5-0-10 03.06. - 08.07.2003</th>
<th>10-5-10 ab 20.02.2003 - 03.06.2003 5-0-10 (Müdigkeit) Ab 09.07.2003 10-5-5 ab 09.07.2003 5-0-10 Ab 10.10.2003</th>
<th>10-5-10 ab 20.02.2003 - 03.06.2003 5-0-10 03.06. - 08.07.2003</th>
<th>Ausschleichen ab 28.04.2003 0-0-1 Unmittelbar weiter nach Absetzen 5-0-5 ab 05.08.2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 17</td>
<td>10-5-10 (C)</td>
<td>5-5-5</td>
<td>5-0-5 ab 20.02.2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-5-10 (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO 20</td>
<td>10-5-10 (C+D)</td>
<td>5-5-5</td>
<td>10-5-10 ab 20.02.2003 - 31.03.2003 5-5-10 28.02. - 03.06.2003 5-0-10 03.06. - 08.07.2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK 23</td>
<td>10-5-10 (C+D)</td>
<td>5-5-10</td>
<td>5-5-5 Ab 09.07.2003 (Müdigkeit) Ab 09.07.2003 10-5-5 ab 09.07.2003 5-0-10 Ab 10.10.2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK 38</td>
<td>10-5-10 (C+D)</td>
<td>5-5-5</td>
<td>Ausschleichen ab 28.04.2003 0-0-1 Unmittelbar weiter nach Absetzen 5-0-5 ab 05.08.2003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Diskussion

4.1 Methodische Aspekte

4.1.1 Statistik

Nach der Einteilung in therapiespezifische Gruppen ergaben sich zwar keine großen Stichprobenumfänge, diese waren hinsichtlich der Anzahl für eine explorative Datenanalyse aber ausreichend. Auf die Anwendung exakter Tests konnte insofern verzichtet werden, als die Analyse nicht auf beweisende statistische Auswertung abzielte.

Da bei kleineren Stichprobenumfängen Zufallsvariablen wie z.B. die Varianz oder Verteilung in der Regel nicht bekannt sind, haben in der vorliegenden Arbeit nicht-parametrische Testverfahren Anwendung gefunden. Diesen dient das Rangsummenprinzip als Grundlage, eine Normalverteilung wird nicht vorausgesetzt. Wie bereits weiter oben beschrieben, werden die Originalwerte durch die Vergabe an Rangzahlen ersetzt. Mit diesen wird dann die Teststatistik durchgeführt. Dadurch bedingt ist einerseits, dass eine Datenmanipulation oft konsequenzzlos bleibt, aber anderseits die Testpower nicht groß ist, dass dadurch eine
Auswertung der Ränge und nicht der Werte erfolgt und die vorliegenden Informationen nicht entsprechend ausgenutzt werden.

Es existiert das Risiko, dass eine doch bestehende Differenz durch einen solchen Rangsummentest verkannt werden könnte und damit fälschlicherweise die Nullhypothese (d.h. es gibt keine Unterschiede) angenommen würde. Dies betrifft hauptsächlich die fälschliche Verwendung eines Rangsummentests trotz gegebener Voraussetzungen für einen t-Test.

Durch die Anwendung nicht-parametrischer Testverfahren bei kleinen Stichproben mit Bewertung von Rangzahlen anstelle der Beobachtungswerte wird das Risiko potentieller Verzerrungen durch Ausreißer minimiert. Derartige Ausreißer können in Mess- oder Dokumentationsfehlern oder aber auch in besonderen pathologischen Patientenhintergründen begründet sein.

4.1.2 Methodik

4.2 Veränderung der Oberflächenmarker

4.2.1 Spiegelung der Immunsuppression

Die komplexe Immunreaktion des menschlichen Körpers besteht aus zwei Hauptkomponenten: Die angeborene oder unspezifische Immunabwehr und die adaptive oder spezifische Abwehr.

Dabei arbeiten die beiden Komponenten, das adaptive Immunsystem und das Angeborene zusammen, keines vermag das andere zu ersetzen. Durch dieses Zusammenspiel in der Immunabwehr wird die komplexe Abwehrreaktion des Organismus möglich.
Dabei ist es notwendig, die Funktionen der einzelnen Zellen kurz zu skizzieren, um ein Verständnis für die Auswirkung einer Veränderung dieser auf den Organismus nachzuvollziehen.

Die T-Helferzellen sind dabei zunächst in zwei Hauptgruppen aufgrund ihrer Zytokinproduktion unterschieden worden:
Diskussion

Die Fragestellung dieser Arbeit beschäftigt sich mit Hinweisen auf Immunsuppression unter einer längerduernden Dronabinoltherapie. Diese sollen durch die Betrachtung von spezifischen Oberflächenrezeptoren bei Patienten mit chronischen Schmerzen mit und ohne Dronabinoleinnahme erbracht werden. Diese sollen im Folgenden diskutiert werden:

CD1a:
Das APC-Molekül CD1a verhält sich in den zwei Therapiegruppen nicht unterschiedlich. Da CD1a auf bakterielle Antigene eine Reaktion zeigt (Ligandenbindung induziert Produktion von IL-2 durch T-Zellen und aktiviert damit NK-Zellen) kann man einen fehlenden Unterschied in der Zahl CD1a+ Zellen, also eine gleichbleibende Zellzahl mit Rezeptoren für Pathogene als
unveränderte Immunsituation verstehen. Dies würde bedeuten, dass Δ^9-THC hier keine Immunsuppression hervorruft.

Auch die Betrachtung der Therapiegruppen hinsichtlich des Vorkommens des SNPs Q63R lässt keine Veränderung der Zellzahl erkennen. Daraus ist zu schließen, dass das Vorhandensein des Polymorphismus keine Auswirkung auf die Immunsituation hat.

CD4:

Es bleibt zu erwähnen, dass es Hinweise für eine THC-vermittelte herabgesetzte Aktivität CD4-positiver T-Zellen gibt, welche sich nicht auf die Veränderung der CD4+ Zellzahl auswirkt (Robinson, Meissler et al. 2015). Robinson et al. zeigten dabei, dass diese Suppression durch den CB2-Rezeptor vermittelt wird (Robinson, Meissler et al. 2013).

Da es sich bisher um Daten aus in-vitro-Essays handelt, sollten weitere Bemühungen angestrebt werden, die veränderten Aktivitäten in einem menschlichen in vivo-Versuch zu untersuchen.
CD8:

In der Literatur sind jedoch mannigfache Quellen einer beschriebenen herabgesetzten T-Zell-Aktivität zu finden. Damit ist insbesondere eine herabgesetzte Zytokinproduktion (IL-2 und IFN-γ), eine Verminderung der T-Zell-Migration auf inflammatorische Stimuli sowie Inhibition der T-Zell-Proliferation gemeint (Robinson, Meissler et al. 2015). Es sollten auch hier weitere Untersuchungen erfolgen, um in einem menschlichen in-vivo-Modell eventuelle CD8+ T-Zellaktivitätsveränderungen betrachten zu können.

CD25:
Komplex aus den kostimulatorischen Rezeptoren CD28/B7 aktiviert und produzieren nun IL-2. So wird die eigene Proliferation und Differenzierung angeregt, um auf das Pathogen entsprechend reagieren zu können.

CD3:

CD56:
CD56 wird auf hämatopoetischen Zellen für NK-Zellen und einer Untergruppe an T-Zellen exprimiert, daneben auch auf einer Untergruppe von CD4+ und CD8+ T-Zellen im peripheren Blut.

Der FITC-markierte Antikörper (mehrfach konjugiert) erkennt zelloberflächennahe NCAMs. So sieht man im Lymphozytenfenster bei der Durchflusszytometrie vor allem NK-Zellen. Diese
tragen sehr kurze NCAMs. Die CD56/CD161 doppelt positiven Zellen stehen dabei für reife NK-Zellen.

Mit dem PE-markierten CD56-Antikörper (einfach konjugiert) gelingt stattdessen in Verbindung mit der Darstellung der CD3-Expressionsrate die NK-T-Zellzahlermittlung.

