Track Classification for Random Finite Set Based Multi-Sensor Multi-Object Tracking

Thumbnail Image




Scheible, Alexander
Griebel, Thomas
Herrmann, Martin
Hermann, Charlotte
Buchholz, Michael

Journal Title

Journal ISSN

Volume Title

Publication Type

Beitrag zu einer Konferenz

Published in

2023 IEEE Symposium Sensor Data Fusion and International Conference on Multisensor Fusion and Integration (SDF-MFI), 2023


The state-of-the-art of random finite set (RFS) based approaches for multi-sensor multi-object setups solve the classification and track estimation jointly in a Bayesian style. This is computationally demanding and often requires additional modeling and parameter estimation. Additionally, these approaches are not designed to make use of direct class estimations, e.g., from machine learning detectors, but estimate the class based only on the kinematic features. This work applies a separated track classification, which uses direct class estimations, to RFS-based trackers. The proposed approach can be implemented for various RFS-based multi-sensor multi-object tracking algorithms without altering their structure and without additional modeling effort. For the update of the class estimation of a track, three different methods are presented. The three approaches are demonstrated and evaluated in combination with a labeled multi-Bernoulli filter on simulated and real-world data.



Fakultät für Ingenieurwissenschaften, Informatik und Psychologie


Institut für Mess-, Regel- und Mikrotechnik


DFG Project uulm

EU Project THU

EVENTS / ReliablE in-Vehicle pErception and decisioN-making in complex environmenTal conditionS / EC / HE / 101069614
PoDIUM / PDI connectivity and cooperation enablers building trust and sustainability for CCAM / EC / HE / 101069547

Other projects THU

LUKAS / Verbundprojekt: LUKAS - Lokales Umfeldmodell für das kooperative, automatisierte Fahren in komplexen Verkehrssituationen; Teilvorhaben: Infrastrukturseite Datenverarbeitung und kooperative Handlungsplanung / BMWi / 19A20004F
AUTOtech.agil / Verbundprojekt MANNHEIM-AUTOtech.agil: Architektur und Technologien zur Orchestrierung automobiltechnischer Agilität / BMBF / 01IS22088W


CC BY 4.0 International

Is version of

Has version

Supplement to

Supplemented by

Has erratum

Erratum to

Has Part

Part of

DOI external

DOI external




Degree Program

DFG Project THU



Classification, Tracking, Ortung, Classification, Tracking (Engineering), DDC 620 / Engineering & allied operations