A Unified Approach to Charge-Conservative Capacitance Modelling in HEMTs

Ingmar Kallfass, Member, IEEE, Hermann Schumacher, Member, IEEE, and Thomas J. Brazil, Fellow, IEEE

Abstract—The voltage dependence of high electron mobility transistor (HEMT) gate-source- and gate-drain capacitance is described by a set of equations based on a unified charge-conservative model approach. The model is applied to a low-noise GaAs pseudomorphic-HEMT (pHEMT) technology as well as its power variant. In terms of topology and parameters, the new expressions resemble the Curtice drain current model. They provide a globally accurate description of nonlinearities in HEMT capacitance.

Index Terms—Modulation-doped field effect transistors (MODFETs), semiconductor device modelling.

I. INTRODUCTION

In MONOLITHIC microwave integrated circuit (MMIC) design, high model quality is one of the most obvious requirements for reducing development costs and time to market, particularly when carried out in comparatively expensive technologies. Compared to the Si metal-oxide-semiconductor field-effect transistor (MOSFET), today’s III-V high electron mobility transistor (HEMT) technologies feature more pronounced nonlinearities in their electrical behaviour. Due to the complex epitaxial layer structures and associated physical properties, device level models dedicated to efficient circuit design are most appropriately carried out on an analytical, semi-empirical basis. In this context, the voltage dependence of gate capacitance constitutes the major reactive nonlinearity, often comparable in importance to the contribution of drain current for the accurate description of device dynamics.

II. UNIFIED MODEL FORMULATION

In any FET device, the charge density in the channel is opposed by charge of equal magnitude and opposite polarity on the gate terminal, forming the total gate charge, which itself is a function of the terminal voltages V_{gs} and $V_{ds} = V_{gs} - V_{gd}$. Physically, the channel charge is distributed across the transistor gate length. In the equivalent circuit based modelling approach, the total gate charge is divided between (and attributed to) the gate-source- and gate-drain terminals. The entities extractable from S-parameter characterization are the capacitances between these terminals, together with their bias voltage dependencies: $C_{gs}(V_{gs}, V_{gd})$ and $C_{gd}(V_{gs}, V_{gd})$. For the capacitance to stem from a single channel charge, the capacitance model expressions need to satisfy the charge-conservation criterion [1], [2]

$$\frac{\partial C_{gs}(V_{gs}, V_{gd})}{\partial V_{gd}} - \frac{\partial C_{gd}(V_{gs}, V_{gd})}{\partial V_{gs}} = 0, \quad (1)$$

If this condition is not met, not only are the underlying device physics violated, but the simulator may run into convergence problems. While physical models like Statz–Pucel [3] and [4] have been proposed for FET charge and capacitance, they suffer from the same restrictions in terms of accuracy and global validity as do the drain current models. Especially in the case of advanced heterostructure devices such as the HEMTs investigated here, empirical models are resorted to for the development of models dedicated to circuit design.

Typically, such nonlinear capacitance equations are made up of terms which depend solely on the respective terminal voltage and others that contain both voltages (2). In the case of HEMT type devices, the former part, term D in (2), accounts for fringing capacitance, Schottky diode junction capacitance as well as the channel charge build-up arising from a change in the gate voltage at zero V_{ds} (3). Separate parameters may be provided for C_{gs} and C_{gd} to account for unsymmetry in the device geometry, e.g. due to intentional gate placement close to the source region. The remaining, interdependent terms F_2 and G_2 describe the V_{ds}-dependence of the gate capacitance. In terms of modelling, this is the crucial and most demanding part, since charge-conservation needs to be observed

$$C_{gs}(V_{gs}, V_{gd}) = D(V_{gs}) + F_2(V_{gs}, V_{gd})$$
$$C_{gd}(V_{gs}, V_{gd}) = D(V_{gd}) + G_2(V_{gs}, V_{gd}) \quad (2)$$

$$D(V) = C_1 + \frac{C_2}{m} \left(\frac{V_{ds}}{V_{th}} \right)^{-m} + C_2 \left(1 + \tanh((\kappa(V - V_{th}))) \right). \quad (3)$$

A generalized form can be written as (4) and (5), representing a unified approach to the charge-conservative modeling of FET capacitance and allowing for a variety of expressions $C_S(V_{gs})$ and $F_2(V_{ds})$ to describe the dependence on V_{gs} and V_{ds}, respectively. Charge-conservation is observed for any C_S and F_3, since (6) holds. The particular form of the interdependent terms adopted in this work [see (7) and (8)] is similar to the basic empirical drain current equation of Curtice [5]

$$F_2(V_{gs}, V_{gd}) = C_S(V_{gs}) \cdot F_3(V_{gs} - V_{gd}) - \frac{\partial C_S(V_{gs})}{\partial V_{gs}}$$

$$\cdot \int F_3(V_{gs} - V_{gd}) dV_{gd} \quad (4)$$

Manuscript received February 13, 2006; revised July 25, 2006. This work was supported by United Monolithic Semiconductors and Science Foundation Ireland (SFI).