CD3/CD56 (NK-T-Zellen):

Vermutlich sind v.a. aufgrund der aufwändigen Charakterisierung als NK-T-Zelle bisher insges. wenig Forschungsarbeiten auf diesem Gebiet gemacht worden, oder nur auf bestimmte Untergruppen bezogen. Bei der nicht unwesentlichen Rolle bei der Immunreaktion sollte gerade diesem Zelltyp mehr Aufmerksamkeit geschenkt werden.

CD16 (FcyRIII):

CD16 wird auf allen FcR-Typ-III+ Zellen exprimiert.

In dieser Arbeit erfolgte die Betrachtung im Lymphozytenfenster, was v.a. die Zahl der NK-Zellen bzw. NK-T-Zellen widerspiegelt.

**CD16/CD56: **

In unserer Arbeit fand sich kein signifikanter Unterschied bezüglich der Zellzahl an CD16/CD56 doppelt positiven Lymphozyten. Um einen statistisch sinnvollen Vergleich der
Zellzahl im Hinblick auf die Allelfolgen bezüglich des SNPS Q63R zu machen, waren nicht genügend Daten vorhanden.

CD161:

Sido et al. zeigten ebenso die Bedeutung von TH17-Zellen bei der Beeinflussung von Entzündungs- und Autoimmunitätsgeschehen durch Cannabinoide (Sido, Jackson et al. 2016). Dabei induziert Δ⁹-THC nicht nur T-regulatorische Zellen, die für eine Inhibition der Differenzierung von sowohl TH1- als auch TH17-Zellen bekannt sind, es wird auch eine signifikante Reduktion an Zytokinen, wie z.B. IL-6 und IL-17, die für die TH17-Differenzierung wichtig sind, beobachtet.

CD56/CD161:
Bezüglich der NK-Zellen kann man die CD56+ Zellen in zwei Untergruppen unterscheiden, die CD161+/CD56- NK-Zellen (unreif, Vorläufer) und die CD161+/CD56+NK-Zellen (reif). Nach der Auswertung fiel kein signifikanter Unterschied in der CD56/CD161+ Zellzahl auf. Betrachtet man wiederum die Zellzahl unter Einbeziehung des SNPs rs2501432 sieht man

CD57:

CD69:

4.2.2 Abhängigkeit von der Dronabinoldosis

Die Dosierung des Dronabinolpräparats bei den einzelnen Patienten war unterschiedlich, wie aus der Tabelle 84 in Abschnitt 3.5 zu entnehmen ist.

Aufgrund dieser inter-, aber auch intraindividuellen Dosis war es uns leider nicht möglich, eine sinnvolle statistische Auswertung zu erstellen.

Dabei sollte bedacht werden, dass nach heutigen Erkenntnissen bezüglich der interindividuellen unterschiedlichen Resorptions-, Verteilungs- und Metabolisierungseigenschaften aber allein durch die zugeführte Dosis ohne Messung der tatsächlichen Effektkonzentration schwer eine Aussage gemacht werden kann. Dies ist insofern als kritisch anzusehen, als dass bei einigen Forschungsarbeiten immer wieder gegenteilige Effekte bei der Applikation unterschiedlicher Δ^9-THC-Dosen berichtet worden sind.

Dabei sollte aber festgehalten werden, dass eine Immunmodulation, speziell der NK-Zellen auch auf andere Faktoren zurückzuführen sein könnte. Hier sind insbesondere Virus-assoziierte inflammatorische Reaktionen zu bedenken, aber auch die für jeden Patienten unterschiedlichen Begleiterkrankungen und -medikationen. Diese wurden während der Dronabinoltherapie zu jedem Untersuchungszeitpunkt dokumentiert und sind den obigen Tabellen zu entnehmen.

In der Literatur ergeben sich Hinweise auf einen Einfluss von SSRIs und SNRIs aber auch von Benzodiazepinen (Irwin, Hauger et al. 1993; Evans, Lynch et al. 2008). Insbesondere die SNRIs werden in der Schmerztherapie als atypische Schmerzmedikamente eingesetzt, aber auch die SSRIs mit ihrer antidepressiven Wirkung sind dabei häufig zu finden, leiden viele Patienten nicht nur an chronischen Schmerzen, sondern an einer begleitenden Depression. Der Einsatz von Benzodiazepinen erfolgt oft bei Schlafstörungen und bei Angstzuständen/-erkrankungen, welche ebenso als oft auftretende Komorbiditäten bei Patienten mit chronischen
Schmerzerkrankungen zu finden sind. Die koronare Herzerkrankung hat in unseren Tagen eine hohe Prävalenz, sodass eine Begleitmedikation mit Betablockern, welchen eine Beeinflussung auf die zytotoxischen Killerzellen nachgesagt wird, nicht selten vorkommt (Hak, Mysliwska et al. 2007).

Aber auch eine Kortisonbehandlung hat eine Verminderung der NK-Zellzahl zur Folge (Ivanova, Semke et al. 2006; Han, Ahn et al. 2012).

Es ist weiterhin davon auszugehen, dass womöglich noch mannigfache bisher unbekannte Faktoren die Anzahl und Aktivität von NK-Zellen beeinflussen können. Ob, ab welcher Dosis und in welchem Ausmaß Medikamente natürliche Killerzellen beeinflussen bleibt eine offene Frage.

4.3 Einflussnahme durch SNP rs2501432

4.3.1 Ausprägung der Veränderung der Oberflächenmarker

4.3.2 Wirksamkeit einer Dronabinol-vermittelten Schmerztherapie

Abhängigkeit der TH17-Zellzahl machen zu können, welche einfacher durch das Verfahren der Immunphänotypisierung gewonnen werden könnte.

4.3.3 Dosierungsunterschiede für Dronabinol

Wie bereits unter 4.2.1. erwähnt, ließ sich aufgrund der unterschiedlichen Dosierungen an Dronabinol keine sinnvolle statistische Auswertung durchführen. So kann auch kein Rückschluss auf eine Beeinflussung durch das Vorhandensein des SNPs rs2501432 gezogen werden.

4.4 Schlussfolgerung

Zusammenfassung

6 Literatureverzeichnis

Die Verwendung der Prüfprotokolle inkl. der Schmerztagebücher erfolgt mit freundlicher Genehmigung von Prof. Dr. W. Seeling.
7 Tabellenanhang

MGH 03

Tab. 85: Prozente der „gated“-Werte der einzelnen Oberflächenmarker für Patientin MGH 03 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patient-nr.</th>
<th>Abnahmedatum</th>
<th>CD1a-PE</th>
<th>CD4+PE</th>
<th>CD4+FITC</th>
<th>CD8+PE</th>
<th>CD8+FITC</th>
<th>CD4/CD8</th>
<th>CD6/CD56</th>
<th>CD16/CD56</th>
<th>CD16+FITC</th>
<th>CD69-PE</th>
<th>CD69+PE</th>
<th>CD69-FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1804</td>
<td>04.11.2002</td>
<td>2,86</td>
<td>23,12</td>
<td>44,44</td>
<td>20,98</td>
<td>38,62</td>
<td>59,26</td>
<td>43,00</td>
<td>32,62</td>
<td>16,77</td>
<td>18,14</td>
<td>7,12</td>
<td>10,05</td>
</tr>
<tr>
<td>1848</td>
<td>19.11.2002</td>
<td>95,26</td>
<td>27,45</td>
<td>36,12</td>
<td>15,74</td>
<td>31,45</td>
<td>53,47</td>
<td>7,08</td>
<td>40,41</td>
<td>23,79</td>
<td>26,01</td>
<td>8,70</td>
<td>8,76</td>
</tr>
</tbody>
</table>
Tabellenanhang

