From structure to electrochemistry: the influence of transition metal ordering on Na+/vacancy orderings in P2-type NaxMO2 cathode materials for sodium-ion batteries†
Loading...
Date
2024-11-28
Authors
Pfeiffer, Lukas Fridolin
Dillenz, Manuel
Burgard, Nora
Beran, Premysl
Roscher, Daniel
Zarrabeitia, Maider
Drews, Paul
Hervoches, Charles
Mikhailova, Daria
Omar, Ahmad
Journal Title
Journal ISSN
Volume Title
Publication Type
Wissenschaftlicher Artikel
Published in
Journal of Materials Chemistry A, 2024
Abstract
P2-type layered oxides are attractive cathode active materials for sodium-ion batteries, however, these materials typically suffer from detrimental Na+/vacancy orderings. In this work, we investigate the origin as well as the influence of the transition metal ratio on Na+/vacancy orderings in P2-type cathode materials. A combination of X-ray diffraction (XRD), neutron diffraction, advanced electrochemical methods, operando XRD and DFT calculations is applied to study Na+/vacancy orderings in P2-NaxNi1/3Mn2/3O2 and P2-NaxMn3/4Ni1/4O2. In P2-NaxNi1/3Mn2/3O2, a honeycomb Ni/Mn superstructure leads to charge ordering within the transition metal slab and pronounced Na+/vacancy orderings, causing distinct voltage jumps at specific sodium contents (x = 2/3, 1/2 and 1/3). For P2-Na0.60Mn3/4Ni1/4O2, the Ni/Mn superstructure is disrupted, resulting in more complex charge orderings within the transition metal slab, partially suppressed Na+/vacancy orderings and an overall smoother potential profile. Based on our findings, guidelines to suppress Na+/vacancy orderings in P2-type cathode materials for sodium-ion batteries are postulated and discussed with respect to electrochemical measurements of various transition metal compositions. These guidelines can serve to predict the tendency towards Na+/vacancy orderings for a given cathode composition or to design new cathode compositions for enhanced cycle life based on the absence of Na+/vacancy orderings.
Description
Faculties
Fakultät für Naturwissenschaften
Institutions
Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
Helmholtz-Institut Ulm (HIU)
Institut für Theoretische Chemie
Helmholtz-Institut Ulm (HIU)
Institut für Theoretische Chemie
Citation
DFG Project uulm
EXC 2154 / POLiS / POLiS - Post Lithium Storage Cluster of Excellence / DFG / 390874152
JUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092 [INST 40/575-1 FUGG]
JUSTUS 2 / HPC Forschungscluster (bwForCluster) Computergestützte Chemie und Quantenwissenschaften / DFG / 405998092 [INST 40/575-1 FUGG]
EU Project THU
Other projects THU
ExcellBattUlm / ExcellBattUlm - Nachhaltige umweltfreundliche und sichere Materialien für Hochenergie-Lithium-Ionen-Batterien - Materialien Zellen Modellierung / BMBF / 03XP0257C
bwHPC / Land Baden-Württemberg
bwHPC / Land Baden-Württemberg
License
CC BY 3.0
Is version of
Has version
Supplement to
Has erratum
Erratum to
Has Part
Part of
DOI external
DOI external
10.1039/d4ta04786a
Institutions
Periodical
Degree Program
DFG Project THU
item.page.thu.projectEU
item.page.thu.projectOther
Series
Keywords
Natrium-Ionen-Akkumulator, Sodium ion batteries, DDC 540 / Chemistry & allied sciences