I. Kallfass was with the Department of Electron Devices and Circuits, University of Ulm, Germany. He is now with the Fraunhofer Institute for Applied Solid-State Physics, Freiburg, Germany (e-mail: ingmar.kallfass@iaf.fraunhofer.de).

H. Schumacher is with the Department of Electron Devices and Circuits, University of Ulm, Germany (e-mail: hermann.schumacher@uni-ulm.de).

T. J. Brazil is with the Department of Electronic and Electrical Engineering, University College Dublin, Ireland (e-mail: tom.brazil@ucd.ie).

Digital Object Identifier 10.1109/LMWC.2006.885627
\[G_2(V_{gs}, V_{gd}) = -C_S(V_{gs}) \cdot F_3(V_{gs} - V_{gd}) \tag{5} \]

\[\frac{\partial C_{gs}}{\partial V_{gd}} = C_S(V_{gs}) \cdot (1 - \frac{\partial F_3(V_{gs} - V_{gd})}{\partial V_{gd}}) \]

\[= -C_S(V_{gs}) \cdot \frac{\partial F_3(V_{gs} - V_{gd})}{\partial V_{gs}} \]

\[F_2(V_{gs}, V_{gd}) = C_S(V_{gs}) \cdot (1 + \tanh (l[V_{gs} - V_{gd} - V_t])) \tag{6} \]

\[\frac{\partial C_{gs}}{\partial V_{gs}} = \frac{\partial C_{gd}}{\partial V_{gs}} \cdot \tanh (l[V_{gs} - V_{gd} - V_t]) \]

\[\left(V_{gd} - \frac{1}{l} \ln (\cosh [l(V_{gs} - V_{gd} - V_t)]) \right) \tag{7} \]

\[G_2(V_{gs}, V_{gd}) = -C_S(V_{gs}) \]

\[\cdot (1 + \tanh (l[V_{gs} - V_{gd} - V_t])) \tag{8} \]

\[\frac{\partial C_{gs}}{\partial V_{gd}} = \frac{\partial C_{gd}}{\partial V_{gs}} \cdot \tanh (l[V_{gs} - V_{gd} - V_t]) \]

\[= -C_S(V_{gs}) \cdot \coth^2 (l[V_{gs} - V_{gd} - V_t]) \]

\[\frac{\partial C_{gs}}{\partial V_{gs}} = \left(1 + \tanh [l(V_{gs} - V_{gd} - V_t)] \right) \cdot \left(\frac{\partial C_{gs}}{\partial V_{gs}} \right) \tag{9} \]

The term \(C_S \) corresponds to the saturation current \(I_S \). The expression employed for \(C_S \) follows closely the definition of saturation current in drain current models

\[C_S(V_{gs}) = C_3 \cdot V_{\text{eff}}^{\text{sat}} \tag{10} \]

\[V_{\text{eff}} = \frac{1}{2} \left(V_{gs} - V_t + \sqrt{(V_{gs} - V_t)^2 + \beta^2} \right) \tag{11} \]

where \(C_3 \) is a capacitance constant and \(V_{\text{eff}} \) corresponds to the “gate overtravel,” derived from the threshold voltage \(V_t \). The transition from the linear- to the saturated operating region, i.e., term \(F_3 \) in (4) and (5) for both \(C_{gs} \) and \(C_{gd} \) is described by a \(\tanh() \) function. The charge-conservation criterion applied to the above equations yields (9). This set of equations represents a generalized form of similar capacitance expressions, such as [6] and [7] for an RF CMOS transistor technology. The full capacitance model based on the foregoing equations is applied to several HEMT technologies in the following.

III. MODEL APPLICATION

The capacitance model is incorporated in a full nonlinear FET model topology. Measured capacitance is obtained from multibias \(S \)-parameter extraction, carried out in a 100-nm low-noise GaAs pHEMT process (UMS PH15) with a cutoff frequency \(f_t \) of 110 GHz as well as its power variant (PPH15) with an \(f_t \) of 75 GHz. Fig. 1 shows extracted and modelled capacitance of a \(2 \times 20 \mu m \) GaAs power device, both for constant \(V_{ds} \) and constant \(V_{gs}, \) covering the IV plane from sub-threshold to active- and linear to saturated regimes.

Of particular interest is the observation of a local minimum of \(C_{gs} \), when plotted versus \(V_{gs} \). These characteristics are observed in all HEMT technologies. A possible physical interpretation [8] divides total capacitance of a modulation-doped field effect transistors (MODFET) gate structure into individual contributions from the 2 DEG and the Schottky junction. With increasing \(V_{gs} \) the 2 DEG capacitance drops, since the carrier concentration in the 2 DEG reaches an equilibrium and is no longer modulated by the gate potential due to the onset of carrier accumulation in the parasitic MESFET channel of the supply layer.
Demonstrating the universal suitability of the model, Fig. 2 shows its application to a $2 \times 50 \, \mu m$ low-noise GaAs pHEMT device. The model provides a globally accurate description of the measured capacitance nonlinearities over the full IV plane. The global root-mean-square deviation of the model, normalized to the measured values, is 6.1%.

REFERENCES