KK 05

Tab. 86: Prozente der „gated“-Werte der einzelnen Oberflächenmarker für Patientin KK 05 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patient-nr.</th>
<th>Abnahmedatum</th>
<th>CD4+ PE</th>
<th>CD4+ FITC</th>
<th>CD8+ PE</th>
<th>CD8+ FITC</th>
<th>CD25+ PE</th>
<th>CD25+ FITC</th>
<th>CD3+ PE</th>
<th>CD3+/CD56</th>
<th>CD16/CD56</th>
<th>CD161+FITC</th>
<th>CD56/CD161</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD56+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1817</td>
<td>08.11.2002</td>
<td>7,38</td>
<td>57,67</td>
<td>15,02</td>
<td>21,95</td>
<td>32,73</td>
<td>59,86</td>
<td>9,73</td>
<td>41,77</td>
<td>5,50</td>
<td>5,31</td>
<td>5,36</td>
<td>5,96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1841</td>
<td>18.11.2002</td>
<td>12,22</td>
<td>58,04</td>
<td>20,78</td>
<td>19,84</td>
<td>31,83</td>
<td>63,73</td>
<td>52,49</td>
<td>38,57</td>
<td>8,54</td>
<td>9,85</td>
<td>14,04</td>
<td>4,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1938</td>
<td>19.12.2002</td>
<td>2,56</td>
<td>53,97</td>
<td></td>
<td>19,92</td>
<td>18,04</td>
<td>47,53</td>
<td>69,46</td>
<td>4,57</td>
<td>43,87</td>
<td>11,88</td>
<td>13,49</td>
<td>12,02</td>
<td>3,69</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>27.01.2003</td>
<td>11,68</td>
<td>0,00</td>
<td></td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>2042</td>
<td>02.03.2003</td>
<td>14,83</td>
<td>51,24</td>
<td></td>
<td>21,38</td>
<td>33,92</td>
<td>46,39</td>
<td>63,46</td>
<td>9,53</td>
<td>48,08</td>
<td>16,41</td>
<td>18,26</td>
<td>16,03</td>
<td>14,62</td>
<td></td>
</tr>
<tr>
<td>2082</td>
<td>31.03.2003</td>
<td>10,44</td>
<td>49,52</td>
<td></td>
<td>22,12</td>
<td>29,32</td>
<td>42,73</td>
<td>64,37</td>
<td>9,94</td>
<td>12,63</td>
<td>49,82</td>
<td>14,72</td>
<td>15,87</td>
<td>15,52</td>
<td>8,89</td>
</tr>
<tr>
<td>2134</td>
<td>05.05.2003</td>
<td>6,84</td>
<td>45,71</td>
<td></td>
<td>18,59</td>
<td>45,30</td>
<td>53,70</td>
<td>4,48</td>
<td>0,69</td>
<td>41,36</td>
<td>1,40</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2180</td>
<td>03.06.2003</td>
<td>69,38</td>
<td>52,29</td>
<td></td>
<td>25,58</td>
<td>48,42</td>
<td>65,46</td>
<td>8,33</td>
<td>9,37</td>
<td>52,41</td>
<td>13,56</td>
<td>15,37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2260</td>
<td>16.07.2003</td>
<td>9,99</td>
<td>54,10</td>
<td></td>
<td>24,18</td>
<td>51,73</td>
<td>67,58</td>
<td>13,17</td>
<td>10,02</td>
<td>46,44</td>
<td>13,31</td>
<td>13,84</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabellenanhang

IG 06

Tab. 87: Prozente der „gated“-Werte der einzelnen Oberflächenmarker für Patientin IG 06 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patibk.-nr.</th>
<th>Abnahmedatum</th>
<th>CD1a+PE</th>
<th>CD4+PE</th>
<th>CD4+FITC</th>
<th>CD8a+PE</th>
<th>CD8a+FITC</th>
<th>CD25+PE</th>
<th>CD25+FITC</th>
<th>CD3+PE</th>
<th>CD3/CD56</th>
<th>CD16/CD56</th>
<th>CD161+FITC</th>
<th>CD56/CD161</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD69+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1812</td>
<td>07.11.2002</td>
<td>5,82</td>
<td>50,33</td>
<td>21,13</td>
<td>26,58</td>
<td>29,08</td>
<td>73,87</td>
<td>4,41</td>
<td>17,38</td>
<td>7,51</td>
<td>9,39</td>
<td>7,31</td>
<td>5,07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td>09.12.2002</td>
<td>9,75</td>
<td>49,30</td>
<td>63,79</td>
<td>15,31</td>
<td>17,85</td>
<td>63,79</td>
<td>5,64</td>
<td>27,44</td>
<td>17,85</td>
<td>21,28</td>
<td>29,76</td>
<td>11,98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>09.01.2003</td>
<td>0,55</td>
<td>51,43</td>
<td>47,25</td>
<td>26,44</td>
<td>18,41</td>
<td>20,38</td>
<td>20,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>12.02.2003</td>
<td>12,37</td>
<td>55,13</td>
<td>69,50</td>
<td>6,00</td>
<td>11,38</td>
<td>23,28</td>
<td>12,51</td>
<td>12,18</td>
<td>15,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GD 09

Tab. 88: Prozente der „gated“-Werte der einzelnen Oberflächenmarker für Patientin GD 09 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patibk.-nr.</th>
<th>Abnahmedatum</th>
<th>CD1a+PE</th>
<th>CD4+PE</th>
<th>CD4+FITC</th>
<th>CD8a+PE</th>
<th>CD8a+FITC</th>
<th>CD25+PE</th>
<th>CD25+FITC</th>
<th>CD3+PE</th>
<th>CD3/CD56</th>
<th>CD16/CD56</th>
<th>CD161+FITC</th>
<th>CD56/CD161</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD69+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1781</td>
<td>21.10.2002</td>
<td>0,00</td>
<td>58,81</td>
<td>58,81</td>
<td>13,40</td>
<td>47,34</td>
<td>70,83</td>
<td>4,52</td>
<td>37,38</td>
<td>13,74</td>
<td>17,65</td>
<td>10,27</td>
<td>14,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1853</td>
<td>20.11.2002</td>
<td>13,44</td>
<td>58,93</td>
<td>58,93</td>
<td>19,46</td>
<td>44,94</td>
<td>69,43</td>
<td>1,58</td>
<td>34,18</td>
<td>7,77</td>
<td>9,44</td>
<td>7,83</td>
<td>10,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key/Patrick-nr.</td>
<td>Abnahmedatum</td>
<td>CD3+PE</td>
<td>CD4+PE</td>
<td>CD8+PE</td>
<td>CD4+FITC</td>
<td>CD3+FITC</td>
<td>CD8+FITC</td>
<td>CD3+</td>
<td>CD25+</td>
<td>CD16/CD56</td>
<td>CD56+PE</td>
<td>CD56+FITC</td>
<td>CD3/CD56</td>
<td>CD161+</td>
<td>CD6+</td>
<td>CD16+</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>1800</td>
<td>31.10.2002</td>
<td>0,84</td>
<td>52,86</td>
<td>20,51</td>
<td>17,36</td>
<td>32,57</td>
<td>71,44</td>
<td>1,89</td>
<td>26,19</td>
<td>9,82</td>
<td>10,99</td>
<td>9,05</td>
<td>8,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1903</td>
<td>05.12.2002</td>
<td>9,90</td>
<td>47,00</td>
<td></td>
<td>26,04</td>
<td>10,41</td>
<td>36,65</td>
<td>70,37</td>
<td>52,96</td>
<td>28,75</td>
<td>12,43</td>
<td>15,07</td>
<td>10,29</td>
<td>7,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>23.01.2003</td>
<td>12,63</td>
<td>49,00</td>
<td></td>
<td>25,88</td>
<td>13,99</td>
<td>36,38</td>
<td>67,05</td>
<td>1,13</td>
<td>25,59</td>
<td>9,93</td>
<td>12,31</td>
<td>11,24</td>
<td>13,70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 90: Prozent der „gated“-Werte der einzelnen Oberflächenmarker für Patient HL 14 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patientnr.</th>
<th>Abnahmedatum</th>
<th>CD3+PE</th>
<th>CD4+PE</th>
<th>CD8+PE</th>
<th>CD4+FITC</th>
<th>CD8+FITC</th>
<th>CD25+PE</th>
<th>CD25+FITC</th>
<th>CD3+CD56</th>
<th>CD16/CD56</th>
<th>CD161+FITC</th>
<th>CD69+FITC</th>
<th>CD16+CD56</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD69+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1743</td>
<td>07.10.2002</td>
<td>16,26</td>
<td>39,73</td>
<td>38,35</td>
<td>16,92</td>
<td>31,89</td>
<td>67,67</td>
<td>9,52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28,74</td>
<td>13,13</td>
<td></td>
</tr>
<tr>
<td>1856</td>
<td>25.11.2002</td>
<td>5,90</td>
<td>48,74</td>
<td>30,65</td>
<td>20,47</td>
<td>40,68</td>
<td>74,26</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22,67</td>
<td>3,81</td>
<td>6,21</td>
</tr>
<tr>
<td>1868</td>
<td>28.11.2002</td>
<td>6,07</td>
<td>43,06</td>
<td>38,68</td>
<td>26,22</td>
<td>56,35</td>
<td>0,28</td>
<td>12,82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31,46</td>
<td>31,19</td>
<td>57,55</td>
</tr>
<tr>
<td>1885</td>
<td>02.12.2002</td>
<td>20,56</td>
<td>46,64</td>
<td>34,85</td>
<td>18,47</td>
<td>19,27</td>
<td>77,16</td>
<td>8,13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29,41</td>
<td>12,24</td>
<td>17,13</td>
</tr>
<tr>
<td>1908</td>
<td>09.12.2002</td>
<td>9,84</td>
<td>40,55</td>
<td></td>
<td>39,16</td>
<td>11,75</td>
<td>26,34</td>
<td>73,69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21,73</td>
<td>6,67</td>
<td>13,12</td>
</tr>
<tr>
<td>1958</td>
<td>09.01.2003</td>
<td>7,38</td>
<td>41,52</td>
<td></td>
<td>32,75</td>
<td>44,18</td>
<td></td>
<td>8,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21,77</td>
<td>7,16</td>
<td>12,70</td>
</tr>
<tr>
<td>1992</td>
<td>27.01.2003</td>
<td>4,50</td>
<td>46,12</td>
<td></td>
<td>31,93</td>
<td>19,00</td>
<td>42,79</td>
<td>89,10</td>
<td>8,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,56</td>
<td>3,01</td>
<td>6,55</td>
</tr>
<tr>
<td>2041</td>
<td>02.03.2003</td>
<td>9,35</td>
<td>38,06</td>
<td></td>
<td>39,18</td>
<td>21,43</td>
<td>32,72</td>
<td>69,44</td>
<td>15,38</td>
<td>1,85</td>
<td></td>
<td></td>
<td></td>
<td>21,72</td>
<td>8,21</td>
<td>14,97</td>
</tr>
<tr>
<td>2086</td>
<td>31.03.2003</td>
<td>20,41</td>
<td>26,25</td>
<td></td>
<td>18,10</td>
<td>11,55</td>
<td>35,44</td>
<td>68,99</td>
<td>16,67</td>
<td>2,29</td>
<td></td>
<td></td>
<td></td>
<td>23,51</td>
<td>10,61</td>
<td>16,39</td>
</tr>
<tr>
<td>2149</td>
<td>19.05.2003</td>
<td>2,80</td>
<td>24,01</td>
<td></td>
<td>29,62</td>
<td>24,50</td>
<td>17,36</td>
<td>46,70</td>
<td>7,68</td>
<td>3,44</td>
<td></td>
<td></td>
<td></td>
<td>9,24</td>
<td>2,86</td>
<td>5,71</td>
</tr>
<tr>
<td>2223</td>
<td>30.06.2003</td>
<td>12,21</td>
<td>32,40</td>
<td></td>
<td>53,17</td>
<td>26,54</td>
<td>32,98</td>
<td>72,69</td>
<td>22,45</td>
<td>3,45</td>
<td>35,77</td>
<td></td>
<td>20,89</td>
<td>29,76</td>
<td>10,39</td>
<td></td>
</tr>
<tr>
<td>2308</td>
<td>04.08.2003</td>
<td>0,49</td>
<td>16,90</td>
<td></td>
<td>24,00</td>
<td>15,05</td>
<td>14,91</td>
<td>27,68</td>
<td>2,81</td>
<td>1,96</td>
<td>7,90</td>
<td>2,24</td>
<td>9,74</td>
<td></td>
<td>1,48</td>
<td></td>
</tr>
<tr>
<td>2430</td>
<td>03.09.2003</td>
<td>28,22</td>
<td>39,78</td>
<td></td>
<td>35,67</td>
<td>23,08</td>
<td>23,18</td>
<td>62,87</td>
<td>10,46</td>
<td>5,16</td>
<td>6,71</td>
<td>1,00</td>
<td>3,59</td>
<td></td>
<td>4,44</td>
<td></td>
</tr>
</tbody>
</table>
DS 15

Tab. 91: Prozentwerte der „gated“-Werte der einzelnen Oberflächenmarker für Patient DS 15 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patienten-nr.</th>
<th>Abnahmedatum</th>
<th>CD4+PE</th>
<th>CD4+FITC</th>
<th>CD8+PE</th>
<th>CD8+FITC</th>
<th>CD25+PE</th>
<th>CD25+FITC</th>
<th>CD3+PE</th>
<th>CD3/CD56</th>
<th>CD16/CD56</th>
<th>CD56/CD161</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD69+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1752</td>
<td>08.10.2002</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1807</td>
<td>06.11.2002</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1816</td>
<td>08.11.2002</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1821</td>
<td>10.11.2002</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1838</td>
<td>18.11.2002</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945</td>
<td>23.12.2002</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>13.01.2003</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>24.02.2003</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2070</td>
<td>24.03.2003</td>
<td>15,69</td>
<td>49,50</td>
<td>19,91</td>
<td>19,07</td>
<td>41,18</td>
<td>69,70</td>
<td>2,77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 92: Prozente der „gated“-Werte der einzelnen Oberflächenmarker für Patientin IC 17 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patienz.-nr.</th>
<th>Abnahmedatum</th>
<th>CD3+PE</th>
<th>CD4+PE</th>
<th>CD4+FITC</th>
<th>CD8+PE</th>
<th>CD8+FITC</th>
<th>CD25+PE</th>
<th>CD25+FITC</th>
<th>CD3/CD56</th>
<th>CD16/CD56</th>
<th>CD16+FITC</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD56+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1796</td>
<td>29.10.2002</td>
<td>3,70</td>
<td>64,44</td>
<td>21,93</td>
<td>16,33</td>
<td>35,21</td>
<td>69,73</td>
<td>3,91</td>
<td>25,12</td>
<td>15,19</td>
<td>19,41</td>
<td>11,26</td>
<td>14,11</td>
<td></td>
</tr>
<tr>
<td>1822</td>
<td>11.11.2002</td>
<td>10,19</td>
<td>54,81</td>
<td>23,22</td>
<td>18,42</td>
<td>36,46</td>
<td>60,78</td>
<td>3,18</td>
<td>29,62</td>
<td>19,77</td>
<td>23,00</td>
<td>12,49</td>
<td>14,28</td>
<td></td>
</tr>
<tr>
<td>1831</td>
<td>14.11.2002</td>
<td>55,29</td>
<td>51,70</td>
<td>23,32</td>
<td>10,92</td>
<td>32,98</td>
<td>61,99</td>
<td>3,58</td>
<td>24,01</td>
<td>15,88</td>
<td>22,09</td>
<td>10,75</td>
<td>14,76</td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>18.11.2002</td>
<td>10,13</td>
<td>60,17</td>
<td>24,73</td>
<td>17,39</td>
<td>34,78</td>
<td>62,50</td>
<td>3,85</td>
<td>20,72</td>
<td>12,08</td>
<td>19,23</td>
<td>13,17</td>
<td>9,38</td>
<td></td>
</tr>
<tr>
<td>1861</td>
<td>26.11.2002</td>
<td>1,70</td>
<td>53,54</td>
<td>27,06</td>
<td>12,08</td>
<td>16,47</td>
<td>58,53</td>
<td>2,97</td>
<td>23,08</td>
<td>4,56</td>
<td>9,04</td>
<td>15,11</td>
<td>9,87</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>10.01.2003</td>
<td>5,92</td>
<td>29,03</td>
<td></td>
<td>40,11</td>
<td>4,49</td>
<td>34,36</td>
<td>40,13</td>
<td>5,38</td>
<td>31,59</td>
<td>20,68</td>
<td>33,00</td>
<td>18,87</td>
<td></td>
</tr>
<tr>
<td>2036</td>
<td>28.02.2003</td>
<td>16,48</td>
<td>39,57</td>
<td></td>
<td>29,94</td>
<td>17,41</td>
<td>38,54</td>
<td>49,10</td>
<td>8,97</td>
<td>15,36</td>
<td>24,75</td>
<td>17,54</td>
<td>22,57</td>
<td></td>
</tr>
<tr>
<td>2083</td>
<td>31.03.2003</td>
<td>6,56</td>
<td>63,50</td>
<td></td>
<td>26,07</td>
<td>17,74</td>
<td>44,08</td>
<td>67,86</td>
<td>6,39</td>
<td>8,86</td>
<td>20,91</td>
<td>14,07</td>
<td>18,15</td>
<td></td>
</tr>
<tr>
<td>2132</td>
<td>05.05.2003</td>
<td>4,38</td>
<td>45,37</td>
<td></td>
<td>31,83</td>
<td>41,40</td>
<td>59,15</td>
<td>3,37</td>
<td>2,74</td>
<td>21,63</td>
<td>7,01</td>
<td>14,81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2187</td>
<td>04.06.2003</td>
<td>5,12</td>
<td>61,80</td>
<td></td>
<td>26,95</td>
<td>56,28</td>
<td>75,12</td>
<td>6,96</td>
<td>6,35</td>
<td>20,15</td>
<td>10,39</td>
<td>14,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2244</td>
<td>08.07.2003</td>
<td>25,91</td>
<td>41,30</td>
<td></td>
<td>22,09</td>
<td>44,45</td>
<td>65,01</td>
<td>6,26</td>
<td>6,10</td>
<td>20,11</td>
<td>12,50</td>
<td>16,79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2356</td>
<td>19.08.2003</td>
<td>22,00</td>
<td>52,46</td>
<td></td>
<td>21,66</td>
<td>29,81</td>
<td>63,43</td>
<td>3,73</td>
<td>0,67</td>
<td>9,26</td>
<td>5,54</td>
<td>15,36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2480</td>
<td>02.10.2003</td>
<td>23,23</td>
<td>56,56</td>
<td></td>
<td>15,60</td>
<td>28,97</td>
<td>65,95</td>
<td>8,68</td>
<td>11,58</td>
<td>9,03</td>
<td>6,67</td>
<td>14,59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 93: Prozente der „gated“-Werte der einzelnen Oberflächenmarker für Patient SO 20 zu den unterschiedlichen Abnahmezeitpunkten

| Key-Pat.-nr. | Abnahmedatum | CD4+PE | CD3+PE | CD8+PE | CD8+FITC | CD25+PE | CD25+FITC | CD4/CD8 | CD6/CD56 | CD4/CD6 | CD16/CD56 | CD16+FITC | CD56/CD161 | CD56+PE | CD57+PE | CD69+FITC |
|--------------|--------------|--------|--------|--------|----------|---------|-----------|---------|----------|---------|-----------|-----------|-----------|---------|---------|
| 1854 | 20.11.2002 | 0,00 | 45,13 | 26,86 | 27,40 | 36,14 | 60,95 | 12,31 | 17,98 | 7,32 | 17,89 | 18,36 | 11,65 | 18,43 | 9,97 |
| 1869 | 28.11.2002 | 6,23 | 0,00 | 0,00 | 35,87 | 58,77 | 0,41 | 0,02 | 21,94 | 21,60 | 56,51 | 60,01 | 4,30 | 19,46 | 20,70 |
| 1886 | 28.12.2002 | 36,61 | 39,83 | 33,94 | 22,69 | 22,67 | 61,11 | 13,73 | 20,38 | 11,58 | 25,23 | 19,41 | 20,70 | 18,14 | 13,41 |
| 1898 | 05.12.2002 | 15,90 | 46,47 | 27,74 | 24,93 | 16,89 | 62,73 | 13,31 | 15,21 | 6,63 | 20,68 | 19,43 | 9,97 | 19,46 | 13,41 |
| 1920 | 12.12.2002 | 6,91 | 42,07 | 29,92 | 22,63 | 48,47 | 62,07 | 10,36 | 18,01 | 8,44 | 19,45 | 18,14 | 13,41 | 19,46 | 13,41 |
| 1970 | 14.01.2003 | 5,21 | 41,05 | 34,47 | 26,99 | 45,12 | 63,40 | 11,17 | 16,64 | 8,10 | 24,25 | 21,83 | 12,72 | 12,03 | 14,29 |
| 1985 | 22.01.2003 | 19,34 | 37,72 | 19,42 | 16,30 | 46,36 | 60,76 | 8,97 | 11,29 | 4,36 | 14,29 | 12,03 | 14,29 | 12,03 | 20,70 |
| 2037 | 28.02.2003 | 7,29 | 33,58 | 40,38 | 22,07 | 39,31 | 56,72 | 17,68 | 8,67 | 14,24 | 7,51 | 25,42 | 28,50 | 20,28 | 10,71 |
| 2084 | 40,45 | 53,74 | 28,35 | 21,65 | 47,18 | 61,52 | 14,43 | 10,01 | 17,85 | 7,52 | 17,03 | 13,74 | 10,71 | 12,03 | 14,29 |
| 2131 | 02.05.2003 | 4,98 | 46,05 | 32,02 | 52,36 | 69,84 | 27,85 | 3,12 | 12,49 | 4,56 | 20,43 | 10,71 | 10,71 | 14,29 | 20,43 |
| 2182 | 65,56 | 38,92 | 40,71 | 43,03 | 60,51 | 19,22 | 21,70 | 22,13 | 11,88 | 26,71 | 20,43 | 10,71 | 10,71 | 14,29 | 20,43 |
| 2239 | 08.07.2003 | 97,60 | 43,81 | 30,01 | 39,04 | 57,28 | 12,31 | 4,86 | 14,71 | 6,88 | 20,71 | 10,71 | 10,71 | 14,29 | 20,43 |
Tab. 94: Prozente der „gated“-Werte der einzelnen Oberflächenmarker für Patient MK 23 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patbank-nr.</th>
<th>Abnahmedatum</th>
<th>CD1a+PE</th>
<th>CD4+PE</th>
<th>CD4+FITC</th>
<th>CD8+PE</th>
<th>CD8+FITC</th>
<th>CD3+PE</th>
<th>CD3/CD56</th>
<th>CD16/CD56</th>
<th>CD16+FITC</th>
<th>CD56+CD161</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD69+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>14.02.2003</td>
<td>32,77</td>
<td>38,10</td>
<td></td>
<td>4,33</td>
<td>67,40</td>
<td>0,01</td>
<td>26,11</td>
<td>10,24</td>
<td>13,24</td>
<td>6,74</td>
<td>17,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2051</td>
<td>05.03.2003</td>
<td>38,16</td>
<td>39,74</td>
<td>24,83</td>
<td>39,10</td>
<td>67,40</td>
<td>0,01</td>
<td>26,11</td>
<td>10,24</td>
<td>13,24</td>
<td>6,74</td>
<td>17,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2052</td>
<td>08.03.2003</td>
<td>41,94</td>
<td>35,57</td>
<td>15,25</td>
<td>29,48</td>
<td>69,42</td>
<td>3,05</td>
<td>0,00</td>
<td>17,59</td>
<td>6,51</td>
<td>10,79</td>
<td>6,87</td>
<td>16,37</td>
<td></td>
</tr>
<tr>
<td>2053</td>
<td>12.03.2003</td>
<td>40,38</td>
<td>35,69</td>
<td>28,27</td>
<td>42,62</td>
<td>70,84</td>
<td>5,97</td>
<td>0,99</td>
<td>23,54</td>
<td>8,16</td>
<td>10,37</td>
<td>9,38</td>
<td>23,70</td>
<td></td>
</tr>
<tr>
<td>2071</td>
<td>21.03.2003</td>
<td>30,97</td>
<td>16,89</td>
<td>9,01</td>
<td>26,64</td>
<td>0,58</td>
<td>2,05</td>
<td>5,46</td>
<td>2,02</td>
<td>7,38</td>
<td>10,87</td>
<td>3,94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2125</td>
<td>29.04.2003</td>
<td>40,99</td>
<td>39,16</td>
<td>42,40</td>
<td>68,75</td>
<td>6,72</td>
<td>2,31</td>
<td>29,87</td>
<td>12,37</td>
<td>13,94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2188</td>
<td>04.06.2003</td>
<td>41,53</td>
<td>41,73</td>
<td>47,86</td>
<td>73,99</td>
<td>10,73</td>
<td>0,79</td>
<td>25,22</td>
<td>9,01</td>
<td>11,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2245</td>
<td>09.07.2003</td>
<td>40,04</td>
<td>39,08</td>
<td>38,80</td>
<td>73,05</td>
<td>9,89</td>
<td>5,44</td>
<td>22,81</td>
<td>8,86</td>
<td>11,63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2321</td>
<td>08.08.2003</td>
<td>41,08</td>
<td>37,67</td>
<td>39,76</td>
<td>70,01</td>
<td>2,86</td>
<td>0,30</td>
<td>16,68</td>
<td>3,07</td>
<td>5,59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2426</td>
<td>03.09.2003</td>
<td>40,00</td>
<td>34,80</td>
<td>25,32</td>
<td>67,27</td>
<td>6,65</td>
<td>3,04</td>
<td>13,42</td>
<td>2,03</td>
<td>3,38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2536</td>
<td>24.10.2003</td>
<td>43,90</td>
<td>33,98</td>
<td>19,99</td>
<td>71,10</td>
<td>3,68</td>
<td>4,81</td>
<td>11,71</td>
<td>3,44</td>
<td>9,68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2650</td>
<td>28.11.2003</td>
<td>37,05</td>
<td>34,78</td>
<td>36,92</td>
<td>68,07</td>
<td>6,27</td>
<td>3,89</td>
<td>20,38</td>
<td>5,90</td>
<td>8,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2888</td>
<td>06.02.2004</td>
<td>37,87</td>
<td>37,74</td>
<td>27,35</td>
<td>70,47</td>
<td>4,64</td>
<td>2,61</td>
<td>11,50</td>
<td>1,96</td>
<td>7,82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 95: Prozentwerte der „gated“-Werte der einzelnen Oberflächenmarker für Patient MG 31 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patent-nr.</th>
<th>Abnahmetermin</th>
<th>CD3+PE</th>
<th>CD4+PE</th>
<th>CD4+FITC</th>
<th>CD8+PE</th>
<th>CD8+FITC</th>
<th>CD25+PE</th>
<th>CD25+FITC</th>
<th>CD3/CD56</th>
<th>CD16/CD56</th>
<th>CD161+FITC</th>
<th>CD56+PE</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD56+PE</th>
<th>CD57+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2329</td>
<td>12.08.2003</td>
<td>1,48</td>
<td>22,17</td>
<td>22,17</td>
<td>55,57</td>
<td>9,91</td>
<td>2,24</td>
<td>0,00</td>
<td>19,66</td>
<td>4,85</td>
<td>9,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2391</td>
<td>19.08.2003</td>
<td>2,53</td>
<td>31,64</td>
<td>31,64</td>
<td>48,65</td>
<td>25,18</td>
<td>9,53</td>
<td>1,07</td>
<td>20,24</td>
<td>9,60</td>
<td>19,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2425</td>
<td>03.09.2003</td>
<td>17,68</td>
<td>17,08</td>
<td>17,08</td>
<td>39,91</td>
<td>32,49</td>
<td>18,71</td>
<td>4,46</td>
<td>13,75</td>
<td>3,48</td>
<td>5,64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2496</td>
<td>10.10.2003</td>
<td>4,90</td>
<td>28,29</td>
<td>28,29</td>
<td>57,79</td>
<td>15,84</td>
<td>7,64</td>
<td>8,07</td>
<td>28,21</td>
<td>10,55</td>
<td>15,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2591</td>
<td>07.11.2003</td>
<td>11,42</td>
<td>25,82</td>
<td>25,82</td>
<td>44,99</td>
<td>15,69</td>
<td>4,18</td>
<td>5,60</td>
<td>22,05</td>
<td>6,97</td>
<td>12,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2714</td>
<td>19.12.2003</td>
<td>15,44</td>
<td>26,52</td>
<td>26,52</td>
<td>51,02</td>
<td>23,54</td>
<td>12,95</td>
<td>10,33</td>
<td>25,84</td>
<td>9,08</td>
<td>13,49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KR 38

Tab. 96: Prozente der „gated“-Werte der einzelnen Oberflächenmarker für Patient KR 38 zu den unterschiedlichen Abnahmezeitpunkten

<table>
<thead>
<tr>
<th>Key-Patbook-nr.</th>
<th>Abnahmedatum</th>
<th>CD3+PE</th>
<th>CD4+PE</th>
<th>CD8+PE</th>
<th>CD4+FITC</th>
<th>CD8+FITC</th>
<th>CD3+PECD8+PECD3+PECD25+FITC</th>
<th>CD25+PE</th>
<th>CD3/CD56</th>
<th>CD16/CD56</th>
<th>CD56+CD161</th>
<th>CD56+PE</th>
<th>CD57+PE</th>
<th>CD56+FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1651</td>
<td>20.08.2002</td>
<td>17,15</td>
<td>16,01</td>
<td></td>
<td>28,03</td>
<td>2,84</td>
<td>22,22</td>
<td></td>
<td>10,20</td>
<td>5,19</td>
<td>16,45</td>
<td>22,45</td>
<td>11,92</td>
<td></td>
</tr>
<tr>
<td>1655</td>
<td>22.08.2002</td>
<td>20,51</td>
<td>24,88</td>
<td></td>
<td>29,72</td>
<td>8,24</td>
<td>41,13</td>
<td>44,84</td>
<td>5,01</td>
<td>17,21</td>
<td>7,04</td>
<td>17,97</td>
<td>21,42</td>
<td>11,41</td>
</tr>
<tr>
<td>1662</td>
<td>26.08.2002</td>
<td>26,58</td>
<td>19,66</td>
<td></td>
<td>41,99</td>
<td>20,61</td>
<td>38,44</td>
<td>38,49</td>
<td>5,75</td>
<td>20,45</td>
<td>11,58</td>
<td>29,12</td>
<td>30,92</td>
<td>22,49</td>
</tr>
<tr>
<td>1744</td>
<td>08.10.2002</td>
<td>5,25</td>
<td></td>
<td>22,96</td>
<td>21,70</td>
<td>14,64</td>
<td>50,37</td>
<td>34,00</td>
<td>0,32</td>
<td></td>
<td></td>
<td></td>
<td>18,08</td>
<td>11,35</td>
</tr>
<tr>
<td>1811</td>
<td>07.11.2002</td>
<td>17,75</td>
<td></td>
<td>17,78</td>
<td>17,93</td>
<td>20,28</td>
<td>34,22</td>
<td>32,23</td>
<td>2,96</td>
<td>9,67</td>
<td>2,62</td>
<td>8,76</td>
<td>13,34</td>
<td>10,47</td>
</tr>
<tr>
<td>1960</td>
<td>09.01.2003</td>
<td>6,39</td>
<td></td>
<td>23,74</td>
<td></td>
<td>28,89</td>
<td>22,05</td>
<td>52,40</td>
<td>39,72</td>
<td>3,59</td>
<td>13,17</td>
<td>6,28</td>
<td>18,96</td>
<td>20,94</td>
</tr>
<tr>
<td>2012</td>
<td>12.02.2003</td>
<td>9,98</td>
<td></td>
<td>20,06</td>
<td></td>
<td>29,54</td>
<td>22,78</td>
<td>51,07</td>
<td>35,55</td>
<td>5,13</td>
<td>14,04</td>
<td>13,19</td>
<td>6,81</td>
<td>19,90</td>
</tr>
<tr>
<td>2056</td>
<td>17.03.2003</td>
<td>6,14</td>
<td></td>
<td>26,16</td>
<td></td>
<td>32,41</td>
<td>6,94</td>
<td>10,21</td>
<td>53,09</td>
<td>6,70</td>
<td>3,01</td>
<td>16,38</td>
<td>10,68</td>
<td>18,37</td>
</tr>
</tbody>
</table>
Tab. 97: Statistische Kenngrößen für CD1a+PE positive Zellen unter Angabe der Messwertanzahl, des Minimalwerts, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwerts für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>30</td>
<td>57</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,8400</td>
<td>0,4900</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>5,668</td>
<td>6,135</td>
</tr>
<tr>
<td>Median</td>
<td>10,32</td>
<td>10,44</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>18,54</td>
<td>16,11</td>
</tr>
<tr>
<td>Maximum</td>
<td>42,73</td>
<td>40,45</td>
</tr>
</tbody>
</table>

Tab. 98: Statistische Kenngrößen für CD4+FITC positive Zellen unter Angabe der Messwertanzahl, des Minimalwerts, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwerts für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>Minimum</td>
<td>16,01</td>
<td>16,90</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>27,66</td>
<td>27,80</td>
</tr>
<tr>
<td>Median</td>
<td>38,13</td>
<td>40,82</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>43,05</td>
<td>48,50</td>
</tr>
<tr>
<td>Maximum</td>
<td>56,56</td>
<td>63,50</td>
</tr>
</tbody>
</table>

Tab. 99: Statistische Kenngrößen für CD4+PE positive Zellen unter Angabe der Messwertanzahl, des Minimalwerts, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwerts für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Minimum</td>
<td>39,73</td>
<td>17,78</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>48,74</td>
<td>37,53</td>
</tr>
<tr>
<td>Median</td>
<td>52,50</td>
<td>48,91</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>57,67</td>
<td>54,86</td>
</tr>
<tr>
<td>Maximum</td>
<td>64,44</td>
<td>60,17</td>
</tr>
</tbody>
</table>
Tab. 100: Statistische Kenngrößen für CD8+FITC positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Minimum</td>
<td>15,02</td>
<td>17,04</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>18,35</td>
<td>20,67</td>
</tr>
<tr>
<td>Median</td>
<td>21,93</td>
<td>25,90</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>28,76</td>
<td>37,72</td>
</tr>
<tr>
<td>Maximum</td>
<td>38,35</td>
<td>58,93</td>
</tr>
</tbody>
</table>

Tab. 101: Statistische Kenngrößen für CD8+PE positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Minimum</td>
<td>15,60</td>
<td>18,10</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>22,16</td>
<td>25,88</td>
</tr>
<tr>
<td>Median</td>
<td>31,93</td>
<td>29,94</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>38,51</td>
<td>35,67</td>
</tr>
<tr>
<td>Maximum</td>
<td>44,44</td>
<td>53,17</td>
</tr>
</tbody>
</table>

Tab. 102: Statistische Kenngrößen für CD25+FITC positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>26</td>
<td>42</td>
</tr>
<tr>
<td>Minimum</td>
<td>2,840</td>
<td>6,940</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>16,32</td>
<td>14,62</td>
</tr>
<tr>
<td>Median</td>
<td>19,46</td>
<td>19,87</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>23,52</td>
<td>22,92</td>
</tr>
<tr>
<td>Maximum</td>
<td>35,87</td>
<td>33,92</td>
</tr>
</tbody>
</table>
Tab. 103: Statistische Kenngrößen für CD25+PE positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>33</td>
<td>61</td>
</tr>
<tr>
<td>Minimum</td>
<td>9,010</td>
<td>10,21</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>32,23</td>
<td>31,32</td>
</tr>
<tr>
<td>Median</td>
<td>38,99</td>
<td>39,31</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>43,49</td>
<td>47,22</td>
</tr>
<tr>
<td>Maximum</td>
<td>58,77</td>
<td>56,35</td>
</tr>
</tbody>
</table>

Tab. 104: Statistische Kenngrößen für CD3+PE positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>31</td>
<td>59</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,4100</td>
<td>15,69</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>59,26</td>
<td>53,70</td>
</tr>
<tr>
<td>Median</td>
<td>63,40</td>
<td>63,46</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>67,67</td>
<td>69,46</td>
</tr>
<tr>
<td>Maximum</td>
<td>89,10</td>
<td>77,16</td>
</tr>
</tbody>
</table>

Tab. 105: Statistische Kenngrößen für CD3/CD56 doppelt positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>28</td>
<td>57</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,0200</td>
<td>0,3200</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>3,213</td>
<td>3,790</td>
</tr>
<tr>
<td>Median</td>
<td>6,790</td>
<td>5,970</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>9,383</td>
<td>9,915</td>
</tr>
<tr>
<td>Maximum</td>
<td>18,71</td>
<td>22,45</td>
</tr>
</tbody>
</table>
Tab. 106: Statistische Kenngrößen für CD16/CD56 doppelt positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,0100</td>
<td>0,3000</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>2,180</td>
<td>1,960</td>
</tr>
<tr>
<td>Median</td>
<td>4,460</td>
<td>3,450</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>9,045</td>
<td>8,860</td>
</tr>
<tr>
<td>Maximum</td>
<td>11,58</td>
<td>21,70</td>
</tr>
</tbody>
</table>

Tab. 107: Statistische Kenngrößen für CD16+FITC positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>31</td>
<td>61</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,0600</td>
<td>7,550</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>13,75</td>
<td>16,53</td>
</tr>
<tr>
<td>Median</td>
<td>22,67</td>
<td>21,63</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>29,62</td>
<td>26,09</td>
</tr>
<tr>
<td>Maximum</td>
<td>46,44</td>
<td>52,41</td>
</tr>
</tbody>
</table>

Tab. 108: Statistische Kenngrößen für CD56/CD161 doppelt positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>29</td>
<td>60</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,9300</td>
<td>1,400</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>4,605</td>
<td>6,338</td>
</tr>
<tr>
<td>Median</td>
<td>8,320</td>
<td>8,400</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>14,25</td>
<td>11,88</td>
</tr>
<tr>
<td>Maximum</td>
<td>23,79</td>
<td>20,89</td>
</tr>
</tbody>
</table>
Tab. 109: Statistische Kenngrößen für CD56+PE positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>29</td>
<td>54</td>
</tr>
<tr>
<td>Minimum</td>
<td>3,590</td>
<td>3,380</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>8,265</td>
<td>11,59</td>
</tr>
<tr>
<td>Median</td>
<td>13,84</td>
<td>16,13</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>18,02</td>
<td>20,02</td>
</tr>
<tr>
<td>Maximum</td>
<td>33,00</td>
<td>31,96</td>
</tr>
</tbody>
</table>

Tab. 110: Statistische Kenngrößen für CD57+PE positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>Minimum</td>
<td>5,360</td>
<td>6,870</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>8,788</td>
<td>10,87</td>
</tr>
<tr>
<td>Median</td>
<td>12,26</td>
<td>14,43</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>18,16</td>
<td>20,39</td>
</tr>
<tr>
<td>Maximum</td>
<td>28,74</td>
<td>30,92</td>
</tr>
</tbody>
</table>

Tab. 111: Statistische Kenngrößen für CD69+FITC positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die Gruppen mit und ohne Dronabinoltherapie

<table>
<thead>
<tr>
<th>Therapie</th>
<th>ohne Dronabinol</th>
<th>mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messwerte</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>Minimum</td>
<td>3,940</td>
<td>1,480</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>5,960</td>
<td>8,048</td>
</tr>
<tr>
<td>Median</td>
<td>11,65</td>
<td>11,12</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>14,29</td>
<td>14,79</td>
</tr>
<tr>
<td>Maximum</td>
<td>23,60</td>
<td>25,02</td>
</tr>
</tbody>
</table>
Tab. 112: Statistische Kenngrößen CD1a+PE positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die einzelnen Gruppen mit und ohne Dronabinoltherapie. Aufteilung der Gruppen nach Genotyp bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin.

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QO</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Minimum</td>
<td>2,860</td>
<td>0,8400</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>7,478</td>
<td>4,830</td>
</tr>
<tr>
<td>Median</td>
<td>11,34</td>
<td>6,640</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>21,99</td>
<td>16,93</td>
</tr>
<tr>
<td>Maximum</td>
<td>32,77</td>
<td>28,22</td>
</tr>
</tbody>
</table>

Tab. 113: Statistische Kenngrößen für CD4+FITC positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die einzelnen Gruppen mit und ohne Dronabinoltherapie. Aufteilung der Gruppen nach Genotyp bezüglich des Q63R-Polymorphismus: Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin.

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QO</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Minimum</td>
<td>23,12</td>
<td>16,01</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>29,03</td>
<td>21,95</td>
</tr>
<tr>
<td>Median</td>
<td>38,16</td>
<td>40,65</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>46,91</td>
<td>44,97</td>
</tr>
<tr>
<td>Maximum</td>
<td>56,56</td>
<td>46,12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Minimum</td>
<td>49,50</td>
<td>39,73</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>51,75</td>
<td>41,98</td>
</tr>
<tr>
<td>Median</td>
<td>56,24</td>
<td>49,54</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>59,64</td>
<td>52,23</td>
</tr>
<tr>
<td>Maximum</td>
<td>64,44</td>
<td>52,86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Minimum</td>
<td>15,02</td>
<td>20,51</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>17,57</td>
<td>20,67</td>
</tr>
<tr>
<td>Median</td>
<td>21,36</td>
<td>25,89</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>32,90</td>
<td>36,43</td>
</tr>
<tr>
<td>Maximum</td>
<td>44,44</td>
<td>38,35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Minimum</td>
<td>15,60</td>
<td>28,03</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>20,29</td>
<td>28,03</td>
</tr>
<tr>
<td>Median</td>
<td>31,95</td>
<td>31,93</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>39,45</td>
<td>32,75</td>
</tr>
<tr>
<td>Maximum</td>
<td>40,11</td>
<td>32,75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Minimum</td>
<td>4,490</td>
<td>16,92</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>15,33</td>
<td>17,25</td>
</tr>
<tr>
<td>Median</td>
<td>18,75</td>
<td>19,74</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>21,22</td>
<td>23,96</td>
</tr>
<tr>
<td>Maximum</td>
<td>24,83</td>
<td>26,58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QQ</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>QR</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>RR</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28,08</td>
<td>16,47</td>
<td>16,89</td>
</tr>
<tr>
<td>32,28</td>
<td>29,84</td>
<td>39,18</td>
</tr>
<tr>
<td>38,62</td>
<td>39,01</td>
<td>44,99</td>
</tr>
<tr>
<td>41,29</td>
<td>44,36</td>
<td>48,56</td>
</tr>
<tr>
<td>51,73</td>
<td>56,28</td>
<td>52,36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QQ</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>QR</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>RR</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42,46</td>
<td>54,40</td>
<td>59,00</td>
</tr>
<tr>
<td>56,59</td>
<td>59,15</td>
<td>59,75</td>
</tr>
<tr>
<td>63,89</td>
<td>63,25</td>
<td>67,44</td>
</tr>
<tr>
<td>67,26</td>
<td>68,36</td>
<td>72,06</td>
</tr>
<tr>
<td>70,70</td>
<td>75,10</td>
<td>80,59</td>
</tr>
</tbody>
</table>
Tab. 120: Statistische Kenngrößen für CD3/CD56 doppelt positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die einzelnen Gruppen mit und ohne Dronabinoltherapie. Aufteilung der Gruppen nach Genotyp bezüglich des Q63R-Polymorphismus:
Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin.

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,580</td>
<td>1,890</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>3,180</td>
<td>3,780</td>
</tr>
<tr>
<td>Median</td>
<td>5,380</td>
<td>8,390</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>7,080</td>
<td>9,755</td>
</tr>
<tr>
<td>Maximum</td>
<td>13,17</td>
<td>10,46</td>
</tr>
</tbody>
</table>

Tab. 121: Statistische Kenngrößen CD16/CD56 doppelt positive Zellen unter Angabe der Messwertanzahl, des Minimalwertes, des 25% Perzentils, des Median-Wertes, des 75% Perzentils und des Maximalwertes für die einzelnen Gruppen mit und ohne Dronabinoltherapie. Aufteilung der Gruppen nach Genotyp bezüglich des Q63R-Polymorphismus:
Allelfolge QQ = Glutamin/Glutamin, Allelfolge QR = Glutamin/Arginin , RR = Arginin/Arginin.

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,010</td>
<td>5,160</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>1,540</td>
<td>5,160</td>
</tr>
<tr>
<td>Median</td>
<td>3,000</td>
<td>5,160</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>10,41</td>
<td>5,160</td>
</tr>
<tr>
<td>Maximum</td>
<td>11,58</td>
<td>5,160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Minimum</td>
<td>2,220</td>
<td>6,710</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>24,37</td>
<td>10,20</td>
</tr>
<tr>
<td>Median</td>
<td>29,60</td>
<td>17,38</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>37,08</td>
<td>22,67</td>
</tr>
<tr>
<td>Maximum</td>
<td>46,44</td>
<td>26,19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,9300</td>
<td>1,000</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>7,083</td>
<td>3,010</td>
</tr>
<tr>
<td>Median</td>
<td>11,31</td>
<td>5,190</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>19,02</td>
<td>7,510</td>
</tr>
<tr>
<td>Maximum</td>
<td>23,79</td>
<td>9,820</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,0900</td>
<td>3,590</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>8,373</td>
<td>6,210</td>
</tr>
<tr>
<td>Median</td>
<td>13,89</td>
<td>9,390</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>22,10</td>
<td>12,70</td>
</tr>
<tr>
<td>Maximum</td>
<td>33,00</td>
<td>16,45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Minimum</td>
<td>5,360</td>
<td>7,310</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>7,900</td>
<td>9,050</td>
</tr>
<tr>
<td>Median</td>
<td>11,07</td>
<td>17,56</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>13,27</td>
<td>22,45</td>
</tr>
<tr>
<td>Maximum</td>
<td>18,87</td>
<td>28,74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Ohne Dronabinol</th>
<th>Mit Dronabinol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>QQ</td>
<td>QR</td>
</tr>
<tr>
<td>Anzahl Messwerte</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Minimum</td>
<td>3,940</td>
<td>4,440</td>
</tr>
<tr>
<td>25%-Quantil</td>
<td>6,433</td>
<td>5,070</td>
</tr>
<tr>
<td>Median</td>
<td>14,20</td>
<td>8,920</td>
</tr>
<tr>
<td>75%-Quantil</td>
<td>18,73</td>
<td>11,92</td>
</tr>
<tr>
<td>Maximum</td>
<td>23,60</td>
<td>13,13</td>
</tr>
</tbody>
</table>
Danksagung

Die Danksagung wurde aus Gründen des Datenschutzes entfernt.
Die Danksagung wurde aus Gründen des Datenschutzes entfernt.
Lebenslauf

Der Lebenslauf wurde aus Gründen des Datenschutzes entfernt.